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Abstract: The asymptotic group of symmetries at null infinity of flat spacetimes in three and four

dimensions is the infinite dimensional Bondi-Metzner-Sachs (BMS) group. This has recently been

shown to be isomorphic to non-relativistic conformal algebras in one lower dimension, the Galilean

Conformal Algebra (GCA) in 2d and a closely related non-relativistic algebra in 3d [1]. We provide

a better understanding of this surprising connection by providing a spacetime interpretation in

terms of a novel contraction. The 2d GCA, obtained from a linear combination of two copies

of the Virasoro algebra, is generically non-unitary. The unitary subsector previously constructed

had trivial correlation functions. We consider a representation obtained from a different linear

combination of the Virasoros, which is relevant to the relation with the BMS algebra in three

dimensions. This is realised by a new space-time contraction of the parent algebra. We show

that this representation has a unitary sub-sector with interesting correlation functions. We discuss

implications for the BMS/GCA correspondence and show that the flat space limit actually induces

precisely this contraction on the boundary conformal field theory. We also discuss aspects of

asymptotic symmetries and the consequences of this contraction in higher dimensions.

ar
X

iv
:1

20
3.

57
95

v1
  [

he
p-

th
] 

 2
6 

M
ar

 2
01

2

mailto:arjun.bagchi@ed.ac.uk, fareghbal@theory.ipm.ac.ir


Contents

1. Introduction 1

1.1 Flat Space Holography 1

1.2 Galilean Conformal Algebra 2

1.3 An aside: Non-relativistic Hydrodynamics 3

1.4 Outline of the paper 3

2. A Review of the GCA 4

3. The BMS/GCA correspondence 7

4. GCA in 2d Redux 8

4.1 GCA in 2d: Different Combination, Different Contraction. 8

4.2 Representation and Correlation function 9

4.3 Unitarity and Null Vectors 11

4.4 Non-Relativistic Hydrodynamics, Turbulence and GCA 12

5. Lessons for the Bulk 13

5.1 Contraction of Killing Vectors 13

5.2 Asymptotic symmetry analysis 16

6. Conclusions and Future Directions 17

6.1 Summary of Results 17

6.2 Various comments 17

6.3 Future directions 18

A. New Contraction in General dimensions 19

B. Contraction of AdS4 Isometries and BMS4 21

1. Introduction

1.1 Flat Space Holography

The holographic gauge-gravity dualities have paved the way for much of our present understanding of

quantum gravity. These correspondences relate gravitational theories or string theories to quantum

field theories in lower dimensions and by performing calculations in the non-gravitational theories

one can probe many mysteries that have plagued quantum gravity. But ever since the advent of the

AdS/CFT correspondence [2], the spectacular success of the holographic principle in Anti de Sitter

space has been in sharp contrast to the difficulties in formulating the flat space version of holography

[3]. The physical relevance of cosmologies and Minkowski spacetimes makes investigation of flat

holography one of the important problems in string theory today.

Among the different approaches to flatspace holography, a recent one has been to consider the

Bondi-Metzner-Sachs (BMS) group. In the absence of gravity, the isometry group of the spacetime
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is the well-known Poincare group, the semidirect product of translations and Lorentz transforma-

tions. In three and four dimensions with gravity turned on, the situation changes drastically. At

null infinity in four-dimensional asymptotically flat metrics, the isometry group of the background

metric is enhanced to an infinite dimensional asymptotic symmetry group. This is the BMS group

[4], consisting of the semidirect product of the global conformal group of the unit 2-sphere and

the infinite dimensional supertranslations. There is a further enhancement to two copies of the

centre-less Virasoro or the Witt algebra times the supertranslations if one does not require the

transformations generated to be globally well defined [19, 20]. In three dimensions the BMS group

is again infinite dimensional and now has the global conformal group of S1 along with the super-

translations. There is a similar enhancement to a Virasoro algebra times supertranslations even

here [19]. These observation lead to a recent proposal of a holographic relation between flat 3 and

4 dimensional spaces and relativistic CFTs in 1 and 2 dimensions [21, 22].

In [1], a radically different prescription for studying flat-space holography was proposed. We

proposed that instead of a relativistic 1d and 2d CFT, the holographic duality should be between 2d

and 3d non-relativistic CFTs on the one hand and the flat 3d and 4d spacetimes on the other hand.

The 3d BMS algebra was shown to be isomorphic to the non-relativistic 2d Galilean Conformal

Algebra and the 4d BMS algebra to a closely related non-relativistic algebra called the semi-GCA

in three dimensions. This matching of symmetries provided a first step to an intriguing connection,

fancifully christened the BMS/GCA correspondence, between asymptotically flat spacetimes and

non-relativistic CFTs in one lower dimension.

Various aspects of this BMS/GCA correspondence remain to be explained, the foremost of

which is the spacetime interpretation of the symmetries on both sides which would lead to a starting

point of a holographic dictionary. Our endeavour in this paper is to provide the initial steps in this

direction and we shall primarily focus here on the BMS3/GCA2 case.

1.2 Galilean Conformal Algebra

In order to provide a spacetime interpretation of the BMS/GCA correspondence, we would concen-

trate on the representations of the non-relativistic algebra in two dimensions. In general dimensions,

the GCA is obtained by the non-relativistic contraction of the relativistic conformal algebra and

one finds it to be infinite dimensional for all dimensions of spacetime [5]. In other words, the

finite dimensional algebra obtained by contraction was found to have a natural embedding in an

infinite-dimensional algebra (also called GCA). A natural question to ask is what happens in two

dimensions where the relativistic algebra is also infinite dimensional. It was found in [7] that indeed

a simple relation exists between these infinite dimensional relativistic and non-relativistic algebras.

One can obtain the GCA by taking a simple linear combinations of the two copies of the Virasoro

algebra and taking the non-relativistic limit.

The aforementioned mapping from the relativistic Virasoro to the GCA in 2d, although very

systematic and useful, has certain inherent problems. Due to the strange nature of the limit (one

needs to scale the relativistic conformal weights and central charges to ±∞), the parent relativistic

theory is non-unitary and this is inherited by the non-relativistic theory which, for generic values

of certain parameters (non-relativistic conformal weights and central charges), is non-unitary. For

specific values of these parameters, there is a sub-sector of the theory that does become unitary,

but this sector is also somewhat uninteresting. One of the general features of the non-relativistic
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theory is that its correlation functions exhibit unfamiliar exponential behaviour in both space and

time [6, 7]. When one restricts attention to the unitary theory described above, these exponential

pieces vanish. The theory loses all spatial dependence and the correlation functions become trivial

and mirror those of a one dimensional relativistic conformal theory. Given the fact that we have a

perfectly fine non-relativistic infinite algebra in two dimensions, it is natural to ask if there are other

representations of the algebra which don’t suffer from these above difficulties. The answer turns

out to be positive. We show that there indeed is a different linear combination of the relativistic

Virasoro that also gives the GCA. The earlier contraction of spacetime motivated by non-relativistic

scaling however does not seem to make sense here. Interestingly, there is an alternative contraction

that is sensible. In this new representation and the alternative contraction scheme, we can compute

correlation functions and ask questions about unitarity. One again finds that there are non-trivial

pieces to the correlation functions on the one hand and sectors where the non-relativistic theory

is unitary. The nice feature now is that imposing unitarity actually leads us to a theory with

non-trivial correlation functions.

The representation that is mentioned above and studied in detail through out the paper is

natural from the point of view of the BMS/GCA correspondence. One can start of with a bulk

AdS3 which has equal left and right moving central charges and generate the BMS through the limit

of the radius going to infinity. This representation naturally generates the central charges which can

also obtained by an independent analysis in the bulk. The fact that the previous non-relativistic

spacetime contraction did not make sense in for this representation was one of the unresolved issues

in [1]. With the different contraction, in this paper we resolve this issue.

1.3 An aside: Non-relativistic Hydrodynamics

In [5], it was found that the finite GCA is the symmetry algebra of the non-relativistic Euler

equations. Interestingly, it was also discovered that a sub-set of the generators of the infinite

dimensional GCA turned out to be symmetries of both the Euler and Navier-Stokes equations.

This was a re-discovery of the symmetries originally discussed in [14]. In fact, as mentioned in the

paper where we proposed the BMS/GCA relation [1], the part of the infinite GCA in two dimensions

which is the analogue of the restricted BMS3 algebra (global part of the conformal sub-algebra and

the infinite supertranslations) is exactly the symmetry of the Euler equations. So, the symmetries

of two-dimensional non-relativistic hydrodynamics is encoded in the asymptotic symmetries of flat

space in three dimensions. This is reminiscent of the recent efforts of mapping fluid solutions to

flat space geometries [35, 36].

As we will comment briefly later, there is more to this surprising connection. Turbulence

has been a long sought after problem in theoretical physics which has had very little analytic

control. We comment later how 2d GCA is related to simple models of turbulence. Thus studying

interesting unitary representations of the 2d GCA can lead us to some possible insight into simplified

models of turbulence in two dimensions. This, by the BMS/GCA correspondence is again related

to symmetries of three dimensional flat spaces.

1.4 Outline of the paper

The outline of the paper is as follows: in Sec 2 we review our understanding of the GCA focussing

on the 2d GCA. In Sec. 3, we revisit the BMS/GCA correspondence. In Sec. 4, we introduce the
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representation of the 2d GCA that we would be working with and show how it can be obtained as a

space-time contraction. We go on to discuss the quantum numbers which label the representation

and construct the correlation functions. We perform an analysis of the null vectors to understand

unitarity issues and discuss the connections to non-relativistic hydrodynamics. In Sec. 5, the bulk

interpretation of this new contraction is explained first in terms of Killing vectors in AdS3 and then

from the point of view of the asymptotic symmetries. We conclude in Sec. 6 with comments on the

contraction in general dimensions and discuss future directions of work. Appendix A contains details

of the higher dimensional contraction while Appendix B gives the 4d bulk analysis constructed in

parallel to that outlined in Sec. 5 for the 3d case.

Note Added: When this paper was being readied for submission, we became aware of the

upcoming publication [26]. Although there is no direct overlap with our work here, both the projects

are aimed in the same direction, constructing and understanding the flat space limit of AdS. We are

thankful to Glenn Barnich for sharing results with us prior to publication and we believe that their

bulk construction would be very useful in understanding the BMS/GCA correspondence further.

2. A Review of the GCA

Various non-relativistic version of AdS/CFT have been recently studied in great detail in view

of possible connections to strongly coupled condensed matter systems which are inherently non-

relativistic [8, 9, 10]. The symmetries of the non-relativistic CFTs on the boundary have been

different in these different versions. The most studied of these version has been holography in

relation to the Schrodinger algebra, the symmetry algebra of the free Schrodinger equation. Another

well-studied example has been the less symmetric Lifshitz algebra. Spacetimes dual to these systems

have been found in [11, 12] and [13] respectively.

There is a very precise procedure, called the Inönü-Wigner contraction, by which one can obtain

the Galilean algebra from the Poincare algebra in any dimensions. The most natural route of a non-

relativistic limit of AdS/CFT is to follow this procedure in the relativistic conformal algebra on the

boundary and look at its consequences in the bulk dual. This was attempted in [5]. The Galilean

Conformal Algebra is the finite dimensional algebra that emerges as the limit of the relativistic

conformal algebra in this non-relativistic limit. One of the striking features of the GCA is that it

can have infinite extensions in any spacetime dimensions1 [5]. It has been shown that the maximal

set of conformal isometries of Galilean spacetime generates this infinite GCA [15]. Algebraically,

the set of vector fields generating these symmetries are given by

L̃(n) = −(n+ 1)tnxi∂i − tn+1∂t ,

M̃
(n)
i = tn+1∂i ,

J̃ (n)
a ≡ J (n)

ij = −tn(xi∂j − xj∂i) , (2.1)

for integer values of n. Here i = 1 . . . (d − 1) range over the spatial directions and a is an adjoint

index of the rotation group. These vector fields obey the algebra

[L̃(m), L̃(n)] = (m− n)L̃(m+n), [L̃(m), J̃ (n)
a ] = −nJ̃ (m+n)

a ,

1The infinite algebra is also called the GCA. To distinguish between the two, we shall explicitly refer to one as

the finite GCA and the other as the infinite GCA.

– 4 –



[J̃ (n)
a , J̃

(m)
b ] = fabcJ̃

(n+m)
c , [L̃(m), M̃

(n)
i ] = (m− n)M̃

(m+n)
i . (2.2)

The finite dimensional subalgebra consists of taking n = 0,±1 for the L̃(n), M̃
(n)
i together with

J̃
(0)
a and this is the one obtained by considering the nonrelativistic contraction of global conformal

algebra SO(d, 2). Some subsequent important developments regarding the GCA can be found in

[6, 7, 15, 16, 17].

In two spacetime dimensions, as is well known, the situation is special. The relativistic con-

formal algebra is infinite dimensional and consists of two copies of the Virasoro algebra. One

expects this to be related to the infinite dimensional GCA algebra [7]. Indeed in two dimensions

the non-trivial generators in (2.2) are the L̃n and the M̃n:

L̃n = −(n+ 1)tnx∂x − tn+1∂t , M̃n = tn+1∂x , (2.3)

which obey

[L̃m, L̃n] = (m− n)L̃m+n , [M̃m, M̃n] = 0 , [L̃m, M̃n] = (m− n)M̃m+n (2.4)

These generators in (2.3) arise precisely from a nonrelativistic contraction of the two copies of

the Virasoro algebra (Ln, L̄n). For a small parameter ε, at the level of the algebra, we can see if we

make the following identifications

Ln + L̄n −→ L̃n , ε(Ln − L̄n) −→ −M̃n . (2.5)

the GCA is generated from the Virasoro algebras, on taking the ε → 0 limit. From a spacetime

point of view, we can look at this as a non-relativistic contraction:

t→ t , x→ εx , (2.6)

with ε → 0. This is equivalent to taking the velocities v ∼ ε to zero in units where c = 1. By

looking at the vector fields which generate the centre-less Virasoro Algebra in two dimensions, it

is straight forward to check that one obtains (2.3) in the non-relativistic limit. At the quantum

level the two copies of the Virasoro get respective central extensions c, c̄. Considering the linear

combinations which give rise to the GCA generators as in (2.5), we find

[L̃m, L̃n] = (m− n)L̃m+n + C1m(m2 − 1)δm+n,0 ,

[L̃m, M̃n] = (m− n)M̃m+n + C2m(m2 − 1)δm+n,0 ,

[M̃m, M̃n] = 0 . (2.7)

This is the centrally extended GCA in 2d. Note that the relation between central charges is

C1 =
c+ c̄

12
,

C2

ε
=
c̄− c
12

. (2.8)

Requiring a non-zero C2 with a finite C1 can only be achieved if c and c̄ are large (in the limit ε→ 0)

and opposite in sign, implying that the original 2d CFT on which we take the non-relativistic limit

cannot be generically unitary. A more detailed analysis of the null vectors of the representation

carried out in [7] tells us that although there exists unitary sectors of the theory, they are relatively

less attractive from the point of the correlation functions that we briefly describe next.
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The representations of the 2d GCA are constructed by considering the states having definite

scaling dimensions [6, 7]:

L̃0|∆̃〉 = ∆̃|∆̃〉 . (2.9)

From the algebra, it is clear that L̃n, M̃n with n > 0 lower the value of the scaling dimension, while

those with n < 0 raise it. Demanding the dimension of states be bounded from below primary

states in the theory are defined as:

L̃n|∆̃〉 = 0 , M̃n|∆̃〉 = 0 , (2.10)

for all n > 0. The conditions (2.10) are compatible with M̃0 in the sense

L̃nM̃0|∆̃〉 = 0 , M̃nM̃0|∆̃〉 = 0 , (2.11)

and also since L̃0 and M̃0 commute, an additional label called “rapidity” ξ̃ is introduced:

M̃0|∆̃, ξ̃〉 = ξ̃|∆̃, ξ̃〉 . (2.12)

Starting with a primary state |∆̃, ξ̃〉, one can build up a tower of operators by the action of

L̃−n and M̃−n with n > 0. The above construction is quite analogous to that of the relativistic 2d

CFT. In fact, from the viewpoint of the limit (2.5) we see that the two labels ∆̃ and ξ̃ are related

to the conformal weights in the 2d CFT as

∆̃ = lim
ε→0

(h+ h̄) , ξ̃ = lim
ε→0

ε(h̄− h) , (2.13)

where h and h̄ are the eigenvalues of L0 and L̄0, respectively.

The constraints from the Ward identities for the global transformations L̃0,±1, M̃0,±1 apply to

primary GCA operators and constrain the form of the two point function of primary operators. For

primary operators O1(t1, x1) and O2(t2, x2) of conformal and rapidity weights (∆̃1, ξ̃1) and (∆̃2, ξ̃2),

the two point function is of the form [6]:

G
(2)
GCA({ti, xi}) = C12δ∆̃1,∆̃2

δξ̃1,ξ̃2t
−2∆̃1
12 exp

(
2ξ̃1x12

t12

)
. (2.14)

Here C12 is an arbitrary constant. One can similarly construct the three point function which again

is fixed by the symmetries upto an overall constant.

The GCA two and three point functions can also be obtained by taking an appropriate scaling

limit of the usual 2d CFT answers [7]. This limit requires scaling the quantum numbers of the

operators as (2.13), along with the non-relativistic limit for the coordinates (2.6).

Let us remind the reader of the issue of unitarity here. In the null vector analysis of [7], it was

found that there exists a sector of the 2d GCA where the GCA module reduced to the Virasoro

module and hence had unitary representation familiar in the study of relativistic 2d CFTs. But

this sector required ξ = 0. All spatial dependence of correlation functions come coupled with

ξ dependence so as to survive the contraction limit. Setting ξ = 0 thus gets rid of all spatial

dependence and the correlation functions become ultra-local depending only on time.
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3. The BMS/GCA correspondence

The computations of the asymptotic symmetry algebra and the central charges in asymtotically

AdS3 were known from the classical computations of Brown and Henneaux long before the advent

of AdS/CFT and can be seen as one of the earliest motivations behind the Maldacena conjecture.

These computations were done at spatial infinity for AdS3.

From the point of view of flat spacetimes, the appropriate boundary from a conformal perspec-

tive, is null infinity. If one performs an analysis of the asymptotic symmetry algebra in this context

for arbitrary dimensional spacetimes, by solving as in [19], the Killing equations to leading order,

one ends up with generalisations of the Bondi-Metzner-Sachs algebra. In four dimensions, by not

requiring the conformal transformations on the sphere to be well defined globally, one can obtain

an enlargement of the symmetry beyond what was originally proposed in [4].

Similar enhancements are possible in three dimensions by relaxing global invariance of the

conformal transformations on S1 and now the asymptotic symmetries are given by

[Jm, Jn] = (m− n)Jm+n, [Jm, Pn] = (m− n)Pm+n, [Pm, Pn] = 0. (3.1)

One can compute the classical central charges by standard procedures [19] and the result is

[Jm, Jn] = (m− n)Jm+n, [Pm, Pn] = 0.

[Jm, Pn] = (m− n)Pm+n +
1

4G
m(m2 − 1)δm+n,0, (3.2)

These symmetries could be obtained by a contraction of the AdS3 symmetries if one considered

[19]:

Jn = Ln − L̄−n, Pn =
1

`
(Ln + L̄−n). (3.3)

Here ` is the AdS3 radius and this is the parameter that one takes to infinity to obtain flat space.

The L and L̄ are the generators of the asymptotic isometries of AdS3 and their algebra is the

Virasoro algebra:

[Lm,Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 ,

[L̄m, L̄n] = (m− n)L̄m+n +
c̄

12
m(m2 − 1)δm+n,0 . (3.4)

The Brown-Henneaux central charges are

c = c̄ =
3`

2G
. (3.5)

So, the contraction precisely generates the BMS algebra with the central charges in 3 dimensions.

The BMS/GCA correspondence [1] in three dimensions is the startling observation that (2.7)

and (3.2) are actually the same algebra with C1 = 0 and C2 = 1
4G .

In four dimensions, the BMS algebra, as stated above, is infinite dimensional and not requiring

the generators to be globally well-defined leads to the following algebra.

[lm, ln] = (m− n)lm+n, [l̄m, l̄n] = (m− n)l̄m+n, [lm, l̄n] = 0,

[ll, Tm,n] = (
l + 1

2
−m)Tm+l,n, [l̄l, Tm,n] = (

l + 1

2
− n)Tm,n+l. (3.6)
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Now that we have two copies of a centre-less Virasoro algebra, we need to go beyond the usual

GCA and the algebra that is isomorphic to this is actually the ”semi”-GCA, an algebra which is

generated by considering a limit of the 3d-relativistic conformal algebra where only one direction is

contracted [16]. This can be shown to have an infinite extension and is exactly the same as (3.6).

It was proposed that the correspondence holds for general dimensions. The BMS algebras

in higher dimensions are known to reduce to the usual Poincare algebras [29, 30]. These were

conjecturally isomorphic to a class of ”semi”-GCAs which existed in one lower dimension and were

obtained from limits of the corresponding relativistic conformal algebras with only one direction

contracted. A quick check tells us the dimensions of the groups match. The Poincare groups are

obtained as limits of AdS isometry groups which are isomorphic to the relativistic conformal groups

in one lower dimension. The semi-GCA groups are obtained as contractions of the relativistic

conformal groups. The process of contraction does not change the number of generators, so the

BMS and the ”semi”-GCAs have the same dimension.

Now, let us remind the reader of the problems that arose in this surprising relation between flat

spaces and non-relativistic symmetries. We will concentrate on the BMS3/GCA2 case. One of the

puzzles in trying to push this correspondence further was the hindrance that the non-relativistic

contraction (2.6) was not compatible with the generators (3.3). On the plane, the contraction made

the generators infinite. On the other hand, the other linear combination of the Virasoros (2.5)

which lead to the GCA would require us to start from a non-unitary relativistic theory with infinite

positive c and infinite negative c̄ if one wanted to generate a non-zero C2 as was required by the

BMS algebra and would also require a fine tuning to get C1 = 0.

We look to resolve this potential tension by defining a new contraction of spacetime which

generates the GCA from the Virasoro algebra. This is the contraction that is suited to (3.3).

Another interesting thing to note is that we would be doing our computations on the cylinder as

opposed to the plane and the contraction seems to be well-defined only here. We remind the reader

that the conformal boundary of flat space at null infinity is also a cylinder, in the sense that the

spatial sections of the conformal boundary are circles. So there may well be a deeper connection

here than meets the eye.

4. GCA in 2d Redux

4.1 GCA in 2d: Different Combination, Different Contraction.

Motivated by the linear combination of the Virasoro generators that yield the BMS algebra in the

limit, in this section we launch a full-scale investigation into this representation of the GCA. We

shall first show how one obtains this linear combination from the point of view of a spacetime

contraction. We shall consider the relativistic conformal field theory defined on the cylinder.

We consider the following vector fields

Ln = ieinω∂ω, L̄n = ieinω̄∂ω̄ (4.1)

where z = eiω and ω = t + x, ω̄ = t − x. These vector fields generate the centre-less Virasoro

algebra. Let us define

Ln = Ln − L̄−n, Mn = ε(Ln + L̄−n). (4.2)
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So, in the cylinder co-ordinates, the generators take the following form:

Ln − L̄−n = ieinx (i sinnt ∂t + cosnt ∂x) , Ln + L̄−n = ieinx (cosnt ∂t + i sinnt ∂x) (4.3)

Now we define a new contraction by taking the scaling

t→ εt, x→ x. (4.4)

The new vector fields (Ln,Mn) are well-defined in the ε→ 0 limit and are given by

Ln = ieinx(∂x + int∂t), Mn = ieinx∂t. (4.5)

With the relativistic central charges c, c̄ included in the Virasoro algebra, this leads to the 2d

GCA

[Lm, Ln] = (m− n)Lm+n + C1m(m2 − 1)δm+n,0, [Mm,Mn] = 0.

[Lm,Mn] = (m− n)Mm+n + C2m(m2 − 1)δm+n,0, (4.6)

Here the central charges have the expression C1 = c−c̄
12 , C2 = ε(c+c̄)

12 . So, for the case where the

relativistic CFT has c = c̄, C1 = 0.

Let us spend a while trying to understand what this new contraction really means. For a

Euclidean conformal field theory, where space and time are on the same footing, this is simply a

non-relativistic limit like the previous one. Now, for a theory defined on a Lorentzian manifold,

this is more subtle. Here let us remember that in dimensions other than two if we took the non-

relativistic contraction of xi → εxi, t→ t, we would end up with the finite GCA which would then

be lifted to the full infinite GCA. The two dimensional quantum version of the infinite GCA is

(2.7). We will look at this as the natural definition of a non-relativistic conformal field theory in

two dimensions and this new contraction would be essentially a tool to study the representation

(4.2) from the relativistic infinite-dimensional Virasoro algebra. In some sense, even naively, the

new contraction is again non-relativistic. It focusses on a particular spatial slice at an instant of

time.

4.2 Representation and Correlation function

Now in this representation of the GCA, the states would be labelled again by the eigenvalues under

L0 and M0. But we should keep in mind that the role of the two have been interchanged and M0

now labels dilatations and L0 is L0 − L̄0. Accordingly,

L0|∆, ξ〉 = ξ|∆, ξ〉, M0|∆, ξ〉 = ∆|∆, ξ〉 (4.7)

The point to remember here is that

∆ = lim
ε→0

ε(h+ h̄), ξ = lim
ε→0

(h− h̄). (4.8)

Let us now focus our attention on the correlation functions in this representation of the GCA. We

will obtain the two-point function as a limit of the relativistic two-point function. The calculations

would be done on the cylinder labelled by (ω, ω̄). The correlation function on the plane is given by

the familiar expression:

G(2) = Cz−2h
12 z̄−2h̄

12 (4.9)
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Now we know, for primary fields φi with weights hi, h̄i, the correlation functions transform like

〈φ1(ω1, ω̄1)φ(ω2, ω̄2)〉 =

(
dw

dz

)−h1

ω=ω1

(
dω

dz̄

)−h̄1

ω̄=ω̄1

(
dw

dz

)−h2

ω=ω2

(
dω

dz̄

)−h̄2

ω̄=ω̄2

〈φ1(z1, z̄1)φ(z2, z̄2)〉

Hence the relativistic 2-point function on the cylinder is given by

G(2) = C
(
eiω12(1− e−iω12)2

)−h (
eiω̄12(1− e−iω̄12)2

)−h̄
(4.10)

We abuse our notation of the constant C by absorbing some phase factors in it. In order to take

the limit we write the above in terms of (t, x).

G(2) = C
(
ei(t+x)(1− e−i(t+x))2

)−h (
ei(t−x)(1− e−i(t−x))2

)−h̄
= C

(
eix(1− e−ix)2

)−h−h̄ [
1 + i

(
1 + eix

1− eix

)
(h− h̄)t− 1

2

(
1 + eix

1− eix

)2

(h− h̄)2t2−

1

2

(
2eix(h+ h̄)t2

(1− eix)2

)
− i1

6

(
1 + eix

1− eix

)3

(h− h̄)3t3 − ie
ix(1 + eix)(h− h̄)(1 + 3(h+ h̄))t3

3(1− eix)3
+ . . .

]
At this stage, if we naively perform the contraction described above scaling the dilatation and

rapidity eigenvalues in the process, it seems we would be left with a null result. The correlation

function would be zero. To extract a non-zero correlation, we need to focus on certain specific

sectors of the GCA. In the non-relativistic algebra, we are free to look wherever we want and we

will abuse our freedom by looking near the zero dilatation eigenvalue. We would choose to scale

∆ = ε̂∆̂ (4.11)

so that we are looking in the vicinity of the zero eigenvalue in the non-relativistic theory. This

limit, taken simultaneously with the contraction generates the following non-zero correlator2:

G(2) = C̃(1− cosx)−∆̂ (4.12)

Here we have absorbed some numerical factors into C̃. We can be even more adventurous and look

for more non-trivial pieces. Let us choose to focus on the large-spin sector of the theory

ξ =
ξ̂

ε̂
(4.13)

If we do this and simultaneously focus on the near zero dilatation eigenvalue, in this limit, we get

the following correlation function:

G(2) = C̃(1− cosx)−∆̂ exp
(
ξ̂t cot(

x

2
)
)

(4.14)

A note here about the appearance of the exponential term from the calculation below (4.10): the

extra terms in the square brackets always scaled at most as εα−1 for a term which had tα and hence

in the contraction always went to zero to leave the exponential piece.

We should remind the reader of the essential difference between this correlation function and

the one obtained by the different contraction on the plane. Here it is h+ h̄ = ∆
ε which is required to

be large to survive the contraction for any non-zero ∆ and the additional exponential piece arises

2We would demand that ε, ε̂ go to zero at the same rate.
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in the limit of large spins which is not required by the theory. On the other hand, in the other

representation, we required the spins to be large to survive the contraction and h+ h̄ did not scale.

Let us note here that if we take any non-zero value of ∆, it is clear that the above correlation

function vanishes. Hence we focus in the vicinity of ∆ = 0 by taking the ε̂→ 0 limit. We shall see

shortly that unitarity forces us on this ∆ = 0 subspace.

4.3 Unitarity and Null Vectors

Now we explore the possible unitary sub-sectors of this representation. The norm of the states in

the first level is given by

M =

(
〈∆, ξ|L1L−1|∆, ξ〉 〈∆, ξ|M1L−1|∆, ξ〉
〈∆, ξ|L1M−1|∆, ξ〉 〈∆, ξ|M1M−1|∆, ξ〉

)
=

(
2ξ ∆

∆ 0

)
(4.15)

which implies

detM = −∆2. (4.16)

So, there are explicit negative norm states in the theory with arbitrary ∆. But one has, at least

to first level, a unitary truncation if one considers states with ∆ = 0.

Let us turn our attention back to the correlation functions. First we can look near ∆ = 0 sector

which would be unitary in the limit ε̂ → 0. This gives rise to correlators of the form (4.12). Very

interestingly, two-point correlation functions of this form have been obtained for scalar operators

from a very different perspective in flat space holography recently in [31] and previously in [32]. It

is fascinating to note the similarity of our results given the very different derivations 3. [31] also

has similar vanishing of correlation functions when one looks at massive scalars, which here would

be related to moving away from ∆ = 0. We would look to build on this connection between the

two apparently different approaches to flat-space holography in the future.

Returning to the present problem, if we focus now on the sector of high spins while remaining

in the ∆ = 0 eigenspace, then the two-point functions show even more structure and are given

by (4.14). From the perspective of the GCA, this is novel because in the previous combination

of the Virasoros which generated the GCA, focussing on the unitary sector just left us with time

dependent correlation functions.

Even in the sector which has ∆ = 0, there would be null vectors in the GCA modules which

are built on primary states |∆, ξ〉 which needs to be eliminated from the spectrum to get a sensible

theory. Null vectors in the GCA, like in the usual Virasoro representation theory, are states that

occur for special values of (∆, ξ) and are orthogonal to all states of the module including themselves.

One can find the null vector at a given level by considering the most general state at that level built

out of the raising operators on a primary state and imposing that lowering operators annihilate

the state. This leads to conditions relating different coefficients and also relate the central charges

C1, C2 to (∆, ξ).

At level one, the most general state is built out of a linear combination of L−1|∆, ξ〉 and

M−1|∆, ξ〉 and the only null state occurs for ∆ = 0. For the next level, the most general state is

given by

|χ〉 =
(
a1L−2 + a2L

2
−1 + b1L1M1 + d1M

2
−1 + d2M−2

)
|∆, ξ〉. (4.17)

3[31] also mentions that renormalisation of the apparent singular contribution from the constant in their analysis

leads to a vanishing correlation function. We perform our analysis in the boundary non-relativistic conformal theory

and do not have anything to say about the constant which multiplies our answer.
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By following the usual preseciption mentioned above, one can find the null states at this level. The

different conditions of the existence of null states and the null states themselves are outlined in the

table below (1).

C2 ∆ Null State |χ(1)〉 Null State |χ(2)〉
non-zero non-zero (M−2 − 3

4∆M
2
−1)|∆, ξ〉 (L−2 − 3

2∆L−1M−1 + 3(ξ+1)
4∆2 M2

−1)|∆, ξ〉
non-zero zero M2

−1|0, ξ〉 L−1M−1|0, ξ = −1〉
zero zero M2

−1|0, ξ〉 (L−1M−1 − 2(ξ+1)
3 M−2)|0, ξ〉

zero non-zero no null state no null state.

Table 1: GCA Null States at Level 2

The case when both C2 and ∆ are zero is interesting as in this case, we can actually see

following [7] that the GCA tower reduces to the Virasoro tower and one can have a truncation to

the Hilbert space of this Virasoro module which would have unitary representations in the usual

sense. Unlike the case discussed in [7], this representation of the GCA actually has interesting

correlation functions that we discussed above.

From the point of view of the BMS/GCA correspondence, we need the sector where C2 is non-

zero and ∆ is zero. We see that there are null states in this sector which need to be dealt with to

find a consistent unitary truncation.

4.4 Non-Relativistic Hydrodynamics, Turbulence and GCA

One of the physically interesting questions in the study of Galilean Conformal Algebras is what

system this non-relativistic conformal algebra is a symmetry of. In [5], it was already noted the

subalgebra of the infinite GCA generated by the M i
n form symmetries of the Navier Stokes equation

of non-relativistic hydrodynamics. It was also noticed that the finite GCA (L̃0,±1, M̃
i
0,±1) along

with this infinite set of generators M i
n is the symmetry of the Euler equations. (For an extended

discussion of the symmetries of the Euler equation in this context, the reader is referred to [34].)

All this was, in fact, a rediscovery of long forgotten symmetries of hydrodynamics [14].

In [1] where the original BMS/GCA correspondence was proposed, it was mentioned that this

subset of operators in the 2d GCA was the set that was the ”restricted” BMS group in three

dimensions, viz. the group obtained by requiring the generators to be well defined everywhere.

Thus, the symmetries of two dimensional non-relativistic hydrodynamics encode the symmetries

of gravitational physics in one higher dimensional Minkowski spacetime. This is reminiscent of

the recent version of the fluid-gravity correspondence which relates non-relativistic Navier Stokes

equations and Einstein’s equations on higher dimensional Ricci-flat manifolds [35, 36].

The fact that we have now found unitary representations of the GCA with correlation functions

which are non-trivial has interesting applications for the above. The point to note is that for the

two point functions calculated here (and for similar calculations of the three point function), we

only needed, like similar computations in relativistic CFTs, the global part of the GCA and hence

this would be valid for the non-relativistic fluid systems with the ”restricted” infinite group.

The other very intriguing connection we want to mention here is the possible connection to

turbulence 4. The study of turbulence has been long hampered by the complexity of the Navier

4AB would like to thank Yaron Oz for enlightening discussions on this issue.
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Stokes equation and the difficulty in any analytic progress in Navier Stokes turbulence (for an

excellent review on the subject, see [33]). This lead researchers to simpler models of stochastic

evolution equations. A stochastic evolution equation is of the form

∂tΦ = G(Φ) + f (4.18)

where Φ is a function of time and G(Φ) a functional local in time. f denotes a stationary Gaussian

process with zero mean and variance 〈f(t)f(s)〉 = C(t−s). The passive scalar model is a particularly

nice example of a simple stochastic evolution which is randomly forced at long distances and with

G(Φ) not of the gradient type. This model describes the passive advection of a scalar quantity

T (t, x) like temperature by a random velocity field and is given by the equation

∂tT = −vi∇iT + κ∇i∇iT + f (4.19)

Here κ is a constant ≥ 0, which is called the molecular diffusivity. To simplify the problem,

one replaces the velocity field by a Gaussian random field. This model was famously studied by

Kraichnan and is a prototypic example of a system where one studies the breakdown of Kolmogorov

type scalings.

Our interest here is the limit where the molecular diffusivity becomes zero. It is clear that

in this limit, the system is governed by a Euler-like equation and hence would have an invariance

under the ”restricted”-GCA in all dimensions. Particularly, in two dimensions, like in the case of

the Euler equation, this is thus related to the ”restricted”-BMS group. We note the connection

between flat-space symmetries and those of simple 2d turbulence models via the BMS/GCA corre-

spondence. Again as in the case of the Euler equations, we believe that the unitary representations

and correlation functions found in this paper would be important for the study of this simplified

model of turbulence. We hope to report on this intriguing issue in the near future.

5. Lessons for the Bulk

In this section, we show that the new contraction that we have discussed at length in the previous

section also gives us a proper spacetime realisation of the BMS/GCA correspondence. To this

end, we start off by considering the Killing vectors of AdS3, in global co-ordinates. We will show

that taking the flat space limit of AdS3 amounts to taking a contraction of the boundary algebra

which is the same as (4.4). We will then reproduce the expression for the symmetry generators by

considering the asymptotic generators as a limit of the usual Brown-Henneaux analysis.

5.1 Contraction of Killing Vectors

We start by looking at the Killing vectors of AdS3 in global co-ordinates. The metric of AdS3 in

global coordinates is given by

ds2 = −
(

1 +
r2

`2

)
dτ2 +

dr2(
1 +

r2

`2

) + r2dφ2. (5.1)

where ` is the radius of AdS space. The Killing vectors which generate the SO(2, 2) isometry of

this geometry are simply written by using the four-dimensional embedding space. If we choose
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(− + +−) for the signature of four-dimensional embedding space, the killing vectors of (5.1) are

given as

J01 = `∂τ , J23 = −∂φ

J02 =
√
`2 + r2 cosφ cos

τ

`
∂r −

r`√
`2 + r2

cosφ sin
τ

`
∂τ −

√
`2 + r2

r
sinφ cos

τ

`
∂φ

J03 =
√
`2 + r2 sinφ cos

τ

`
∂r −

r`√
`2 + r2

sinφ sin
τ

`
∂τ +

√
`2 + r2

r
cosφ cos

τ

`
∂φ

J12 =
√
`2 + r2 cosφ sin

τ

`
∂r +

r`√
`2 + r2

cosφ cos
τ

`
∂τ −

√
`2 + r2

r
sinφ sin

τ

`
∂φ

J13 =
√
`2 + r2 sinφ sin

τ

`
∂r +

r`√
`2 + r2

sinφ cos
τ

`
∂τ +

√
`2 + r2

r
cosφ sin

τ

`
∂φ

To find the generators of the BMS algebra in flat space from this, we would first go near the

boundary of AdS3 and then take the limit of `, radius of AdS3, going to infinity. To go near the

boundary, we take `/r → 0 limit (finite but large r and fixed `), the above vectors yield

J1 = `∂τ , J6 = −∂φ (5.2)

J2 = r cosφ cos
τ

`
∂r − ` cosφ sin

τ

`
∂τ − sinφ cos

τ

`
∂φ , J3 = r sinφ cos

τ

`
∂r − ` sinφ sin

τ

`
∂τ + cosφ cos

τ

`
∂φ

J4 = r cosφ sin
τ

`
∂r + ` cosφ cos

τ

`
∂τ − sinφ sin

τ

`
∂φ , J5 = r sinφ sin

τ

`
∂r + ` sinφ cos

τ

`
∂τ + cosφ sin

τ

`
∂φ

We see that the radius of AdS (`) can be absorbed by defining new time coordinate t as

t =
τ

`
. (5.3)

The generators then are given by the following

J1 = ∂t , J6 = −∂φ (5.4)

J2 = r cosφ cos t ∂r − cosφ sin t ∂t − sinφ cos t ∂φ , J3 = r sinφ cos t ∂r − sinφ sin t ∂t + cosφ cos t ∂φ

J4 = r cosφ sin t ∂r + cosφ cos t ∂t − sinφ sin t ∂φ , J5 = r sinφ cos t ∂r + sinφ cos t ∂t + cosφ sin t ∂φ

In the r → ∞ limit, these are just the relativistic 2d global conformal generators on the cylinder.

The CFT is impervious to the scaling of the time co-ordinates for any finite radius `. This is very

much like the conformal scaling of the metric in usual AdS/CFT. The interesting thing happens

when we take the flat space limit in the bulk. The generators of the CFT perceive this as a

contraction of the time direction as can be seen from (5.3). Taking ` → ∞ at large but finite r

yields the generators near the boundary

J1 = ∂t J6 = −∂φ
J2 = r cosφ ∂r − t cosφ∂t − sinφ∂φ J3 = r sinφ ∂r − t sinφ∂t + cosφ∂φ

J4 = cosφ∂t J5 = sinφ∂t (5.5)

Let us define

L0 = −iJ6, L1 = J2 + iJ3, L−1 = −J2 + iJ3

M0 = iJ1, M1 = −J5 + iJ4, M−1 = J5 + iJ4 (5.6)
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Figure 1: Penorse Diagrams for Global AdS and Minkowski spacetimes.

Thus, the global generators can be re-written in the following way:

Ln = ieinφ(∂φ + int∂t − inr∂r), Mn = ieinφ∂t (5.7)

for n = −1, 0, 1. As before, we notice that these generators can be defined for all integral values of

n and hence form the 3d BMS algebra.

[Ln, Lm] = (n−m)Ln+m, [Ln,Mm] = (n−m)Mn+m, [Mn,Mm] = 0. (5.8)

It is satisfying to see that on the boundary r → ∞ the above reduces to the expression of the

generators of the 2d GCA on the cylinder. So we see that a flat-space limit in the bulk AdS in

global coordinates induces a contraction in t of the relativistic conformal algebra reducing it to the

2d GCA and giving a clear physical understanding of how the BMS/GCA correspondence works as

a limit of AdS3/CFT2.

An important question to answer is where the CFT lives. In global AdS3, the Penrose diagram

is shown above. We indicate some surfaces of constant r in blue and red above. When we take the

flat space limit, the same surfaces are depicted by lines of the same colour in the corresponding

Penrose diagram in Minkowski spacetime. The relativistic CFT in AdS3 can be thought of as living

on those surfaces of constant r. The corresponding non-relativistic CFTs would live on the surfaces

of constant r in Minkowski spacetime. Taking the limit of r →∞ in the AdS3 side corresponds to

going to the boundary in Minkowski. The boundary in Minkowski are the null boundaries I+, I−

and the point at spatial infinity i0. The 2d GCA which is dual to the flat space at infinity thus

lives on all of this boundary. It is interesting to note here that there are indeed structures which
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are the same as the BMS algebra which exist at spatial infinity i0 [27]. So this new interpretation

does not lead to any inconsistencies.

The fact that we have been able to generate a representation for the BMS for large but finite

r as well as for r → ∞ means that we can extend the matching of symmetries to the near the

boundary (red curve) inside Minkowski spacetime 5.

5.2 Asymptotic symmetry analysis

In this subsection, driven by the possibility of extension of the BMS algebra in the bulk, we do

a simple-minded application of asymptotic symmetries of Brown and Henneaux by taking the

corresponding flat space limit in the bulk of these isometries. The analysis of Brown and Henneaux

is valid in the Poincare co-ordinates. We write these as follows:

ds2
Poincare = −r

2

`2
dτ2 +

`2

r2
dr2 + r2dφ2. (5.9)

where we have compactified the spatial direction into a periodic one φ. Notice that with this, the

Poincare and the global coordinates (5.1) become the same for large r. The Brown and Henneaux

boundary conditions in these coordinates become hττ = O(1) hτr = O(1/r3) hτφ = O(1)

hrr = O(1/r4) hrφ = O(1/r3)

hφφ = O(1)

 . (5.10)

The general form of the asymptotic killing vectors which preserve the above condition has the

following expansion

ξτn =
`

2
exp

(
in(

τ

`
± φ)

)
+O(1/r2) (5.11)

ξrn = − inr
2

exp
(
in(

τ

`
± φ)

)
+O(1) (5.12)

ξφn = ±1

2
exp

(
in(

τ

`
± φ)

)
+O(1/r2) (5.13)

The generators of the asymptotic symmetry algebra are given by

L±n =
i

2
exp

(
in(

τ

`
± φ)

)
[`∂τ − inr∂r ± ∂φ] (5.14)

Following the previous analysis, let us define

Ln = Ln − L̄−n, Mn =
1

`
(Ln + L̄−n) (5.15)

In the limit `→∞ we have

Ln = ieinφ (∂φ + inτ∂τ − inr∂r) Mn = ieinφ∂τ . (5.16)

It is satisfying to see that we have reproduced the form of the asympototic Killing vectors (5.7). The

construction in the previous sections is reminiscent to the initial derivation of the infinite Galilean

5However, we should point out here that this seems to work only in the large r limit i.e. if we choose to take

`→∞ for any finite r, the algebra of Killing vectors does not form a closed system for any n other than n = 0,±1.

There is a notion in terms of a modified bracket [21, 24, 25] in which the BMS symmetries can extend into the

bulk of Minkowski spacetime. We are currently investigating whether this has some interesting implications for the

BMS/GCA correspondence.
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Conformal Algebra in [5] and the one in this section mirrors the reproduction of the GCA in 2d as

a limit of the Virasoros [7]. The emergence of the BMS algebra is obviously not a surprise as we

know that the linear combinations were going to reduce to the contracted algebra. What is nice

however is the fact that we have re-derived the expressions for the asymptotic Killing vectors which

we wrote down by observation in the previous sub-section.

6. Conclusions and Future Directions

6.1 Summary of Results

In this paper, we have given a concrete spacetime realisation to the mysterious connection be-

tween the symmetries of flat space and those arising in non-relativistic conformal systems. After a

quick review of the GCA, especially the 2d GCA, and revisiting the statement of the BMS/GCA

correspondence, we focussed our attention on a different representation of the 2d GCA. This was

obtained at an algebraic level by considering a different linear combination of the two copies of the

Virasoro algebra and was realised as a new contraction in which one scaled time and not the spatial

direction. We showed that in this representation there were interesting correlation functions which

also survived the unitarity constraints. The form of the correlators were intriguingly similar to ones

obtained in bulk calculations of flat-space correlation functions in [31].

We then turned our attention to the bulk. We showed that the flat-space limit of AdS3 induced

the contraction of time on the conformal field theory to give the GCA that we had discussed at

length. This was done at the level of the Killing vectors in global AdS3. We also reproduced the

expressions for the infinite dimensional asymptotic Killing vectors by taking a combination of the

Brown-Henneaux construction.

6.2 Various comments

Let us remind the reader that in the original formulation of the connection, the higher dimensional

symmetries were obtained from the CFT perspective by the contraction of a single direction in a

d-dimensional CFT. The fact that the time direction is special in Lorentzian spacetimes makes the

choice of contracting along time a particularly attractive option. In Appendix A, we perform a

time-like contraction for general dimensions show that in four dimensions we can indeed generate

the infinitely extended ”semi”-GCA in this contraction scheme. The corresponding bulk analysis is

straight forward: one needs to consider AdS4 in global co-ordinates and the flat space limit there is

again a time-like contraction of the generators of the CFT which now give the ”semi-GCA”. The

details of this construction are worked out in Appendix B.

The appearance of the infinite symmetry in the four dimensional case still remains somewhat

mysterious. Let us attempt a heuristic argument here. We have seen in the three dimensional case

that the flat-space limit is the same as a contraction of the time co-ordinate. Suppose we are close

to the boundary and we look at the Poincare co-ordinates of AdS4.

ds2 =
1

z2

(
dz2 − dt2 + dx2 + dy2

)
→ 1

z2

(
dz2 + dx2 + dy2

)
(6.1)

The limit seems to be singling out an (Euclidean) AdS3 factor which is the one principally respon-

sible for the infinite dimensional symmetry algebra. This turns out to be a fibre-bundled AdS3×Rt
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structure. One can actually show that the BMS4 algebra emerges from this structure of the space-

time as its asymptotic isometries following an analysis which mirrors [16]. We are still unsure of

why this structure should be relevant to flat space physics.

Returning to the 3d bulk case which we discussed at length, some readers may be worried what

lessons this analysis would teach us, given the fact that 3d Minkowski spacetime has no propagating

degrees of freedom. There are no non-trivial solutions, not even any asymptotically flat 3d black

holes. The absence of dynamical degrees of freedom would potentially show up in the calculation of

the correlation functions. It is possible we would find that all the correlation functions of the CFT

vanish. We remind the reader that in our analysis we have calculated the correlation functions in

the CFT and hence our answers which are dictated by symmetry are valid up to constant factors.

By appropriate renormalisation, these factors could very well turn out to be zero in the actual dual

theory.

One could think of adding fields into the bulk and again for appropriate fall offs, one would

generate infinite dimensional asymptotic symmetry algebra having currents along with Virasoros

factors. Our construction tells us that when we look at the flat space version, we can actually

find duals which would be governed not by relativistic CFTs with additional currents, but of

contractions of these symmetries. And obviously, to learn more about the physically relevant four

dimensional case, one should analyse the lower dimensional case in all details. We are confident

that our detailed analysis of the 3d example would teach us valuable lessons for the generalisation

to the 4d flat spacetime, where obviously there are dynamical degrees of freedom.

6.3 Future directions

Coming back to what we have achieved in the present paper, we note that we have been able

to find representations of the 2d GCA which are unitary and also contain non-trivial correlation

functions. These surprisingly matched with ones from other attempts at flat space holography [31].

This is something which deserves particular attention and we plan to revisit this issue in the near

future. The correlation functions we have found provide a first step to attempts to a formulation

of S-matrix theory [37, 38] in this context.

We have also stressed that finding unitary representations and correlation functions of the 2d

GCA is important for investigations of non-relativistic hydrodynamics, in particular simple models

of 2d turbulence. This is another very interesting avenue for further research.

An obvious question to address is what happens if we consider the BTZ black hole in the bulk

instead of the global AdS. The fact that there are no asymptotically flat 3d black holes makes

this question interesting. The geometry would naively be ill-defined. We speculate that this might

have close connections to similar limits studied in [39], especially the second case of the ”pinching

orbifold” that the authors study and would correspond to a special nearly massless BTZ near

horizon geometry6.

The 4d case was addressed only briefly in this work and needs to be understood in much

more detail. This is where the power of infinite symmetry would be particularly relevant. The

symmetries in AdS3 were already infinite dimensional and this carried over to the flat space in

three dimensions. But in AdS4, one does not have infinite symmetries and this only appears in

the flat space limit. It would be particularly enriching to consider what these symmetries can

6We would like to thank M. M. Sheik Jabbari for discussions on this issue.
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teach us about physical observables in four dimensions and understand what we can say about

asymptotically flat 4d blackholes using this formalism.
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Appendices

A. New Contraction in General dimensions

Here we investigate the new contraction of conformal algebra in the generic d-dimensional space-

time. Our analysis would be on the plane and different to the case previously discussed. The

two-dimensional case would be shown to realise the 2d GCA. We however steer clear of the link

between the relativistic Virasoro and the 2d GCA as that can be defined only on the cylinder for

the linear combination we are interested in. We show a similar emergence of the 3d ”semi”-GCA

and again would be confined to the plane. This appendix is just an indication of the fact that the

general t contraction generates the algebras we want. To make specific connections to the BMS

algebras, it is important that we transform the present analysis to the cylinder which we outline

for the 4d case in the next appendix.

Let us start from the generators of conformal algebra in d-dimensional Minkowski space which

consist in rotation Jµν , translations Pµ, dilatation D and special conformal transformations Kµ:

Jµν = −(xµ∂ν − xν∂µ) (A.1)

Pµ = ∂µ (A.2)

D = −(x.∂) (A.3)

Kµ = − (2xµ(x.∂)− (x.x)∂µ) (A.4)

We want to define a new contraction of this algebra by taking the scaling

t→ ε t, xi → xi. (A.5)

In the limit ε→ 0, the above generators reduce to

Jij = −(xi∂j − xj∂i), J0i = xi∂t

Pi = ∂i, P0 = ∂t

D = −(t∂t + xi∂i)

Ki = − [2xi(xj∂j + t∂t)− (xjxj)∂i] , K0 = xixi∂t (A.6)
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which satisfy the following algebra

[Jij , Jrs] = so(d− 1), [Jij , J0r] = −(J0iδjr − J0jδir)

[Jij , Pr] = −(Piδjr − Pjδir), [Jij , P0] = 0

[J0i, J0j ] = 0, [Pi, Pj ] = 0, [P0, Pi] = 0

[J0i, Pj ] = −δijP0, [P0, J0i] = 0 (A.7)

[K0,Ki] = 0, [K0, J0i] = 0, [K0, Pi] = −2δji J0j

[Jij ,Kr] = Kjδir −Kiδjr, [Jij ,K0] = 0, [Jij , D] = 0

[Ki,Kj ] = 0, [Ki, J0j ] = K0δij , [Ki, Pj ] = −2Dδij − 2Jij

[P0,Ki] = −2J0i, [D,Ki] = −Ki, [D,J0i] = 0

[D,Pi] = Pi, [D,P0] = P0, [P0,K0] = 0, [D,K0] = −K0 (A.8)

It is clear from the above algebra (specially the last line of (A.7)) that for the generic d-dimension,

this algebra does not have Galilean sub-algebra and hence it is not GCA. However, in 2-dimension

parameterized by (t, x), one can realize Galilean subalgebra by identifying

B = J0x, P = P0, H = Px. (A.9)

Moreover, by denoting

L0 = D, L1 = Kx, L−1 = −Px
M0 = J0x, M1 = K0, M−1 = P0 (A.10)

we can write the above algebra as

[Ln, Lm] = (n−m)Ln+m, [Ln,Mm] = (n−m)Mn+m, [Mn,Mm] = 0 (A.11)

where m,n = −1, 0, 1.

Using the explicit form (A.6) for the generators of algebra, we can write

Ln = −xn[x∂x + (n+ 1)t∂t]

Mn = xn+1∂t (A.12)

where m,n = −1, 0, 1. However, we can consider the generators (A.12) for arbitrary integer values

of n and find an infinite dimensional algebra. This algebra is isomorphic to the BMS algebra which

is the asymptotic symmetry of 3-dimensional asymptotic flat space-times.

There is another possibility for finding an infinite extension in d = 3. Let us parameterize the

coordinates of 3-dimensional Minkowski space by {t, x, y} and define new generators as

L0 =
1

2
(D + iJxy) , L−1 = −1

2
(Px + iPy) , L1 =

1

2
(Kx − iKy) (A.13)

L̄0 =
1

2
(D − iJxy) , L̄−1 = −1

2
(Px − iPy) , L̄1 =

1

2
(Kx + iKy) (A.14)
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M00 = P0, M01 = J0x + iJ0y, M10 = J0x − iJ0y, M11 = K0 (A.15)

For the above generators we have

[Ln, Lm] = (n−m)Ln+m, [L̄n, L̄m] = (n−m)L̄n+m

[Ln,Mrs] =

(
n+ 1

2
− r
)
M(n+r)s, [L̄n,Mrs] =

(
n+ 1

2
− s
)
Mr(n+s) (A.16)

where n,m = −1, 0, 1. Using (A.6) we find

Ln = − (x− iy)n

2
[(n+ 1)t∂t + (x− iy)(∂x + i∂y)]

L̄n = − (x+ iy)n

2
[(n+ 1)t∂t + (x+ iy)(∂x − i∂y)]

Mnm = (x− iy)n(x+ iy)m∂t (A.17)

where n = −1, 0, 1. It is possible to generalized (A.17) for arbitrary integer n and find an infinite

algebra which is isomorphic to the BMS algebra of 4-dimensional asymptotic flat space-times.

B. Contraction of AdS4 Isometries and BMS4

In this appendix, we give the explicit construction for the contraction of the Killing vectors in AdS4.

The story would be analogous to the discussion in Sec. (5.1). For the convenience of the readers

interested in the details of the construction, we present our calculation in full detail.

Let us consider AdS4 space-times with metric

ds2 = −
(

1 +
r2

`2

)
dt2 +

dr2(
1 + r2

`2

) + r2dΩ2. (B.1)

The generators for the SO(2, 3) isometry of this geometry are

J1 = − cosφ∂θ + cot θ sinφ∂φ

J2 = − sinφ∂θ − cot θ cosφ∂φ (B.2)

J3 = −∂φ

J4 = − r`√
r2 + `2

sin
t

`
cos θ ∂t +

√
r2 + `2 cos

t

`
cos θ ∂r −

√
r2 + `2

r
cos

t

`
sin θ ∂θ

J5 = − r`√
r2 + `2

sin
t

`
sin θ cosφ∂t +

√
r2 + `2 cos

t

`
sin θ cosφ∂r +

√
r2 + `2

r
cos

t

`

(
cos θ cosφ∂θ −

sinφ

sin θ
∂φ

)
J6 = − r`√

r2 + `2
sin

t

`
sin θ sinφ∂t +

√
r2 + `2 cos

t

`
sin θ sinφ∂r +

√
r2 + `2

r
cos

t

`

(
cos θ sinφ∂θ +

cosφ

sin θ
∂φ

)
J7 = − r`√

r2 + `2
cos

t

`
cos θ ∂t −

√
r2 + `2 sin

t

`
cos θ ∂r +

√
r2 + `2

r
sin

t

`
sin θ ∂θ

J8 = − r`√
r2 + `2

cos
t

`
sin θ cosφ∂t −

√
r2 + `2 sin

t

`
sin θ cosφ∂r −

√
r2 + `2

r
sin

t

`

(
cos θ cosφ∂θ +

sinφ

sin θ
∂φ

)
J9 = − r`√

r2 + `2
cos

t

`
sin θ sinφ∂t −

√
r2 + `2 sin

t

`
sin θ sinφ∂r −

√
r2 + `2

r
sin

t

`

(
cos θ sinφ∂θ +

cosφ

sin θ
∂φ

)
J10 = `∂t
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Taking the large radius limit with finite ` we go near the boundary. The Killing vectors in this

limit become

J1 = − cosφ∂θ + cot θ sinφ∂φ, J2 = − sinφ∂θ − cot θ cosφ∂φ

J3 = −∂φ, J10 = `∂t (B.3)

J4 = −` sin
t

`
cos θ ∂t + r cos

t

`
cos θ ∂r − cos

t

`
sin θ ∂θ

J5 = −` sin
t

`
sin θ cosφ∂t + r cos

t

`
sin θ cosφ∂r + cos

t

`
cos θ cosφ∂θ −

cos t` sinφ

sin θ
∂φ

J6 = −` sin
t

`
sin θ sinφ∂t + r cos

t

`
sin θ sinφ∂r + cos

t

`
cos θ sinφ∂θ +

cos t` cosφ

sin θ
∂φ

J7 = −` cos
t

`
cos θ ∂t − r sin

t

`
cos θ ∂r + sin

t

`
sin θ ∂θ

J8 = −` cos
t

`
sin θ cosφ∂t − r sin

t

`
sin θ cosφ∂r − sin

t

`
cos θ cosφ∂θ +

sin t
` sinφ

sin θ
∂φ

J9 = −` cos
t

`
sin θ sinφ∂t − r sin

t

`
sin θ sinφ∂r − sin

t

`
cos θ sinφ∂θ −

sin t
` cosφ

sin θ
∂φ

Now we take the flat-space limit by scaling `→∞. It is not difficult to show that the new generators

L0 = −1

2
(J4 + iJ3) , L̄0 = −1

2
(J4 − iJ3)

L1 =
1

2
[(J5 − J1) + i (J6 − J2)] , L̄1 =

1

2
[(J5 − J1)− i (J6 − J2)]

L−1 = −1

2
[(J5 + J1)− i (J6 + J2)] , L̄−1 = −1

2
[(J5 + J1) + i (J6 + J2)] (B.4)

M0,0 =
1

`
(J10 + J7) , M1,1 =

1

`
(J10 − J7)

M0,1 =
1

`
(−J8 + iJ9) , M1,0 =

1

`
(−J8 − iJ9) (B.5)

are well-defined in this limit and satisfy the following algebra

[Lm, Ln] = (m− n)Lm+n, [L̄m, L̄n] = (m− n)L̄m+n

[Lm, L̄n] = 0, [Ll,Mm,n] =

(
l + 1

2
−m

)
Mm+l,n

[L̄l,Mm,n] =

(
l + 1

2
− n

)
Mm,n+l (B.6)

for m,n = −1, 0, 1. Notice that again, as in the 3d case, the flat space limit manifests itself as a

contraction of the time direction in the boundary theory. To find nice explicit expressions of our

above generators we switch to polar coordinates

x = eiφ cot
θ

2
, y = e−iφ cot

θ

2
. (B.7)

With this the above generators can be written as

Ln =
1

2

(
xy − 1

xy + 1
− n

)
xn (t∂t − r∂r)− xn+1∂x

L̄n =
1

2

(
xy − 1

xy + 1
− n

)
yn (t∂t − r∂r)− yn+1∂y

Mm,n =
2

1 + xy
xmyn∂t (B.8)
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We again observe that the generators can be defined for any integer n and the algebra can be given

an infinite dimensional lift. This is the infinitely extended bms4 [20, 21]. At the boundary, r →∞,

this reduces to the semi-GCA. We note here that our expressions are in complete agreement with

corresponding results of [21]. It would be particularly interesting in the context of the BMS/GCA

correspondence to see what role the modified bracket introduced in [21] plays in extending the

BMS algebra into the bulk and similarly, what it means for the boundary contracted conformal

field theory.
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