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Abstract. We study computably enumerable equivalence relations (ceers)
under the reducibility R ≤ S if there exists a computable function f such that,
for every x, y, x R y if and only if f(x) S f(y). We show that the degrees
of ceers under the equivalence relation generated by ≤ form a bounded poset
that is neither a lower semilattice, nor an upper semilattice, and its first order
theory is undecidable. We then study the universal ceers. We show that 1) the
uniformly effectively inseparable ceers are universal, but there are effectively
inseparable ceers that are not universal; 2) a ceer R is universal if and only
if R′ ≤ R, where R′ denotes the halting jump operator introduced by Gao
and Gerdes (answering an open question of Gao and Gerdes); and 3) both the
index set of the universal ceers and the index set of the uniformly effectively
inseparable ceers are Σ0

3-complete (the former answering an open question of
Gao and Gerdes).

1. Introduction

We are interested in the following reducibility on equivalence relations: If R,S
are equivalence relations on the set ω of the natural numbers, we say that R is
reducible to S (notation: R ≤ S) if there exists a computable function f such
that, for every x, y,

x R y ⇔ f(x) S f(y).

This reducibility was introduced by Ershov [9] while considering monomorphisms
in the category of numberings. We recall that a numbering is a pair 〈ν, S〉, where
ν : ω −→ S is an onto function. Numberings are the objects in a category Num,
called the category of numberings: The morphisms from a numbering 〈ν1, S1〉
to a numbering 〈ν2, S2〉 are the functions µ : S1 −→ S2 for which there is a
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computable function f so that the following diagram commutes:

ω
f−−−−→ ω

ν1

y yν2
S1 −−−−→

µ
S2;

we say in this case that the computable function f induces the morphism µ.
Numberings are equivalence relations in disguise: If 〈ν, S〉 is a numbering then

one can consider the equivalence relation ∼〈ν,S〉 on ω,

x ∼〈ν,S〉 y ⇔ ν(x) = ν(y),

and, vice versa, starting from an equivalence relation R on ω, one can consider
the numbering 〈νR, SR〉, where

SR = {[x]R : x ∈ ω}
is the set of equivalence classes, and νR(x) = [x]R. In fact, in the category of
numberings, we have an isomorphism 〈ν, S〉 ' 〈ν∼〈ν,S〉 , S∼〈ν,S〉〉.

Viewing equivalence relations as numberings, we are led to introducing the
category of equivalence relations Eq, whose objects are the equivalence relations
on ω, and the morphisms from R1 to R2 are functions µ : ω/R1 −→ ω/R2 such
that there is a computable function f for which

µ([x]R1) = [f(x)]R2 ,

so that a morphism from R1 to R2 is induced by a computable function f satis-
fying

x R1 y ⇒ f(x) R2 f(y).

By the previous observations, Eq can therefore be viewed as a full subcategory
of Num such that every object of Num is isomorphic to exactly one object of Eq.

Lemma 1.1. In the category Eq the monomorphisms coincide with the 1-1 mor-
phisms.

Proof. Suppose µ : R −→ S, induced by a computable function f , is a monomor-
phism, i.e., for every pair of morphisms ν1, ν2 : E −→ R,

µ ◦ ν1 = µ ◦ ν2 ⇒ ν1 = ν2.

Assume for a contradiction that µ is not 1-1, and let [a1]R, [a2]R be distinct equiv-
alence classes such that µ([a1]R) = µ([a2]R). For i = 1, 2, define the computable
function gi(x) = ai. Then, for every equivalence relation E, the functions g1
and g2 induce distinct morphisms ν1, ν2 : E −→ R, such that µ ◦ ν1 = µ ◦ ν2, a
contradiction. �

Thus we have the following

Corollary 1.2. If R and S are equivalence relations on ω, then R ≤ S if and
only if there is a monomorphism µ : R −→ S.
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From the point of view of category theory, R ≤ S may also be expressed by
saying that R is a subobject of S, see Mac Lane [13, p. 122] and Ershov [8, 9].

We conclude the section with asking if the statement in Lemma 1.1 can be
dualized:

Question 1. Is it true that in Eq every epimorphism (i.e., a morphism µ satis-
fying: ν1 ◦ µ = ν2 ◦ µ⇒ ν1 = ν2) is onto?

By Lemma 3.16, the above holds in the subcategory EqP introduced below.

1.1. The category EqP of ceers. A computably enumerable equivalence relation
(or, simply, ceer) is an equivalence relation R on the set of natural numbers such
that the set {〈x, y〉 : x R y} is computably enumerable (c.e.). Here, 〈 , 〉 denotes
the Cantor pairing function.

Lemma 1.3. Let R,S be ceers. The following hold:

• If µ : R −→ S is a morphism (monomorphism, respectively) and S yields
a partition into infinite sets then there is a computable 1-1 function that
induces the morphism (monomorphism, respectively).
• If µ : R −→ S is an isomorphism, and R,S yield partitions into infinite

sets, then there is a computable permutation of ω that induces µ.

Proof. Assume that h induces a (mono)morphism h : R −→ S, where R and S
are ceers, and the equivalence classes of S are infinite. We show how to build
from h a 1-1 computable function k still inducing the same (mono)morphism:
Define

k(n) = first m ∈ [h(n)]S − {k(i) : i < n},
where “first” refers to some computable enumeration, uniform in n, of the c.e. set
[h(n)]S − {k(i) : i < n}.

In the second item, the function f inducing the isomorphism can be made a
computable permutation of ω by a straightforward back-and-forth argument: At
stage 2n, we make sure that f is defined on n, and at stage 2n+ 1, we make sure
that n ∈ range(f). Injectivity is preserved as in the previous item. �

Once again, interest in ceers originally arose from the theory of numberings,
see, e.g., Malcev [15], where an important role is played by the notion of a pos-
itive numbering, i.e., a numbering 〈ν, S〉 such that ∼〈ν,S〉 is a ceer. (In fact,
computably enumerable equivalence relations are also called positive, see, e.g.,
Ershov’s paper [8] which contains the first detailed investigation of ceers.)

Definition 1.4. The category EqP of ceers is the full subcategory of Eq whose
objects are exactly the ceers.

For later reference, we fix an effective numbering of all ceers. One natural way
to number ceers is via the following lemma. For every set of numbers X, let X∗

denote the equivalence relation on ω generated by X, where of course we view X
as a subset of ω2, via the Cantor pairing function.

Lemma 1.5. There exists a computable function γ such that, for every e,

Wγ(e) = W ∗e ,
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and if We is already an equivalence relation on ω, then Wγ(e) = We.

Proof. Trivial. �

We say that a numbering ν of a family of ceers is computable if

{〈e, x〉 : x ∈ ν(e)}
is a c.e. set.

Theorem 1.6. Let Re = Wγ(e). Then the numbering of all ceers, ν(e) = Re,
is computable. Moreover ν is universal, or principal, i.e., for every computable
numbering ρ of all ceers, there exists a computable function f such that ρ = ν ◦f .

Proof. The proof is straightforward. �

One could alternatively consider the following numbering, suggested by Er-
shov [8]: Let

x Se y ⇔ (∃m,n)[ϕme (x)↓= ϕne (y)↓],
where, given a partial function ψ, ψn(x) denotes the n-th iterate of ψ on x, with
ψ0(x) = x. The function ρ(e) = Se yields a computable and principal numbering
of all ceers (see Ershov [8]) and by standard methods of the theory of numberings
one can easily see that µ and ρ are in fact computably isomorphic, i.e., there
exists a computable permutation f of ω such that ρ = ν ◦ f .

In the following, we fix the numbering {Re : e ∈ ω} of ceers provided by
Theorem 1.6.

Lemma 1.7. There exists a computable sequence {Rse : e, s ∈ ω} of finite sets
such that for all s,

(1) Rse ⊂ Rs+1
e , and Re =

⋃
sR

s
e;

(2) Rse is an equivalence relation with domain a finite subset of ω;
(3) either Rs+1

e − Rse = {〈a, a〉} for some a, or there exists exactly one pair
[x]Rse , [y]Rse of equivalence classes, such that [x]Rse∩[y]Rse = ∅, but [x]Rs+1

e
=

[y]Rs+1
e

.

Proof. Straightforward. �

The following corollary to the previous lemma will be used often:

Corollary 1.8. For every ceer R there exists a computable sequence {Rs : s ∈ ω}
of equivalence relations on ω, with R =

⋃
sR

s, such that R0 is the identity
relation; Rs ⊆ Rs+1; and the equivalence classes of each Rs are finite. If R −
{〈x, x〉 : x ∈ ω} is infinite, we may also assume that Rs+1 is obtained from Rs by
the collapse of exactly one pair of equivalence classes of Rs.

Proof. Straightforward. �

Definition 1.9. A ceer R is universal if for every ceer S, S ≤ R.

The following are examples of universal ceers; more interesting examples will
be provided in Section 3 and in Section 4:

(1) The ceer R, where

〈i, x〉 R 〈j, y〉 ⇔ [i = j and x Ri y];
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(2) if u is a universal partial computable function (i.e., there exists a com-
putable function t(x, y) such that u(t(x, y)) = ϕx(y), for every x, y), then
for every index e of u, the ceer Se is universal, where Se is as defined in
the remark following Theorem 1.6 (see Ershov [8]).

The rest of this paper is organized as follows: In Section 2, we present results
due to the last two authors on the degrees of ceers. Section 3 is mainly a review
of the existing literature on universal ceers, with the exceptions of Lemma 3.4
and Lemma 3.16, which are due to the last two authors. The remaining sections
present further results on ceers due to the first four and the last author.

2. The poset of degrees of ceers

Define R ≡ S if R ≤ S and S ≤ R. Denote by deg(R) the ≡-equivalence class,
or degree, of R, and define

deg(R) ≤ deg(S)⇔ R ≤ S.
Let P = 〈ob(EqP )/≡,≤〉 denote the poset of degrees of ceers. (Of course, ob(EqP )
denotes the set of objects of the category EqP , i.e., all ceers.) For every n ≥ 1,
let Idn denote the ceer

x Idn y ⇔ x ≡ y mod n;

moreover, let Id be the identity equivalence relation. The following information
about P is readily available:

(1) P is a bounded poset: The least element is given by deg(Id1); the greatest
element is given by the degree of universal ceers;

(2) P has a linearly ordered initial segment of order type ω + 1,

deg(Id1) < deg(Id2) < · · · < deg(Idn) < · · · < deg(Id),

with the mapping n 7→ deg(Idn+1) providing the order-theoretic isomor-
phism of ω with Iω = {deg(Idn) : n ≥ 1}.

(3) Every ceer with n equivalence classes lies in deg(Idn), whereas deg(Id)
consists of all decidable ceers with infinitely many equivalence classes.

(4) For every R ∈ P − Iω, we have that Iω < R, i.e.,

(∀S [S ∈ Iω ⇒ S ≤ R] .

Definition 2.1. Given a set A, define RA by

x RA y ⇔ x, y ∈ A or x = y.

Lemma 2.2. If A is simple, then Id � RA.

Proof. If Id ≤ RA via a computable function f , then f is 1-1, so there is at most
one number a such that f(a) ∈ A. Then either f [ω−{a}] ⊆ Ac, or f [ω] ⊆ Ac if no
such a exists. In either case, Ac contains an infinite c.e. set, a contradiction. �

The following lemma, appearing in San Mauro [21], has been independently
proved by Coskey, Hamkins, and Miller in [7].

Lemma 2.3. If A,B are c.e. sets with B infinite, then

A ≤1 B ⇔ RA ≤ RB.
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Proof. The left-to-right implication, observed in Gao and Gerdes [10], is imme-
diate: Any computable 1-1 function reducing A to B induces a monomorphism
from RA to RB.

For the other direction, we first claim that under the assumption RA ≤ RB
there is a computable function g that induces a monomorphism from RA to RB,
and g[A] ⊆ B. Let f witness that RA ≤ RB. Indeed, if f [A] ⊆ B, then there is
nothing that needs to be done. Otherwise, let a /∈ B be such that f [A] = {a};
moreover, let b ∈ B. Define

g(x) =


b if f(x) = a

a if f(x) = b

f(x) otherwise.

The function g is computable, and it is easily seen that it has the desired prop-
erties.

At this point, it is only left to show that there is a 1-1 computable function h
that induces the same monomorphism as g. This is essentially the same as in the
proof of Lemma 1.3. Define

h(x) =

{
g(x) if ¬(∃y < x)[g(y) = g(x)],

first z ∈ B − {h(y) : y < x} otherwise,

where “first” refers of course to some fixed computable enumeration of B. �

Lemma 2.4. If Id ≤ R ≤ RA then there exists a c.e. set B such that R ≡ RB.

Proof. If Id ≤ R ≤ RA, and R ≤ RA via a computable f , then the range of f is
an infinite c.e. set, and thus computably isomorphic to ω; let g : range(f) −→ ω
be a computable bijection. Finally take B = g[A ∩ range(f)]. Then RB ≤ R
via h where

h(x) = first y. [g(f(y)) = x].

On the other hand, R ≤ RB via the computable function g ◦ f . �

Let 01 denote the 1-degree of any computable, infinite and coinfinite set, and
let 0′1 denote the 1-degree of K.

Corollary 2.5. We have [deg(Id), deg(RK)] ' [01,0
′
1], where ' denotes order

isomorphism. Thus P is neither an upper semilattice nor a lower semilattice.

Proof. The isomorphism between [deg(Id),deg(RK)] and [01,0
′
1] is provided by

Lemma 2.3 and Lemma 2.4: Notice that Id ≡ RA for every computable, infinite
and coinfinite set A. The claim that P is neither an upper semilattice nor a
lower semilattice follows from the fact that the poset of c.e. 1-degrees, [01,0

′
1], is

neither an upper semilattice nor a lower semilattice, see Young [27]. �

Corollary 2.6. The first-order theory of P, in fact its Π0
3-fragment, is undecid-

able.

Proof. The claim follows from Lachlan’s result [11] that the topped finite initial
segments of [01,0

′
1] are exactly the finite distributive lattices (see also Odifreddi

[19, p. 584]); thus the same is true of the interval [deg(Id),deg(RK)] of P. Hence
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the first-order theory of the finite distributive lattices is Σ1-elementarily definable
with parameters (see Nies [18] for the terminology) in P. On the other hand, the
Π0

3-theory of the finite distributive lattices is hereditarily undecidable (Nies [18,
Theorem 4.8]). Hence by the Nies Transfer Lemma, [18], the Π0

3-theory of P is
undecidable. �

Additional results about the poset of degrees of ceers will be given in Corol-
laries 4.3 and 5.8. For more information on P, see Gao and Gerdes [10].

3. The world of universal ceers

We now turn our attention to universal ceers. In this section, we (mostly)
review the existing literature concerning this topic. The section is divided into
three subsections, dedicated to precomplete ceers, uniformly finitely precomplete
ceers, and e-complete ceers, respectively.

3.1. Precomplete ceers. Precomplete equivalence relations were introduced by
Malcev [14]. For a detailed study of precomplete numberings, the reader is re-
ferred to Ershov’s monograph [9].

Definition 3.1. An equivalence relation R is precomplete if for every partial
computable function ϕ there exists a total computable function f such that for
all n,

ϕ(n)↓⇒ ϕ(n) R f(n).

We say in this case that f makes ϕ total modulo R, or f is an R-totalizer of ϕ.

We observe that uniformity holds: If R is precomplete then there exists a com-
putable function f(e, x) such that f(e, ) is a totalizer of ϕe, using the existence
of a universal partial computable function u.

The following is a useful characterization of precomplete equivalence relations.

Theorem 3.2 (Ershov [9]). An equivalence relation R is precomplete if and only
if there is a computable function fix such that, for every n,

ϕn(fix(n))↓⇒ ϕn(fix(n)) R fix(n).

Notice that Id1, the trivial equivalence relation having only one equivalence
class, is precomplete. Henceforth, to avoid this singular case, we will always
assume that we are dealing with nontrivial equivalence relations.

Theorem 3.3 (Bernardi and Sorbi [4]). Every precomplete ceer is universal.

Proof. See Bernardi and Sorbi [4]. The proof follows also from Lemma 3.4 below.
�

Although implicit in Bernardi and Sorbi [4], the following lemma perhaps de-
serves some attention, in that it yields a slightly stronger result than the one in
Bernardi and Sorbi [4], and most of all because it can be easily used to prove
Lemma 3.16 below.

If X is a set of natural numbers and R is an equivalence relation on ω, then
let

[X]R = {y : (∃x ∈ X)[y R x]},
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and say that X is R-closed if X = [X]R.

Lemma 3.4. Let R,S be ceers, with S precomplete; let A be a nonempty R-closed
c.e. set, and let ϕ be a partial computable function, with domain(ϕ) = A, that
induces a non-onto partial monomorphism ν from R to S, i.e., for every x, y ∈ A,

x R y ⇔ ϕ(x) S ϕ(y).

Then ν can be extended to a total monomorphism.

Proof. Let R,S,A, ϕ be as in the statement of the lemma, and let {As}s∈ω and
{Rs}s∈ω be computable approximations to A and R, respectively.

We recall from Visser [26] that every precomplete ceer yields a partition of ω
into pairs of effectively inseparable (or simply, e.i.) sets: For the definition, see
Section 4 below; an alternative proof of Visser’s result can be derived from The-
orem 4.8, since we will see that every precomplete ceer is u.f.p. and hence weakly
u.f.p. We also need the following result from Visser [26], called the Anti Diagonal
Normalization Theorem (ADN-Theorem). First of all, a partial computable func-
tion ∆ is called a diagonal function for an equivalence relation E if for every x
such that ∆(x) ↓, we have that ∆(x) 6E x. The ADN-Theorem reads: If E is
a precomplete equivalence relation and ∆ is a diagonal function for E, then for
every partial computable function ψ, there exists (uniformly from indices of ψ
and ∆) a total computable function g such that, for every x,

• ψ(x)↓ ⇒ ψ(x) E g(x);
• ψ(x)↑ ⇒ g(x) /∈ domain(∆).

We now define by induction a computable function f which induces a monomor-
phism extending the partial monomorphism induced by ϕ. Since ν is not onto,
we can pick a number b such that, for every x ∈ ϕ[A], x 6S b. Let a ∈ ϕ[A].
Since S yields a partition into effectively inseparable sets, let χ be a productive
function for the pair ([a]S , [b]S).

Stage 0. Let

ψ0(x) =

{
ϕ(x), if x ∈ A,

↑, otherwise,

and

∆0(x) =

{
χ(u0, v0), if x ∈ [ϕ[A]]S ∪ [b]S ,

↑ otherwise,

where u0, v0 are indices of [ϕ[A]]S and [b]S , respectively. Hence, ∆0 is diagonal
for S. Finally define f(0) = g0(0), where g0 is a computable function provided
by the ADN-Theorem for the partial computable functions ψ0,∆0.

Stage n+ 1. Given c.e. sets X and Y , with computable approximations {Xs}s∈ω
and {Ys}s∈ω, define x ∈ X � Y and x ∈ X ≺ Y , respectively, by

(∃s)[x ∈ Xs & (∀t < s)[x /∈ Yt]]
and

(∃s)[x ∈ Xs & (∀t ≤ s)[x /∈ Yt]].
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Let

ψn+1(x) =


ϕ(x), if x ∈ A � ⋃i≤n[i]R,

f(i) if x ∈ ⋃i≤n[i]R ≺ A, and i first such that x appears in [i]R,

↑, otherwise,

and

∆n+1(x) =

{
χ(un+1, vn+1) if x ∈ [ϕ[A]]S ∪

⋃
i≤n[f(i)]S ∪ [b]S ,

↑ otherwise,

where un+1 and vn+1 are indices of [ϕ[A]]S ∪
⋃
i≤n[f(i)]S and [b]S , respectively.

Hence the partial computable function ∆n+1 is diagonal for S. Finally define
f(n + 1) = gn+1(n + 1), where gn+1 is a computable function provided by the
ADN-Theorem for the partial computable functions ψn+1,∆n+1.

This completes the construction. A simple inductive argument shows that
the sequences {ψn}, {∆n}, {gn}, {un}, {vn} are computable; for every n, the
partial function ∆n is diagonal for S, and

(
[ϕ[A]]S ∪

⋃
i≤n[f(i)]S

)
∩ [b]R = ∅.

Then it follows that f induces a monomorphism µ extending ν. Notice that
[b]S /∈ range(µ). �

Notice that Theorem 3.3 follows from Lemma 3.4; indeed, by taking, e.g., A to
be any R-equivalence class, and ϕ constant on A, one can find a monomorphism f
(extending ϕ) from R into S.

Example 3.5. We list some examples of precomplete ceers:

• Se, where u = ϕe is a universal partial computable function, Malcev [15];
• (Visser [26]) Consider any consistent c.e. theory T (e.g., T = PA) extend-

ing Robinson’s Arithmetic such that for every n ≥ 1, T has a Σn-truth
predicate Tn(v), i.e., a Σn-formula such that for all Σn-sentences σ

T ` σ ←→ Tn(pσq)

where p q is a suitable Gödel numbering for all sentences in the language
of T , and m denotes the numeral term for the number m. (For unex-
plained proof-theoretic notions, the reader is referred to [23].) Define ∼n
on pairs σ, τ of Σn-sentences by

pσqn ∼n pτqn ⇔ T ` σ ←→ τ

where p qn is a suitable Gödel numbering identifying Σn sentences with
numbers: Notice that we use here p qn instead of p q, as otherwise the
domain of ∼n would be a proper subset of ω. Then ∼n is a precomplete
ceer. Given the relevance, throughout the paper, of this example, we
sketch the proof of why ∼n is precomplete, limiting ourselves to the case
n = 1. Given a partial computable function ϕ, let F be a representing Σ1

formula for the partial computable function ψ, where

ψ(pσq1) =

{
pτq, if ϕ(pσq1)↓= pτq1,
↑, if ϕ(pσq1)↑.

In particular we assume that F satisfies:



10 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

– ψ(m)↓= n⇔ T ` F (m,n);
– for every m, T ` F (m,u) ∧ F (m, v) −→ u = v.

Let T1(v) be a Σ1-truth predicate, and define

f(m) = p(∃v)[F (m, v) ∧ T1(v)]q1.

Assume now that ϕ(pσq1)↓= pτq1, where σ and τ are Σ1-sentences. Then

T ` (∃v)[F (pσq1, v) ∧ T1(v)]←→ F (pσq1, pτq) ∧ T1(pτq)
←→ T1(pτq)

←→ τ,

which implies that ϕ(pσq1) ∼1 f(pσq1).
• (Visser [26]) Provable equality ∼λβ of terms of λβ-calculus:

pMq ∼λβ pNq⇔M =β N,

where p q is a suitable Gödel numbering for all terms, and M =β N
denotes that M reduces to N by finitely many applications of the β-rule.

Theorem 3.6 (Lachlan [12]). All precomplete ceers are isomorphic.

Proof. See Lachlan [12]. Notice that since precomplete ceers partition ω into
infinite c.e. sets, by Lemma 1.3 being isomorphic here is equivalent to saying that
there is a computable permutation f of ω such that

x R y ⇔ f(x) S f(y). �

Let T be any theory as in Example 3.5, and let ∼T be the ceer defined by

pσq ∼T pτq⇔ T ` σ ←→ τ.

We have

Theorem 3.7 (Bernardi and Sorbi [4]). The ceer ∼T is not precomplete, but ∼T
is universal.

Proof. The computable function induced by the negation connective ¬ has no
fixed point by the consistency of T . Thus ∼T is not precomplete by Theorem 3.2.
On the other hand, for every n ≥ 1, ∼n≤∼T , and since ∼n is universal so is ∼T .

�

Despite the fact that ∼T and all precomplete ceers are universal, it follows
that ∼T is not isomorphic to any precomplete ceer, thus showing the failure of
the Myhill Isomorphism Theorem for universal ceers!

3.2. Uniformly finitely precomplete ceers. Notice that, although not pre-
complete, ∼T is “locally” precomplete, i.e., every partial computable function
with finite range can be totalized modulo ∼T since there is some n ≥ 1 such
that all sentences in the range of ϕ are Σn, and thus we can totalize modulo ∼n.
This leads to the following definition (for which we immediately give the uniform
version)
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Definition 3.8. (Montagna [16]) R is uniformly finitely precomplete (or u.f.p. for
short) if there exists a total computable function f(D, e, x) such that for every
finite set D and every e, x,

ϕe(x)↓∈ [D]R ⇒ ϕe(x) R f(D, e, x).

f( , e, ) is called a totalizer of ϕe.

Clearly

Corollary 3.9. Every precomplete equivalence relation is u.f.p. Moreover, the
relation ∼T is u.f.p.

Proof. Immediate: As explained at the beginning of this section, in order to prove
that ∼T is u.f.p. use the fact that, given ϕ and a finite D, all sentences in D fall
into some finite level Σn. �

The u.f.p. ceers provide further examples of universal ceers, as shown in The-
orem 3.11 below. In the proof of the theorem, and in other proofs of results
contained in later sections, we make many appeals to the Recursion Theorem in
the construction of a certain computable sequence {ei}i∈ω of fixed points. Since a
computable sequence of indices can be viewed as the range of a computable func-
tion f , a formal justification to our argument is provided by the Case Functional
Recursion Theorem:

Lemma 3.10 (Case Functional Recursion Theorem, Case [5]). Given a partial
computable functional F , there is a 1-1 total computable function f such that, for
every e, x,

F (f, e, x) = ϕf(e)(x).

Proof. See also Odifreddi [19, p. 135], where the statement of the theorem does
not make any explicit reference to f being 1-1, but this clearly follows from the
fact that f is provided by the s-m-n Theorem. �

Theorem 3.11 (Montagna [16]). Every u.f.p. ceer is universal.

Proof. See Montagna [16]. The claim also follows from Theorem 4.8, as we will
see that every u.f.p. ceer is weakly u.f.p. We include an outline of a proof here
(different from the original proof given by Montagna [16]) to motivate the proof
of Lemma 4.10. Let R be u.f.p. via the computable function f . As usual, we are
assuming that R is nontrivial, and thus fix a and b with a 6R b. In order to show
that R is universal, we fix a universal ceer E with 0 6E 1 and demonstrate that
E ≤ R. By the Recursion Theorem (or more precisely, by the Case Functional
Recursion Theorem), we assume that we control ϕei for a computable sequence
{ei}i∈ω of indices. Define the computable sequence yi by y0 = a, y1 = b and
yi = f({yj | j < i}, ei, i) for each i ≥ 2. By our choice of whether to make ϕei(i)
converge, we can control whether yi and yj are R-equivalent. We show that
E ≤ R via the function i 7→ yi.

By threat of forcing a contradiction via the Recursion Theorem, we will ensure
that at no stage will it happen that yi R yj but i 6E j. Suppose yi and yj are
the least y’s in their R-equivalence classes at stage s, and those classes become
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R-equivalent at stage s + 1. We will ensure in the construction that if yi is the
least y in its R-equivalence class at stage s, then ϕei,s(i) ↑ and thus similarly
ϕej ,s(j) ↑. We then will cause ϕei,s+1(i) ↓= a and ϕej ,s+1(j) ↓= b, thus forcing
that a R yi R yj R b contradicting that a 6R b. Simply the threat of this action
ensures that at no stage will it happen that yi R yj but i 6E j.

When we witness at stage s that i E j for i 6= j with yi, and yj being least in
their respective R-equivalence classes, and, say yi < yj (the case yj < yi is treated
similarly), then we cause ϕej ,s(j)↓= yi and wait for R to agree that yi R yj . As
f( , ej , ) is a totalizer of ϕej , it must occur that yj becomes R-equivalent to yi.
Notice that yi becomes the least y in the combined R-equivalence class and, as
promised, that we have not yet caused ϕei(i) to converge. This completes the
construction. �

3.3. e-complete ceers. The ceer ∼T has an interesting additional property
which is captured by the following definition, due to Montagna [16], and later
independently rediscovered by Lachlan [12]: The equivalence relations described
by this definition were called uniformly finitely m-complete by Montagna [16],
and extension complete (or, simply, e-complete) by Lachlan [12]. We adopt here
Lachlan’s terminology, although a terminology more appropriate to the rest of
the paper would perhaps be uniformly universal.

Definition 3.12. (Montagna [16], Lachlan [12]) An equivalence relation S is e-
complete if for every ceer R and every pair of m-tuples (a1, . . . , am), (b1, . . . , bm)
such that the assignment ai 7→ bi induces a partial monomorphism from R to S,
one can extend the assignment (uniformly from the two tuples and an index for
R) to a computable function inducing a monomorphism. (Notice that uniformity
extends also to the case in which the assignment does not provide a partial
monomorphism.)

Example 3.13. The ceer ∼T is e-complete, as follows from the following

Theorem 3.14 (Montagna [16], Bernardi and Montagna [3]). A ceer R is e-
complete if and only if R is u.f.p. and R has a total diagonal function, i.e., a
computable function d such that for all x, d(x) 6R x.

Proof. Montagna [16] shows that, for every ceer R, R is e-complete if and only if
R is u.f.p. and R has an extended diagonal function, i.e., a computable function d,
such that for every finite set D, we have that x 6R d(D), for every x ∈ D. It is
then observed in Bernardi and Montagna [3] that every u.f.p. ceer with a total
diagonal function has also an extended diagonal function. �

The following theorem was first proved by Montagna [16], and later indepen-
dently rediscovered by Lachlan [12].

Theorem 3.15 (Montagna [16], Lachlan [12]). e-complete ceers are universal.
Moreover, the e-complete ceers are all isomorphic with each other.

Proof. Both properties easily follows from the uniform extension property pro-
vided by e-completeness: To show isomorphism, one uses a straightforward back-
and-forth argument. Notice that universality is also a consequence of the fact
that, by Theorem 3.14, every e-complete ceer is u.f.p. �
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3.4. Miscellanea. Although some of it is not directly relevant to the scope of
this paper, we collect here some additional useful information about the classes
of universal ceers dealt with in this section.

• The e-complete ceers are all isomorphic to ∼T (by Example 3.13 and
Theorem 3.15);
• the precomplete ceers are all isomorphic to ∼1 (by Example 3.5 and The-

orem 3.6);
• As a consequence of Theorem 3.14, all u.f.p. ceers not computably iso-

morphic to ∼T are weakly precomplete in the sense of Badaev [1]: An
equivalence relation R is weakly precomplete if there exists a partial com-
putable function fix such that for all n, if ϕn is total then fix(n)↓ and

ϕn(fix(n)) R fix(n);

• (Shavrukov [22]) There exists a u.f.p. ceer that is neither precomplete nor
e-complete;
• a formula F (v) of the theory T as in Example 3.5 is extensional if for

every x, y,

x ∼T y ⇒ T ` F (x)←→ F (y);

let us call ∼F the ceer

x ∼F y ⇔ T ` F (x)←→ F (y);

Bernardi and Montagna [3] have shown that a ceer R is u.f.p. if and
only if R is isomorphic with a ceer ∼F for some extensional formula F .
(Again, the isomorphism is induced by a computable permutation of ω).
The proof is based, among other things. on the following fact (Bernardi
and Sorbi [4]): For every ceer R one can find a Σ1-formula F (v) in the
language of T such that

x R y ⇔ `T F (x)←→ F (y).

• (Bernardi and Montagna [3]) The ceer ∼PrT (v) is precomplete, where
PrT (v) is the provability predicate of T .

Given equivalence relations R,S, we say that R is a quotient of S if there is
an epimorphism µ : S −→ R.

Lemma 3.16. In the category EqP , the epimorphisms coincide with the onto
morphisms.

Proof. Suppose that µ : R −→ S is not onto, and let h be a computable function
inducing the morphism. Let A = [range(h)]S , and let a be such that a /∈ A.
Consider any precomplete ceer E, and by Theorem 3.3, let k be a computable
function inducing a monomorphism ρ from S to E. Since ρ◦µ is not onto, we can
choose b1, b2 /∈ [range(k ◦h)]E such that b1 6E b2. (Indeed, since each distinct pair
of E-equivalence classes is effectively inseparable by Visser [26], the complement
of [range(k ◦ h)]E cannot be a decidable set, and thus consists of infinitely many



14 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

distinct classes: See also Ershov [8].) Let ψi be the partial computable function

ψi(x) =


k(x), if x ∈ A,

bi, if x S a,

↑, otherwise.

Applying Lemma 3.4 to A∪ [a]S and the partial monomorphisms induced by ψi,
we obtain two distinct (mono)morphisms ν1, ν2, with νi induced by ψi, which
agree on the range of µ, thus showing that µ is not an epimorphism. �

Hence R is a quotient of S if and only if there is an onto morphism µ : S −→ R.
Bernardi and Montagna use the notion of a quotient object to characterize u.f.p.
ceers and precomplete ceers:

Theorem 3.17 (Bernardi and Montagna [3]). The following hold:

(1) A ceer R is u.f.p. if and only if R is a quotient of ∼T .
(2) A ceer R is precomplete if and only if R is a quotient of every universal

ceer.

Proof. See [3]. �

4. Universal ceers and partitions of the natural numbers into
effectively inseparable sets

Effective inseparability plays a crucial role in the theory of universal ceers. We
recall the following

Definition 4.1. Two disjoint c.e. sets A and B are effectively inseparable if there
is a computable function p (called a productive function) such that, for all pairs
u, v,

A ⊆Wu and B ⊆Wv and Wu ∩Wv = ∅ ⇒ p(u, v) /∈Wu ∪Wv.

Since every ceer yields a partition of ω into c.e. sets, the previous definition
suggests the following

Definition 4.2. A nontrivial ceer R is

• effectively inseparable (or e.i. for short) if it yields a partition of ω into
effectively inseparable sets;
• uniformly effectively inseparable (or u.e.i. for short) if it is e.i. and there

is a uniform productive function, i.e., a computable function p(a, b, u, v)
such that if [a]R ∩ [b]R = ∅ then p(a, b, , ) is a productive function for
the pair

(
[a]R, [b]R

)
.

Visser [26] shows that every precomplete ceer is e.i., thus there exist e.i. uni-
versal ceers: This observation can be used to provide a new proof of a result that
follows from Ershov [8, Lemma 12]:

Corollary 4.3. The greatest element of the poset P of the degrees of ceers is
join-irreducible.
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Proof. Suppose that R and S are ceers such that their degrees join to the greatest
element. Consider the ceer R⊕ S, defined by

x R⊕ S y ⇔
{
u R v if x = 2u and y = 2v,

u S v if x = 2u+ 1 and y = 2v + 1.

Being above both R and S we have that R⊕S is universal. Let now E be any e.i.
universal ceer, and let f be a computable function that induces a monomorphism
from E to R ⊕ S. Clearly the range of f cannot contain both even numbers
and odd numbers: If say f(x) = a with a even, and f(y) = b with b odd, then
[x]E ∩ [y]E = ∅, and since f would m-reduce the pair ([x]E , [y]E) to the pair
([a]R⊕S , [b]R⊕S), it would follow that the latter pair is e.i., contradicting the fact
that the sets in the pair are separated by the decidable set of the even numbers.
If the range of f is contained in the even numbers, then from f one can easily
construct a monomorphism reducing E to R, giving that R is universal; similarly
if the range of f is contained in the odd numbers, then from f one can easily
construct a monomorphism reducing E to S, giving that S is universal. This
shows that the greatest element of P is join-irreducible. �

Ceers yielding partitions into effectively inseparable sets had been previously
studied also by Bernardi [2]. The main result of this section shows that every u.e.i.
ceer is universal; on the other hand, there exist e.i. ceers that are not universal.
The proof that u.e.i. ceers are universal proceeds by showing that the u.e.i. ceers
coincide with yet two new classes of ceers, introduced in the next two definitions.

Definition 4.4. We say that a ceer R is weakly u.f.p. if there exists a total
computable function f(D, e, x) such that for every finite set D where [i]R 6= [j]R
for every i, j ∈ D, and every e, x,

ϕe(x)↓∈ [D]R ⇒ ϕe(x) R f(D, e, x).

Note that the definition differs from that of a u.f.p. ceer in that f need only
satisfy the condition when [i]R 6= [j]R for every i, j ∈ D. Clearly

Corollary 4.5. Every u.f.p. ceer is weakly u.f.p.

Proof. Immediate. �

The following definition is a strengthening of the definition of a uniformly m-
complete ceer given in Bernardi and Sorbi [4], namely, a ceer R is uniformly
m-complete (abbreviated as u.m.c.) if for every ceer S and every quadruple
a0, a1, b0, b1 of numbers such that a0 6S a1 and b0 6R b1, there exists a monomor-
phism from S to R that maps [a0]S to [b0]R, and [a1]S to [b1]R.

Definition 4.6. We say that a ceer R is strongly u.m.c. if for every ceer S
and for every pair of numbers a0, a1, we have that every partial monomorphism
π : S −→ R defined on {[a0]S , [a1]S} can be extended uniformly (in a0, a1 and an
index of a partial computable function inducing π) to a total monomorphism µ,
provided that [a0]S 6= [a1]S . (Note that the uniformity extends to the case when
[a0]S = [a1]S ; however, then no claim is made as to µ being a monomorphism.)
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We call a ceer weakly n-u.f.p. if Definition 4.4 for weakly u.f.p. holds, but we
replace “finite set D” with “finite set D where |D| ≤ n”.

Lemma 4.7. Each weakly 2-u.f.p. ceer is weakly u.f.p.

Proof. Let fi be a computable function witnessing that R is weakly i-u.f.p., for
2 ≤ i ≤ n. We describe how to effectively get a function fn+1 witnessing that
R is weakly n + 1-u.f.p. Let D, e be given. If |D| 6= n + 1 then fn+1(D, e, x)
outputs 0 for every x. We assume D = {d0, . . . , dn}. By the Double Recursion
Theorem (see, e.g., Rogers [20, Theorem X(a)]) assume that we build ϕa and ϕb
for some a, b. Let Ex = {fn(D−{dn}, a, x), dn}, and fn+1(D, e, x) = f2(Ex, b, x).

We now specify, for an x, how to compute ϕa(x) and ϕb(x). We initially start
off with both values undefined. We see which event happens first: If we find that
ϕe(x) ↓R dn, we define ϕb(x) = dn. If we find that ϕe(x) ↓R di for some i < n,
we define ϕb(x) = fn(D − {dn}, a, x) and ϕa(x) = ϕe(x). Finally if we discover
that fn(D − {dn}, a, x) R dn, then we define ϕa(x) = d0.

Clearly fn+1 is a total recursive function, whose index can be found effectively
in the indices for f2, . . . , fn, using the fact that the fixed points in the Double
Recursion Theorem can be found effectively from the parameters.

Now we verify that fn+1 witnesses that R is weakly n + 1-u.f.p. Fix D, e, x
such that D = {d0, . . . , dn} where di 6R dj for every pair i 6= j, and ϕe(x) ↓R di
for some i ≤ n. First we claim that fn(D− {dn}, a, x) 6R dn. Suppose otherwise:
Then by construction we would set ϕa(x) = d0 unless it has previously been
defined (to be ϕe(x) R di, for some i < n). In either case we have ϕa(x) R di
for some i < n, which implies that dn R fn(D− {dn}, a, x) R di, a contradiction.
We have thus that Ex consists of two elements that are not R-equivalent. Since
ϕb(x) is defined only when ϕe(x) converges, it is straightforward to see that
fn+1(D, e, x) R ϕe(x). �

Theorem 4.8. The following properties are equivalent for ceers:

(i) u.e.i.
(ii) weakly u.f.p.
(iii) strongly u.m.c.

We prove Theorem 4.8 via Lemma 4.9, Lemma 4.10, and Lemma 4.11.

Lemma 4.9. Each u.e.i. ceer is weakly u.f.p.

Proof. Assume that R is u.e.i. via the uniform productive function p(a, b, u, v)
as in Definition 4.2, where for simplicity we denote p(a, b, , ) by pa,b. We argue
that R is weakly 2-u.f.p. Given any a 6= b, and e, we uniformly build a function
f(x) = f({a, b}, e, x) witnessing that R is 2-u.f.p. Note that if a = b then we can
let f be the constant function with output a. We write p for pa,b. Again by the
Double Recursion Theorem with parameters we build Wax ,Wbx for computable
sequences of indices {ax}x∈ω, {bx}x∈ω, where the sequence is known to us during
the construction.

Let f(x) = p(ax, bx), which is a total computable function. Fix x, and let

Wax =

{
[a]R, if ϕe(x) 6R b

[a]R ∪ {p(ax, bx)}, if ϕe(x) R b,
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Wbx =

{
[b]R, if ϕe(x) 6R a

[b]R ∪ {p(ax, bx)}, if ϕe(x) R a.

Now assume that a 6R b, and fix e, x such that ϕe(x) ↓∈ [a]R ∪ [b]R. Without
loss of generality suppose ϕe(x) R a. If f(x) 6R a then Wax ∩ Wbx = ∅ and
p(ax, bx) ∈Wax ∪Wbx , which contradicts p being a productive function. �

Lemma 4.10. Each weakly u.f.p. ceer is strongly u.m.c.

Proof. Let R be weakly u.f.p. via the computable function f . This proof will
roughly mimic that of Theorem 3.11. The major obstruction is that we cannot
define yi as f({yj | j < i}, ei, i), since if ever we cause yj R yk for j < k < i, then
since R is only weakly u.f.p. via f , we lose all control to R-collapse yi with any yj
for j < i. We overcome this obstruction by the use of auxiliary elements which
we can use to enforce an R-collapse, even if some yj and yk do R-collapse. This

is the role of the xki below. As in the proof of Theorem 3.11, we use convergence

of the ϕe we control to cause R-collapses and we will use the threat of Action A
in the construction below to enforce non-collapse.

In order to show that R is strongly u.m.c., we show in fact that for every
ceer S, every assignment (0, 1, . . . ,m) 7→ (a0, a1, . . . , am) with m > 0 inducing a
partial monomorphism can be extended, uniformly in a0, a1, . . . , am, to a total
computable function inducing a monomorphism from S to R, provided that [i]S 6=
[j]S whenever i 6= j. (Uniformity extends also to the case in which there are pairs
i 6= j with [i]S = [j]S . The definition of a strongly u.m.c. ceer is thus just the
case m = 1.) Our goal (under the assumption that the i’s are pairwise not S-
equivalent, for i ≤ m) is to extend this to a total monomorphism by specifying
a computable sequence of points (am+1, am+2, . . . ) where for every pair i, j such
that one of i or j is larger than m, we can force ai to R-collapse to aj . By the
Recursion Theorem (or, more precisely, the Case Functional Recursion Theorem),
we assume that we control ϕei for a computable sequence {ei}i∈ω of indices.

We will define computable arrays with the purpose that we can choose to cause
R-collapses of pairs of y’s independently. We first informally describe the uses
of the elements xki and yi. For each k, we will build the element xk0 to be R-
collapsible to any element of {a0, . . . , am}. These xk0 will be used to R-collapse
any other xki or yk into {a0, . . . , am}. The role of xki will be to allow yk to R-
collapse with yi. In particular, yk will be built to be R-collapsible with xki , and
xki will be built to be R-collapsible with yi. Note that each yk needs to be able
to R-collapse to any of the xki for 0 < i < k and also at least one xl0 (we use x2k0
for this below) in order to R-collapse with an element of {a0, . . . , am}. Also xki
needs to be able to R-collapse to yi as well as some xl0 (we use x2i+1

0 below), in
case it needs to later R-collapse with some element of {a0, . . . , am}.

Formally, define the computable arrays {xki }i,k∈ω and {yi}i∈ω as follows:

Let xk0 = f({a0, . . . , am}, e1, k). Given {xki }i<n+1,k∈ω, define

yn+1 = f(Yn+1, e2n+2, 0),
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where Yn+1 = {xn+1
i | 0 < i < n+ 1} ∪ {x2n+2

0 }, and

xkn+1 = f({yn+1, x
2n+3
0 }, e2n+3, k), for k ∈ ω.

We let aj = yj for j > m. The aj ’s will be the markers that code S in R, the other

numbers xji , yi are simply representatives of auxiliary classes which will assist in
R-collapsing the aj ’s.

We assume (see Corollary 1.8) that during each stage of the construction,
exactly one pair of distinct S-equivalence classes collapses. At the beginning of
the construction we assume [i]S = {i}. [i]S represents an S-equivalence class with
smallest member i. During the construction, to identify yn with c means to define
ϕe2n(0)↓= c, and similarly for xkn, in which case it means to define ϕe2n+1(k)↓= c.

Construction of ϕei . During the construction, if we ever discover that ai R aj ,
for some i < j ≤ m, then we can ignore the rest of the construction below, and
continue the construction trivially for the sake of uniformity, since the working
assumption that ai 6R aj , for all i < j ≤ m, is violated. At stage s of the
construction, let [i]S and [j]S be the pair of collapsing S-classes. If i, j ≤ m, we
can ignore the rest of the construction below and continue trivially, otherwise
there are two cases.

Case 1 : i ≤ m < j. We identify aj = yj with x2j0 (we will verify later

that aj cannot have been previously identified) and wait for either yj R x2j0 or

two elements of Yj to R-collapse. If the latter happens first take Action A,

otherwise we identify x2j0 with ai, and wait for x2j0 R ai.

Case 2 : m < i < j. Identify aj = yj with xji , and wait for yj R xji or two

elements of Yj to R-collapse. Again, if the latter happens first, take Action A,

otherwise we now identify xji with ai = yi. Wait for either xji R yi or yi R x2i+1
0 .

If the latter happens first, take Action A, otherwise we achieve aj R ai.

Action A: We arrived here because we found yi R x2i+1
0 or two elements

of Yj have R-collapsed (and no element of Yj has previously been identified). We
describe two procedures Pk and Qk which will call each other recursively until
we force an R-collapse in a0, . . . , am.

Procedure Pk: This is called when yk R x2k+1
0 . Perform the following steps.

(Step i) Check if yk has been previously identified. If so, then by construction
yk R ak′ for some least k′ < k. If k′ ≤ m then go to Step (ii). Otherwise,

yk′ has not been previously identified, and we now identify yk′ with x2k
′

0 .

Wait for either yk′ R x2k
′

0 or two elements of Yk′ to R-collapse. In the
latter case we call Qk′ (noting that no element in Yk′ has been previously

identified since yk′ has not), otherwise we identify x2k
′

0 with a0 and wait for

x2k
′

0 R a0. Lastly, if yk has not been previously identified, we identify yk
with x2k0 and proceed as above, where we either call Qk or we get x2k0 R a0.
In either case, now continue with Step (ii).

(Step ii) If this step is reached then we have yk R ak′ for some k′ ≤ m. Clearly

x2k+1
0 has not previously been identified. We now identify x2k+1

0 with ak′′
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for any k′′ 6= k′, k′′ ≤ m. We then obtain ak′ R ak′′ and continue the
construction trivially for the sake of uniformity.

Procedure Qk: This is called when two (least) elements in Yk are R-collapsed, and
no element of Yk has been previously identified. There are two cases.

(Case i) The two elements are x2k0 and xki , 0 < i < k. Identify xki with x2i+1
0 and

wait for xki R x2i+1
0 or yi R x2i+1

0 . In the latter case call Pi, otherwise we

now identify x2i+1
0 with a1 and wait for the R-collapse. Now identify x2k0

with a0 and wait for the R-collapse. We succeed in forcing a0 R a1.
(Case ii) The two elements are xki and xkj , 0 < i < j < k. Follow Case i to force

xki R a0 and xkj R a1, or call Pi or Pj .

This ends the description of the procedures Pk and Qk. Suppose we arrive at
this action because we found yi R x2i+1

0 . We call Pi. On the other hand, if we
arrive because two elements of Yj have R-collapsed then we call Qj . Clearly only
finitely many different procedures can be called, and we either end up waiting
forever at some step or provoking an R-collapse within a0, . . . , am.

Enforcing non-collapse. At the end of stage s, check if there exist two elements
of {an, xkn}n,k∈ω which have R-collapsed but not yet been identified.

(Case i) The two elements are ai and aj for i < j ≤ m. Continue the construction
trivially for the sake of uniformity.

(Case ii) The two elements are ai and aj for i ≤ m < j. Identify yj with x2j0 and

wait for the desired R-collapse, where we will identify x2j0 with ai′ for any
i′ 6= i, i′ ≤ m. If we instead find that two elements of Yj have R-collapsed,

we take Action A.
(Case iii) The two elements are ai and xkj for i ≤ m. If j > 0 we identify xkj with

x2j+1
0 and wait for the R-collapse. We then identify x2j+1

0 with ai′ for any

i′ ≤ m with i′ 6= i. If we instead find that yj R x2j+1
0 , we take Action A.

If j = 0, proceed similarly.
(Otherwise) For each of the remaining cases, we can follow Case ii or Case iii to force

an R-collapse in a0, . . . , am.

Verification. We list some easy facts about the construction.

• If any element of Yj is identified then the same action must identify yj
(or continue the construction trivially for the sake of uniformity).
• If yj is identified during the construction we will either continue the con-

struction trivially for the sake of uniformity or force yj R ai for some
i < j where i S j.
• If x2k+1

0 is ever identified during the construction then the same action
will continue the construction trivially for the sake of uniformity.

• Therefore, any call to identify yj or xji during the construction must be
successful in R-collapsing among a0, . . . , am.

Now we assume that a0, . . . , am are in distinct R-equivalence classes. Then the
construction is never continued trivially and we never take Action A. At the
end of every stage s, we have that i S j if and only if ai R aj . The left to right



20 ANDREWS, LEMPP, MILLER, NG, SAN MAURO, AND SORBI

direction is ensured by Case 1 and Case 2 of the construction, while the right to
left is ensured by the “enforcing non-collapse” action. �

Lemma 4.11. Every strongly u.m.c. ceer is u.e.i.

Proof. Let R be a strongly u.m.c. ceer. Let U, V be a pair of e.i. sets; fix u ∈ U
and v ∈ V ; finally, let Sa,b be the ceer defined by

x Sa,b y ⇔
[
x = y or x, y ∈ U or x, y ∈ V or [a R b and x, y ∈ U ∪ V ]

]
.

Notice that Sa,b uniformly depends on a, b; moreover, if a 6R b, then [u]Sa,b = U
and [v]Sa,b = V , whereas if a R b, then [u]Sa,b = [v]Sa,b = U ∪ V . Given a, b,
consider the partial monomorphism π, defined only on the set {[u]Sa,b , [v]Sa,b}
by π([u]Sa,b) = [a]R and π([v]Sa,b) = [b]R (induced, say, by ϕ(x) = a, for all
x ∈ [u]Sa,b , and ϕ(x) = b, for all x ∈ [v]Sa,b), and uniformly extend it to a
monomorphism from Sa,b to R, induced, say, by a computable function fa,b. If
[a]R ∩ [b]R = ∅, then the uniformly given function fa,b m-reduces the e.i. pair
(U, V ) to the pair ([a]R, [b]R), showing that the latter is e.i. (for this property of
e.i. pairs, see, e.g., Rogers [20]). �

The following is a natural companion to Lemma 4.7.

Corollary 4.12. A ceer R is strongly u.m.c. if for every ceer S and every finite
tuple of numbers a0, . . . , am, m > 0, we have that every partial monomorphism π :
S −→ R defined only on {[ai]S : i ≤ m} can be extended uniformly (in a0, . . . , am
and indices of partial computable functions inducing π) to a total monomorphism,
provided [ai]S 6= [aj ]S for every i 6= j.

Proof. By Theorem 4.8 and the proof of Lemma 4.10. �

We note that in the above corollary and in the definition of a strongly u.m.c.
ceer, the condition m > 0 is necessary as removing this condition implies that R
has a total diagonal function g defined in the following way: Given a, consider
the ceer Id2 having only two equivalence classes [0]Id2 , [1]Id2 , and extend the
assignment 0 7→ a to a total computable function f inducing a monomorphism
from Id2 to R; finally take g(a) = f(1). On the other hand, the property of having
a total diagonal function is not necessarily possessed by u.e.i. and weakly u.f.p.
ceers, as shown for instance by the ceer ∼T given by the provably equivalence
relation of any theory T as in Example 3.5.

Proposition 4.13. Each strongly u.m.c. ceer is u.m.c., but there are u.m.c. ceers
that are not strongly u.m.c.

Proof. It is clear that every strongly u.m.c. ceer is u.m.c. , so by Theorem 4.8 it
is enough to argue that some u.m.c. R is not u.e.i. The proof proceeds by a finite
injury argument, which builds a ceer R satisfying the following requirements:

Re : For the ceer Re and partial monomorphism (a′0, a
′
1) 7→ (a0, a1),

there is a total extension reducing Re to R.

Qe : R is not u.e.i. via the function ϕe.
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The priority ordering is R0 < Q0 < R1 < · · · . We use the fact that no
effectivity is required in satisfying Re by allowing the requirements to be injured.
That is, we can change our mind about the extension, for each Re, finitely many
times. Without loss of generality we assume that a′i = i for i ≤ 1, and denote
the pair (a0, a1) (for requirement Re) by ~ae. R will be nontrivial since R does
not have any uniform productive function.

We denote by Xe,s the (modified) ith column of ω, i.e., the set of elements
Xe,s(j) with Xe,s(j) = 〈i, j〉 where i = 〈e, s + 1,~ae〉, if j > 1, and Xe,s(j) = aj
if j ≤ 1. (Note that thus the modified columns are not necessarily pairwise
disjoint, and any possible overlap between columns are at the first two elements.)
This will be used by Re to code Re: To code Re into Xe,t at some stage s of
the construction means to R-collapse Xe,t(i) and Xe,t(j) if [i]Re = [j]Re unless
i, j ≤ 1. We write Xe instead of Xe,t when the context is clear. For a tuple ~a we
say that ~a R x if there exist some ai ∈ ~a such that ai R x.

Construction of R. At each stage s, perform the following two steps.

Step 1 : Pick the least e such that Qe requires attention. This means either the
pair of Qe-followers y0e , y

1
e is not yet picked, or else ϕe(y

0
e , y

1
e , z

0
e , z

1
e )↓6∈Wz0e

∪Wz1e
.

Here, Wzie
denotes the current R-equivalence class of yie. For convenience we

denote ϕe(y
0
e , y

1
e , z

0
e , z

1
e ) by fe.

Clearly some e < s must be found. If the Qe-followers are not defined, we pick
a distinct fresh pair y0e , y

1
e from X0,−1 (in particular, larger than any element of

~ai for a higher-priority Ri-requirement, or follower yji for a higher-priority Qi-
requirement). If the second case holds we R-collapse the classes of fe and y0e . In
either case we initialize all lower-priority requirements, i.e., for a Qj-requirement
we reset the followers, and for an Rj-requirement we are now ready to code Rj
into Xj,t for a fresh number t.

Step 2 : For each j < s we code Rj into Xj . If there exists a least j < s such
that the action at Step 1 or 2 collapses the two classes in ~aj , we make Rj inactive
and initialize all lower-priority requirements.

We now verify that the requirements are satisfied. Clearly each requirement is
initialized finitely often. The key lemma below says that during the construction,
each class targeted for a Q- or R-requirement does not contain elements which
are “bad” for the requirement.

Lemma 4.14. Let s be a stage of the construction. The following hold at s:

(i) If ~ai 6R Xi(ni) for some ni, then for every x R Xi(ni), we have x ≥ Xi(2).
(ii) If fi 6R ynii then for every x R ynii , we have x ≥ ynii .

(iii) Suppose Xi(ni) R Xj(nj) for some i, j, ni, nj. Then

i 6= j ⇒ ~ai~aj R Xi(ni).

(iv) Suppose Xi(ni) R y
nj
j for some i, j, ni, nj. Then

fj 6R Xi(ni)⇒ ~ai R Xi(ni) and j < i.
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(v) Suppose ynii R y
nj
j and ynii 6= y

nj
j for some i ≤ j, ni, nj. Then i 6= j and

we have

fj R y
nj
j .

We explain what each of the items (i) through (v) mean. (i) says that for
each class [Xi(ni)]R targeted for an Ri-requirement, if it contains an element x
not initially in the class, then x must necessarily belong to a column of lower
priority, unless Ri itself has already acted to collapse Xi(ni) to ~ai. (ii) expresses
a similar fact for a Qi-requirement. It says that if the Qi-follower ynii is related
to a number x which is new, then this number must belong to a column of lower
priority, unless Qi has already acted to collapse fi with ynii .

(iii), (iv) and (v) give specific details about the kind of elements which may be
allowed to be collapsed to a given column. (iii) says that if some Xi(ni), in the
Ri-column, is collapsed with some Xj(nj) in the Rj-column, where i 6= j, then it
must be that either Ri or Rj has previously acted to collapse Xi(ni) with ~ai, or
Xi(nj) with ~aj . Hence (iii) says that it is impossible for two R-columns working
for different requirements to be collapsed unless one of the two R-requirements
has already performed coding into the column. (iv) investigates when elements of
an Ri-column can collapse with elements in a column containing a Qj-follower. It
says that the only way this can happen is if either the Qj-requirement has acted

to collapse y
nj
j with fj (and hence will never act again in the future), or if Ri

has already collapsed Xi(ni) with ~ai. Lastly (v) asserts that the only way for a
Qi-follower to be collapsed with a Qj-follower for i 6= j, is when the lower-priority
one of the two acts to cause the collapse.

This lemma then permits us to later verify that the R-requirements are met.
To see this, consider two R-columns which the R-requirements want to keep
distinct. To argue that these two columns are never unintentionally collapsed
during the construction, note that parts (iii), (iv) and (v) of the lemma say that
the foreign elements introduced into these columns during the construction must
be targeted for other requirements, say R′ or Q′, that have already acted for
these columns. Hence neither R′ nor Q′ will ever again do anything directly with
these columns.

Proof of Lemma 4.14. At each stage s of the construction we take finitely many
actions. We proceed by induction on this sequence of actions. At stage s = 0
before any action is taken, every equivalence class starts off as a singleton, so
(i)-(v) are clearly true. Suppose (i)-(v) holds at a certain point at stage s. We
consider the next action and argue that (i)-(v) still holds after this action. We
consider the different cases.

Suppose we are collapsing fi and y0i in Step 1 (henceforth, while analyzing
Step 1, this will be known as the “action”). Since fi 6R y0i holds before this action,
this means (by induction hypothesis on (iv)) that for every j, nj , if Xj(nj) R y0i
then ~aj R y0i , and i < j. Let us now verify that each of (i)-(v) holds after this
next action.

(iii) Fix Xj(nj) R Xk(nk) where j 6= k. If this was true before the action
then we apply the induction hypothesis. Let us assume otherwise that
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Xj(nj) and Xk(nk) are collapsed by the action. Hence we must have

(without loss of generality) Xj(nj) R y0i and Xk(nk) R fi holds before
the action. By induction hypothesis (iv) on Xj(nj) R y0i , we conclude
that ~aj R Xj(nj). Hence (iii) holds after the action.

(iv) In a similar way we verify that (iv) holds after this action. Suppose that
Xj(nj) R ynkk . We assume that these two elements are collapsed by the

action, hence we either have Xj(nj) R fi and ynkk R y0i , or the symmetric

case Xj(nj) R y0i and ynkk R fi holds. Observe that k ≤ i because
otherwise the action will cause Qk to be initialized.

In the first case we may assume that ynkk 6= y0i because otherwise k = i
and we are immediately done. Hence we can apply the induction hypoth-
esis (v) on ynkk R y0i to conclude that fi R y0i before the action, but this
is impossible. Let us assume now that the latter symmetric case holds,
i.e., Xj(nj) R y0i and ynkk R fi. We apply the induction hypothesis (iv)

on Xj(nj) R y0i to conclude that ~aj R Xj(nj) and j > i. We already
remarked above that k ≤ i must be true. Hence k < j and (iv) is verified.

(v) Suppose that y
nj
j R ynkk and these two numbers are different. Without loss

of generality assume that y
nj
j R fi and ynkk R y0i . Since this action causes

all lower-priority requirements to be initialized, we must have j, k ≤ i.
Clearly j 6= i because otherwise the construction would not have collapsed
fi and y0i . If k = i then we are immediately done for (v). Hence we assume
that k < i, and applying induction hypothesis on ynkk R y0i , we get that
fi R y0i before the action, a contradiction.

(i) We fix j, nj such that ~aj 6R Xj(nj). If Xj(nj) is related to neither fi nor
y0i before the action, then once again we have that (i) holds by applying
the induction hypothesis. Xj(nj) R y0i before the action is not possible
by the induction hypothesis (iv). Hence it must be that Xj(nj) R fi
before the action. If Rj is of lower priority than Qi then Rj is initialized
after this action and so (i) is trivially true (since each fresh equivalence
class is a singleton). Otherwise, Rj is of higher priority, which means
that Xj(2) ≤ y0i , so by induction hypothesis (i)-(ii), we obtain (i).

(ii) We proceed similarly as in (i).

We now consider the next action in step 2. Fix i < s and consider the action
of coding Ri into Xi (henceforth “action” refers to this). There are two cases.

Case 1 : We have Xi(n) and Xi(n′) being collapsed, where ~ai 6R Xi(n) and
~ai 6R Xi(n′) (before the action). We run through each case.

(iii) Consider Xj(nj) R Xi(n) and Xk(nk) R Xi(n′) where j 6= k. Hence i is
not equal to one of j or k. Apply the induction hypothesis (iii) on the
appropriate pair.

(iv) Apply induction hypothesis (iv).
(v) Consider y

nj
j R Xi(n) and ynkk R Xi(n′). By induction hypothesis (iv),

we have fj R y
nj
j and fk R ynkk , and hence we have j 6= k.

(i) Consider j, nj such that ~aj 6R Xj(nj), and Xj(nj) R Xi(n). The case
j 6= i is impossible by induction hypothesis (iii). So assume j = i. By
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induction hypothesis, both classes [Xi(n)]R and [Xi(n′)]R contain only
numbers no smaller than Xi(2), so we are again done.

(ii) Trivially true.

Case 2 : We have ~ai R Xi(n) and ~ai 6R Xi(n′). Again we consider each case
separately.

(iii) A straightforward application of the induction hypothesis (iii).
(iv) Consider y

nj
j R Xk(nk). If y

nj
j R Xi(n′) then fj R Xi(n′) by induction

hypothesis (iv), which means (iv) must be true. Hence we may assume
that y

nj
j R Xi(n), and that fj 6R y

nj
j . By the induction hypothesis (iv)

on y
nj
j R Xi(n), we must have j < i. We have Xk(nk) R Xi(n′). If k = i

then we are done, so assume k 6= i. Hence by induction hypothesis (iii),
we have ~ak R Xi(n′). If k < i then by construction Xi(2) > max~ak,
contradicting the induction hypothesis (i). Hence we must have k > i > j,
so we have (iv).

(v) Fix y
nj
j R Xi(n) and ynkk R Xi(n′) and y

nj
j 6= ynkk . We have, by the

induction hypothesis (iv), fk R Xi(n′). If fj R Xi(n) then j 6= k and (v)
holds. So suppose that fj 6R Xi(n). By the induction hypothesis (i)-(ii),
we get that Qj < Ri < Qk. To wit, by induction hypothesis on (i) and
the fact that ~ai 6R Xi(n′) and ynkk R Xi(n′), we conclude that ynkk ≥
Xi(2). Therefore Qk is of lower priority than Ri because otherwise, Ri
would pick Xi(2) to be larger than ynkk . To conclude that Qj is of higher
priority than Ri, we apply the induction hypothesis (ii) to conclude that
~ai ≥ y

nj
j , whereas, if Qj were of higher priority, then it would pick y

nj
j

larger than Xi(2). Hence we have (v).
(i) Fix Xj(nj) where ~aj 6R Xj(nj). If j = i then it is trivial, so assume

j 6= i. By induction hypothesis (iii), we conclude that Xj(nj) 6R Xi(n′)
and hence Xj(nj) R Xi(n). By the induction hypothesis (i) applied to
Xj(nj), we have j < i. Now by the induction hypothesis (i), this time
applied to Xi(n′), and the fact that Xi(2) > Xj(2), we obtain (i).

(ii) Fix y
nj
j R Xi(n) where fj 6R y

nj
j (again by induction hypothesis (iv),

y
nj
j R Xi(n′) is impossible). Then by the induction hypothesis (ii), Qj is

of higher priority than Ri, which means that Xi(2) > y
nj
j . Thus by the

induction hypothesis (i) applied to Xi(n′), we have (ii). �

We now argue that each Qe is met. Fix a stage after which Qe is never
initialized, and let y0e , y

1
e be the final Qe followers. By Lemma 4.14(v), y0e 6R y1e .

Thus if fe ↓ then y0ey
1
e R fe, hence ϕe cannot be the function witnessing that the

ceer is u.e.i.
Now consider Re, and a stage after which it is never initialized. Let Xe be the

final version. We claim that for i or j ≥ 2, i Re j if and only if Xe(i) R Xe(j).
The left to right implication is explicitly ensured by the construction. Suppose
that Xe(i) is collapsed with Xe(j) at some stage s in the construction, by some
action which is not the coding of Re. There are again two cases.
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Case 1 : Coding of Rk for k 6= e. We may assume that Xk(l) R Xe(i) and
Xk(l′) R Xe(j). We do not worry about the case when ~ae R Xe(i) and ~ae R
Xe(j), since we would makeRe inactive after this action. Assume that ~ae 6R Xe(i)
and ~ae 6R Xe(j). By Lemma 4.14(iii) we have ~ak R Xk(l) and ~ak R Xk(l′), but
by construction we would not have collapsed Xk(l) and Xk(l′). Now assume that
~ae 6R Xe(i) and ~ae R Xe(j). By Lemma 4.14(i) and (iii) we get that e < k.
Now since ~ak 6R Xk(l′) by Lemma 4.14(i) and (iii) again we get that k < e, a
contradiction.

Case 2 : Action in Step 1. Assume we collapsed y0k R Xe(i) with fk R Xe(j).
Since fk 6R y0k before this action, by Lemma 4.14(iv) we have ~ae R Xe(i). By
Lemma 4.14(ii), we have that Qk is of higher priority than Re, hence Re will get
initialized, a contradiction. �

Question 2. Do the u.f.p. ceers coincide with the weakly u.f.p. ceers?

Corollary 4.15 below subsumes all universality results seen so far and is a
natural companion of the following classical results:

• Every creative set is m-complete (Myhill [17]).
• Every pair of effectively inseparable sets is m-complete (Smullyan [24]).
• All creative sequences are m-complete (Cleave [6]).

Corollary 4.15. Every u.e.i. ceer is universal.

Proof. Immediate by Theorem 4.8, as every strongly u.m.c. ceer is clearly univer-
sal: If R is a strongly u.m.c. ceer, and S is any ceer with two distinct equivalence
classes, then start off with a partial monomorphism π : S −→ R, defined on these
two equivalence classes, and extend it to a full monomorphism. �

We continue with some easy observations.

Theorem 4.16. A ceer R is universal if and only if R has a u.e.i. subobject
S ≤ R.

Proof. If R is universal and S is u.e.i., then trivially S ≤ R. Conversely, if S is
u.e.i. and S ≤ R, then R is universal since so is S, by Corollary 4.15.

�

Corollary 4.17. A ceer R is universal if and only if there exist a c.e. set A
which is R-closed, and a computable bijection f : ω −→ A such that the ceer S
given by

x S y ⇔ f(x) R f(y),

is u.e.i.

Proof. The right-to-left implication follows from the fact that S ≤ R. For the
other direction, assume that R is universal, and let E be a u.e.i. ceer (with
fE(a, b, u, v) as its uniform productive function), with E ≤ R via a computable
function g. Let A = [range(g)]R, and f : ω −→ A be a computable bijection.
By Lemma 1.3, we can also assume that g is 1-1, since every [g(x)]R is infinite.
Finally, let S be defined as in the statement of the theorem. A uniform productive
function for S is then

fS(a, b, u, v) = f−1(g(fE(g−1(f(a)), g−1(f(b)), u′, v′)))
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where u′, v′ are uniformly found indices for

Wu′ = g−1[f [Wu]] Wv′ = g−1[f [Wv]]. �

Remark 4.18. Of course, if R is a universal ceer, then for every ceer S, we have
that R ⊕ S is also universal. So there are universal ceers that are not u.e.i., not
even e.i.

The following theorem shows that uniformity is essential in showing that u.e.i.
ceers are universal:

Theorem 4.19. There exists an e.i. ceer that is not universal.

Proof. To show the result, we build, stage by stage, a (nontrivial) e.i. ceer R and
a ceer S such that S 6≤ R. Although not explicitly mentioned below, whenever at
any stage s+1 we extend Rs to Rs+1 by adding some pair to Rs+1, it is understood
that then we further enlarge Rs+1 to the equivalence relation generated by the
set of pairs which have been enumerated so far, by taking the transitive closure
to guarantee that we have an equivalence relation (and similarly for S). At any
stage, a number is new if it has never been mentioned so far in the construction.

The construction of R and S will satisfy the following requirements, for all
numbers a, b, k with a 6= b:

Pa,b : [a]R ∩ [b]R = ∅ ⇒ fa,b is a productive function for the pair ([a]R, [b]R),

Nk : ϕk does not witness S ≤ R,
where fa,b is a total computable function built by us. In fact, Pa,b should be
written as P{a,b}, and one should think of the P -requirements as linearly ordered
according to the canonical index of {a, b}. In order to achieve that ϕk does not
witness that S ≤ R, strategy Nk will use four witnesses a0(k), a1(k), a2(k), a3(k).

At any stage we say that we initialize a strategy, if the strategy is either a
P -strategy, working, say, for requirement Pa,b, and at the given stage we set
fa,b = ∅, or the strategy is an N -strategy, working, say, for Nk and we set the
witnesses a0(k), a1(k), a2(k), a3(k) to be undefined

We must also make sure that R is not trivial.

Strategy for Pa,b. We say that Pa,b becomes inactive at stage s + 1 (and stays
inactive ever after) if either a is not the least element of [a]Rs+1 or b is not the
least element of [b]Rs+1 . If Pa,b first becomes inactive at s+ 1, then it initializes
all strategies of lower priority.

If Pa,b is not inactive at stage s + 1, then we extend the definition of fa,b to
the next pair (u, v) and correct the already defined values of fa,b as follows:

(1) Define fs+1
a,b (u, v) = m, where m is new;

(2) If fsa,b(u
′, v′) = m′, then

(a) let m′ Rs+1 b, if m′ ∈Wu′,s+1;
(b) let m′ Rs+1 a, if m′ ∈Wv′,s+1;
(c) do nothing, otherwise.
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Outcomes of strategy Pa,b. Notice that in (2a) we make Wu′ ∩Wv′ 6= ∅, if [a]R ⊆
Wu′ and [b]R ⊆Wv′ ; similarly, under the same assumptions, we make Wu′∩Wv′ 6=
∅ in (2b). Thus if [a]R ⊆ Wu, [b]R ⊆ Wv, and Wu ∩Wv = ∅ then fa,b(u, v) /∈
Wu ∪Wv. So if Pa,b requires attention infinitely often, eventually without being
initialized, then fa,b is a total productive function for the pair ([a]R, [b]R).

Strategy for Nk. The strategy aims at making S not reducible to R via ϕk:

(1) Appoint numbers a0, a1, b0, b1, which are new (hence, for every x, y ∈
{a0, a1, b0, b1} such that x 6= y, we have x 6S y, at the current stage).

(2) Wait for ϕk(a0)↓ and ϕk(b0)↓:
(a) If already ϕk(a0) R ϕk(b0), then do nothing.
(b) Otherwise, let a0 S b0, and initialize lower-priority strategies; and
(c) if later ϕk(a0) R ϕk(b0) (notice that, by the initialization undertaken

in the previous item, this can happen only due to the action of higher-
priority strategies), then repeat the previous steps with a1, b1 in place
of a0, b0 respectively; more specifically, go to stage (2a) with a1, b1
in place of a0, b0 respectively.

(3) After completing (2c) for a1, b1, if already

ϕk(a0) R ϕk(b0) R ϕk(a1) R ϕk(b1),

then do nothing;
(4) otherwise, let

a0 S b0 S a1 S b1,

and initialize lower-priority requirements.

We say that Nk requires attention at stage s+1, if Nk is ready to act according
to (1), or (2b) for a0, b0, or (2b) for a1, b1, or (4).

Outcomes of strategy Nk. The strategy has the following outcomes:

(1) If the strategy stops at (2) before reaching (2a), either for the pair a0, b0
or for the pair a1, b1, then ϕk is not total, and therefore the requirement
is satisfied.

(2) If (2a) holds for the pair a0, b0 then

a0 6S b0 and ϕk(a0) R ϕk(b0);

similarly, if (2a) holds for the pair a1, b1 then

a1 6S b1 and ϕk(a1) R ϕk(b1).

(3) If we wait forever at (2c) for the pair a0, b0 then

a0 S b0 and ϕk(a0) 6R ϕk(b0);

similarly, if we wait forever at (2c) for the pair a1, b1 then

a1 S b1 and ϕk(a1) 6R ϕk(b1).

(4) Otherwise, at some point, the strategy yields

a0 S b0 and ϕk(a0) R ϕk(b0),

a1 S b1 and ϕk(a1) R ϕk(b1).

When this happens,
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(a) if already ϕk(b0) R ϕk(a1), then we keep b0 6S a1;
(b) if ϕk(b0) 6R ϕk(a1), then our action in (4) makes b0 S a1, and, by

initialization, keeps ϕk(b0) 6R ϕk(a1).

The outcomes considered so far are all winning outcomes for Nk. There is an-
other possibility that needs to be considered, detailed in the next item, which
results from higher-priority requirements injuring Nk. Every time Nk is injured,
it changes by initialization its quadruple of witnesses. We will argue, however,
that eventually Nk is not injured anymore, so there is a final choice of the wit-
nesses which allows for Nk only winning outcomes.

(5) The last thing to consider is when

ϕk(a0) R ϕk(b0) R ϕk(a1) R ϕk(b1)

and we have already defined

a0 S b0 S a1 S b1.

Notice that when we defined a0 S b0 we had ϕk(a0) 6R ϕk(b0) by (2a).
The R-collapse of ϕk(a0) and ϕk(b0) to, say, a number a must be the ef-
fect of later actions of higher-priority requirements of the form Pa,b: After
convergence of ϕk(a0) and ϕk(b0), the lower-priority P -requirements are
initialized, and thus they cannot move ϕk(a0) or ϕk(b0) to new equiv-
alence classes, since they can only move their markers m, but these by
initialization are chosen to be different from ϕk(a0) and ϕk(b0). Simi-
larly, when we defined a1 S b1, we had ϕk(a1) 6R ϕk(b1). The R-collapse
of ϕk(a1) and ϕk(b1) to, say, c must be the effect of later actions of higher-
priority requirements Pc,d. When we defined a0 S b0 S a1 S b1, we had
ϕk(b0) 6R ϕk(a1), hence a 6R c. When later we R-collapse a and c, ei-
ther a or c stops being the least representative in its equivalence class,
and so either Pa,b or Pc,d becomes inactive, and it initializes Nk. We will
see that it only happens finitely often that a P -requirement, of priority
higher than Nk, becomes inactive.

Construction. The construction at stage s proceeds in substages t ≤ s. At stage 0,
all strategies are initialized. At a substage t ≤ s of a stage s > 0, if t = s then
we end the stage. If t < s, then we attack the requirement Q = Qt with priority
rank t. If Q is a P -requirement that was not inactive at the previous stage, but is
now inactive, then we end the stage; otherwise, if Q is not inactive, then we act
as described above (in the section Strategy for Pa,b). If Q is an N -requirement
that requires attention then we act as described above, and we end the stage.
In all other cases for t < s, after completing substage t we move on to substage
t+ 1.

After completing stage s, with say t the last substage before completing the
stage, then we initialize all requirements having lower priority than Qt.

Let S =
⋃
s S

s, R =
⋃
sR

s.
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Verification. The verification is based on the following

Lemma 4.20. Each Nk requires attention finitely often and initializes lower-
priority strategies only finitely often. Each Pa,b initializes lower-priority strategies
only finitely often.

Proof. This follows by a simple inductive argument. Suppose that the claim is
true of every requirement Q, with Q < Nk. After all Q, with Q < Nk, stop initial-
izing, we have that Nk cannot be further initialized and requires attention only
finitely often, since all outcomes are finitary, and thus it initializes only finitely
often. Similarly, if we assume that the claim is true of every requirement Q, with
Q < Pa,b: After its last initialization, Pa,b may initialize lower-priority strategies
at most once, upon becoming inactive. �

Lemma 4.21. Let a, b be such that Pa,b is the highest priority P -requirement.
Then [a]R ∩ [b]R = ∅. Thus R is nontrivial.

Proof. If a P -requirement Pc,d appoints fc,d(u, v) = m, then m 6= a, b, and only
Pc,d can enumerate m at some point in either [a]R or [b]R, but not in both: After
this enumeration, m is not moved any more to any equivalence class. �

Lemma 4.22. Each P -requirement is satisfied.

Proof. Let Pa,b be given. By Lemma 4.20, there is a least stage after which Pa,b is
not initialized any more. Then after this stage we may construct fa,b witnessing
that ([a]R, [b]R) is an e.i. pair if [a]R ∩ [b]R = ∅. �

Lemma 4.23. Each Nk is satisfied.

Proof. Let Nk be given, and let s0 be a stage after which Nk is never again
initialized, so no higher-priority N -requirement requires attention after s0, nor
does any higher-priority P -requirement become inactive after s0. After its last
initialization, Nk appoints four permanent witnesses a0(k), b0(k), a1(k), b1(k).
For simplicity, for i = 0, 1, write ai = ai(k) and bi = bi(k). We may suppose
that for every i = 0, 1, ϕk(ai) and ϕk(bi) converge, otherwise Nk is trivially
satisfied. Moreover we may suppose that action taken by Nk makes a0Sb0 and
a1Sb1; otherwise, again Nk is satisfied. We must exclude the possibility

ϕk(a0) R ϕk(b0) R ϕk(a1) R ϕk(b1)

and
a0 S b0 S a1 S b1.

But, as explained in the informal description of the outcomes of Nk, this pos-
sibility would require some P < Nk to become inactive at some stage after s0,
thus providing one more initialization of Nk, which is impossible by the choice
of s0 �

This completes the proof. �

Figure 1 summarizes the inclusion relationships between the various classes of
universal ceers which we have been dealing with in the paper. Notice that, except
for the inclusion u.f.p. ⊆ u.e.i. (for which properness is still open, see Question 2),
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e.i.

universal

u.e.i.=weakly u.f.p.=strongly u.m.c.

u.f.p.=quotients of ∼T

u.m.c.

e-complete

precomplete

6= ∅ single isomorphism types

Figure 1. Classes of universal ceers under inclusion.

all other inclusions have been shown to be proper. Moreover universal− e.i. 6= ∅
(Remark 4.18), and e.i.− universal 6= ∅ (Theorem 4.19).

5. Characterizing universal ceers through a jump operator

5.1. A jump operator on ceers. The following definition is due to Gao and
Gerdes [10]; the defined operation is called the halting jump operation.

Definition 5.1. Given a ceer R, define

xR′y ⇔ x = y or ϕx(x)↓R ϕy(y)↓ .
Lemma 5.2 (Gao and Gerdes [10]). The following properties hold:

• R ≤ R′;
• R ≤ S ⇔ R′ ≤ S′;
• If R is not universal then R′ is not universal.

One can thus introduce a well-defined operation on P, by

(deg(R))′ = deg(R′).

Notice that (Id1)
′ = RK , that is the equivalence relation having the halting

set K as its unique nontrivial equivalence class, and (Id)′ is the ceer yielding the
partition

{Ki : i ∈ ω} ∪ {{x} : x /∈ K},
where Ki = {x : ϕx(x)↓= i}.
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The following theorem answers Problem 10.2 of Gao and Gerdes [10].

Theorem 5.3. For every ceer E, if E′ ≤ E then E is universal.

Proof. Assume that h is a computable function that induces a monomorphism
from E′ to E. Let R be a ceer, with computable approximations {Rs : s ∈ ω};
similarly, we will work with computable approximations {Es : s ∈ ω} to E.

We first outline the idea of the proof through a particular example. We use
an infinite computable sequence of indices e0, e1, . . ., which we control by the
Recursion Theorem. Eventually we define f(i) = h(ei), and show

i R j ⇔ eiE
′ ej(⇔ h(ei)E h(ej)).

Our choice of these indices will make us able to E′-collapse any pair of them as
needed. Suppose for instance that we want to make e0 E

′ e1 because we see at
some point that 0 R 1. The basic module for this is the following:

(1) Keep ϕe0(e0) and ϕe1(e1) undefined until we see 0 R 1.
(2) Define ϕe0(e0) = ϕe1(e1) = h(e′) for another suitably chosen fixed point e′

(while keeping ϕe′(e
′)↑).

Suppose that even later we want to E′-collapse e1 and e2:

(1) Keep ϕe′(e
′) and ϕe2(e2) undefined, until 1 R 2.

(2) Define ϕe2(e2) = h(e′′) and ϕe′(e
′) = ϕe′′(e

′′) = h(e′′′) (while keeping
ϕe′′′(e

′′′)↑), where e′′ and e′′′ are further suitably chosen fixed points.

Notice that

ϕe′(e
′)↓= ϕe′′(e

′′)↓ ⇒ e′ E′ e′′

⇒ h(e′) E h(e′′)

⇒ e1 E
′ e2.

Care must be taken (by carefully controlling convergence of the various com-
putations ϕe(e)), to collapse only what we need to collapse. In particular, if we
see that E is threatening to E-collapse values, say, h(ei) and h(ej), without hav-
ing i R j, then we threaten in our turn to stop the construction leaving certain
computations divergent (exploiting the fact that if u 6= v and ϕu(u) and ϕv(v) do
not converge, then u 6E′ v, and thus h(u) 6E h(v)), therefore forcing E to remove
its threat if it wants to avoid a contradiction.

If D is a finite set, and n is a number, then 〈D,n〉 denotes the code 〈u, n〉
where u is the canonical index of D. A pair α = 〈D,n〉 will be called a node:
We sometimes denote the components of a node α by Dα and nα. Our formal
implementation of the above idea uses the Case Functional Recursion Theorem
as a tool to find infinitely many synchronized fixed points. Thus, we assume that
we are working with a computable sequence of indices {eα : α node}, which we
control by the Case Functional Recursion Theorem.

It might be instructive to see how the two-steps example above is formally
implemented.

(1) Keep ϕe〈{0},0〉(e〈{0},0〉) and ϕe〈{1},0〉(e〈{1},0〉) undefined, until we see 0 R 1.
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(2) Define

ϕe〈{0},0〉(e〈{0},0〉) = ϕe〈{1},0〉(e〈{1},0〉) = h(e〈{0,1},1〉),

still keeping ϕe〈{0,1},1〉((e〈{0,1},1〉) undefined (notice that {0} and {1}merge

into {0, 1}) so that, in the two-steps example above, we take e0 = e〈{0},0〉,
e1 = e〈{1},0〉, and e′ = e〈{0,1},1〉.

Suppose that even later we want to E′-collapse e1 and e2 = e〈{2},0〉:

(1) Keep ϕe〈{0,1},1〉(e〈{0,1},1〉) and ϕe〈{2},0〉(e〈{2},0〉) undefined, until 1 R 2.

(2) Define ϕe〈{2},0〉(e〈{2},0〉) = h(e〈{2},1〉) (notice, since we want to merge {2}
and {0, 1} into {0, 1, 2}, and since the node α = 〈{0, 1}, 1〉 has level 1, i.e.,
nα = 1, we first transform 〈{2}, 0〉 into a node 〈{2}, 1〉 with level 1: This
transformation procedure will be called the synchronization procedure in
the formal construction given below), and set

ϕe〈{2},1〉(e〈{2},1〉) = ϕe〈{0,1},1〉(e〈{0,1},1〉) = h(e{0,1,2},2〉).

Thus, taking e′′ = e〈{2},1〉, and e′′′ = e〈{0,1,2},2〉 we have that ϕe2(e2) =
h(e′′) and ϕe′(e

′) = ϕe′′(e
′′) = h(e′′′) (still keeping ϕe′′′(e

′′′)↑).
We see that the desired numbers ei are taken to be ei = e〈{i},0〉.
We say that a node β is a parent of a node α, if

• nα = nβ + 1; and
• ϕeβ (eβ) = h(eα).

The construction will make sure that every node has at most two parents.
A node α has only one parent β if α is the result of a definition due to the
synchronization procedure, described below, i.e., α = 〈Dβ, nβ +1〉 and ϕeβ (eβ) =
h(eα).

Given a node α, let Tα be the finite tree, defined as the smallest set of nodes
such that:

• α ∈ Tα;
• if β ∈ Tα and γ is a parent of β then γ ∈ Tα.

Finiteness of Tα follows from the fact that if γ is a parent of β, then nγ < nβ.
We say that a node α is realized, if nα = 0, or Tα 6= {α} (i.e., in the latter

case, α has parents).
The above notions (a node β is a parent of a node α; the tree Tα; and α is real-

ized) can be approximated at each stage s in the obvious way, by approximating
at stage s the relevant computations ϕe(e). In fact, if α is realized at s, then
Tα,s = Tα, as can be easily seen. The guiding idea is that if α is realized at s,
and ϕeα(eα) is still undefined, then Dα is a block of Rs; if at some later stage
t > s, R collapses Dα with another block Dβ, relative to a similarly realized β,
with ϕeβ (eβ) still undefined, and n = nα = nβ, then we will define

ϕeα(eα) = ϕeβ (eβ) = h(e〈Dα∪Dβ ,n+1〉).

(We say that these convergent computations code R into E.)

Lemma 5.4. Let α be a realized node, with nα = n. For every i ≤ n, for every
β, γ ∈ Tα, if nβ = nγ = i then h(eβ) E h(eγ).
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Proof. We may assume n > 0, otherwise the claim is trivial. We will prove the
claim by reverse induction. Assume i = n: The only node β ∈ Tα with nβ = n is
α. Thus the claim trivially holds for i = n.

Suppose that the claim is true of i, with 0 < i, and let us show it for i − 1:
For every node γ with nγ = i − 1, there is a node β with nβ = i such that
ϕeγ (eγ) = h(eβ). But by the inductive assumption, all the nodes β with nβ = i
are such that the corresponding values h(eβ) are all E-equivalent, hence if γ, δ are
nodes such that nγ = nδ = i−1, we have that eγ E

′ eδ and thus h(eγ) E h(eδ). �

Lemma 5.5. If α and β are distinct realized nodes, with nα = nβ = n such that
ϕeα(eα) and ϕeβ (eβ) are undefined, then, for every γ ∈ Tα, and δ ∈ Tβ such that
nγ = nδ, we have that eγ 6E′ eδ.
Proof. By hypothesis we have ϕeα(eα) ↑ and ϕeβ (eβ) ↑. So the claim is true of
i = n since eα 6E′ eβ. Suppose now that the claim is true of 0 < i ≤ n, and
let γ ∈ Tα and δ ∈ Tβ be such that nγ = nδ = i − 1. Then there are γ′ ∈ Tα
and δ′ ∈ Tβ such that nγ′ = nδ′ = i, and ϕeγ (eγ) = h(eγ′), and ϕeδ(eδ) = h(eδ′).
By induction, eγ′ 6E′ eδ′ , so h(eγ′) 6E h(eδ′), and thus we may conclude that
eγ 6E′ eδ. �

The synchronization procedure for two nodes α, β at stage s+ 1:

(1) If nα = nβ then do nothing.
(2) If nα < nβ, then for every i with nα ≤ i < nβ − 1, define (at stage s+ 1),

ϕe〈Dα,i〉(e〈Dα,i〉) = h(e〈Dα,i+1〉).

The purpose of the synchronization procedure can be described as follows: Sup-
pose that we have two nodes α and β and we want to R-collapse Dα and Dβ, by
defining ϕeα(eα) ↓= ϕeβ (eβ) ↓. But, following the construction which is detailed
later, this can be done only if nα = nβ: If nα < nβ, we keep transforming α
into nodes γ, with Dγ = Dα, but with bigger and bigger nγ , until we catch up
with nβ.

Construction. We are now ready to describe the construction, which basically
consists of two main actions:

(1) Waiting for R to catch up with E, when we see at any stage that for
some a, b, h(e〈{a},0〉) E h(e〈{b},0〉), but a 6R b: Then, by the End of Stage
procedure, we stop the construction, and wait for a R b. By Lemma 5.5
we eventually stop waiting.

(2) Coding of R into E via Lemma 5.4, through suitable convergent compu-
tations that code R into E (see the remark preceding Lemma 5.4); coding
is performed while we are not currently waiting as in the previous item.

By Corollary 1.8, we assume that the chosen computable approximation of R
at each new stage collapses exactly one pair of equivalence classes.

Stage 0. Start off with ϕeα(eα) undefined for every node α.

Stage s + 1. If we are waiting at s + 1 for some pair of nodes α, β, then do
nothing and go to next stage. Otherwise, let s− be the last stage, if any, at
the end of which we started to wait for some pair of nodes: If there is no such
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stage, then let s− = s. For the sake of coding R into E, we now consider all
possible R-collapses performed by R on pairs of equivalence classes in the time
interval between s−+ 1 and s+ 1: Proceed by substages t = 1, . . . , s+ 1− s−: At
substage t, if α and β are nodes such that R collapses Dα and Dβ at s−+ t, then
synchronize α and β to two new nodes α′, β′, so after synchronization, we may
assume (by replacing α, β with α′, β′, respectively) n = nα = nβ, and define

ϕeα(eα) = h(e〈G,n+1〉)

ϕeβ (eβ) = h(e〈G,n+1〉)

where G = Dα ∪ Dβ. Notice that G is a new block in the approximation to R
at stage s− + t. After completing substage s + 1 − s− go to the End of Stage
procedure.

End of Stage. There are a, b such that h(e〈{a},0〉) E
s+1 h(e〈{b},0〉), but a 6Rs+1 b.

Pick the least such pair of numbers, and pick nodes α, β, realized at s, such that
a ∈ Dα, b ∈ Dβ, and ϕeα(eα) and ϕeβ (eβ) are still undefined at stage s + 1.
(These nodes exist and are unique by Lemma 5.6.) Synchronize α and β at stage
s + 1 to get nodes α′, β′ of the same level. At any future stage we say that we
are waiting for α, β, until the first stage at which R collapses Dα and Dβ, when
we say that we are not waiting for α, β. Go to next stage.

If there is no pair of numbers as above, then go to next stage.

Verification. For every n, let

g(n) = h(e〈{n},0〉).

We notice:

Lemma 5.6. For every a and s, there exists exactly one node α, realized at s,
such that a ∈ Dα, which is a block of the equivalence relation Rs, and ϕeα(eα) is
undefined at stage s.

Proof. For s = 0, the desired unique node α is α = 〈{a}, 0〉. The full claim follows
by an easy induction on s. �

Lemma 5.7. If α is realized at s, then for every i ≤ nα, Tα contains also nodes
β with nβ = i, and contains all nodes 〈{a}, 0〉, for all a ∈ Dα.

Proof. By the synchronization procedure. The claim that Tα contains all nodes
〈{a}, 0〉, for all a ∈ Dα, follows by induction on nα. �

Finally, we claim that, for every a, b,

a R b⇔ g(a) E g(b).

Assume first that there exists a pair α, β and s0 which makes us wait at all stages
s ≥ s0. The reason for this was that we saw at a previous stage that

h(e〈{a},0〉) E h(e〈{b},0〉),

for some a ∈ Dα, b ∈ Dβ, but a 6R b, and Dα and Dβ never collapse to the same
R-equivalence class at any stage s ≥ s0. By construction, we have ϕeα(eα)↑ and
ϕeβ (eβ)↑. So by Lemma 5.5 and Lemma 5.7 we would conclude

h(e〈{a},0〉) 6E h(e〈{b},0〉)
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a contradiction.
So, there is no permanent wait, and thus there is no pair a, b such that g(a) E

g(b), but a 6R b.
Let us now show the left-to-right implication. Assume that a R b, and let s+1

be the least stage at which some pair of equivalence classes containing a and b
R-collapse. Then there is a unique pair α, β with a ∈ Dα and b ∈ Dβ such that
ϕeα(eα) and ϕeα(eα) are still undefined at s. Since there is no permanent wait in
the construction, there will be a later stage at which we process α, β, and thus we
define ϕeα = ϕeβ = h(eγ), for some γ (or, rather, ϕeα′ = ϕeβ′ = h(eγ), where α′

and β′ are the results of synchronizing α and β). Then by Lemma 5.4, applied
to γ and to the tree Tγ , and Lemma 5.7, we have for all c, d in Dγ = Dα ∪Dβ,
thus including a and b, that h(e〈{c},0〉) E h(e〈{d},0〉), hence g(a) E g(b) . �

Corollary 5.8. The poset P of the degrees of ceers is upwards dense, i.e., for
every R < 1, there exists S such that R < S < 1 (where 1 denotes the greatest
element of P).

Proof. Given R < 1, take S = R′. �

6. Index sets

In this section we classify some index sets of collections of ceers which have
been considered in the paper.

We use below that for every Σ0
3-set S there uniformly exists a c.e. class {X〈i,j〉 :

i, j ∈ ω} such that

i ∈ S ⇒ (∃j)[X〈i,j〉 = ω],

i /∈ S ⇒ (∀j)[X〈i,j〉 finite],

see Soare [25, Corollary IV.3.7].
The following answers Problem 10.1 of Gao and Gerdes [10]:

Theorem 6.1. The index set {x : Rx is universal} is Σ0
3-complete.

Proof. Let Univ = {x : Rx is universal}. An easy calculation, using the fact that
a ceer R is universal if and only if E ≤ R, for a fixed universal ceer E, shows
that Univ ∈ Σ0

3, namely,

x ∈ Univ⇔ (∃e)[ϕe is total and ϕe reduces E to Rx].

Next, we show that for every S ∈ Σ0
3, we have S ≤m Univ. Given S, fix again a

universal ceer E and a c.e. class {X〈i,j〉 : i, j ∈ ω} as above; uniformly in i, build

a ceer R, such that, denoting by R[j] the ceer

x R[j] y ⇔ 〈j, x〉 R 〈j, y〉,
we have that

i ∈ S ⇒ (∃j)[R[j] = E],

i /∈ S ⇒ R yields a partition into finite sets.

This is enough to prove the claim, since a universal ceer has always (infinitely
many) infinite equivalence classes; indeed, if E, T are ceers such that E ≤ T via
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a monomorphism induced by computable function f , and [x]E is an undecidable
equivalence class, then so is [h(x)]T .

Construction. Let {Es}s∈ω be a computable approximation to E, and consider
a computable approximation {X〈i,j〉,s}s∈ω to {X〈i,j〉}i,j∈ω via finite sets: We say
that s+ 1 is 〈i, j〉-expansionary if

X〈i,j〉,s+1 −X〈i,j〉,s 6= ∅.

Stage by stage we define, uniformly in i, a finite set Rs so that, eventually,
R =

⋃
sR

s is our desired ceer.

Stage 0. Let R0 = ∅.
Stage s + 1. Let j be the least number ≤ s, if any, such that s + 1 is 〈i, j〉-
expansionary: Then carry out the following, with the understanding that if there
is no such j, then only item (1) applies:

(1) For every k 6= j, k ≤ s, and x ≤ s , let 〈〈k, x〉, 〈k, x〉〉 ∈ Rs+1.
(2) Let 〈〈j, x〉, 〈j, y〉〉 ∈ Rs+1 for every 〈x, y〉 ∈ Es.

It is straightforward to verify that if i /∈ S then every j has only finitely many
〈i, j〉-expansionary stages, so the equivalence classes of R are finite, hence R is
not universal. Otherwise, for the least j such that there are infinitely many 〈i, j〉-
expansionary stages, we have that R[j] = E (where we define x R[j] y if and only
〈j, x〉 R 〈j, y〉), hence E ≤ R, i.e., R is universal. �

Theorem 6.2. The set {x : Rx is u.e.i.} is Σ0
3-complete.

Proof. Let Uei = {x : Rx is u.e.i.}. A simple calculation shows that Uei ∈ Σ0
3.

We now show that for every S ∈ Σ0
3, we have S ≤m Uei. Given S, fix a c.e.

class {X〈i,j〉 : i, j ∈ ω} as above; uniformly in i, build a (non-trivial) ceer R, such
that

i ∈ S ⇒ R is u.e.i.,

i /∈ S ⇒ R is not u.e.i.

Fixing i, for every j we have the two requirements:

Pj : ϕj is not a uniform total productive function for R,

Qj : (∃∞ 〈i, j〉-expansionary stages)⇒
fj is a uniform total productive function for R,

where fj is a partial computable function (which is total if there exist infinitely
many 〈i, j〉-expansionary stages) built by us.

We will guarantee also that R is not trivial, as by definition a u.e.i. ceer is not
trivial.

We give the requirements the following priority ordering:

P0 < Q0 < · · · < Pn < Qn < · · ·
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Strategy for Pj . Pick two new parameters a, b for Pj : We also assume that we work
with indices u, v (given by the Recursion Theorem) of [a]R and [b]R, respectively.
Then

(1) keep [a]R and [b]R disjoint;
(2) wait for ϕj(a, b, u, v) to converge;
(3) if ϕj(a, b, u, v) converges to m, say, then add m to [a]R, unless already in

[b]R;
(4) initialize lower-priority requirements.

The outcomes for the strategy are clear: If we wait forever for ϕj(a, b, u, v) to
converge, then ϕj is not total and thus cannot be a uniform total productive
function for R. Otherwise, [a]R ∩ [b]R = ∅, but ϕj(a, b, u, v) ∈ [a]R ∪ [b]R ⊆
Wu ∪Wv. Hence ϕj(a, b, , ) does not witness effective inseparability of the pair
[a]R and [b]R.

Strategy for Qj . Suppose at a stage s, we have defined fj on a finite set of quadru-
ples, and s+ 1 is 〈i, j〉-expansionary. Then

(1) we extend fj to the least quadruple not yet in the domain of fj . Suppose
that this quadruple is (a, b, u, v): Define fj(a, b, u, v) = m where m is
new (meaning that m is a number that has never appeared so far in the
construction);

(2) for every already defined value fj(a
′, b′, u′, v′) = m′,

(a) if m′ ∈Wu′,s then let m′ Rs+1 b′;
(b) if m′ ∈Wv′,s then let m′ Rs+1 a′;

(3) initialize lower-priority requirements.

If we have infinitely many stages that are 〈i, j〉-expansionary, then fj is a total
computable function. Given a, b such that [a]R ∩ [b]R = ∅ and [a]R ⊆ Wu,
[b]R ⊆ Wv, we have that fj(a, b, u, v) /∈ Wu ∪ Wv, otherwise the construction
makes Wu ∩Wv 6= ∅.
Construction. We say that Pj requires attention at stage s + 1 if either aj,s, bj,s
are undefined, or a = aj,s and b = bj,s are defined and not Rs-equivalent and
ϕj,s(a, b, u, v) is defined and equal to m, say, but m /∈Wu,s∪Wv,s; we say that Pj
is initialized at s by letting aj,s and bj,s be undefined. We say that Qj requires
attention at stage s+ 1 if s+ 1 is 〈i, j〉-expansionary; we say that Qj is initialized
at s by letting fj,s = ∅.

In this construction as well, it is understood that whenever we extend Rs+1 by
adding some pair, we extend in fact to the transitive closure of the enlarged set
of pairs.
Stage 0. Let R0 = ∅; fj,0 = ∅; and let aj,0 and bj,0 be undefined for all j;

Stage s+1. Let N be the least requirement with index ≤ s that requires attention
at stage s + 1. If no such requirement exists then go to stage s + 2. Otherwise,
pick the least such N :

• N = Pj . Perform in order the following items:
(1) If aj,s and bj,s are undefined, then choose aj,s+1 and bj,s+1 to be new

numbers.
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(2) Otherwise, suppose a = aj,s and b = bj,s, and ϕj,s(a, b, u, v) converges
to, say, m /∈Wu,s ∪Wv,s. Let m Rs+1 a; stop the stage, initialize all
lower-priority requirements, and go to the next stage.

• N = Qj . Perform in order the following items:
(1) We extend fj to the least quadruple (by code) not yet in the do-

main of fj,s. Suppose that this quadruple is (a, b, u, v): Define
fj,s+1(a, b, u, v) = m where m is new;

(2) for every already defined value fj,s(a
′, b′, u′, v′) = m′,

(a) if m′ ∈Wu′,s then let m′ Rs+1 b′;
(b) if m′ ∈Wv′,s then m′ Rs+1 a′.

(3) End the stage, initialize all lower-priority requirements, and go to
next stage.

Let R =
⋃
sR

s.

Verification. The verification is based on the following lemmas.

Lemma 6.3. If N is eventually never initialized, then N is satisfied.

Proof. The claim is by induction on the priority rank of N . Suppose that the
claim is true of every N ′ < N . If N = Pj then clearly aj = lims aj,s and
bj = lims bj,s exist, and if [aj ]R ∩ [b]R = ∅, and ϕj(a, b, u, v) is defined and equal
to m (where u, v are indices of the R-equivalence classes of a and b, respectively),
then m ∈ Wu ∪Wv, thus ϕj(a, b, , ) does not witness effective inseparability of
[aj ]R and [bj ]R. If N = Qj then Qj , after its last initialization, is eventually
able to build its own function fj , which is total if there are infinitely many 〈i, j〉-
expansionary stages. �

Lemma 6.4. R is not trivial.

Proof. Let a0 and b0 be the final witnesses of P0. Then [a0]R ∩ [b0]R = ∅,
since by initialization no lower-priority requirements can collapse [a0]R and [b0]R,
whereas P0 acts at most once. �

Lemma 6.5. If i /∈ S then R is u.e.i.; otherwise R is not u.e.i.

Proof. If i ∈ S and j is the least number for which there exist infinitely many
〈i, j〉-expansionary stages, then fj (the function built by Qj after its last initial-
ization) is the desired uniform effective inseparability function.

If there is no 〈i, j〉 with infinitely many expansionary stages, then all strategies
in the construction are finitary, so every requirement is eventually not initialized,
and by Lemma 6.3 above, every Pj is satisfied. �

This completes the proof of the theorem. �

We conclude with the following question, for which Theorem 4.19 seems to
suggest an affirmative answer:

Question 3. Is {x : Rx is e.i.} a Π0
4-complete set?

Note that by the proof of Theorem 6.2, {x : Rx is e.i.} is Σ0
3-hard.
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