
Chapter 1
Checking proofs

Jesse Alama and Reinhard Kahle

1.1 Introduction

Argumentative practice in mathematics evidently takes a number of shapes. An im-
portant part of understanding mathematical argumentation, putting aside its special
subject matters (numbers, shapes, spaces, sets, functions, etc.), is that mathematical
argument often tends toward formality, and it often has superlative epistemic goals:
often the aim of a piece of mathematical argumentation is to prove that such-and-
such a student is logically true or logically valid consequence of some assumptions;
a proved student thus seems to be indubitable, certain, or irrefutable. These aims
generally do not depend on the subject matter of what is being argued about; whether
one discusses functions, numbers, spaces, shapes, sets, arrangements, flows, figures,
or fields, mathematical argumentation, in its final, published, form (and even in or-
dinary mathematical conversation) tends to be formal and self-consciously explicit
about its own argumentative structure. The problem, then, is to better understand the
notion of mathematical proof. We are interested in this paper in the phenomenon of
mathematical proof considered as a species of argumentative practice in mathemat-
ics.

For us in this paper the central feature of mathematical argumentation—specifically,
mathematical arguments that are put forward with the intention of showing that
a certain proposition is a true or valid–is its in-principle formalizability. By the
in-principle formalizability of an argument we understand that there exists a for-
mal derivation in some conventionally accepted formalism suited for mathematical
reasoning of the proposition that commences from some conventional set of foun-
dational axioms in a gap-free way all the way to the (formalized version of the)
proposition.

Jesse Alama
Center for Artificial Intelligence, New University of Lisbon, e-mail: j.alama@fct.unl.pt

Reinhard Kahle
Center for Artificial Intelligence, New University of Lisbon, e-mail: kahle@mat.uc.pt

1

j.alama@fct.unl.pt
kahle@mat.uc.pt

2 Jesse Alama and Reinhard Kahle

Even a modest exposure to the practice of producing formal proofs common
in introductory courses in logic, mathematics, computer science, law, linguistics,
etc., quickly makes clear that the conventional formalisms for reconstructing an
argument formally tend to be practically unsuited to the task for which they were
designed. Without claiming to offer a complete list, we have

• the method of truth tables,
• Aristotle’s syllogisms and variants thereof,
• analytic and semantic tableaux (e.g., Smullyan-style or Jeffrey-style),
• statement-justification tables (as one often sees in elementary courses of geome-

try),
• Euler/Venn diagrams (for expressing relationships of inclusion and exclusion),
• natural deduction (in various forms: Gentzen, Fitch, Jáskowski, Suppes, . . .)
• Hilbert-style calculi (a linear format preceding from axioms and generally using

a handful of rules, e.g., modus ponens),
• Toulmin diagrams (in which there the various roles of statements are represented,

so that not all statements are simply bald “premises”)
• sequent calculi (á la Gentzen).

The list is quite incomplete; the reader is invited to recall other formats for rep-
resenting argumentation formally. The point of our list is to suggest to the reader
that numerous formalisms available for representing or reconstructing arguments,
especially mathematical ones.

It is one thing to formalize a piece of syllogistic reasoning or to use a truth table or
tableau method for showing that a short propositional statement such as p∧q→ p
is a tautology. But for arguments of any complexity, one sees quickly that recon-
structing the argument formally quickly becomes tedious: the formalized argument
is often much longer, in an everyday sense, than the argument that it is intended to
formalize. One loses the thread of the formalized argument, since most formalisms
mandate that one spell out all steps, significant or insignificant. The formal recon-
struction takes too long, and the reward at the end (if one has enough patience!)
pales to the cost of the formalization.

If one insists on writing mathematical arguments entirely in accordance with the
demands of, say, a standard Hilbert-style calculus (where modus ponens is the only
rule of inference)1, then checking a formalized mathematical argument is indeed ex-
ceedingly routine, but also exceedingly time-consuming. One wonders what payoff
might be had if one were to formalize one’s arguments. Lakatos, asking what one
can discover in a formalized mathematical theory, gives one answer: “One can dis-
cover the solution to problems which a suitably programmed Turing machine could

1 It is not always the case that modus ponens is the only rule of inference available in a Hilbert style
system. In certain systems of modal logic, for example, one typically finds a rule of necessitation
as part of a Hilbert-style formalism. But for classical propositional and classical logic, as well as
for others, it is known and standard to assume that in a Hilbert-style calculus modus ponens is the
only rule of inference. The main feature of Hilbert-style calculi is that they have very few rules,
placing the deductive burden of the formalism on its axioms, which are formulas, rather than rules
of inference.

Page:2 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

1 Checking proofs 3

solve in a finite time (such as: is a certain alleged proof a proof or not?). No math-
ematician is interested in following out the dreary mechanical ‘method’ prescribed
by such decision procedures” (Lakatos, 1976, 4). It seems that these formalism in
general and the formalisms in which one can reconstruct “informal” arguments,
whatever virtues it has (e.g., the soundness and completeness of various systems
for expressing derivations), are simply not a practical tool. Those who stress for-
malisms for writing proofs seem to be overpromising what those formalisms can
deliver. It seems that, even if we are interested in the formal side of mathematical
reasoning, we need to rest content with its in-principle formalizability. Those who
are not so interested in formalization might even suspect that the impracticality of
formalizing interesting mathematical arguments constitutes a reductio of the notion
of the in-principle formalizability of mathematical proof. If the “in-principle” part
of “in-principle formalizability” is so essential, perhaps there is something wrong
with the notion of formalizability in the first place.

We do not disagree with the view that formalizing interesting arguments (let
alone mathematical proofs) is often tedious. We would like to defend, though, the
in-principle formalizability of mathematical proofs as one of their important features
by explaining their in-practice formalizability. We are interested, specifically, in the
problem of checking a proof. Because the ordinary discussion of in-principle formal-
izability is not taking full account of an important capability that can be brought to
bear when formalizing arguments. Instead of formalizing mathematical arguments
in our heads or with pencil-and-paper, why not use computers to assist us in the task?
Computers are obviously capable of doing symbolic computation at a rate, and with
less regard for tedium, than humans have when working only in their own heads or
with pencil and paper. We are now in the possession of a wealth of tools that help us
to practically reconstruct an informal argument in a formal setting, check whether
the formalization is a valid argument and, if not, what defects it has.

In our view these technological developments are important for argumentation
theory because, on the one hand, they shed new light on classical topics such as
reconstructing and appraising arguments (especially mathematical ones), and, on
the other hand, the developments suggest formal treatment of topics that might be
thought to be essentially informal.

Our view is closely related to that of Azzouni (Azzouni, 2004), whose so-called
derivation-indicator view about mathematical proofs (briefly, that ordinary “infor-
mal” mathematical proofs serve as indicators of corresponding formal derivations).
The success of computer-assisted (formal) theorem proving projects as discussed
here can serve as evidence for Azzouni’s view. Derivations for many mainstream
mathematical theorems are now available; the days when one can only dream of
live derivations for any substantial mathematical theorem are long over. Of course,
the empirical success of computer-assisted formal theorem proving projects does
not show that Azzouni is right. Our view is compatible with contenders, such as
Rav (Rav, 2007). We do not offer formal proof construction and checking as a re-
placement for ordinary mathematical proof practices, nor are we implicitly suggest-
ing that formal proofs ought to be a central object of interest in argumentation theory
in mathematics. Nor, finally, can we recommend formal proofs for everyone; it re-

Page:3 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

4 Jesse Alama and Reinhard Kahle

quires, certainly, a friendly (or at least patient) attitude toward formalization, which
not everyone has.

This chapter stands out from several of the others in this volume by its focus on
mathematical proof and its connection with formal logic. A fair amount of argu-
mentation theory can be seen as trying to escape from the musty chains of formal
reasoning by asking questions about argumentation that are ignored, spurned, or un-
treatable by the old tools of deductive, valid, formal logic. From this perspective,
our contribution might appear to be an unwelcome throwback. Although we focus
on such “traditional” matters, we are by no means claiming that in-principle formal-
izability exhausts the interests of an argumentation theorist looking at mathematics.
Further, we do not claim that the subject of proof exhausts the study of mathemat-
ical argumentation. Proof is clearly but one aspect of a multifarious phenomenon,
as the other contributions to this volume can testify. (See, for example, van Benge-
dem (van Bengedem, 1988).) And although our interests are clearly “traditional”
or “foundational”, our focus on formalizability stems from the same desire among
argumentation theorists looking at mathematics to find out what formal logic does
not account for. Our modest suggestion is that, thanks to developments in automated
reasoning systems (Porteraro (Portoraro, 2008) is a useful survey), new light is shed
on the notion of in-principle formalizability and suggests new problems that, we
believe, will be of interest to argumentation theorists.

Our focus in the present paper is on evaluating formalized mathematical argu-
ments, or, rather, checking proofs. We illustrate how this apparently “dreary me-
chanical method” that Lakatos was referring to can in fact offer insight into a for-
malized mathematical argument. Our discussion is based on modern computer im-
plementations of the process of checking formalized proofs, in the guise of so-called
interactive theorem provers (also known as proof assistants). We will focus on the
MIZAR interactive theorem prover,2 which is based on classical first-order logic,
set theory, and natural deduction. There are many actively maintained interactive
theorem provers now available:

• COQ3

• ISABELLE4

• HOL5) and some variants, such as HOL LIGHT6 and HOL ZERO7

Among these MIZAR is chosen for its relatively straightforward proof syntax, which
is most likely to be immediately accessible to an unfamiliar reader. We are not inter-
ested in defending a claim about which of the great variety of interactive theorems
provers now available is “best”. For lack of space, we cannot provide a compre-
hensive introduction to MIZAR; we refer the reader to (Grabowski et al., 2010). We

2 http://mizar.org
3 http://coq.inria.fr
4 http://www.cl.cam.ac.uk/research/hvg/isabelle/
5 http://hol.sourceforge.net/
6 http://www.cl.cam.ac.uk/˜jrh13/hol-light/
7 http://proof-technologies.com/holzero.html

Page:4 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

http://mizar.org
http://coq.inria.fr
http://www.cl.cam.ac.uk/research/hvg/isabelle/
http://hol.sourceforge.net/
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://proof-technologies.com/holzero.html

1 Checking proofs 5

will explain the relevant parts of MIZAR’s language for representing mathematical
proofs as necessary.

1.2 Computer-assisted proof construction

The problem of formalizing mathematical arguments is rather old. The roots of for-
malization arguably go back to Euclid, if not earlier (Netz, 2003). For lack of space,
we have to ignore a rich history, doing much injustice to many intellectual forbears,
and skip ahead past the invention of the modern computer in the 1930s. Some of
the earliest research in what we now call artificial intelligence was on the formaliza-
tion of mathematical arguments, specifically, the task of using computers to search
autonomously for formal proofs of mathematical claims (e.g Wang, 1960). Wang’s
groundbreaking research led to automatically found proofs of many theorems of
Principia Mathematica. His remarks, made in 1960, have proved to be rather pre-
scient:

The time is ripe for a new branch of applied logic which may be called “inferential” analysis,
which treats proofs as numerical analysis does calculations. This discipline seems capable,
in the not too remote future, of leading to machine proofs of difficult new theorems. An
easier preparatory task is to use machines to formalize proofs of known theorems.(Wang,
1960, 2)

Wang distinguishes the automated search for genuinely new mathematical results
from the formalization of known theorems. We are interested in this second practice.
Such work, we urge, provides a fascinating glimpse into the practice of mathemati-
cal argumentation.

Early research in the field of theorem proving—the search for proofs (or dis-
proofs) of mathematical claims—has led to rather sophisticated techniques and im-
pressive milestones. It is standard to divide automated theorem proving (in which
computers search more or less autonomously for proofs, models, refutations, etc.)
from interactive theorem proving (in which the emphasis is on the construction of
proofs, assisted by a machine). Although there are some precursors of interactive
theorem proving going back to the earliest days of modern computers, the field be-
gan to pick up steam mainly in the 1960s and 70s: early important projects include
AUTOMATH by N. G. de Bruijn in Eindhoven, the Netherlands (de Bruijn, 1980),
SAD (System for Automated Deduction) in Kiev, Ukraine (Verchinine et al., 2007),
and MIZAR in Bialystok, Poland (Matuszewski and Rudnicki, 2005). (Our account
of the early history of interactive theorem proving must, for lack of space, be cut
short.) The products of these systems that are most interesting to us are their for-
mal languages for reconstructing the mathematical vernacular, that is, the informal
though highly stylized, even slightly rigid, parole used by mathematicians when
communicating mathematical proofs. In the ends, these recontructions of mathe-
matical vernacular are themselves formal languages, but they are far from simply
being “raw” formalisms such as natural deduction or sequent calculus.

Page:5 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

6 Jesse Alama and Reinhard Kahle

For a more thorough account of the state of the art, one can consult the excel-
lent survey articles by Wiedijk (Wiedijk, 2008), Hales (Hales, 2008), and Harrin-
son (Harrison, 2008). Here we focus on the aspects of formal mathematical proofs
that may be of interest to those working in argumentation theory and mathematics.

The use of computers in mathematical theorem proving is becoming increasingly
important. One can distinguish two directions: proof search and proof checking.
Proof search suffers from well-known complexity problems and has so far had only
limited success solving general mathematical problems. On the other hand, while it
might be very hard to find a proof, to check a proof for correctness is, in general, of
lower complexity (although it can be rather technical and long).

Wiedijk (Wiedijk, 2006) surveys a corner of the state of the art. He presents
seventeen theorem provers and evaluates them in a uniform way: to prove that

√
2

is irrational. Wiedijk’s survey gives interesting insight into the state of the art of
theorem proving, strongly emphasizing proof check (and less strongly proof search).
Wiedijk presents a six line proof of the famous theorem, taken from the classical
textbook of Hardy and WriteHardy and Wright (1960, 39 f.):

The traditional proof ascribed to Pythagoras runs as follows. If
√

2 is rational, then the
equation

a2 = 2b2

is soluble in integers a, b with (a,b) = 1. Hence a2 is even, and therefore a is even. If a= 2c,
then 4c2 = 2b2,2c2 = b2, and b is also even, contrary to the hypothesis that (a,b) = 1.

This proof should be understandable by anyone with basic mathematical knowledge.
Emphasizing proof checking, Wiedijk writes (2006, 3): “Ideally, a computer should
be able to take this text as input and check it for its correctness.” Insofar as Wiedijk
means that Hardy and Wright’s proof needs to be checked for correctness, we con-
sider this perspective misleading. Of course, the correctness of a proof is essential,
but that doesn’t mean that the correctness of a proof is always in doubt, or that math-
ematical proofs require (repeated) verification. In fact, the proof above, as a textbook
proof, has surely another objective besides simply displaying the logical correctness
of its conclusion. On the one hand, it should convince the reader of the truth of the
proven theorem; on the other hand it should provide text which is memorable, that
can be reproduced whenever needed. For the moment, let us follow the line of proof
checking, as this might be an important task when we are in doubt about the truth
of a theorem or about a particular proof of a theorem. When Wiedijk presents the
results which computer-aided theorem provers provide for the irrationality of

√
2,

these results might be very well checkable, but the proofs themselves are far from
being acceptable for a human reader.8 In fact, to guarantee correctness, they have to
take into account too many details, details which a mathematician does not like to
see exposed in the proof. This was formulated by Scott as follows:

8 “We can also see clearly from the examples in this collection that the notations for input and
output have to be made more human readable” (Scott, 2006, viii f., in the foreword of Wiedijk,
2006).

Page:6 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

1 Checking proofs 7

For verification (. . .) checkable proofs have to be generated and archived. Computers are so
fast now that hundreds of pages of steps of simplifications can be recorded even for simple
problems. Hence, we are faced with the questions, ‘What really is a proof?’ and ‘How much
detail is needed?’ (Scott, 2006, ix f.)

That formalized proofs are not a good answer to the former question is argued by
several authors. For instance, Avigad, working from historical case studies of proofs
in elementary number theory, concludes that

Standard models of deduction currently used in mathematical logic cannot easily support
the type of analysis [of proofs] we are after. (Avigad, 2006, 131).9

We agree with Scott that formalized or computer-checked proofs challenge our
notion of proof with respect to proof representation. How do we represent proofs in
such a way that a computer could understand them, while still being practical and
useful for humans? And can we trust formal proofs in the same way that we can
trust “human proofs”? (See Rehmeyer (Rehmeyer, 2008)for a further discussion.)
And when is a proof really a proof, anyway?

This already holds “in the small” for the proofs of the irrationality of
√

2 pre-
sented in (Wiedijk, 2006). It surely also holds “in the large” when we come to the
controversial case of the computer-aided proof of the four color theorem, which suf-
fers from a huge number of case distinctions checked by computer, but which were
not (and most likely could never) be checked by a human mathematician. And it
also holds for the case of the alleged proof of the Kepler conjecture(Hales, 2005).
But, while we said that the verification of Hardy and Wright’s proof above is not
an issue, the verification of these proofs is at issue, and is valuable. For Appel and
Haken’s original 1976 proof (Appel and Haken, 1977) of the four color theorem
this is mentioned by Thomas, who writes in an informal explanation of the second
proof:

We have in fact tried to verify the Appel-Haken proof, but soon gave up. Checking the
computer part would not only require a lot of programming, but also inputting the descrip-
tions of 1476 graphs, and that was not even the most controversial part of the proof.Thomas
(2007)

So, Robertson, Sanders, Seymour, and Thomas came up with a new proof (Robert-
son et al., 1997). It is still performed by computer aid, but it reduces the cases from
1476 to 633. While this is still a number which cannot be checked “by hand”, no
one would deny that it is an improvement, i.e., that this proof is clearly better than
the original one. But with respect to the verification, now we have the possibility to
verify—by computer aid—the programs involved.

The question of verification of large or otherwise controversial proofs was
reignited recently by Hales when he launched a program to verify “formally”, i.e.,
by computer aid, his proof of the Kepler conjecture. Hales is engaged in his project
because the initial verification attempt by mathematicians of his solution to the Ke-
pler conjecture led only to “99% certainty” about the correctness of his proof (Hales,

9 Avigad actually proposes methods—which correspond, for instance, to tactics in the ISABELLE
theorem prover—as alternatives (cf. Avigad, 2006).

Page:7 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

8 Jesse Alama and Reinhard Kahle

2005). While the situation seems to be in principle similar to the proofs of the four
color theorem, the new aspect is that the author indeed tries to convince the mathe-
matical community of the correctness of his proof entirely by formal and computer
verified means.

What is the difference between proving and checking a proof? When is a proof a
proof, anyway? Is there a social aspect to whether a proof is a proof? (We refer the
reader to Heintz (Heintz, 2003), and to Löwe, Müller, and Müller-Hill (Löwe et al.,
2010) for a discussion of further epistemological issues in formal proof.)

As a consequence of the philosophical discussion of Appel and Haken’s orig-
inal proof of the four color theorem (there are many sources: Tymoczko, Ty-
moczko (1979), Detlefsen and Luker Detlefsen and Luker (1980), Teller Teller
(1980), MacKenzie (MacKenzie, 1999), Arkoudas and Bringsjord (Arkoudas and
Bringsjord, 2007), Bassler (Bassler, 2006)), Prawitz stresses—with reference to
Teller—the importance of distinguishing proof from its verification:

That one has verified that a proof is a proof [. . .] is therefore not a part of the proof. That
is not to say, of course, that it is not wise to check one’s proof; as Hume rightly remarks,
the confidence in a proof increases when one runs over it. But the checking does not add
anything to the proof itself (Prawitz, 2007, 89).

From this perspective, it is clear that Hales’s verification project should concern only
the confidence one might have in his proof, not the proof itself. But what will be the
status of the proof even after it is verified in the lines that Hales proposes?

In fact, this situation is not as new as it might look; it didn’t just emerge from the
use of computers. There actually is one other instance in which a modularization
in numerous cases was carried out by just a large number of mathematicians: the
classification of finite groups. In fact, its “proof” (which was, in part, also done
by computer aid) has an interesting history with respect to its correctness and its
acceptance (Aschbacher, 2004).10 What distinguishes it most from the computer
proofs mentioned above, is the fact, that the different cases might be considered as
interesting in their own right, i.e., for the study of a particular group (or class of
groups). A study of the single cases in the proofs of the four color theorem does not
provide any such mathematical surplus value.

The lesson to take away from the reception of the proof of the four color theorem
and the reception of the classification of finite simple groups is that mathematicians
still seem to prefer proofs checked by other (human) mathematicians. Even if the
proof is so complex that no single mathematician can check it, it is preferred that
the mathematical community as a whole cooperates in carrying out the verification.
See also Buss, who divides proofs into formal and social (Buss, 1998) In the appli-
cation of computers to proving properties of computer programs, one can also find
controversy; Demillo, Lipton, and Perlis’s paper (De Millo et al., 1979) on the so-

10 “I have described the Classification as a theorem, and at this time I believe that to be true. Twenty
years ago I would also have described the Classification as a theorem. On the other hand, ten years
ago, while I often referred to the Classification as a theorem, I knew formally that that was not
the case, since experts had by then become aware that a significant part of the proof had not been
completely worked out and written down” (Aschbacher, 2004, 737 f.).

Page:8 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

1 Checking proofs 9

cial nature of proof is a famous gauntlet thrown down in the discussion about these
matters. MacKenzie (MacKenzie, 2004) provides a comprehensive discussion.

1.3 Checking a (formal) proof

The problem of checking a mathematical proof can sometimes be surprisingly com-
plex. It seems that for many ordinary mathematical proofs the process of checking
the proof occurs simultaneously with a reconstruction of the proof. Lakatos ex-
presses this thus:

Often the checking of an ordinary proof is a very delicate enterprise, and to hit on a ‘mis-
take’ requires as much insight and luck as to hit on a proof.(Lakatos, 1976)

But checking proofs even in a formal setting can also be a delicate enterprise, as
well. How?

One can view an argument for a claim as a structure that specifies how claims
of the argument are justified by various moves. We begin with an initial thesis, and
then make inferential moves from it, making in turn additional claims. Each step we
make transforms the thesis to be proved (and possibly introduces new theses) into a
different claim. We discharge some obligations and possible introduce others along
the way. The argument can be said to be successful if all our steps are the result of
sound applications of rules of inference and the thesis to be proved at the end of the
argument is acceptable.

Lest we slip into an infinite regress à la Carroll (Carroll, 1895), we need to agree
to our rules of inference. Thus, if the thesis is B and we have established A and
A→ B, we need to agree that:

• An application of modus ponens to the two claims already established (A and
A→ B) yields B,

• Modus ponens is an acceptable rule of inference, and
• The occurrence/utterance of B that is obtained by applying modus ponens is “the

same” as the B that we set out to establish.

The first item pins down the premises of an application of modus ponens. The sec-
ond item is meant to rule out the possibility that the acceptability of modus ponens
becomes itself a disputable issue in the argument. The third item, like the first, is
meant to pin down the issue under discussion; it won’t do if, establishing A and
A→ B, we nonetheless reject the conclusion of the application of modus ponens to
these two premises because the conclusion B now differs from the B that we set out
to establish.11

11 This is not to say that such phenomena are not worth studying. One way of coming to grasp the
meaning of a statement is by arguing with it; we may find, for example, that if we have reached an
unacceptable conclusion through sound reasoning from premises that we accept, we find ourselves
having reached a better understanding of the conclusion. Thus the B we reach at the end is, in some
sense, different from the B (in A→ B) from which the argument commenced. Such a phenomenon

Page:9 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

10 Jesse Alama and Reinhard Kahle

To some extent, one could say that there is little at issue when it comes to the
problem of checking a formal mathematical proof. We simply choose some target
formalism in which to reconstruct the proofs, such as a standard Hilbert-style cal-
culus or a Fitch-style natural deduction calculus. We might prefer calculi that are
complete for the notion of logical consequence in which we are interested (often,
but not always, classical first-order logic).12 We then “formalize” the argument in
the chosen formalism, producing some kind of figure d (graph, tree) representing
the initial argument. The initial argument is then checked if and only if d is a legal
figure according to the rules of the proof formalism that we started with. Showing
that d is legal is, generally, an entirely mechanical matter.

For example, in a Hilbert-style calculus, d is a finite sequence 〈A1,A2, . . . ,An〉
of logical formulas. The question of whether d is a legal derivation of a formula φ

from assumptions Γ consists of showing that d terminates with φ and that for each
term Ai of the sequence, that either

• Ai is a member of Γ

• Ai is an axiom (which amounts to simple pattern matching: does Ai have the form
φ ∨¬φ? Does Ai have the form φ → (ψ → φ)?)

• There exist earlier terms Ai1 and Ai2 of the sequence such that Ai2 is Ai1 → Ai.
This is just another way of saying that Ai is obtained from Ai1 and Ai2 by modus
ponens.

For other formalisms, e.g., Fitch-style natural deduction or Gentzen-style sequent
calculus, checking whether some figure d is legal according to the formalism is
likewise quite straightforward.

Yet it often happens that among proof formalisms, there is a balance between the
complexity of verifying that a figure purporting to be a legal derivation really is le-
gal, and the length of the proofs. Thus, in a Hilbert-style calculus, it is trivial indeed
to check that a given sequence of formulas is a legal Hilbert-style derivation; but the
length of the legal sequences, as one considers derivations of increasingly non-trivial
mathematical results, grows quite rapidly. (For a thorough systematic discussion of
this and related issues of proof complexity, see Orevkov, 1993.) At seems, moreover,
that such proofs are unsatisfactory because they diverge significantly from mathe-
matical practice. What is wanted is a formalism that tries to be more faithful to the
practice of mathematical argumentation, while still being sufficiently delimited that
one can compute with the formalizations.

There are, we submit, such formalisms, balancing ease of use with the practical
need that checking whether a figure is a legal derivation is fast. Later we shall see
some example proofs written in one of them.

might be understood as argument-based discovery of meaning. Such argumentation—which might
be seen as fallacious—is present in mathematics, but we shall not consider it here.
12 “Classical” means that the law of excluded middle is assumed to be valid: the disjunction φ ∨¬φ

is assumed to hold for any formula φ .

Page:10 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

1 Checking proofs 11

1.3.1 Formal proofs: Advantages and opportunities

One kind of argument appraisal that is available in the formal setting that is not
easily available in the informal setting is the question of what an argument depends
on. Essentially any contentful argument takes something for granted. It appeals ex-
plicitly to some background knowledge, or perhaps makes certain assumptions im-
plicitly or carries out parts of the argument without any justification. Even certain
mathematical definitions might take something for granted. For example, the defi-
nition of the real number π as the ratio of a circumference of a circle to its radius,
on the surface, simply defines a function from particular circles to the set of real
numbers. No one doubts that the notions “circumference of a circle” and “diameter
of a circle” vary from circle to circle (that is, distinct circles can have distinct cir-
cumferences and radii), so without any further analysis all the definition of π gives
us is yet another quantity that varies from circle to circle:

∀γ(circle(γ)→ (π(γ) = (circumference(γ)/diameter(γ))))

But in fact in standard Euclidean geometry the quantity π(γ) does not vary with γ .
Thus, in a fully formal treatment of Euclidean geometry, one would have to establish
the theorem

∀γ,γ ′[π(γ) = π(γ ′)].

Thus, in a fully formal development of Euclidean geometry, one would expose this
implicit dependency of a definition on some of the axioms of Euclidean geometry.

Nonetheless, modern interactive theorem provers generally provide some kind of
support for omitted inferences. Which inferences are omitted? We see an interest-
ing formal analogue of the subject taken up by Fallis, concerning intentional gaps
in mathematical proofs (Fallis, 2003). In what sense are there gaps in a formal,
computer-checked proof?

At the end of formalization, one typically has, at least in principle, an utterly
formal proof of a theorem, logically correct down to all details, down to the axioms
of whatever background theory one is working with. However, a completely for-
mal proof, for a theorem of any mathematical substance, would be unmanageable.
Let us be clear that when working with interactive theorem provers, one does not
typically work with “totally” formal proofs that, say, proceed only by introduction
and elimination rules for quantifiers and connectives. (This is in accordance with
the usual notion of analytic proof , which proceeds by an analysis of the structure
of the claim to be proved and the structures of the assumptions used to prove it.
By contrast, a synthetic proof brings in some new ingredients that are not formally
contained in the statement to be proved.) It is well know that these are simply too
big. One uses the computer not to assist in the drudgery of simply storing a large
derivation figure in its memory and manipulating it with somewhat greater facility
than would be the case were one to just use pencil and paper. Instead, the standard
practice is that one works with a formal language that sits above a “totally” for-
mal language. One writes proofs in the intermediate formal language that, in some

Page:11 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

12 Jesse Alama and Reinhard Kahle

sense, can be compiled into a totally formal proof. Thus, modern interactive the-
orem provers typically provide mechanisms for suppressing some inferences. One
sees here a computable version of Azzouni’s derivation-indicator view. An “infor-
mal” or ordinary mathematical proof is said to be an indicator of a formal derivation.
Likewise, proofs conducted with modern interactive theorem provers, even though
they are rather more formal than informal proofs, can likewise be seen as indicators
of totally formal derivations.

This does not mean that a proof constructed with an interactive theorem prover
is, in some interesting sense, informal. Rather, it is formal, but with some gaps that
can be, as it were, computably traversed. That is, gaps generally represent proof
search problems; the traversability of a gap means that there is a solution to the
proof search problem. Consider, for example, a proof in the MIZAR system for the
following elementary set-theoretic fact13:

for x, X, Y being set holds
x in X \+\ Y iff not (x in X iff x in Y)

proof
let x, X, Y be set;
x in X \+\ Y iff x in X \ Y or x in Y \ X

by DefDisjointUnion;
hence thesis

by DefRelativeComplement;
end;

Here the claim is that a set x is in the disjoint union of two sets X and Y (x in
X \+\ Y) iff it is not the case that x is in X iff x is in Y (not(x in X iff x in
Y)). The proof uses the definition of disjoint union (DefDisjointUnion),

definition
let X, Y be set ;
func

X \/ Y -> set
means :DefDisjointUnion:
for x being set holds x in it iff (x in X or x in Y);

which is defined in terms of relative complement (X \ Y), defined as
definition

let X, Y be set ;
func X \+\ Y -> set

equals
(X \ Y) \/ (Y \ X);

The disjoint union of X and Y is the union (X \Y)∪ (Y \X) of the relative comple-
ment of X from Y and Y from X), and the definition of relative complement itself,
which is

definition
let X, Y be set ;
func X \+\ Y -> set

equals
(X \ Y) \/ (Y \ X);

13 http://mizar.org/version/current/html/xboole_0.html#T1

Page:12 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

http://mizar.org/version/current/html/xboole_0.html##T1

1 Checking proofs 13

The proof is three steps long: the initial “let” statement, the inference from the def-
inition of disjoint union, and the final inference (thesis) from the definition of
relative complement. One might wonder what the trouble is all about; see the dis-
cussion of what counts as an “obvious” inference in Section 1.4 for an explanation
of why it’s necessary, at least for the case of MIZAR, to spell out an argument.
Taking for granted the need to articulate these steps in the proof, one might won-
der whether this is really a formal proof. Indeed, it may fail to adhere to, say, the
requirements of a Fitch-style natural deduction system. The “let” of the first three
steps introduces three variables (x, X, and Y) all at once, in one step, rather than one
at a time. Another way in which the MIZAR proof could fail to strictly adhere to the
requirements of a totally formal proof is that it fails to start with the definition of
disjoint union, considered as the universal claim

∀X∀Y [X⊕Y = (X \Y)∪ (Y \X)]

and instantiate it for the terms of interest, and then apply a rule of equality to trans-
form the given claim in terms of \+\ into one involving union and relative comple-
ment. A complete Fitch-style natural deduction proof of the claim would proceed
as in Fig. 1.1. This Fitch-style deduction takes dozens of steps. We cannot claim
that there is no shorter proof. Still, it is implausible to us that there is a Fitch-style
deduction of the same theorem from the same premises that is much shorter than
this one. The Fitch proof even economizes in some ways: we took as an axiom an
instance of the propositional tautology

¬(p↔ q)→ [(p∧¬q)∨ (¬p∧q)]

in step 1 and an instance of
(p∧q)→ (q∧ p)

in step 2 as premises. The principle assumptions are of course 3, 4, and 5, which
are definitions of three mathematical concepts. In a Fitch-style natural deduction
formalism in which (instances of) this formula are axioms, then no further work
is needed. If this formula is not an axiom, then of course a proof of it must be
given, so the proof would need to be even longer. We have also economized by
allowing multiple-variable instantiations for universal formulas, that is, permitting
the inference of

φ [x1,x2, . . . ,xn := t1, t2, . . . , tn]

from
∀x1∀x2 · · ·∀xnφ ,

where n ≥ 1, in a single step (where φ [x1, . . . ,xn := t1, . . . , tn] denotes the simulta-
neous substitution of the term tk for the variable xk, 1 ≤ k ≤ n). Thus, depending
on precisely how restricted the natural deduction system is, the deduction easily
approaches 50 steps.

Contrast the 3-step formal proof earlier, from which the Fitch-style derivation
came, with the totally formal Fitch-style derivation. The point is that there is no

Page:13 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

14 Jesse Alama and Reinhard Kahle

1 ¬(x ∈ X ↔ x ∈ Y)→ [(x ∈ X ∧ x 6∈ Y)∨ (x 6∈ X ∧ x ∈ Y)] Tautology

2 (x 6∈ X ∧ x ∈ Y)→ (x ∈ Y ∧ x 6∈ X) Tautology

3 ∀X∀Y∀x[x ∈ X ∪Y ↔ x ∈ X ∨ x ∈ Y] Definition of union (∪)

4 ∀X∀Y∀x[x ∈ X \Y ↔ (x ∈ X ∧ x 6∈ Y)] Definition of relative complement (\)

5 ∀X∀Y [X⊕Y = (X \Y)∪ (Y \X)] Definition of disjoint union (⊕)

6 X⊕Y = (X \Y)∪ (Y \X) ∀E, 5

7 x ∈ X \Y ↔ (x ∈ X ∧ x 6∈ Y) ∀E, 4

8 x ∈ Y \X ↔ (x ∈ Y ∧ x 6∈ X) ∀E, 4

9 x ∈ X ∪Y ↔ x ∈ X ∨ x ∈ Y ∀E, 3

10 x ∈ (X \Y)∪ (Y \X)↔ x ∈ (X \Y)∨ x ∈ (Y \X) ∀E, 3

11 x X Y x ∈ X⊕Y

12 x ∈ X ↔ x ∈ Y

13 x ∈ (X \Y)∪ (Y \X) =-E, 11, 6

14 x ∈ (X \Y)∨ x ∈ (Y \X) ↔-E, 13, 10

15 x ∈ X \Y

16 x ∈ X ∧ x 6∈ Y ↔-E, 15, 13

17 x ∈ X ∧E, 16

18 x ∈ Y ↔-E, 16, 12

19 x 6∈ Y ∧E, 16

20 ⊥ ⊥-I, 18, 19

21 x ∈ Y \X

22 x ∈ Y ∧ x 6∈ X ↔-E, 21, 8

23 x ∈ Y ∧E, 22

24 x ∈ X ↔-E, 23, 16

25 x 6∈ X ∧E, 24

26 ⊥ ⊥-I, 24, 25

27 ⊥ ∨E, 14, 15–20, 21–26

28 ¬(x ∈ X ↔ x ∈ Y) ¬I, 12–27

29 x ∈ X⊕Y →¬(x ∈ X ↔ x ∈ Y) ⇒I, 11–28

30 ¬(x ∈ X ↔ x ∈ Y)

31 (x ∈ X ∧ x 6∈ Y)∨ (x 6∈ X ∧ x ∈ Y) ⇒E, 1, 30

32 x ∈ X ∧ x 6∈ Y

33 x ∈ X \Y ↔-E, 32, 7

34 x ∈ X \Y ∨ x ∈ Y \X ∨I, 33

35 x ∈ X⊕Y =-E, 34, 6

36 x 6∈ X ∧ x ∈ Y

37 x ∈ Y ∧ x 6∈ X ⇒E, 2, 36

38 x ∈ Y \X ↔-E, 37, 8

39 x ∈ X \Y ∨ x ∈ Y \X ∨I, 38

40 x ∈ X⊕Y =-E, 39, 6

41 x ∈ X⊕Y ∨E, 31, 32–35, 36–40

42 ¬(x ∈ X ↔ x ∈ Y)→ x ∈ X⊕Y ⇒I, 30, 41

43 x ∈ X⊕Y ↔¬(x ∈ X ↔ x ∈ Y) ↔-I, 29, 42

44 ∀x∀X∀Y [x ∈ X⊕Y ∨ x ∈ Y \X ↔¬(x ∈ X ↔ x ∈ Y)] ∀I, 11–43

Fig. 1.1 Fitch-style deduction of ∀x∀X∀Y [x ∈ X⊕Y ∨ x ∈ Y \X ↔¬(x ∈ X ↔ x ∈ Y)]

Page:14 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

1 Checking proofs 15

need to write down all those 40+ steps of the Fitch-style derivation, because most
of them can be computed. The above MIZAR proof might even be just what we
want, since, apart from the first step of instantiating the variables, the two steps are,
essentially:

1. Apply the definition of disjoint union, then
2. Apply the definition of relative complement.

This seems to be is the heart of the matter, and the proof does not diverge from
that. By contrast, it is not apparent what the “heart” of the corresponding Fitch-style
proof is, since we had to carry out various instantiations of universal premises and
even take a detour through a propositional logic.

1.4 What inferences are “obvious”?

When giving a mathematical proof, one has to decide what to say and what can go
without saying. Learning the norms for communicating proofs is an important part
of acquiring knowledge of mathematics. (One might even see mathematics as an
instance of Toulmin’s fields (Toulmin, 2003).) It is a recurring question that teach-
ers of mathematics face: “Which steps should be included? What steps can I omit?”
Rarely (if ever) do we see all steps of a mathematical proof, if by “step” we un-
derstand a single application of a rule of inference in some conventionally accepted
formalism akin to the Fitch-style derivation given in the previous section. Indeed,
if a student were to give a totally formal derivation as a solution to a mathematical
problem, we would rightly feel that the student has, in some sense, failed, despite the
inarguable validity of his solution. In the opposite extreme, teachers of mathematics
can surely recount occasions where a student simply asserts a complicated statement
that, by reasonable lights, cannot be simply asserted, since it needs justification, at
least in the context of instruction.

At issue is the problem of distinguishing, in a context, which mathematical
claims need to be justified from those that can be simply granted. (A related topic
is the problem of characterizing persuasiveness of certain mathematical moves. For
more on the subject, see the contribution by Inglis and Mejı́a-Ramos in this vol-
ume.) A full answer evidently requires a classification of the various contexts in
which mathematical claims are made. A mathematics teacher might reject a stu-
dent’s unjustified claim of an equation, while accepting, only five minutes later, the
very same equation put forward by a colleague in the mathematics department. The
teacher is not being duplicitous because the contexts of mathematical acceptability
in the two situations are different.

What about in the formal context? The choice of formalism determines what
claims count as justified and those that require justification. The result is extreme:
anything that is not an axiom requires justification. It is not so bad that non-trivial
propositions require proof. What is worse is that it often happens that even “trivial”
statements, so long as they are not axioms, require proof. And sometimes trivial

Page:15 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

16 Jesse Alama and Reinhard Kahle

statements turn out to be not so trivial after all, in that they apparently require unex-
pectedly long formal proofs. Moreover, the definition of formal derivation requires
that every step in the proof that is not an axiom be the result of an application of a
rule of inference.

If we are working cooperatively with a computer, though, the answer to the ques-
tion of which inferences need justification can be deferred somewhat to the com-
puter. The strength of the mechanisms for doing automated reasoning will have a
powerful influence the proofs. Rudnicki presents the situation thus:

The core of an automatic proof-checking system is a decision procedure for accepting/re-
jecting presented inferences. A rejection does not mean that an inference is logically invalid,
it simply mirrors the fact that the proof-checker was unable to certify the inference’s cor-
rectness. Certainly, an invalid inference has to be rejected. Using a proof-checker is similar
to a discussion between humans. One admits that one does not see why a conclusion follows
from premises (even if it does in fact), but one agrees quickly that the adversary is right after
being given additional explanation. The criterion for acceptance/rejection of valid logical
inferences in a proof-checking system is said to define a class of ’obvious’ inferences in the
system.(Rudnicki, 1987, p. 383).

We shall follow the terminology used by Rudnicki (who is reusing the term intro-
duced by Davis) and discuss now the problem of what inferences are obvious? The
problem is to try to give a formal or computable account of an informal notion. We
will, of course, not succeed in full, but we believe that we can learn about the notion
of obviousness and attendant features of mathematical argumentation by studying it
through a formal lens.

As Rudnicki suggests, we are interested in sound obvious inference. (To precisely
specify what we mean by “sound”, we should specify a logic, and there seems to be
room for non-classical logics. For our purposes, let us stick to classical first-order
logic.) Just because something is judged to be non-obvious does not mean that it is
false or invalid. Moreover, we are all too aware of claims put forward as “obvious”
but which turn out to be false or otherwise unacceptable. Calling something “obvi-
ous” can sometimes run the risk of being nothing more than a thinly-veiled appeal
to authority, argument by intellectual boasting or belittlement (it’s obvious to me—
why isn’t it obvious to you?), or premature abandonment (“it’s obvious” might just
amount to saying that we don’t have time to argue or that the arguer isn’t willing to
argue).

The extreme solution of stipulating that all (valid) inferences are obvious seems
unacceptable. With this understanding of obviousness, any mathematical inference
whatsoever would be acceptable without justification. This extreme solution might
not even be well-defined. After all, what notion of validity should we use? Should
we use classical logic or non-classical logic? What is the characterization of valid-
ity? Should the notion of validity be syntactic or semantic? If we were worried about
consistency (is it possible that incompatible claims are both obvious?), we might try
to restrict obviousness so that only true conclusions are accepted—but what claims
are true? Evidently not all true claims are obvious and at least some require proof;
indeed, often we don’t even know that a mathematical claim is false until we try to
prove it, tentatively accepting it as true, and realize only in our failure to prove it
that it is not even true.

Page:16 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

1 Checking proofs 17

We have already discussed the other extreme, in which nothing is obvious except
what is formally an axiom. The result here is likewise unacceptable, because we
then have that only the most brutally obvious claims are accepted, and we would
give up quickly. One could take as axioms an extremely large set of principles; but
then we collapse to the other extreme in which essentially everything is obvious.

What is wanted is a notion of obvious inference that allows us to omit some
(valid) reasoning, but not too much. The notion should also be practical: if we are
interested in doing much mathematical reasoning formally, checking whether a step
in the proof is an obvious inference should be done quickly. The notion of obvious-
ness should therefore have a low computational complexity.

Davis has taken on the problem of characterizing, proof-theoretically, the notion
of an “obvious” inference (Davis, 1981). The context from which Davis devised his
characterization of obvious inference was a project of natural deduction at Stanford.
Natural deduction arguments à la Gentzen, Fitch, or Suppes (as with any serious
proof formalism) can be rather tedious. The heart of an informal argument is often
obscured or diffused if one adheres strictly to the requirements of the formalism. In
formal contexts one wants a rule of inference that would allow one to dispense with
certain tedious details.

Here is a precise reformulation of Davis’s proof-theoretic definition of “obvious
inference” in first-order classical logic:

Definition 1. A logical formula φ is an obvious logical consequence of assump-
tions Γ if there is a Herbrand proof of φ from Γ in which each quantified formula
of Γ is instantiated at most once.

The precise definition of Herbrand proof will not be given here; see (Davis, 1981)
or (Harrison, 2009). The idea is that in drawing an obvious logical inference, it is
ruled out to use multiple instances of quantified formulas in Γ . Once one has chosen,
for each quantified formula α in Γ , an instance α∗ (one may elect not to instantiate
α at all), then one has to formally derive φ from Γ and the instances α∗n , . . . using
only a “light” form of first-order reasoning and propositional calculus.

The notion of obvious logical inference, as defined by Davis, clearly does not
characterize how we use the term “obvious” in the context of ordinary reasoning.
A consequence of the proposal is that quite a lot of propositional inferences get
classified as “obvious”. This seems to accord with our intuitions in cases such as

q because p and p→ q

but fail for cases such as

((p→ q)→ p)→ p

(a famous classical validity known as Peirce’s formula), or

p because X is unsatisfiable,

where X is a large, complex unsatisfiable set of propositional formulas. Davis’s
proposal also fails to account for such first-order inferences as:

Page:17 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

18 Jesse Alama and Reinhard Kahle

φ(f (f (a)) because φ(a) and ∀x[φ(x)→ φ(f (x))],

because we need to instantiate the universal premise ∀x[φ(x) → φ(f (x))] twice
(once with a, and again with f (a)).14

Still, it is a valuable proposal because of its conceptual simplicity and practical
efficiency. In general, if we have some quantified formulas Γ and a conclusion φ ,
deciding which instances of formulas in Γ to choose can quickly lead to a vast num-
ber of possibilities. Davis’s proposal limits the search for instances: choose at most
one instance each time. When a conclusion φ is not an obvious logical consequence
of background assumptions Γ , then the inference is “too complicated” to be checked
by a machine, and the human formalizer needs to supply more information.

Following on Davis’s work, Rudnicki (Rudnicki, 1987) has outlined some prob-
lems with Davis’s proposal and has offered a second mathematical characterization
of the notion of obvious inference.

As mentioned earlier, the problem faced by the designer of an interactive theorem
proving system is to sail between an extremely dense but extremely fast notion of
acceptable inference, as opposed to trying to make as much as possible obvious
by devoting arbitrary computational resources to determining whether an inference
is obvious. The effect of this decision is that the class of proofs will tend to be
extremely long on the one hand, and maximally concise on the other.

One might say that the preference here is clear: one should go for the most con-
cise proofs possible! The problem is that computer proof search for interesting log-
ics is a rather difficult computational task. The search spaces for theorem proving
problems tend to be extremely large, even intractable, so that devoting increasing
amounts of computational power often has surprisingly little effect. It often hap-
pens, because of the sheer size of the search spaces involved, that if a theorem
proving problem cannot be solved in 5 minutes, then it cannot be solved in one hour
either.15 We are thus forced by complexity to keep our aims modest.

If we vary the strength of the checker for obvious inferences, can we detect a di-
viding line between what is obvious, in the everyday sense of the term, from what is
not obvious? Surely there must come some point (though we concede that it seems
likely that there could be Sorites-type paradoxes here). For at the extreme end we
could have complicated theorems of mathematics that are known to be valid conse-
quences of some recursively enumerable set of axioms, such as those of Zermelo-
Fraenkel set theory (ZF); given arbitrary computational resources to check whether
an inference is “obvious”, we would find that, say, the fundamental theorem of cal-
culus gets deemed as an obvious inference from some finite set of axioms of ZF,
though we would surely balk at judgment.16

14 This example appears in (Rudnicki, 1987).
15 There are many counterexamples to this general outlook. The solution, by an automated theorem
prover, of the long-outstanding Robbins problem required 8 days of continuous computation (Mc-
Cune, 1997).
16 If one is not satisfied with this example, we could replace the fundamental theorem of calculus
by some other significant mathematical fact, perhaps even one that has not yet been discovered.

Page:18 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

1 Checking proofs 19

The result is that by varying the strength of the mechanism that certifies obvi-
ousness has an effect on the intuitive explanatory value of the proofs. (For a further
discussion of explanation in mathematics, see (Mancosu, 2000).) This is intuitively
clear. Earlier we presented “φ(a) and ∀x[φ(x)→ φ(f (x))] therefore φ(f (f (a)))” as
a case where Davis’s notion of obvious inference fails. This case would be counted
as obvious if we strengthened Davis’s notion and permitted two instances of univer-
sal premises to be selected.

Here is a slightly more mathematical example of the same phenomenon, showing
the effect that such a strengthening has on live mathematical proofs coming from the
MIZAR Mathematical Library, the curated body of formalized mathematical knowl-
edge that has been reconstructed in the MIZAR interactive theorem prover. 17 The
proofs in the MIZAR Mathematical Library are governed by a notion of obvious-
ness similar to Davis’s notion. (A precise definition of the class of MIZAR-obvious
inferences is not needed.)

Consider the following formal theorem:

reserve X, Y, Z for set;

Lemma1: X c= Y & Y c= Z implies X c= Z;

Lemma2: X c= X \/ Y;

Lemma3: X c= Y implies X \/ Z c= Y \/ Z;

X c= Y implies X c= Z \/ Y
proof
assume X c= Y;
then A1: Z \/ X c= Z \/ Y by Lemma3;
X c= Z \/ X by Lemma2;
hence X c= Z \/ Y by A1,Lemma1;

end;

The first line says that in what follows, the variables X, Y, and Z are sets (more
precisely, they are assigned the type set). The next three statements are background
lemmas (assigned the labels Lemma1, Lemma2, and Lemma3).

Lemma 1 (Lemma1) expresses the transitivity of the subset relation: if X ⊆ Y (X
c= Y) and Y ⊆ Z (Y c= Z), then X ⊆ Z (X c= Z).

Lemma 2 (Lemma2) expresses the fact that X is always a subset c= of the union
of X with any other set Y (X \/ Y).

Lemma 3 (Lemma3) expresses the fact that if X is a subset of Y (X c= Y), then
the union X ∪Z is a subset of the union Y ∪Z (X \/ Z c= Y \/ Z).

Lemmas 1, 2 and 3 will be taken for granted, for the sake of discussion. That is,
the text above is not acceptable to MIZAR as written, because all three lemmas are
not MIZAR-obvious and there require MIZAR-proof. Our interest is the final result
(the theorem) of the MIZAR text fragment, which expresses the simple result that
if X is a subset of Y (X c= Y), then X is a subset of the union Z∪Y for any set Z (X

17 We thank Artur Korniłowicz for this example

Page:19 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

20 Jesse Alama and Reinhard Kahle

c= Z \/ Y). Unlike the case for the three lemmas, a proof of this fact is provided.
Let us proceed through it.

We are carrying out a natural deduction-style proof of an implication (X c=
Y implies X c= Z \/ Y); the first step, naturally, is to assume the antecedent
(assume X c= Y). From this assumption we get, using Lemma 3, the include Z
\/ X c= Z \/ Y. (MIZAR is also implicitly using the commutativity of the binary
union operation—note that Lemma 3 puts Z on the right-hand side of the union,
but in the conclusion just drawn, it appears on the left-hand side of the union). The
notation A1: is simply assigning a label to the statement just concluded; we will
use the formula later in the argument by appealing to its label. The third step in
the argument simply applies Lemma 2; we have from it that X ⊆ Y ∪X . We do not
use the hypothesis of the theorem nor the previously concluded statement (whose
label is A1) to infer the result; this follows immediately from Lemma 2 alone. The
final step of the proof (followed by hence) is the desired conclusion: we have that
X ⊂ Z∪Y because of

• X ⊆ Z∪X (from the previous line)
• the formula labeled A1, i.e., Z∪X ⊆ Z∪Y
• the formula labeled Lemma1, i.e., X ⊆ Y ∧Y ⊆ Z→ X ⊆ Z.

This argument is optimal in the sense that no step can be removed. The MIZAR
proof checker rejects all possible compressions the argument. In the maximal com-
pression, one justifies the final theorem by simply declaring, without proof, that it
follows from the lemmas, i.e.,

X c= Y implies X c= Z \/ Y by Lemma1, Lemma2, Lemma3;

one finds that the MIZAR proof checker rejects the inference. Other kinds of at-
tempted compression, such as removing the intermediate statement A1, viz.

X c= Y implies X c= Z \/ Y
proof
assume X c= Y;
hence X c= Z \/ Y by Lemma1, Lemma2, Lemma3;

end;

or dropping the application of Lemma 2, viz.

X c= Y implies X c= Z \/ Y
proof
assume X c= Y;
then A1: Z \/ X c= Z \/ Y by Lemma3;
hence X c= Z \/ Y by A1, Lemma1, Lemma2;

end;

are all rejected by the MIZAR proof checker. They are rejected because they re-
quire that multiple instances of background universal premises be taken, and this is
precisely what is ruled out by the notion of (1-)obvious inference.

But what if instead of using the notion of 1-obviousness, we use 2-obvious? That
is, what if we permitted the proof checker to pick two universal premises, rather
than one? The result is that the above proof can indeed be compressed:

Page:20 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

1 Checking proofs 21

X c= Y implies X c= Z \/ Y by Lemma1, Lemma2;

This is a fascinating compression. We don’t even need to articulate a proof any
longer; for the MIZAR proof checker, our claim is a 2-obvious consequence of Lem-
mas 1 and 2 alone. We don’t even need the help of Lemma 3, which was essential
before when we were operating under the constraint that all inferences must be 1-
obvious.

To sum up, we argue that mathematical proofs should be evaluated with respect to
their ability to provide answers—answers in a “digestible” form. Computer proofs
are often just “indigestible”, not only due to excessive information, but also because
they can’t be addressed by our questions.

1.5 Appraising and improving formal proofs

After completing a formal proof, one can return to it and improve it in various ways.
We again see some advantages of the formal approach to mathematical proof and
its implementation in an interactive theorem prover: we can evaluate an argument in
ways that might be more difficult were we to insist on working with informal proofs.

For example, when constructing a formal argument, it can happen that parts of
the argument play no role in the final conclusion. This can be automatically detected,
thus providing a kind of mechanical detection of irrelevant reasoning.

It can also happen that in the inferences appearing in a proof, some can be safely
omitted. One might say that this is an appraisal of redundant information. That
is, a proof is valid, but it also remains valid if one takes away parts of some of the
justifications. Moreover, a formal mathematical proof can also be more verbose than
necessary for a proof checker. Consider: step:

Step1: A by Lemma1;
MiddleStep: B by Theorem1, Step1;
Step2: C by Lemma2, Theorem2, MiddleStep;

It can happen that we can eliminate the middle step and combine the justifications:

Step1: A by Lemma1;
Step2: C by Theorem1, Lemma2, Theorem2, Step1;

The first step (Step1) is unchanged. We moved justification of the middle step
(MiddleStep) to the second step (Step2). The proof is now compressed by one
step.

Interestingly, even when such compressions are possible, we may not always
wish to carry them out, because intermediate steps might be important for our un-
derstanding of the proof; deleting such intermediate steps may decrease the com-
prehensibility of the proof.

Page:21 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

22 Jesse Alama and Reinhard Kahle

1.6 Conclusion

We intended to explain how the formal view of mathematical proof, far from being a
stale, old subject, gets new life breathed into it thanks to technological progress com-
ing from automated reasoning. The problem of what inferences count as acceptable
without any further justification—which we have called “obvious inferences”—
might be thought to be inherently informal, but which appears quite naturally in
the setting of automated reasoning. Those interested in mathematical practice and
argumentation can, we hope, see that a formal approach to mathematical proof is
not at odds with other analyses but complements them.

Acknowledgment

Both authors were partially supported by the ESF research project Dialogical
Foundations of Semantics within the ESF Eurocores program LogICCC, LogIC-
CC/0001/2007, and the second author was also supported by the project Hilbert’s
Legacy in the Philosophy of Mathematics, PTDC/FIL-FCI/109991/2009, both funded
by the Portuguese Science Foundation (FCT).

References

Appel, K. and Haken, W. (1977). Every planar map is four-colorable. Illinois Journal of Mathe-
matics, 21:439–567.

Arkoudas, K. and Bringsjord, S. (2007). Computers, justification, and mathematical knowledge.
Minds and Machines, 17(2):185–202.

Aschbacher, M. (2004). The status of the classification of the finite simple groups. Notices of the
American Mathematical Society, 51(7):736–740.

Avigad, J. (2006). Mathematical method and proof. Synthese, 153:105–149.
Azzouni, J. (2004). The derivation-indicator view of mathematical practice. Philosophia Mathe-

matica, 12:81–106.
Bassler, O. B. (2006). The surveyability of mathematical proof: a historical perspective. Synthese,

148:99–133.
Buss, S. (1998). An Introduction to Proof Theory, volume 137 of Studies in Logic and the Foun-

dations of Mathematics, chapter 1. Elsevier, Amsterdam.
Carroll, L. (1895). What the tortoise said to achilles. Mind, 4(14):278–280.
Davis, M. (1981). Obvious logical inferences. In Proceedings of the 7th International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 530–531.
de Bruijn, N. (1980). A survey of the project AUTOMATH. In Hindley, J. R. and Seldin, J. P., editors,

To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic
Press.

De Millo, R., Lipton, R. J., and Perlis, A. J. (1979). Social processes and proofs of theorems and
programs. Communications of the ACM, 22(5):271–280.

Detlefsen, M. and Luker, M. (1980). The four-color theorem and mathematical proof. Journal of
Philosophy, 77(12):803–820.

Fallis, D. (2003). Intentional gaps in mathematical proofs. Synthese, 134:45–69.

Page:22 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

1 Checking proofs 23

Grabowski, A., Korniłowicz, A., and Naumowicz, A. (2010). Mizar in a nutshell. Journal of
Formalized Reasoning, 3(2):153–245.

Hales, T. (2005). A proof of the Kepler conjecture. Annals of Mathematics, 162(3):1063–1185.
Hales, T. C. (2008). Formal proof. Notices of the American Mathematical Society, 55(11):1370–

1380.
Hardy, G. H. and Wright, E. M. (1960). An Introduction to the Theory of Numbers. Oxford, 4th

edition.
Harrison, J. (2008). Formal proof—Theory and practice. Notices of the American Mathematical

Society, 55(11):1395–1406.
Harrison, J. (2009). Handbook of Practical Logic and Automated Reasoning. Cambridge Univer-

sity Press.
Heintz, B. (2003). When is a proof a proof? Social Studies of Science, 33(6):929–943.
Lakatos, I. (1976). Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge

University Press.
Löwe, B., Müller, T., and Müller-Hill, E. (2010). Mathematical knowledge as a case study in

empirical philosophy of mathematics. In van Kerkhove, B., de Vuyst, J., and van Bendegem,
J. P., editors, Philosophical Perspectives on Mathematical Practice, number 12 in Texts in
Philosophy.

MacKenzie, D. (1999). Slaying the Kraken: The sociohistory of a mathematical proof. Social
Studies of Science, 29(1):7–60.

MacKenzie, D. (2004). Mechanizing Proof: Computing, Risk, and Trust. MIT Press.
Mancosu, P. (2000). On mathematical explanation. In Grosholz, E. and Berger, H., editors, Growth

of Mathematical Knowledge, pages 103–119. Kluwer.
Matuszewski, R. and Rudnicki, P. (2005). MIZAR: The first 30 years. Mechanized Mathematics

and Its Applications, 4:3–24.
McCune, W. (1997). Solution of the Robbins Problem. Journal of Automated Reasoning,

19(3):263–276.
Netz, R. (2003). The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History.

Cambridge University Press.
Orevkov, V. P. (1993). Complexity of proofs and their transformations in axiomatic theories, vol-

ume 128 of Translations of Mathematical Monographs. American Mathematical Society, Prov-
idence, RI. Translated by Alexander Bochman from the original Russian manuscript, Transla-
tion edited by David Louvish.

Portoraro, F. (Fall 2008). Automated reasoning. In Zalta, E. N., editor, Stanford Encyclopedia of
Philosophy.

Prawitz, D. (2007). Proof verifying programs and programs producing proofs—a conceptual anal-
ysis. Presented at ”Workshop on Deduction, Computation, Experiment. Exploring the Effec-
tiveness of Proofs”, in Bologna, Italy, 3–4 April,2007.

Rav, Y. (2007). A critique of a formalist-mechanist version of the justification of arguments in
mathematicians’ proof practices. Philosophia Mathematica, 15(3):291–320.

Rehmeyer, J. (2008). How to (really) trust a mathematical proof. Science News.
Robertson, N., Sanders, D. P., Seymour, P. D., and Thomas, R. (1997). The four colour theorem.

Journal of Combinatorial Theory. Series B, 70:2–44.
Rudnicki, P. (1987). Obvious inferences. Journal of Automated Reasoning, 3(4):383–393.
Scott, D. (2006). Foreword. In Wiedijk, F., editor, The Seventeen Provers of the World, volume

3600 of Lecture Notes in Computer Science, pages vii–xii. Springer.
Teller, P. (1980). Computer proof. Journal of Philosophy, 77(12):797–803.
Thomas, R. (2007). The four color theorem.
Toulmin, S. E. (2003). The Uses of Argument. Cambridge University Press, updated edition.
Tymoczko, T. (1979). The four-color problem and its philosphical significance. Journal of Philos-

ophy, 76(2):57–83.
van Bengedem, J. P. (1988). Non-formal properties of real mathematical proofs. In PSA: Proceed-

ings of the Biennial Meeting of the Philosophy of Science Association, volume 1: Contributed
Papers, pages 249–254.

Page:23 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

24 Jesse Alama and Reinhard Kahle

Verchinine, K., Lyaletski, A. V., and Paskevich, A. (2007). System for automated deduction (SAD):
A tool for proof verification. In Pfenning, F., editor, CADE, volume 4603 of Lecture Notes in
Computer Science, pages 398–403. Springer.

Wang, H. (1960). Toward mechanical mathematics. IBM Journal of Research and Development,
4(1):2–22.

Wiedijk, F., editor (2006). The Seventeen Provers of the World, volume 3600 of Lecture Notes in
Computer Science. Springer.

Wiedijk, F. (2008). Formal proof—Getting started. Notices of the American Mathematical Society,
55(11):1408–1414.

Page:24 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

Index

√
2, 6

appeal to authority, 16
argument

appraisal, 3
reconstruction, 3

arguments, contentful, 11
artificial intelligence, 5
assumptions

explicit, 11
implicit, 11

automated theorem proving, 5
Avigad, Jeremy, 7
Azzouni, Jody, 4

Buss, Samuel, 9

calculus
Hilbert-style, 2
sequent, 2

Carroll, Lewis, 9
case distinction

1476-fold, 8
633-fold, 8

completeness
as a property of formal calculi, 10

complexity
balanced against expressivity, 10

conviction, 7
COQ, see theorem prover, interactive

Davis, Martin, 17
derivation, see derivation-indicator view

tedious, 13
derivation-indicator

computable analogue of, 12
derivation-indicator view, 4

bearing of computer-assisted reasoning, 4
discovery

in formal theories (Lakatos), 3
dreary mechanical method, 3

essentially informal phenomena, 4
Euclid, 5
Euler diagram, 2
excluded middle, 10

field (Toulmin), 15
first-order logic, 4
Flyspeck, 8
formal proof

excessively long, 2
formalism

faithful, 11
formalizability

in-principle, 2
four color theorem, 7

gaps, 12
geometry

Euclidean, 11

Hales, Thomas, 7
Hardy, G. H., 6
HOL LIGHT, see theorem prover, interactive
HOL ZERO, see theorem prover, interactive

inferential analysis, 5
inferential moves, 9
infinite regress, 9
intractable, 18
ISABELLE, see theorem prover, interactive
ISABELLE, 7

Kepler Conjecture, 7

25

26 Index

logical consequence, 10

mathematicians
human, 9

methods
seetactics, 7

modus ponens, 9

natural deduction, 2
Fitch-style, 2
Gentzen-style, 2
Jáskowski-style, 2
Suppes-style, 2

non-classical logic, 10, 16, 17

obvious
non-obviousness does not imply invalidity,

16
obvious inference, 16

objections, 17
verifying should have low complexity, 17

Peirce’s formula, 18
π , 11
Principia Mathematica, 5
proof

acceptability, 9
analytic, 12
and understanding, 22
as explanation, 19
comprehensibility, 22
confidence in, 8
doubting, 6
formalized, 4
Herbrand, 17
informal, 4, 12
memorable, 7
norms for communication, 15
only one part of mathematical argumentative

practice, 4
pruning, 21
redundant information contained in, 21
representation, 7
reproducible, 7
social aspect of, 8
social nature of verification, 9
synthetic, 12
totally formal, 12
trusting a, 7
uncheckable, 9
very large, 8

proof appraisal, 21
proof assistant, see teorem prover, interactive4
proof checking

delicateness, 9
proof comression, 20
proof search, 5

complexity, 6
computational complexity, 18
search space, 18

proof, formal
used synonymously with computer-assisted

proof, 8
proving

compared to proof checking, 8

Rav, Yehuda, 4
recursively enumerable set, 19
reverification, 6
Robbins problem, 18
Robertson, Neil, 8
rule of inference, 9

Sanders, Daniel, 8
Scott, Dana, 7
set theory, 5

Zermelo-Fraenkel, 19
Seymour, Paul, 8
statement-justification table, 2
syllogism, 2

tableaux
analytic, 2
semantic, 2

theorem prover
interactive, 4
varying the strength of, 19

theorem prover, interactive
COQ, 5
HOL, 5
HOL LIGHT, 5
HOL ZERO, 5
ISABELLE, 5
MIZAR, 4

Thomas, Robin, 8
Toulmin diagram, 2

Venn diagram, 2
vernacular, mathematical, 6

Wright, E. M., 6

Page:26 job:checking-proofs macro:svmult.cls date/time:12-Apr-2012/21:17

	Checking proofs
	Jesse Alama and Reinhard Kahle
	Introduction
	Computer-assisted proof construction
	Checking a (formal) proof
	Formal proofs: Advantages and opportunities

	What inferences are ``obvious''?
	Appraising and improving formal proofs
	Conclusion
	References

	Index

