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1 Introduction
The Fisher information from linear models does not depend on model parameters,
and hence designs that maximize the information can be found and implemented
directly. Information from nonlinear models is a function of model parameters,
which complicates the implementation of efficient designs. Stein [1945] intro-
duced two-stage procedures in which information from the first stage is used to
improve the design of a second stage. Fisher [1947, Chapter 68] and Chernoff
[1953] suggest that optimal designs be approximated by guessing the parameter
values; however, this may be inefficient when the guess is far from the actual
parameter value.

Adaptive optimal design is estimated from all prior data. This approach was
endorsed by Box and Hunter [1965], Fedorov [1972] White [1975] and Silvey
[1980] and used by many, including Dragalin, Fedorov, and Wu [2008]. Its appeal
is that if an adaptive optimal design converges to the true optimal design, heuris-
tically arguing, the overall experiment will become more efficient with additional
stages.

In the adaptive optimal design literature, in place of constructing a likelihood
from the joint density for responses and design points, responses have been treated
as independent, conditional on treatment - both for selecting the next design point
and for evaluating the design’s efficiency. Silvey [1980, Chapter 7] and others
point out that the information measure they employ is not, by definition, Fisher’s
information. While conditioning on treatment assignments is generally accepted
for analysis, the role of conditioning in adaptive design construction has not been
clarified.

This paper explores how dependency among treatments affects the properties
of maximum likelihood estimates (MLEs). To illuminate the effects, we assume
for simplicity that there are only two stages and that the first stage design is fixed.
Responses are assumed to be normal with a one parameter exponential mean func-
tion. A procedure for selecting the proportion of subjects allocated to stage 1
is recommended. Measures of information and their estimates are analyzed and
compared. The information measure most commonly used in the optimal design
literature is compared with Fisher’s information.
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2 Information in a Two-Stage Experiment
Consider an experiment with two treatment groups. Suppose summary statistics
t1 = t(y1) and t2 = t(y2) are obtained from subjects in group 1 and group 2, respec-
tively, where yi is a vector of independent observations from ni subjects in group
i. We use lower case letters to denote both random variables and their realization
when there is no confusion.

Let x1 be the treatment given to group 1, and assume that it is fixed. Suppose
the treatment given to group 2 is an onto function of the stage 1 summary statistic,
t1, that is, x2 = x2(t1). Further suppose t1 and t2 are jointly sufficient for all obser-
vations n = n1 +n2, so that inference can be based on their joint density, which is
assumed to be bounded and twice differentiable with respect to θ ∈ Θ. We also
assume that the true value of θ is an internal point of Θ.

Let θ̃n be an estimator of θ with finite expectation E
(
θ̃n
)
= θ + b(θ) and

let θ̂n be the MLE based on the total sample. The derivation of the information
inequality [cf. Cox and Hinkley [1974, p. 254], Hogg, McKean, and Craig [2005,
p. 322]] applies in a straightforward manner for the two-stage experiment. Let
S = d ln f (t1, t2;θ ,x1)/dθ denote the score function. Then

d
dθ

E
[
θ̃n
]
= 1+b′(θ) = Cov

[
θ̃n,S

]
and by the Cauchy-Schwartz inequality,

[
Cov

[
θ̃n,S

]]2 ≤ Var
[
θ̃n
]

Var [S]. There-
fore, provided Var [S]> 0,

Var
[
θ̃n
]
≥ [1+b′(θ)]2

Var [S]
. (1)

Most estimators will not attain the lower bound, as equality in (1) requires θ̃n to be
perfectly correlated with S and to have constant bias with respect to θ . However,
(Var [S])−1 is asymptotically equivalent to Var

[
θ̂n
]
, and as a result, (Var [S])−1 is

an approximation commonly called Fisher’s information.
When the sufficient statistics are sample means, i.e., t1 = ȳ1, t2 = ȳ2,

1
n

Var[S] = Var [d ln f (ȳ1, ȳ2;θ ,x1)/dθ ] = E
[
−d2 ln f (ȳ1, ȳ2;θ ,x1)/dθ

2]
= E

[
−d2 ln f ( ȳ2| ȳ1;θ ,x1)/dθ

2−d2 ln f (ȳ1;θ ,x1)/dθ
2]

= E
[
−d2ln f ( ȳ2|x2 (ȳ1) ;θ ,x1)/dθ

2−d2ln f (ȳ1;θ ,x1)/dθ
2]

= w2E [µ(θ ,x2 (ȳ1))]+w1µ(θ ,x1),
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where wi = ni/n and µ(x,θ) = Ey|x
[
−d2ln f (y|θ ,x)/dθ 2] gives a measure of

information on a single observation conditional of their treatment.

3 The Model: Normal Random Response Variables
Having a One Parameter Exponential Mean Func-
tion

Consider n subjects with responses

y j = η(x,θ)+ ε j, ε j ∼N (0,1), j = 1, . . . ,n. (2)

Here let η = η(x,θ) = e−θx, θ ∈ Θ = (0,∞) be a one parameter exponential
mean function evaluated at the design point x. As is typically necessary, due
to experimental or practical considerations, we bound the design space, i.e., x ∈
X = [a,b], 0 < a < b < ∞.

Fisher [1947] used a variant of this model in which x indicates the number of
serial dilutions in a laboratory experiment to illustrate the relationship between
information on η and information on θ . With serial dilutions the response is
expected to decrease with x. Cochran [1973] elaborated on the experiment that
motivated Fisher and used the exponential mean function (as we do) to illustrate
statistical complications with nonlinear regression more generally. Complications
encountered with model (2) evaluated at a single point are likely to exist, or be
exaggerated, with more complicated designs and/or more complicated mean func-
tions.

In particular, complications for finite sample sizes are induced by the mean
function being bounded on the interval (0,1) while responses are on (−∞,∞).
Other functions with this property include, for example, the widely used EMAX
model discussed in Dragalin et al. [2007] and in Leonov and Miller [2009]. For
the EMAX model,

ln
[

θ1−η

η−θ2

]
= θ3 +θ4x =⇒ η(x,θ) =

θ1 +θ2eθ3+θ4x

1+ eθ3+θ4x .

So η also has a restricted range, yet y ∈ (−∞,∞).
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3.1 A Fixed One Point Design
In model (2) the sample mean, ȳ, is complete and sufficient for θ given x and n,
and hence inference can be based on the likelihood

L (θ |x, ȳ) = f (ȳ|x,θ) =
( n

2π

)1/2
exp
{
−n

2

(
ȳ− e−θx

)2
}
.

Since the mean function e−θx is bounded in (0,1), the likelihood must be maxi-
mized separately for ȳ < 0, ȳ ∈ (0,1) and ȳ > 1:

1. If ȳ ∈ (0,1), then the MLE is the unique solution to

d ln f (y j |x,θ )/dθ =
(

ȳ− e−θx
)

xe−θx = 0. (3)

2. If ȳ > 1, the left side of (3) is a decreasing function of θ and x. The MLE
of θ is the solution to ȳ = e−θx = 1, which is 0.

3. If ȳ < 0, the left side of (3) is a increasing function of θ and x. The MLE
of θ is the solution to ȳ = e−θx = 0; in other words, the MLE diverges to
infinity. The divergence of the MLE to infinity necessitates the restriction
of a search for the MLE to be less than some a predetermined constant θ .

In summary, for the one point design

θ̂n =


− ln ȳ

x
, if ȳ ∈

(
e−θx,1

)
,

0 if ȳ≥ 1,
θ if ȳ≤ e−θx.

It is common practice to use θ̂n to estimate θ and [nµ (x,θ)]−1 to approximate
Var
[
θ̂n
]
. For small sample applications, this approximation should be used with

caution because (1) θ̂n has large bias; (2) [nµ (x,θ)]−1 can be quite far from
Var
[
θ̂n
]
; and (3) [nµ (x,θ)]−1 must be estimated.

3.2 The Adaptive Stage 2 Treatment
Henceforth, let the subscript i represent stage i. The treatment that maximizes the
increment in information in stage 2 is

x∗ = argmax
x∈X

[µ (x,θ)] = argmax
x∈X

(
dη(x,θ)

dθ

)2

=


θ−1, if a≤ 1

θ
≤ b

b, if 1
θ
≥ b

a, if 1
θ
≤ a

(4)
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which we call the locally optimal design point. A two stage design is one way to
deal with the fact that x∗ depends on θ . That is, after treating an initial subset of
subjects at x1, use the first stage data to estimate θ in (4). However, the restriction
that x2 ∈ [a,b] on model (2) imposes yet more boundary constraints. Namely,

x2 =


θ̂−1

n1
, if ȳ1 ∈

(
e−a−1x1,e−b−1x1

)
b, if ȳ1 ≥ e−b−1x1

a, if ȳ1 ≤ e−a−1x1.

(5)

Now, since a and θ are predetermined constants, one can simplify the procedure
and its analysis by selecting θ = a−1. This is done henceforth in this paper.

We emphasize that x2 depends on ȳ1, that is, on {ε1 j}n1
1 ; but x2 is independent

of {ε2 j}n2
1 . Let ξA = {xi,wi}2

i=1 denote a two-stage design with x2 adapted as in
(5).

In later comparisons, we employ a locally optimal two-stage design, ξ ∗, as a
benchmark. This design has the same first stage design {x1,w1} as the adaptive
design, but the second stage design is {x∗,w2}, i.e., the second stage uses the
unknown optimal treatment.

Since ȳ1|x1 is distributed Φ
(√

n1 (ȳ1−η1)
)
, where Φ(z) denotes the cumula-

tive standard normal distribution function, the probabilities that x2 will lie on the
boundaries and in the interior of the parameter space are given by

π1 = P(x2 = a) = P
(

ȳ1 ≤ e−a−1x1
)
= Φ

(√
n1

(
e−a−1x1− e−θx1

))
;

π3 = P(x2 = b) = P
(

ȳ1 ≥ e−b−1x1
)
= 1−Φ

(√
n1

(
e−b−1x1− e−θx1

))
;

π2 = P(a < x2 < b) = 1−π1−π3.

Note that π1 and π3 go to zero as n→ ∞.
Let I(·) denote the indicator function. Then the per-subject information is

M(ξA,θ) =
1
n

Var[S] = w1x2
1e−2θx1 +w2π1a2e−2θa +w2π3b2e−2θb

+w2Eȳ1

[(
−x1

ln ȳ1

)2

e−2θ

(
−x1
ln ȳ1

)
· I
(

e−a−1x1 < y1 < e−b−1x1
)]

. (6)

For finite samples π1 and π3 can be large.
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4 Selection of the Stage 1 Sample Size
When the stage 1 sample proportion, w1 = n1/n, is to be fixed, a natural question
is how to determine n1. We say a stage one sample size is good if it is close to

n∗1 = arg max
n1∈{1,...,n}

M(ξA,θ). (7)

Consider the following proposition (proof is in the appendix):

Proposition 1 For model (2) if x∗ an interior point of X , then n∗1 = O(
√

n).

This proposition indicates that it is best to select n1 proportional to
√

n. This
relationship was noted by Luc Pranzanto for a more general model (personal com-
munication, 2012). However, practically this knowledge is of little value.

For finite sample sizes the following two points can be shown. First, there
exists a neighborhood for x1 around x∗ such that n∗1 = n. This indicates that over an
interval of x1 around x∗ the expected per observation information given the initial
treatment is greater than that for observations treated at the adaptively selected
treatment. Second, provided X is a sufficiently large interval, there exists a point
x′ < x∗ and x′′ > x∗ such that for all x1 < x′ and all x1 > x′′, n∗1 < n. These two
points imply that, for a finite sample, the distance between x1 and x∗ may have
greater influence on the value of n∗1 than does the value of

√
n. For proof of the

existence of these neighborhoods and further discussion, see appendix 9.2.
Based on the preceding discussion, we suggest one assign θ a prior distribu-

tion, calculate n∗1 conditional on θ and then average n∗1|θ with respect to the prior
of θ . That is, we recommend using

ñ∗1 =
∫
(n∗1|θ)dπ(θ), (8)

where π(θ) denotes a prior distribution of θ .
For example, consider model (2) with η(x,θ) = e−θx, true parameter value

θt = 1, n = 100, x1 = 1, and X = [.25,10]. Then noting that x−1
2 (.25) = 4 and

x−1
2 (10) = 1, let θ be Uniform(.1,4). Figure 1 shows [n∗1|θ ]/n for θ ∈ (.1,4).

Note the interval around θt where n∗1 = n, and that outside this interval n1 ≤ n.
For n = 100, (8) yields ñ∗1 = 42.

[Figure 1 about here.]
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5 The Final MLE θ̂ of θ

Since responses are independent conditional on treatment and x2 is an onto func-
tion of y1, the likelihood is

L (θ |y1,y2,x1) ∝ exp
{
−1

2

(
n1 (ȳ1−η(x1,θ))

2 +n2 (ȳ2−η(x2(ȳ1,x1),θ))
2
)}

which has the same form as when x2 is fixed except now the second stage mean is
a random function of ȳ1. Henceforth n1 and n2 are assumed to be fixed in advance.

After the second stage, the MLE θ̂ using all the data can be found by solving

1
n

S = w1

(
ȳ1− e−x1θ

)
x1e−x1θ +w2

(
ȳ2− e−x2θ

)
x2e−x2θ = 0 (9)

subject to boundary conditions, i.e., if θ̃ is the unique solution to (9), then

θ̂n =


θ̃ if θ̃ ∈

(
0,a−1)

0 if θ̃ ≤ 0
a−1 if θ̃ ≥ a−1.

The upper bound a−1 is necessary to guarantee E[θ̂n]< ∞.
The distributions of ȳ1 and ȳ2 determine the distribution of θ̂ and hence in-

ference on θn. Although, ȳ1 is normally distributed, the boundaries of the design
space and the adaptive selection of x2 result in ȳ2 following a mixture distribution:

f (ȳ2) = π1 f (ȳ2|x2 = a)+π3 f (ȳ2|x2 = b)+
∫ b

a
f (ȳ2|x2) f (x2)dx2.

6 Staged Information
Ignoring the dependency induced by selecting x2 adaptively and treating the re-
sponses as independent, one obtains the commonly used information measure

Mind(ξA,θ , θ̂n1) =
2

∑
1

wiµ(xi,θ) =
2

∑
1

wix2
i e−2θxi (10)

where θ̂n1 denote the MLE based on stage 1 data alone. The locally optimal design
gives the benchmark information

M(ξ ∗,θ) = w1x2
1e−2θx1 +w2x∗2e−2θx∗. (11)
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Since x2 −→ x∗, µ (x2,θ) −→ µ (x∗,θ) as n −→ ∞ and because the limit can be
passed under the expectation in (6), it follows that

M(ξA,θ)
n→∞−−−→ w1µ (x1,θ)+w2µ (x∗,θ) = M(ξ ∗,θ).

In general, one needs to verify that (6) and (10) have the same asymptotic limits.
In particular, different limits are likely in models where the support of x1 contains
θ .

6.1 Comparison of M(ξA,θ), M(ξ ∗,θ) and
[
nVar[θ̂n]

]−1.

Figure 2 compares the (simulated) main object of interest:
[
nVar[θ̂n]

]−1
with

M(ξA,θ) and M(ξ ∗,θ). M(ξ ∗,θ) decreases linearly with w1; it attains its maxi-
mum when all subjects are treated at x∗ = 1, i.e., w1 = 0, and its minimum when
x∗ is never used. M(ξA,θ) achieves a maximum when w1 ≈ 0.45 and only when
w1 = 1 does it equal M(ξ ∗,θ). For values w1 ≥ 0.20 M(ξA,θ) has very little
variability.

Note that
[
nVar[θ̂n]

]−1
is overestimated by both M(ξA,θ) and M(ξ ∗,θ). Thus

M(ξ ∗,θ) is misleading as a benchmark. The difference between M(ξA,θ) and[
nVar[θ̂n]

]−1
is small only when w1 is very near 0. This difference increases

dramatically as w1 increases to 1.

[Figure 2 about here.]

6.2 Comparison of M(ξA,θ), Mind(ξA,θ , θ̂n1) and
[
nVar[θ̂n]

]−1.
A primary interest is the difference between M(ξA,θ) and the commonly used
Mind(ξA,θ , θ̂n1). Since, for the one parameter exponential mean function, one can
pass the limit through the expectation, it follows that M(ξA,θ)−Mind(ξA,θ , θ̂n1)
n→∞−−−→ 0. Even though the two measures are asymptotically equivalent, one would
like to determine which is closer to

[
nVar[θ̂n]

]−1
when the sample size is finite.

Unfortunately, because θ̂n is the solution to the likelihood equation subject to
boundary conditions, its distribution and variance cannot be found explicitly for a
fixed n. As a result, it is not possible to determine the distance of either measure
from

[
nVar[θ̂n]

]−1
explicitly, for unknown θ . However, rewriting (1) for θ̃n = θ̂n

as
nM(ξA,θ)≥ (1+b′(θ))2Var−1[θ̂n]
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one sees that the lower bound of
[
Var[θ̂n]

]−1
is proportional to nM(ξA,θ) given

θ . Furthermore, simulations for n = 100 suggest that

argmax
x∈X

M(ξA,θ) = argmax
x∈X

µ(x,θ)≈ argmax
x∈X

Var−1 [
θ̂n
]
.

This provides some small sample justification for procedure (4).
An important distinction between M(ξA,θ) and Mind(ξA,θ , θ̂n1) deals with

their relationship to θ̂n1: in particular, M(ξA,θ) is constant given the design,
where Mind(ξA,θ , θ̂n1) is a function of θ̂n1 , and thus a function of the first stage
data.

Figure 3 plots Mind(ξA,θ , θ̂n1) and M(ξA,θ) for x1 = 2, θt = 1, w1 = 0.20 as
functions of θ̂n1 . Note that Mind(ξA,θ , θ̂n1) will not change as n increases, but the
probability Mind(ξA,θ , θ̂n1) is close to M(ξA,θ) increases. For example when n =
100, M(ξA,θ) ≈ 0.081 and P

((
M(ξA,θ)−Mind(ξA,θ , θ̂n1)

)
/M(ξA,θ)< .1

)
≈

.61. If the sample size is increased to 400, M(ξA,θ)≈ 0.103 and the same proba-
bility would be approximately 0.806.

[Figure 3 about here.]

This discussion has been aimed at illuminating the appropriateness of using
the information measure M(ξA,θ) to construct two-stage designs with finite sam-
ple sizes. Using Mind(ξA,θ , θ̂n1) can be justified only with large stage 1 sample
sizes which are common in many environmental sampling schemes, but not in
clinical trials. However, motivated by the Cramer-Rao lower bound and supported
by simulations, nM(ξA,θ) and Var−1[θ̂n] appear proportional to a constant except
for extreme values of w1. These findings support using nM(ξA,θ) to make design
decisions.

7 Estimates of Staged Information
A number of estimates of the information are possible.
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Plug in information estimates:

Mind(ξA, θ̂n, θ̂n1) = [w1µ(x1,θ)+w2µ(x2(x1,y1),θ)]θ=θ̂n

= w1x2
1e−2θ̂nx1 +w2(θ̂

−2
n1

e−2θ̂nθ̂−1
n1 )

M(ξA, θ̂n) = [w1µ (x1,θ)+w2Eȳ1 [µ (x2(ȳ1,x1),θ)]]θ=θ̂n

= w1x2
1e−2θ̂nx1 +w2

(
π̂1a2e−2θ̂na + π̂3b2e−2θ̂b

+ Êy1

((
x1

lny1

)2

e2θ
x1

lny1 |e−a−1x1 < y1 < e−b−1x1

))
.

observed information estimate:

Mobs(ξA, θ̂n, θ̂n1) =−
(
d2 ln f (y1,y2|θ ,x1)/dθ

2) |
θ=θ̂n

= Mind(ξA, θ̂n, θ̂n1)−
2

∑
i=1

wi(ȳi− e−θ̂nxi)x2
i e−2θ̂nxi.

To compare estimators, consider a simulation where n = 100, w1 = 0.20, x1 = 2.0,
θt = 1.0, a = 0.25, and b = 10. Figures 4(b), 4(a) and 4(c), plots the quartiles and
mean values of Mind(ξA, θ̂n, θ̂n1), M(ξA, θ̂), and Mobs(ξA,θn, θ̂n1), respectively,
against

[
nV̂ar[θ̂ ]

]−1
. In these pictures, all three estimators appear to perform very

similarly. However, a significant difference appears in Figure 5 which compares
the the frequency with which∣∣∣Mi−

[
nV̂ar[θ̂ ]

]−1
∣∣∣> ∣∣∣M j−

[
nV̂ar[θ̂ ]

]−1
∣∣∣ ,

{Mi,M j}⊂ {Mind(ξA, θ̂n, θ̂n1),M(ξA, θ̂n),Mobs(ξA,θn, θ̂n1)}, i 6= j. Thus each line
in Figure 5 represents a comparison of two measures, and it can be seen that
M(ξA, θ̂n) dominates both M̂obs(ξA,θn, θ̂n1) and Mind(ξA, θ̂n, θ̂n1) for nearly all
values of w1.

[Figure 4 about here.]

[Figure 5 about here.]
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8 Discussion
We have explored the information in a two-stage adaptive optimal design in the
context of a nonlinear regression model with standard normal errors and expo-
nential mean function. We introduced a procedure for deciding on the first stage
sample size. This procedure’s usefulness is not restricted to model (2) with the ex-
ponential mean function. It is possible to improve upon our suggested method by
attempting to select n1 = argminn1∈{1,...,n}Var

[
θ̂n
]

which for finite sample could
be significantly different that n∗1, as can be seen in Figure 2. The procedure would
remain almost the same except instead one would use Monte Carlo simulations to
approximate Var[θ̂n] for given values of θ .

From a theoretical perspective, we compared the variance of the score function
with an analogous information measure derived under the incorrect assumption of
independence. A numeric example demonstrated that the independent measure is
of little use from a design perspective unless w1 is very near 1. Potential uses for
the true Fisher information measure were addressed.

Using a simulated example, information was evaluated from an analysis per-
spective. Three different estimators were examined; the plug in estimate of Var[S],
the analogous estimate under independence and the observed information. The
observed information is shown by Yao and Flournoy [2010] to fluctuate randomly,
asymmetrically around µ(x∗,θ), yet to converge to µ(x∗,θ) as n→ ∞. Efron and
Hinkley [1978] and Lindsay and Li [1997] argue that the observed information
is to be preferred over Fisher’s information for analysis, but our simulations call
their argument into question. In fact, all three estimators perform almost im-
perceptibly similar with only a small advantage for the plug in estimator of the
Var[S] in that it is slightly closer to the

[
nVar[θ̂n]

]−1
. That the plug in estimator

under independence is competitive with other estimators we examined should re-
assure practitioners who regularly use it due to its much simpler form. Of course,
we have evaluated only one specific mean function and caution is recommended
when using other mean functions.

We considered the case where θ is a fixed positive real value as in dilution
assays. Exponential growth models, where θ ∈ (−∞,0), also have numerous ap-
plications, for example in nuclear chair reactions, numbers of micro-organisms,
spread of a virus, compound interest. Results for growth models are analogous.
The procedures can also be generalized for more complex mean functions.

This paper addresses wi fixed, and as can be seen in the plots of the theoretical
information measures, values of wi < 0.10 correspond to small values of informa-
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tion. However, often in practice it is the case that 0.10 is the maximum stage one
sample proportion considered. For this reason, it will be worthwhile to examine
the case where n1 is small.

9 Appendix

9.1 Proof of Proposition 1
Let ε̄ = ȳ−η(x1,θ). Then

n∗1 = arg max
n1∈{1,...,n}

M(ξA,θ) = arg max
n1∈{1,...,n}

[n1

n
µ(x1,θ)+

(
1− n1

n

)
µ(x2,θ)

]
where

µ(x2,θ) = Eε

((
dη(x2(x1,η(x1,θ)+ ε),θ)

dθ

)2
)
.

Taking a Taylor expansion of [dη(x2(x1,η(x1,θ)+ ε),θ)/dθ ]2 around ε = 0,

Eε

((
dη(x2(x1,η(x1,θ)+ ε),θ)

dθ

)2
)

=

(
dη(x∗,θ)

dθ

)2

+
c2

n1
+

∞

∑
k=2

c2k

nk
1(2k)!

,

where cl =

[
dl

dε
l

(
dη(x2(x1,η(x1,θ)+ε),θ)

dθ

)2
]

ε=0
. Setting a=

(
dη(x1,θ)

dθ

)2
−
(

dη(x∗,θ)
dθ

)2
,

note that a < 0 and ∑
∞
k=2

c2k
nk

1(2k)!
= O

(
(nn1)

−1). Therefore,

n∗1 = arg max
n1∈{1,...,n}

[
n1

n
a+

1
n1

c2 +O
(
(nn1)

−1)] .
It can be shown that since x∗ is and interior point of X , c2 evaluated in the neigh-
borhood of x∗ is negative. Thus to approximate n∗1 set the derivative of the argu-
ment equal to 0 and solve to get

n1 =

(
1
c2

(
1
n

a−O
(
n−1n−2

1
)))− 1

2

which implies the result.
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9.2 Proof of neighborhoods described in section 4
Write

n∗1 = arg max
n1∈{1,...,n}

[n1

n
µ(x1,θ)+

(
1− n1

n

)
Eȳ1 [µ(x2(ȳ1),θ)]

]
.

It is sufficient to show that there is a neighborhood of x1 around x∗ such that

Eȳ1 [µ(x2(ȳ1),θ)]< µ(x1,θ). (12)

From Jensen’s Inequality

Eȳ1 [µ(x2(ȳ1),θ)]< µ(x2 (Eȳ1[ȳ1]) ,θ) = µ(x∗,θ).

Thus if x1 = x∗, (12) holds. Because µ(x,θ) is continuous and the equality is strict
the existence of the interval around x∗ is confirmed.

To show that neighborhoods of x1 exist such that a subject treated in those
neighborhoods provides less expected information than does a subject treated
adaptively, it is sufficient to show there exists an x′ > x∗ and x′′ < x∗ such that
for all x1 > x′ and for all x1 < x′′

Eȳ1 [µ(x2(ȳ1),θ)]< µ(x1,θ). (13)

Expand and rewrite (13) as

π1

(
a
x1

)2

e2θ(x1−a)+π3

(
b
x1

)2

e2θ(x1−b)+Eȳ1

[(
1

ln ȳ1

)2

e2θx1

(
1+ 1

ln ȳ1

)]
> 1.

(14)

Note each term in the left side of (14) is strictly greater than 0, x1 ∈ [a,b] and
θ ∈ [b−1,a−1]. Consider two cases. Case 1: If a < 1

θ
< x1 < b, then π1 increases

to 1/2 and
(

a
x1

)2
e2θ(x1−a) strictly increases as x1 increases. Then letting x′ be the

unique solution to (
a
x1

)2

e2θ(x1−a) = 0,

(14) will be satisfied for all x1 > x′, provided of course that b is sufficiently
large. Case 2: If a < x1 < 1

θ
< b then π3 increases to 1/2 as x1 increases and

14



(
b
x1

)2
e2θ(x1−b), strictly increases as x1 decreases. Then letting x′′ be the unique

solution to (
b
x1

)2

e2θ(x1−b) = 0,

(14) will be satisfied for all x1 < x′′, provided of course that a is sufficiently small.
Remark. To show an interval of x1 exists such that n∗1 = n we used the fact

that for our procedure µ(x2(ȳ1),θ) is concave with respect to ȳ1. However, noting
that µ(x,θ) is concave and with maximum at x∗ one can use Jensen’s inequality to
argue that for any concave or convex x2(ȳ1) (12) still holds. In fact (12) can only
be an equality for x1 = x∗ if E[x2(ȳ1)] = x∗. So we conclude that in most practical
examples such a neighborhood will exist.
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Figure 1: Optimal Sample Size Allocated to Stage 1 versus θ ; x1 = 1
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Figure 2: Information measures by w1. The solid, dashed, and dotted lines repre-

sent M(ξ ∗,θ), M(ξA,θ) and
[
nV̂ar

(
θ̂n
)]−1

by w1, respectively

19



1 2 3 4
Θ

`

1

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 3: Mind(ξA,θ , θ̂n1), the solid line, and M(ξA,θ), the dashed line, plotted
by θ̂n1 at values x1 = 2, θt = 1 and w1 = 0.20.
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Figure 4: Estimates of Information Compared with Simulated
[
nV̂ar

[
θ̂n
]]−1

as

Functions of w1. The solid lines represent
[
nV̂ar

[
θ̂n
]]−1

. The dotted,dot-dashed,

and dashed lines are the 1st , 2nd , and 3rd quartiles of the three information measure
estimates. 21
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Figure 5: Proportion of times one information measure estimate is closer

to
[
nV̂ar

(
θ̂n
)]−1

than another. The dotted line, M(ξA, θ̂n,θ) is closer than

Mind(ξA, θ̂n, ȳ1,θ), the dashed line, M(ξA, θ̂n,θ) is closer than Mobs(ξA, θ̂n, θ̂n1)
and the solid line, Mobs(ξA, θ̂n, θ̂n1) is closer than Mind(ξA, θ̂n, ȳ1,θ).
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