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Abstract

Two-colour microarray experiments form an important tool in gene expres-
sion analysis. Due to the high risk of missing observations in microarray
experiments, it is fundamental to concentrate not only on optimal designs
but also on designs which are robust against missing observations. As an
extension of Latif et al. (2009), we define the optimal breakdown number
for a collection of designs to describe the robustness, and we calculate the
breakdown number for various D-optimal block designs. We show that, for
certain values of the numbers of treatments and arrays, the designs which
are D-optimal have the highest breakdown number. Our calculations use
methods from graph theory.
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1. Introduction

Microarrays play a key role in modern molecular biology since they enable
simultaneous monitoring of the expression levels of thousands of genes: see,
for example, Brown and Botstein (1999). The main goal of cDNA micro-
array experiments is to identify significantly up- or down-regulated genes.
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These genes serve as possible targets for therapy for severe diseases, such as
malignant tumours. Since two samples of different treatments are coloured
green and red and are applied (hybridized) onto one microarray, designs for
microarray experiments can be considered as row–column designs with two
rows corresponding to the two dyes. Ignoring the two different dyes, the
designs can be considered as incomplete-block designs with block size two,
provided that the number of treatments exceeds two.

Microarray experiments have been widely studied in the literature. For
instance, Kerr et al. (2000) first recommended analysing microarray data with
analysis-of-variance models. Most articles focus on the derivation of optimal
designs in specific scenarios, but only a few authors address the problem
of missing values. Missing values often occur in microarray experiments,
for example due to insufficient resolution, image corruption, or simply dust
or scratches on the slide (Latif et al., 2009). Thus, this data cannot be
involved in the analysis of the experiment (Troyanskaya et al., 2001) and
so it is important to use robust experimental designs, which ensure precise
estimation of the treatment effects even if observations are missing. Latif
et al. (2009) investigated specific robustness properties of commonly used
microarray designs. They proposed two robustness criteria and calculated
these criteria for the commonly used designs. However, to date no attempts
have been made to investigate these robustness criteria analytically. We will
derive an upper bound for the breakdown number, which enables us to define
an optimal breakdown number and then investigate some published optimal
designs with respect to the breakdown number.

This paper is structured as follows. Section 2 introduces the statistical
model which is used to describe microarray experiments. Robustness criteria
are defined in Section 3, where optimal robustness properties are derived.
Section 4 shows that several families of published D-optimal designs achieve
the optimal breakdown number. A short conclusion is given in Section 5.

2. Preliminaries

Suppose that there are t treatments and a arrays. The statistical analysis
is based on the gene-specific model

log2(yij`) = τi + αj + δ` + εij`, (1)

where yij` describes the intensity of treatment i coloured in dye ` on array j,
for i ∈ {0, . . . , t}, j ∈ {1, . . . , a} and ` ∈ {green, red}, and εij` are the error
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terms.
Suppose that array j has treatments i and k coloured green and red

respectively. For analysis using intra-array information only, model (1) can
be replaced by:

log2

(
yijgreen

ykjred

)
= τi − τk + δgreen − δred + εijgreen − εkjred. (2)

As in Bailey (2007, Sections 2–6), we ignore the dye effect in the consideration
of robustness and optimality. Then, written in matrix notation, model (2)
simplifies to

z = Xτ + η, (3)

where z = (z1, . . . , za) is the a-dimensional vector of log ratios of the dye
intensities, τ = (τ1, . . . , τt) is the t-dimensional vector of unknown treatment
effects, and X is the a × t design matrix, with each row containing exactly
one 1 and one −1, all other entries being equal to zero. The term η is the
random error vector with independent identically distributed components
having expectation zero and variance σ2.

In most situations one is interested in estimating all linear contrasts of
the parameter vector τ . A design is called connected if all linear contrasts
in τ are estimable. If the design matrix is X then the matrix X>X is called
the information matrix of the design. Let λ1 ≥ λ2 ≥ . . . ≥ λt−1 ≥ λt be
the eigenvalues of X>X; these are non-negative. The entries in each row of
X>X sum to zero, so λt = 0. It can be shown (Shah and Sinha, 1989) that
the design is connected if and only if the remaining t − 1 eigenvalues are
non-zero. In this case, the vector τ is estimable in the hyperplane

∑
i τi = 0,

and the volume of the confidence ellipsoid for τ is inversely proportional to√∏t−1
i=1 λi. Thus, a design is called D-optimal if it maximizes the value of∏t−1

i=1 λi.

3. Optimal breakdown number

Latif et al. (2009) introduced the breakdown number for microarray ex-
periments, but they did not derive designs with optimal breakdown numbers
for given values of t and a. Adapting their definition to the case where all
linear contrasts are to be estimated gives the following.
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Definition. Assume the model (3), with a× t design matrix X. Given any
subset S of {1, . . . , a}, let XS be the design matrix obtained from X by
deleting the rows corresponding to the arrays in S. The breakdown number
of the design is equal to m if all contrasts are estimable with reduced design
matrix XS for all subsets S of size m − 1 (that is, with m − 1 missing
observations) but there exists at least one subset S of size m for which not
all contrasts are estimable.

Note that, for 1 ≤ n ≤ a, every design matrix X with a rows gives
(

a
n

)
matrices XS.

Since designs with large breakdown numbers can be considered robust,
we aim to search for designs which maximize the breakdown number. Let
Ωt,a,2 be the collection of all designs for t treatments using a arrays of size
two.

Definition. A design in Ωt,a,2 has optimal breakdown number if it maximizes
the breakdown number over all designs in Ωt,a,2.

Each design in Ωt,a,2 can be considered as a graph with vertices 1, . . . , t.
The number of edges joining distinct vertices i and k is equal to the number
of arrays where treatments i and k are applied. The design is connected if
and only if the graph is connected. It is convenient to extend the notation
Ωt,a,2 to denote this set of graphs. See Bollabás (1979) for basic ideas and
vocabulary for graph theory, but note that he uses the word ‘multigraph’ for
what we call a graph. We shall call a graph simple if there is at most one
edge between each pair of distinct vertices.

As noted by Bailey (2007), the breakdown number is a well-known con-
cept in graph theory known as edge-connectivity. The edge-connectivity of
a graph is defined to be the minimal number of edges whose removal re-
sults in a disconnected graph. Thus, the graph-theoretical expression ‘edge-
connectivity’ is exactly the same as the breakdown number introduced by
Latif et al. (2009). Further properties regarding edge-connectivity can be
found in Bollabás (1979, Chapter 3).

If a < t−1 then the design is disconnected, and so its breakdown number
is 0. If a = t − 1 then the only connected graphs are trees ; that is, graphs
with no cycles. In this case, removal of any edge disconnects the graph, and
so the breakdown number is 1.

The following theorems give the upper bound for the breakdown number
for given numbers a and t with a ≥ t. Here bxc denotes the greatest integer
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less than or equal to x, and deg(i) denotes the degree of vertex i, that is, the
number of edges incident with vertex i.

Theorem 1. If G is a connected graph, its breakdown number is less than
or equal to the minimal degree of a vertex in G.

Proof . Removal of all the edges incident with vertex i disconnects the graph,
so the breakdown number of G is less than or equal to deg(i) for all vertices i.

Theorem 2. Let G be a graph in Ωt,a,2, where 3 ≤ t ≤ a. Then the break-
down number of G is less or equal to b2a/tc. Moreover, equality holds for at
least one graph in Ωt,a,2.

Proof . Since
∑t

i=1 deg(i) = 2a, there must be at least one vertex i for which
deg(i) ≤ b2a/tc. Theorem 1 shows that the breakdown number is at most
b2a/tc.

Now we construct a graph G whose breakdown number m achieves this
maximum. Suppose that 2a = ct + u, where 0 ≤ u < t. Then c ≥ 2, because
a ≥ t. Since u/2 < t/2, there is at least one vertex of degree c or less, so
m ≤ c = b2a/tc. Now we proceed separately in the cases that c is even or
odd.

If c = 2e with e ≥ 1 then construct G from a cycle H of length t by using
e copies of each edge; the remaining u/2 edges are arbitrary. If any 2e − 1
edges are removed from G, this leaves at least one copy of at least t−1 edges
of H, so the remaining graph is connected. Thus m ≥ 2e = c and hence
m = c = b2a/tc.

On the other hand, suppose that c = 2e + 1 with e ≥ 1. As before, use
e copies of each edge of H. If t is even, insert a further t/2 edges between
all pairs of vertices at maximal distance in H. If t is odd then u ≥ 1 so
insert a further (t + 1)/2 edges between some pairs of vertices at maximal
distance in H, in such a way that each vertex is incident with at least one
such edge. In both cases, the remaining edges are arbitrary. If any 2e edges
are removed, this leaves at least one copy of at least t− 2 edges of H. If all
copies of two edges are removed then this splits the vertices of H into two
components, but these are joined by at least one of the ‘maximal distance’
edges. Hence m ≥ 2e + 1 = c and so m = c = b2a/tc.

A design is called equireplicate, and the corresponding graph regular, if
all vertices have the same degree. This is not possible unless t divides 2a,
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so we call a design in Ωt,a,2 nearly equireplicate if every vertex has degree
b2a/tc or b2a/tc + 1. Theorem 2 suggests that nearly equireplicate designs
are good candidates for robust designs. However, Figure 3 of Bailey and
Cameron (2009) shows an equireplicate design in Ω10,15,2 whose breakdown
number is equal to 1. Moreover, there are some designs which are not nearly
equireplicate but whose breakdown number achieves the upper bound: for
example, when t = 4 and a = 3 the tree with edges {1, 2}, {1, 3} and {1, 4}
has optimal breakdown number (namely, 1) but it is not nearly equireplicate.

John and Mitchell (1977) called an equireplicate design a regular-graph
design if there is an integer λ such that every pair of distinct treatments
occur together in either λ or λ + 1 blocks. To allow for the case that t does
not divide 2a, we define Ω∗

t,a,2 to be the sub-collection of graphs in Ωt,a,2

for which every vertex has degree b2a/tc or b2a/tc + 1 and there is some
number λ such that the number of edges joining any pair of distinct vertices
is either λ or λ + 1. Cheng et al. (1985) called such designs nearly balanced.

In what follows, we make frequent use of two results from the literature. A
design in Ωt,a,2 is balanced if there is a positive integer λ such that every pair of
distinct treatments are applied to exactly λ arrays. In graph-theortical terms,
this is a complete graph with λ copies of each edge. For a balanced design,
a = λt(t− 1)/2 and so b2a/tc = 2a/t = λ(t− 1); moreover, every treatment
occurs in r arrays, where r = λ(t−1). Theorem 2 of Ghosh (1982) states that
balanced incomplete-block designs are robust against the unavailability of all
observations in any r − 1 blocks. In our notation r = 2a/t, so this theorem
shows that the breakdown number for balanced designs is 2a/t, which is the
upper bound from Theorem 2.

The other result is the following version of Menger’s Theorem (see Bol-
lobás, 1979, Chapter 3). Two paths in a graph are independent if they have
no edge in common. Menger’s Theorem states that the maximum number of
independent paths connecting distinct vertices i and k in a graph G is equal
to the minimal number of edges whose removal disconnects i and k in G.

Theorem 3. Let H be the graph with t vertices and λ edges between each
pair of vertices, where t ≥ 3 and λ ≥ 1.

(i) If G is obtained from H by inserting one copy of each of s mutually
non-adjacent edges, where 1 ≤ s < t/2, then the breakdown number of
G is λ(t− 1), and this cannot be improved upon.

(ii) If t is even and G is obtained from H by inserting one copy of each of
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t/2 mutually non-adjacent edges, then the breakdown number of G is
λ(t− 1) + 1, and this cannot be improved upon.

(iii) If G is obtained from H by removing one copy of each of s mutually
non-adjacent edges, where 1 ≤ s ≤ t/2, then the breakdown number of
G is λ(t− 1)− 1, and this cannot be improved upon.

(iv) If G is obtained from H by inserting one copy of every edge in G0,
where G0 has optimal breakdown number in Ωt,s,2, then G has optimal
breakdown number in Ωt,a,2, where a = λt(t− 1)/2 + s.

Proof . Let m and m′ be the breakdown numbers of G and H respectively.
It follows from Ghosh (1982) that m′ = λ(t− 1).

(i) Inserting edges cannot decrease the breakdown number, so m ≥ m′ =
λ(t − 1). On the other hand, s < t/2, so G has at least one vertex
of degree λ(t − 1), so Theorem 1 shows that m ≤ λ(t − 1). Also,
2a = λt(t− 1) + 2s < λt(t− 1) + t, so b2a/tc = λ(t− 1) = m, and so
the upper bound from Theorem 2 is achieved.

(ii) Now 2a/t = λ(t− 1) + 1, so Theorem 1 shows that m ≤ λ(t− 1) + 1.
Let i and k be any distinct vertices. If {i, k} is one of the extra edges,
then vertices i and k are connected by λ + 1 paths of length 1 and by
λ(t− 2) paths of length 2 (these have the form (i, j, k) for j /∈ {i, k}).
If {i, k} is not one of the extra edges, and the extra edges through i
and k are {i, i′} and {k, k′} respectively, then there are only λ paths
of length 1 connecting i and k but there is now the path (i, i′, k′, k)
of length three. In both cases, vertices i and k are connected by at
least λ(t − 1) + 1 independent paths. Menger’s Theorem shows that
m ≥ λ(t− 1) + 1. Hence m = λ(t− 1) + 1.

(iii) Now the minimal degree of G is λ(t− 1)− 1, and so Theorem 1 shows
that m ≤ λ(t − 1) − 1. An argument similar to the one in part (ii)
shows that if one copy of {i, k} is removed then there are λ(t− 1)− 1
independent paths connecting i and k. If {i, k} is not removed but one
copy of either or both of {i, i′} and {k, k′} is removed then the paths
(i, i′, k) and (i, k′, k) may be lost but can be replaced by (i, k′, i′, k),
so there are still at least λ(t − 1) − 1 independent paths connecting i
and k. Thus Menger’s Theorem shows that m ≥ λ(t − 1) − 1, and so
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m = λ(t − 1) − 1, which once again achieves the upper bound from
Theorem 2.

(iv) Let m′′ be the breakdown number of G0. By Theorems 1 and 2, G0 has
a vertex of degree m′′, and so G has a vertex of degree λ(t− 1) + m′′:
therefore m ≤ λ(t − 1) + m′′. If i and k are any distinct vertices
then they are connected by λ(t − 1) independent paths in H and by
at least m′′ independent paths in G0: hence m ≥ λ(t − 1) + m′′, and
so m = λ(t − 1) + m′′. Now, 2a = λt(t − 1) + 2s, and so b2a/tc =
λ(t−1)+ b2s/tc = λ(t−1)+m′′ = m. Thus G has optimal breakdown
number in Ωt,a,2.

4. Some classes of D-optimal designs

Many authors have derived D-optimal block designs for various different
scenarios, but few attempts have been made to investigate the breakdown
number of these designs when all blocks have size two. Ghosh (1982) and
Bhaumik and Whittinghill (1991) considered balanced incomplete-block de-
signs and variance-balanced block designs: when all blocks have size two then
these are just one or more copies of the complete graph. Baksalary and Tabis
(1987) and Godolphin and Warren (2011) give some sufficient conditions for
a design to achieve the optimal breakdown number, but these conditions are
rarely satisfied when all blocks have size two.

In this section we calculate the breakdown number for some known classes
of D-optimal designs with block-size two, and we show that these designs have
optimal breakdown number.

The relationship between graph theory and optimal design theory was
described by Gaffke (1982): see also Cheng (1981) and Bailey and Cameron
(2009). In particular, a subgraph H of a graph G is called a spanning tree
for G if H is a tree which includes every vertex of G. Gaffke (1982) showed
that a block design is D-optimal if and only if it maximizes the number of
spanning trees.

4.1. Small number of arrays

When a = t−1 then the only connected block designs are the trees. Bailey
(2007) pointed out that all trees are D-optimal. In Section 3 we observed
that all trees have optimal breakdown number in Ωt,t−1,2: this number is 1.
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Bailey (2007) also showed that the D-optimal designs when a = t are the
cycles. Theorem 2 shows that these designs have optimal breakdown number
(which is 2) in Ωt,t,2.

We now extend this result to all designs for which t ≤ a < 3t/2. Note
that a bridge in a connected graph is a single edge whose removal disconnects
the graph.

Theorem 4. Let G be the graph corresponding to a D-optimal design in
Ωt,a,2, where a ≥ t ≥ 3. Then G does not contain a bridge. In particular, no
vertex of G has degree less than 2.

Proof . Suppose that the edge {i, k} is a bridge of G. Removing this bridge
splits G into two components H and K, where i ∈ H and k ∈ K. Every
spanning tree for G consists of a spanning tree for H, the edge {i, k}, and a
spanning tree for K. Hence the number of spanning trees for G is uv, where
u and v are the numbers of spanning trees for H and K respectively. This
number is positive, because G is connected.

Since a ≥ t, there is at least one edge e in G which is in a cycle. Without
loss of generality, e is in component H. Let u′ be the number of spanning
trees for H which do not contain e. Since e is in a cycle, u′ > 0. Create a
new graph H ′ by inserting a new vertex j into e. Every spanning tree for H
which contains e gives a spanning tree for H ′ containing both edges at j;
every spanning tree for H which does not contain e gives two spanning trees
for H ′, one containing each edge at j. Hence the number of spanning trees
for H ′ is u− u′ + 2u′ = u + u′ > u.

Create a new graph G′ by replacing H by H ′, removing the bridge, and
identifying the vertices i and k. Then G′ has t vertices and a edges. Every
spanning tree for G′ consists of a spanning tree for H ′ with a spanning tree
for K. Hence G′ has (u + u′)v spanning trees. This number is greater than
uv, so G cannot be D-optimal.

Corollary 1. If t ≤ a < 3t/2 then every D-optimal design in Ωt,a,2 has
breakdown number 2, which is the upper bound from Theorem 2.

4.2. Bipartite graphs and related designs

A graph is called bipartite if its vertices can be partitioned into two parts
such that no vertices in the same part are adjacent. Each edge is incident with
one vertex from each part. A simple bipartite graph is complete bipartite if
every vertex is adjacent to all vertices in the other part. A complete bipartite
graph is regular if and only if the two parts have the same size.
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Proposition 1. Let t = 2u. If G is a regular complete bipartite graph with
t vertices then every pair of distinct vertices in G can be connected by u in-
dependent paths.

Proof . Label the vertices of one part i1, . . . iu and those of the other part k1,
. . . , ku. Vertices i1 and i2 are connected by the u independent paths (i1, kj, i2)
for j = 1, . . . , u. Vertices i1 and k1 are connected by the u independent paths
(i1, k1) and (i1, kj, ij, k1) for j = 2, . . . , u.

Cheng (1981) found several classes of D-optimal designs. His Theorem 2.1
shows that when t = 2u and λ ≥ 0 then the graph formed from a complete
regular bipartite graph with t vertices by inserting λ further edges between
each pair of vertices is D-optimal. We now calculate the breakdown number
for these designs.

Proposition 2. Let t = 2u, λ ≥ 0 and a = u2 + λt(t − 1)/2. Let H be the
graph with t vertices and λ edges between each pair of vertices, and let G be
the graph obtained from H by inserting one further copy of each edge of a
regular complete bipartite graph G0 on the same vertices. Then the breakdown
number of G is equal to λ(t−1)+u, and this is the optimal breakdown number
for Ωt,a,2.

Proof . All vertices of G0 have degree u, so Theorem 2 and Proposition 1
show that the breakdown number of G0 is u and that this is the optimal
breakdown number for Ωt,u2,2. Then Theorem 3(iv) completes the proof.

Multipartite graphs generalize bipartite graphs. If t = mu, with m ≥
2, then a simple graph with t vertices is regular complete m-partite if the
vertices are partitioned into m parts of size u and each vertex is adjacent to
every vertex in all other parts but to no vertex in the same part.

Proposition 3. Let t = mu, where m ≥ 2. If G is a regular complete m-
partite graph with t vertices then every pair of distinct vertices in G can be
connected by (m− 1)u independent paths.

Proof . If i and k are different vertices in the same part, then they are
connected by the (m − 1)u independent paths (i, j, k) for vertices j in the
other parts. If i and k are in different parts, then Proposition 1 shows that
they are connected by u independent paths lying within those two parts, and
they are also connected by the further (m − 2)u independent paths (i, j, k)
for vertices j in the remaining parts.
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Theorem 3.1 of Cheng (1981) shows that if m ≥ 2, t = mu and a =
u2m(m − 1)/2 then the regular complete m-partite graphs are D-optimal
among simple graphs in Ωt,a,2.

Proposition 4. Let m ≥ 2, t = mu and a = u2m(m − 1)/2. Regular
complete m-partite graphs with t vertices have breakdown number (m− 1)u,
which is the optimal breakdown number for Ωt,a,2.

Proof . All vertices in such a graph have degree (m−1)u, so Theorem 2 and
Proposition 3 show that the breakdown number is (m− 1)u and that this is
the optimal breakdown number for Ωt,a,2.

A multipartite graph on t vertices with s parts of size 2 and the remaining
parts of size 1 is obtained from the complete graph on t vertices by deleting
s mutually non-adjacent edges, where 1 ≤ s ≤ t/2. Theorem 4.1 of Cheng
(1981) shows that such graphs are D-optimal among simple graphs in Ωt,a,2,
where a = t(t − 1)/2 − s. Theorem 3(iii) shows that they have optimal
breakdown number, which is t− 2.

4.3. Small number of treatments

The case a = t− 1 has been covered in Section 4.1. When a is a multiple
of t(t − 1)/2, the D-optimal designs are the balanced incomplete-block de-
signs (Kiefer, 1975), which have optimal breakdown number by Theorem 2
of Ghosh (1982). From now on, we assume that a = λt(t − 1)/2 + s with
a ≥ t and 0 < s < t(t− 1)/2.

Theorem 2.2 of Gaffke (1982) shows that if t ≤ 5 then there are some
designs in Ω∗

t,a,2 which are D-optimal in Ωt,a,2, while his Theorem 2.3 gives
the same result for t = 6 if a is divisible by 3. (This does not imply that
all D-optimal designs in Ωt,a,2 are in Ω∗

t,a,2: we have already noted that this
is not true when t = 4 and a = 3.) Gaffke (1982) used these results to find
those D-optimal designs in Ωt,a,2 which are in Ω∗

t,a,2 when 2 ≤ t ≤ 5 and when
t = 6 and a is a multiple of 3.

When t = 4 and a = 6λ + s with a ≥ 4 and 0 < s < 6, Gaffke (1982)
showed that those D-optimal designs which are in Ω∗

4,a,2 consist of λ copies
of all edges of the complete graph together with a collection of s edges iso-
morphic to those in Figure 1.

Proposition 5. Suppose that a ≥ t = 4 and that a is not divisible by 6.
Then the D-optimal designs given by Gaffke (1982) have optimal breakdown
number in Ω4,a,2.
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{1, 2} {1, 2} {1, 2} {2, 3} {1, 2} {2, 3} {1, 2} {1, 3} {1, 4}
{3, 4} {3, 4} {1, 4} {3, 4} {2, 3} {2, 4}

(a) s = 1 (b) s = 2 (c) s = 3 (d) s = 4 (e) s = 5

Figure 1: The extra edges in D-optimal designs which are also nearly balanced, when t = 4
and a = 6λ + s

Proof . Let a = 6λ + s with 0 < s < 6. If s = 1 or s = 2 or s = 5
then the result follows from Theorem 3(i), (ii) or (iii) respectively. If s = 3
then the extra edges form a tree, so the result follows from Section 4.1 and
Theorem 3(iv). If s = 4 then the extra edges form a cycle: Section 4.1
shows that cycles have optimal breakdown number, so the result follows
from Theorem 3(iv).

Likewise, Gaffke (1982) showed that, when 5 ≤ a = 10λ + s with 0 <
s < 10, then the D-optimal designs in Ω5,a,2 which are in Ω∗

5,a,2 are those
where the extra edges in Figure 2 are added to λ copies of every edge in the
complete graph.

Proposition 6. If a ≥ t = 5 and a is not divisible by 10 then the D-optimal
designs given by Gaffke (1982) have optimal breakdown number in Ω5,a,2. If
a = 10λ + s with 0 < s < 10 then this breakdown number is equal to 4λ if
1 ≤ s ≤ 2, to 4λ + 1 if 3 ≤ s ≤ 4, to 4λ + 2 if 5 ≤ s ≤ 7, and to 4λ + 3 if
8 ≤ s ≤ 9.

Proof . All of these designs are nearly equireplicate, so in every case the
smallest degree of a vertex is equal to the bound in Theorem 2. When
1 ≤ s ≤ 2, the result follows from Theorem 3(i). For s = 3, the argument is
similar to the proof of Theorem 3(ii). When s = 4 or s = 5, the extra edges
form a tree or cycle respectively, so the result follows from Section 4.1 and
Theorem 3(iv). For 6 ≤ s ≤ 7 it can be verified directly that there are two
independent paths between any pair of distinct vertices, using only the extra
edges. For 8 ≤ s ≤ 9, the result follows from Theorem 3(iii).

For t = 6, Gaffke (1982) considered only families of designs containing
equireplicate designs; that is, a is a multiple of 3. For these values of a, he
showed that the regular-graph designs obtained by adding the extra edges in
Figure 3 to copies of the complete graph are D-optimal.
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{1, 2} {1, 2} {1, 2} {2, 3} {1, 2} {2, 3} {1, 2} {2, 3} {3, 4}
{3, 4} {4, 5} {2, 4} {4, 5} {4, 5} {5, 1}

(a) s = 1 (b) s = 2 (c) s = 3 (d) s = 4 (e) s = 5

{1, 2} {2, 5} {1, 2} {2, 3} {3, 4} {1, 2} {2, 3} {3, 4} {1, 2} {2, 3} {3, 4}
{1, 3} {3, 5} {4, 5} {5, 1} {1, 3} {4, 5} {5, 1} {1, 3} {4, 5} {5, 1} {1, 3}
{1, 4} {4, 5} {2, 4} {2, 4} {2, 5} {2, 4} {2, 5} {1, 4}

(f) s = 6 (g) s = 7 (h) s = 8 (i) s = 9

Figure 2: The extra edges in D-optimal designs which are also nearly balanced, when t = 5
and a = 10λ + s

{1, 2} {1, 2} {2, 3} {1, 4} {1, 5} {1, 6} {1, 3} {1, 4} {1, 5} {1, 6}
{3, 4} {3, 4} {4, 5} {2, 4} {2, 5} {2, 6} {2, 3} {2, 4} {2, 5} {2, 6}
{5, 6} {5, 6} {6, 1} {3, 4} {3, 5} {3, 6} {3, 5} {3, 6} {4, 5} {4, 6}

(a) s′ = 1 (b) s′ = 2 (c) s′ = 3 (d) s′ = 4

Figure 3: The extra edges in D-optimal designs which are also regular-graph designs, when
t = 6 and a = 15λ + 3s′

Proposition 7. If 6 ≤ a = 15λ + 3s′ with 0 < s′ < 5 then the D-optimal
designs in Ω6,a,2 given by Gaffke (1982) have optimal breakdown number,
which is equal to 5λ + s′.

Proof . When s′ = 1 this follows from Theorem 3(ii). When s′ = 2, the
extra edges form a cycle, and so the result follows from Section 4.1 and
Theorem 3(iv). When s′ = 3, the extra edges form a complete bipartite
graph, and so Proposition 1 shows that the bound in Theorem 2 is achieved
for the extra edges: then Theorem 3(iv) gives the result. Finally, when s′ = 4
the result follows from Theorem 3(iii).

5. Conclusion

In Section 4 we showed that several classes of D-optimal designs have
optimal breakdown number. The converse is not true. For example, Figure 3
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of Bailey (2007) shows that there are four (isomorphism classes of) designs
in Ω8,12,2 with optimal breakdown number but that only one of these is D-
optimal. However, all four of them are better on the D-criterion than all
designs with smaller breakdown number.

Our results lead us to conjecture that D-optimal block designs with block
size 2 always achieve the optimal breakdown number. However, other plau-
sible conjectures about optimal block designs have turned out to be either
wrong or very hard to prove. For example, John and Mitchell (1977) con-
jectured that if Ωt,a,k contains any regular-graph designs then all A-optimal
designs in Ωt,a,k are regular-graph designs: this is now known to be false.
Cheng et al. (1985) proved that, for each value of t, there is a value a0(t)
such that if a ≥ a0(t) then all D-optimal designs in Ωt,a,2 are nearly balanced.
We know that this is not true when a = t−1, but the values of a0(t) given by
this theorem appear to be far larger than necessary. It may be similarly dif-
ficult to prove a general theorem about the breakdown number of D-optimal
designs.

Many authors focus on the derivation of optimal designs for two-colour
microarray experiments, but only a few have investigated optimal designs in
settings with missing values. Latif et al. (2009) introduced the breakdown
number to analyse the robustness of efficient microarray experiments. We
have considered this number analytically, studied connections to graph the-
ory, and investigated designs with optimal breakdown number. We showed
that several D-optimal designs have optimal breakdown number. Although
we have not proved that this holds in general, it seems prudent to recommend
D-optimal block designs, as they appear to provide some safeguard against
missing values.
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