
New developments in parsing mizar
Czesław Bylinski

Department of Programming and Formal Methods
University of Białystok

Poland
czeslaw@mizar.org

Jesse Alama∗

Center for Artificial Intelligence
New University of Lisbon

Portugal
j.alama@fct.unl.pt

Abstract

The mizar language aims to capture mathematical vernacular by providing a rich language for
mathematics. From the perspective of a user, the richness of the language is welcome because it
makes writing texts more “natural”. But for the developer, the richness leads to syntactic complexity,
such as dealing with overloading.

As part of the larger project of open-sourcing the mizar codebase, the mizar team is opening
up the mizar parser. The result has led them to consider afresh the problems of parsing the mizar
language and making it accessible to users and other developers. In this paper we describe these new
parsing efforts and some applications thereof, such as large-scale text refactorings, pretty-printing,
HTTP parsing services, and normalizations of mizar texts.

1 Introduction

The mizar system provides a language for declaratively expressing mathematical content and writing
mathematical proofs. One of the principal aims of the mizar project is to capture “the mathematical ver-
nacular” by permitting authors to use linguistic constructions that mimic ordinary informal mathematical
writing. The richness is welcome for authors of mizar texts. However, a rich, flexible, expressive lan-
guage is good for authors can lead to difficulties for developers and enthusiasts. Certain experiments
with the mizar language and its vast library of formalized mathematical knowledge (the mizar Mathe-
matical Library, or MML), naturally lead to rewriting mizar texts in various ways. Until recently, there
has been no standalone tool, distributed with mizar, that would simply parse mizar texts and present the
parse trees in a workable form.1 Compounding the problem of the inherent difficulty of parsing mizar
texts and the lack of a standalone parser, mizar itself is, to a large extent, a closed-source system.2 One
could try to reverse-engineer mizar to carry out private experiments, but this is a steep obstacle. One can
request assistance from the mizar developers for specific tasks3, but this is obviously an unacceptable
method for solving one’s own problems. And even if one has access to the mizar codebase, it may not
be clear how to carry out a specific rewriting task.

The mizar team is moving toward releasing their code under a standard open-source license. Part of
this process is a reorganization of the mizar toolchain, starting with the parser. This paper documents
these efforts and illustrates some of the fruits they have already borne. This paper does not explain how
to parse arbitrary mizar texts; that is a thorny issue of its own. And for lack of space we cannot go into
the detail about the mizar system; see [5, 6]. The scope of this paper is to announce new developments
by the mizar team that make parsing of mizar texts more accessible for users and developers.

∗Supported by the ESF research project Dialogical Foundations of Semantics within the ESF Eurocores program LogICCC
(funded by the Portuguese Science Foundation, FCT LogICCC/0001/2007). Research for this paper was partially done while a
visiting fellow at the Isaac Newton Institute for the Mathematical Sciences in the programme ‘Semantics & Syntax’.

1One parser tool, lisppars , is distributed with mizar. lisppars is mainly used to facilitate authoring mizar texts with
Emacs [7]; it carries out fast lexical analysis only and does not output parse trees.

2The contents of the mizar Mathematical Library, on the other hand, are now governed by an open-source license [3].
3The first author would like to thank Karol Pąk for his patient assistance in developing customized mizar text rewriting

tools.

1

czeslaw@mizar.org
j.alama@fct.unl.pt

Parsing mizar Bylinski and Alama

In Section 2, we discuss different views of mizar texts that are now available. Section 3 describes
some current applications made possible by opening up mizar texts, and describes some HTTP-based
services for those who wish to connect their own tools to mizar services. Section 4 concludes by sketch-
ing further work and potential applications.

2 Layers of a mizar text

It is common in parsing theory to distinguish various analyses of a text [2]. Traditionally the first task in
parsing is lexical analysis or scanning: to compute, from a stream of characters, a stream of tokens, i.e.,
terminals of a production grammar G. From a stream of tokens one then carries out a syntactic analysis,
which is the synthesis of tokens into groups that match the production rules of G.

One cannot, in general, lexically analyze mizar texts without access to the MML because lexical
analysis requires access to the library’s store of symbols. Consider, for example, mizar text fragment

fx=a

consisting four characters. Several lexical analyses of this fragment are possible. If fx and a are known to
be function symbols, then one could analyze this text fragment as the sequence 〈term〉〈equality〉〈term〉
of tokens of length 3. If fx=a is a function symbol, then the correct lexical analysis is 〈term〉. (This
example is legal because although the equality symbol is one of the keywords in the mizar grammar, it is
not forbidden to define function symbols whose name includes equality as a part.) Perhaps fx= and a are
function symbols, so the fragment should be lexically analyzed as 〈term〉〈term〉. If instead fx and =a are
function symbols, then the right analysis is 〈term〉〈term〉, which is congruent with the previous lexical
analysis, but the lexical contents of the tokens differ. If fx=a is a relation symbol, then the correct lexical
analysis is 〈relation〉. Further lexical analyses are possible, but these ought to be enough examples to
illustrate the difficulty.

Even with a lexical analysis of a mizar text, how should it be understood syntactically? Consider
let X be set ,

R be Relation of X, Y;

The difficulty in this case comes from dependent types. There is the notion (binary) relation, indi-
cated by the non-dependent type Relation. There is also the notion relation whose domain is a subset
of X and whose range is a subset of Y , which is expressed using the dependent type Relation of X,Y.
Finally, we have the notion relation whose domain is a subset of X and whose range is a subset of X
which is written Relation of X. In the text fragment above, we have to somehow determine which
possibility is correct, but this information is not contained in the token stream.

2.1 Normalizations of mizar texts

One goal of opening up the mizar parser is to help those interested in working with mizar texts to not
have to rely on the mizar codebase to do their own experiments with mizar texts. We now describe
two normalizations of (arbitrary) mizar texts, which we call weakly strict and more strict. The results
of these two normalizations on a mizar text can be easily parsed by a standard LR parser, such as those
generated by the standard tool bison4 and have further desirable syntactic and semantic properties.

2.2 Weakly strict mizar

The aim of the weakly strict mizar (WSM) transformation is to define a class of mizar texts for which
one could easily write an standard, standalone parser that does not require any further use of the mizar

4http://www.gnu.org/software/bison/

2

http://www.gnu.org/software/bison/

Parsing mizar Bylinski and Alama

tools. In a weakly strict mizar text all notations are disambiguated and fully parenthesized, and all
statements take up exactly one line. (This is a different transformation than single-line variant AUT-SL
of the Automath system [4].) Consider:

reserve P,R for Relation of X,Y;

This mizar fragment is ambiguous: it is possible that the variable Y is a third reserved variable (after the
variables P and R), and it is possible that Y is an argument of the dependent type Relation of X,Y. The
text becomes disambiguated by the weakly strict mizar normalization to

reserve P , R for (Relation of X , Y) ;

and now the intended reading is syntactically evident, thanks to explicit bracketing and whitespace.
The result of the one-line approach of the weakly strict mizar normalization is, in many cases,

excessive parenthesization, unnecessary whitespace, and rather long lines.5 The point of the weakly strict
mizar normalization is not to produce attractive human-readable texts. Instead, the aim is to transform
mizar texts so that they have a simpler grammatical structure.

2.3 More Strict mizar

A second normalization that we have implemented is called, for lack of a better term, more strict mizar
(MSM). The aim of the MSM normalization is to to define a class of mizar texts that are canonicalized
in the following ways:

• From the name alone of an occurrence of a variable one can determine the category (reserved
variable, free variable, bound variable, etc.) to which the occurrence belongs.

• All formulas are labeled, even those that were unlabeled in the original text.

• Some “syntactic sugar” is expanded (“unsweetened”).

• Toplevel logical linking is replaced by explicit reference. Thus,

φ ; then ψ;

using the keyword then includes the previous statement (φ) as the justification of ψ . Under the
MSM transformation, such logical relationships are rewritten as

Label1: φ ;
Label2: ψ by Label1;

Now both formulas have new labels Label1 and Label2. The logical link between φ and ψ ,
previously indicated by the keyword then, is replaced by an explicit reference to the new label
(Label1) for φ .

• All labels of formulas and names of variables in a mizar are serially ordered.

MSM mizar texts are useful because they permit certain “semantic” inferences to be made simply
by looking at the syntax. For example, since all formulas are labeled and any use of a formula must be
done through its label, one can infer simply by looking at labels of formulas in a text whether a formula
is used. By looking only at the name of a variable, one can determine whether it was introduced inside
the current proof or was defined earlier.

5The longest line in the “WSM-ified” library has length 6042. About 60% (to be precise, 694) of the articles in the WSM
form of the current version of the mizar Mathematical Library (4.181.1147) have lines of length at least 500 characters. The
average line length across the whole “WSM-ified” library is 54.7.

3

Parsing mizar Bylinski and Alama

3 Applications

Opening up the mizar parser facilitates further useful text transformations, such as pretty printing. One
can design, for example, XSLT stylesheets [1] for operating on the XML output of the new parser tools.

An HTTP parsing service for these new developments is available for public consumption. Four
services are available. Submitting a suitable GET request to the service and supplying a mizar text in the
message body, one can obtain as a response:

• The WSM form of the text.

• The MSM form of the text.

• The XML representation of the parse tree of the WSM form of the text.

• The XML representation of the parse tree of the MSM form of the text.

The HTTP services permit users to parse mizar texts without having access to the MML, or even the
mizar tools. See

http://mizar.cs.ualberta.ca/parsing

to learn more about the parsing service, how to prepare suitable HTTP parsing requests, and how to
interpret the results.

4 Conclusion and Future Work

Parsing is an essential task for any proof assistant. In the case of mizar, parsing is a thorny issue because
of the richness of its language and its accompanying library. New tools for parsing mizar, with an eye
toward those who wish to design their own mizar applications without (entirely) relying on the mizar
tools, are now available. Various normalizations for mizar texts have been defined. Further useful
normalizations are possible. At present we are experimenting with a so-called “variable free” mizar
(VFM), in which there are no so-called reserved variables; in VFM texts the semantics of any formula is
completely determined by the block in which it appears, which should make processing of mizar texts
even more efficient.

References
[1] XSL Transformations (XSLT). Technical report, W3C, 1999. Available online at http://www.w3.org/TR/

xslt.
[2] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools. Pearson/Ad-

dison Wesley, 2007.
[3] J. Alama, M. Kohlhase, L. Mamane, A. Naumowicz, P. Rudnicki, and J. Urban. Licensing the Mizar mathe-

matical library. Intelligent Computer Mathematics, pages 149–163, 2011.
[4] N. G. de Bruijn. AUT-SL, a single-line version of Automath, volume 133 of Studies in Logic and the Founda-

tions of Mathematics, chapter B.2, pages 275–281. North-Holland, 1994.
[5] A. Grabowski, A. Kornilowicz, and A. Naumowicz. Mizar in a nutshell. Journal of Formalized Reasoning,

3(2):153–245, 2010.
[6] R. Matuszewski and P. Rudnicki. Mizar: the first 30 years. Mechanized Mathematics and its Applications,

4(1):3–24, 2005.
[7] J. Urban. MizarMode—an integrated proof assistance tool for the Mizar way of formalizing mathematics.

Journal of Applied Logic, 4(4):414 – 427, 2006.

4

http://mizar.cs.ualberta.ca/parsing
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

	Introduction
	Layers of a mizar text
	Normalizations of mizar texts
	Weakly strict mizar
	More Strict mizar

	Applications
	Conclusion and Future Work

