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ABSTRACT 

 

Companies always seek strategies to shorten product development and 

reduce time-to-market. Although new technologies allow for less effort in 

prototyping, physical testing still remains an important step in the product 

development cycle. Well-planned experiments are useful to guide the 

decision-making process. During the design of an experiment one of the 

challenges is to balance limited resources and system constraints to obtain 

useful information. It is common that prototypes are composed of several 

parts, with some parts more difficult to assemble than others. And, usually, 

there is only one piece available of each part type and a large number of 

different setups. Under these conditions, designs with randomization 

restrictions become attractive approaches. Considering this scenario, a new 

and additional criterion to construct split-plot type designs is presented. 

Designs with a small number of setups of the more difficult parts, which are 

especially useful for screening purposes in physical prototype testing, are 

discussed. Theoretical properties of the designs are provided and it is shown 

how to appropriately analyze the data through a real application in testing car 

prototypes. As a tool to practitioners, catalogs of selected 32-run split-split-

plot and split-split-split-plot designs are presented.   

 

KEY WORDS: Fractional factorial design; Hard-to-change factor; Regular 

design; Restricted randomization; Screening design; Two-level design. 
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1. INTRODUCTION 

Competition impels industry to launch innovative products fast. To achieve this goal 

companies search for practices to increase innovation and also shorten the overall product 

development cycle. In many industries products are complex and may require several 

iterations of prototyping and testing. New technologies have contributed to improvements 

in the cost and time of prototyping (see, e.g., Thomke 1998). Despite the increasing use of 

virtual prototypes, physical testing still remains an important step in the product 

development cycle. According to Bisgaard and Steinberg (1997) experimentation is a key 

component in developing new products through prototype testing. Well-planned 

experiments can help reduce the effort in physical prototype testing. 

Experimentation is a basic way to acquire knowledge, which may lead to the 

development and/or improvement of products, processes and services. Moreover, it can 

also provide means to save resources in research and development, to obtain quick 

understanding of systems and to reduce time to launch new products and services to 

market. Thomke (2003) points out that the corporation´s ability towards innovation 

depends upon experimentation, but its cost generally works as a barrier to its use. Hence, 

we face the challenge to develop statistical methodology to acquire information with 

minimum experimental effort.  

One of the most important steps in an experiment is its planning. It is at this point 

that the practitioner deals with the tradeoff among limited resources, system constraints 

and the production of useful data. Thus, it is desirable that researchers develop efficient 

designs. It is common in many applications that the treatments are comprised of a factorial 

structure. The costs and the time pressure to launch new products to market turn 
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unreplicated two-level fractional factorial designs with as few runs as possible a convenient 

and simple design choice for physical prototype testing experiments.  

Prototypes are usually composed of several parts, with only one piece of each part 

type available to carry out the comprehensive testing of a large number of possible setup 

configurations. In addition, some parts may be more difficult to assemble than others. This 

characteristic is fairly common in industrial experimentation and it is called in the literature 

as designs with hard-to-change factors (see, e.g., Ju and Lucas 2002, and Bingham et al. 

2008). Under these conditions, experimental designs with randomization restrictions are an 

attractive and suitable choice to reduce experimental effort. Split-plot type experiments are 

the most common examples. They are useful solutions, and consequently, there has been 

an increase in the number of publications in this area, which can be found, for example, in 

Bailey (1983); Box and Jones (1992); Bisgaard, Fuller and Barrios (1996); Huang, Chen and 

Voelkel (1998), Ju and Lucas (2002); Goos and Vanderbroek (2003); Vivacqua and Bisgaard 

(2004, 2009); Vining, Kowalski and Montgomery (2005); Jones and Goos (2007); Anbari and 

Lucas (2008); Cheng and Tsai (2009); Jones and Nachtsheim (2009). Bisgaard (2000) points 

out that split-plot designs have been used in prototype testing where they are also called 

inner and outer array designs. 

Although interest in experiments with randomization restrictions has been growing, 

most of the cases consider only two degrees of difficult for changing the factor levels (hard-

to-change and easy-to-change factors). Useful experiments for these situations are split-plot 

designs (see, e. g., Box and Jones 1992). There is less attention towards scenarios with  

three or more degrees of level change difficulty. Some few exceptions are Schoen (1999), 

Trinca and Gilmour (2001), Brien and Bailey (2006), Bingham et al. (2008), Jones and Goos 

(2009), and Castillo (2010).  
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Bisgaard (2000) points out that split-plot type designs are more common in practice 

than they appear in engineering literature. Ganju and Lucas (1999) recommended that the 

randomization be planned according to the operational restrictions instead of making it for 

convenience of the analysis procedure. Moreover, it is important to acknowledge that a 

frequent and undesirable feature found in industrial experimentation is the lack of 

consonance between the analysis and the way the experiment is carried out. In other words, 

it is common to find split-plot type designs analyzed as completely randomized designs, as 

pointed out by Bisgaard, Fuller and Barrios (1996). This misunderstanding can cause serious 

consequences in the identification of active effects, and so, less than optimum conditions 

may be chosen to run the process. 

This paper contributes to the design of experiments with different degrees of 

difficulty in the setup. In section 2, the experiment motivating this paper is described. It is 

the assembly of a Baja car prototype. The application involving the Baja car contains all the 

characteristics typically found in experimentation with prototype testing: a severe time 

restriction, only one prototype car and one piece of each part type to perform all different 

assembly configurations, low budget and hard-to-change factors. Considering all these 

features, Section 3 presents a split-split-split-plot (here denoted by split3-plot to simplify 

notation) design for the Baja experiment taking into account that the four parts considered 

have different degrees of assembly difficulty. In the literature there are some criteria to 

choose experimental designs. The most known is maximum resolution (see, e.g., Fries and 

Hunter 1980). However, to better discriminate the designs it is necessary to consider other 

criteria as minimum aberration and clear effects (see Bingham and Sitter 1999a, 1999b, 

2003; Bingham, Schoen and Sitter 2004; Yang et al. 2006, Xu 2009). Here, we introduce an 

additional criterion: minimum number of changes (MNC) at each stratum.  In section 4 a 
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general framework of MNC designs is described. For this aim, the first step is the 

determination of the number of generators for each stratum. Section 5 shows the analysis 

of the Baja experiment. In section 6, minimum aberration MNC designs are cataloged, 

considering sixteen and thirty-two runs, three and four degrees of difficulty, and seven to 

eleven factors.  We highlight that these catalogs may not be unique, which means that other 

non-isomorphic designs may present the same properties. Finally, some conclusions and 

future research are described in section 7. 

 

2. EXAMPLE: BAJA COMPETITION EXPERIMENT 

The Society of Automotive Engineers (SAE) promotes the development of college 

students through car competitions all over the world. Near an upcoming Baja SAE 

Competition, a university team is again faced with the challenge of building its car 

prototype. The goal is to specify a setup of a number of auto parts in the assembly of a Baja 

car (customary based on Beatle chassis). In previous competitions, the choice was made 

considering a series of trial-and-error tests. For the first time, this team is executing a 

planned experiment to optimize resources and guide the decision-making process. The 

objective of the experiment is to maximize the performance of the vehicle on two tests 

carried out on a paved street with an asphalt layer. The first one, called acceleration test, 

evaluates the time that the vehicle takes to cover a distance of 30 meters starting from a 

complete stop. The second one, called velocity test, measures the final velocity reached by 

the Baja at the 100 meters mark. Figure 1 illustrates these two tests. The ideal setup is the 

one that simultaneously provides the maximum velocity at 100 meters mark and the 

minimum time to cover the first 30 meters.  
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Figure 1. Illustration of the acceleration and velocity tests. 

 

Auto parts considered in the experiment are: ceasefire plate, driven pulley, driver 

pulley, and tires. The function of the ceasefire plate is to protect the pilot. From previous 

experience, it is believed that the ceasefire plate has little effect on the performance on the 

acceleration and velocity tests; however the possibility of interactions with the other auto 

parts has never been evaluated. Two different types of ceasefire plates are available for 

testing. Figure 2 illustrates a driven pulley. The cam is responsible to guide the plate of the 

driven pulley when it is in movement. Variations in its angle may provide more or less time 

for the displacement of the plates. The factors related to the driven pulley included in this 

study are: angle of the cam, material of the driven pulley, type and pressure of a spring fixed 

between the cam and the opposite-cam. The factors related to the driver pulley are: 

material of the driver pulley cap; and masses and types of springs of the driver pulley. Also 

two different levels for pressure of the tires are considered. 

The nine factors identified by the team of engineering students are summarized in 

Table 1. Two levels for each factor are chosen by the team but are left undisclosed due to 

confidentiality. There are a total of 512 possible combinations to assemble the Baja if a full 

factorial design is considered. Unfortunately the team only had about a week to perform the 

experiment. In addition to the time constraint, the team has available only one piece of 

 Final velocity  Acceleration time 
 (seconds) 
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each part type. Due to the approach of the competition date, the team reached a consensus 

that would be able to execute a total of 32 runs. 

 

Figure 2. Baja driven pulley. 

 

Table 1. Factors for the Baja competition experiment  

Factor Label Description of the Factor 

A Type of ceasefire plate  

B Driven pulley cam angle  

C  Driven pulley material 

D Driven pulley spring type 

E Driven pulley spring pressure 

F Material of driver pulley cap 

G  Driver pulley mass 

H Driver pulley spring type 

J Tire pressure 

    

Moreover, switching different auto parts is associated with distinct levels of difficulty 

and also distinct times to complete the task. For instance, switching between levels of tire 

pressure (factor J) is a relatively easy operation when compared to switching different driver 

Plate 

Opposite-Cam 

Cam 

Axis 

Lubricating 
bearings 



9 

 

pulley case caps, masses and springs (factors F, G and H), which turns out to be a lot easier 

than assembling a driven pulley (factors  B, C, D and E). A change of the ceasefire plate 

(factor A) requires almost a full disassemble of the prototype and is a very complex and 

time-consuming operation. In summary, the Baja experiment involves nine factors, which 

can be arranged in four groups according to the difficulties in changing their levels, as shown 

in Table 2. The design of the Baja competition experiment is described on the next section. 

 

Table 2. Factors according to their degrees of difficulty in changing their levels 

+ difficult   + easy 

Group 1 Group 2 Group 3 Group 4 

 

Ceasefire plate 

setting (A) 

Driven pulley cam angle (B) Driver pulley cap (F)  

Tire pressure (J) Driven pulley material (C) Driver pulley masses (G) 

Driven pulley spring (D) Driver pulley springs (H) 

Driven pulley spring pressure (E)  

 

3. SELECTING A DESIGN FOR THE BAJA COMPETITION EXPERIMENT 

  This car prototype experiment includes nine two-level factors and thirty-two runs are 

considered a reasonable number to be executed. One alternative is to run a completely 

randomized 29-4 fractional factorial design, choosing high order interaction effects to 

generate four of the nine factors. For example: a design of resolution IV with generators 

F=BCDE; G=ACDE; H=ABDE; J=ABCE (see, for example, Box, Hunter, Hunter, 2005, p. 272) 

might be applied. Since there is only one part of each type, the different prototypes are 

assembled and tested sequentially. Therefore, a completely randomized design requires 

thirty-two complete assemblies and disassemblies of the vehicle.  
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The nine factors are classified in four groups according to a decreasing degree of 

difficulty in changing their levels: one factor in the first group; four factors in the second; 

three in the third and one in the fourth, as shown in Table 2. Operationally, it is more 

rational to execute all runs under the same ceasefire plate (factor A) and then switch the 

other one to carry out the remaining runs. Therefore, a completely randomized design is 

disregarded as a plausible design. Instead, a split3-plot experiment is used.  

Then, we need to choose a set of four generators for the design, which would lead to 

a design with good properties. Some statistical criteria usually used to select a split-plot type 

design are maximum resolution, minimum aberration and clear effects. Here, we introduce 

an additional criterion: minimum number of changes at each stratum.  Due to the 

operational characteristic of the assembly of the prototype and the large number of factors 

to screen, a design with a small number of setups of the more difficult parts is desirable. For 

this aim, the first step is the determination of the number of generators for each stratum. 

We would need more generators associated with the first strata. It is important to note that 

to preserve the split-plot type structure the generators associated with a specific stratum 

should only involves factors from that stratum or previous strata. In the Baja competition 

experiment, there are a total of five factors in the first two strata (one in the first and four 

factors in the second stratum), so, to obtain at least a resolution III design, at most two 

generators should be associated with the second stratum. The generators may be, for 

example, D=AB and E=AC. The other two generators should be assigned to the third 

stratum, for example, G=AF and H=BCF. Therefore, we have a 2 × 24-2× 23-2× 2 split3-plot 

design with two, eight, sixteen and thirty-two changes at each stratum, respectively. This 

design has resolution III and attends the minimum aberration criterion. 
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4. A GENERAL FRAMEWORK 

We now introduce notation for regular two-level split-plot type designs with 

minimum number of changes in each stratum. Suppose there is a total of k factors each at 

two levels and these factors can be divided into s groups according to the degree of 

difficulty in changing their levels. Each group has ki, i = 1, 2, …, s, factors such that . 

The groups of factors are arranged in decreasing order according to the degree of difficulty 

in such a way that the first group is the most difficult to change and the last group is the 

easiest to change.  

Split-plot type experiments involve several strata, leading to different kinds of 

experimental units. The number of strata is the same number of the groups of factors (s). 

Here, we denote the design as a splits-1-plot to simplify notation. The number of 

experimental units in each stratum is equal to the number of treatment changes considered 

in the respective stratum. Furthermore, the total number of runs of the experiment is equal 

to the number of treatment changes in the last stratum.  

Hence we need to distinguish among the number of treatment changes for each 

stratum, and the total number of runs  involved in a single replicate of the 

experiment. In general, in unreplicated experiments,  also represents the number of 

experimental units associated with the i-th stratum and N , the number of experimental 

units associated with the combined design.  

Now suppose that for the first stratum there are k1 factors each at two levels. We 

then use a  fractional factorial design with  treatments. Similarly for the 

second stratum we have k2 factors each at two levels. The combined design used up to the 

second stratum is a  fractional factorial split-plot design with  
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by p. The total number of runs of the complete combined design is

. Note that the same number of 

runs can be obtained, for example, by a  completely randomized fractional factorial 

design or a  fractional factorial split-plot design. 

However, the first design involves only one randomization step, and therefore each 

replicate of the experiment needs   treatment changes. The second has two 
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NNN  21 . So, there are fewer changes associated with the hard-to-change factors, 

which is desirable in practice to reduce experimental effort. Therefore, the notation 

 is employed to emphasize the number of randomization 

steps.   

The combined design can be constructed using regular fractional factorial designs. 

For example, maximum resolution and minimum aberration provide common criteria to 

choose the design generators. Nevertheless, in the presence of factors with different 

degrees of changing difficulty an additional selection criterion is of practical relevance: 

minimum number of changes of the levels of the factors in each stratum. Given the number 
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of strata (s), the task is to determine the number of generators in each stratum that would 

provide the minimum number of changes. The following algorithm describes this task. 

 
ALGORITHM FOR THE DETERMINATION OF # OF GENERATORS AT EACH STRATUM 

INPUT:  

k = # of factors 

N = 2k-p = # of runs 

p = # of generators 

s = # of strata 

= # of factors at stratum i, I = 1, 2, …, s  

. 

Calculate , which represents the number of factors up to stratum i.  

For i = 1 to s by 1 

 iF2log int  

 

End 

      

For i=1 to s-1 by 1 

             

End 

 

ik

1 2
1

, , , : 0 ;
s

s i i
i

k k k k k k k


  



 
1

; 1, ,
i

i j
j

F k i s

 
  

 

ln
int

ln2
iF

j

1

2 1 2 min(2 1 ; )

2 1 2 min( ( 1); )

j j j
i i

j j
i i i

if F then G j p

else if F then G F j p

     

     



14 

 

OUTPUT: 

                          
     = # of generators at stratum i. 

 

The algorithm provides the number of generators for each stratum and the minimum 

number of changes in each stratum is                                         
 
   . 

For the Baja competition experiment:   

k = 9 factors  
N = 32 runs 
p = 4 generators 
s = 4 strata 
k1 =1; k2 =4; k3 =3; k4 =1.  
 

Using the algorithm, we obtain the following number of generators for each stratum: 

p1 =0; p2 =2; p3 =2; p4 =0. Therefore, the MNC design is a 21-0 × 24-2 × 23-2 × 21-0 with two 

changes in the first stratum, eight changes in the second stratum, sixteen changes in the 

third stratum and thirty-two changes in the fourth stratum.  

The algorithm considers designs in which . For example, if  

k = 6 factors  
N = 32 runs 
p = 1 generator 
s = 4 strata 
k1 =1; k2 =1; k3 =1; k4 =3,  

the algorithm returns p1 =0; p2 =0; p3 =1; p4 =0, leading to a 21-0 × 21-0  × 21-1× 23-0 design with 

two changes in the first stratum, four changes in the second stratum, four changes in the 

third stratum and thirty-two changes in the fourth stratum. Since the second and third 

strata have the same number of changes, these two strata represent only one stratum, and, 

in fact, the design reduces to a split2-plot design 2 × 22-1 × 23. We call cases like this as 

degenerated designs.    

 

sNNN  ...21
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5. ANALYSIS OF THE BAJA COMPETITION EXPERIMENT 

We now discuss the analysis of the Baja competition experiment. For this 

experiment, we have executed thirty-two runs according to a  split3-plot 

design with generators D=AB, E=AC, G=AF, H=BCF. The ordinary least squares estimates of 

all possible effects are the same as if the experiment were a completely randomized 

fractional factorial design. Frequently normal probability plots have been used to identify 

active main effects and interactions from unreplicated completely randomized two-level 

fractional factorial designs. However, this tool needs adjustments to analyze data from 

experiment with randomization restrictions as the Baja competition experiment. A 

consequence of the restricted randomization is that not all effects have the same variance.  

Therefore, one alternative to identify active effects is to use normal probability plots, 

keeping in mind that only effects with the same variance should be plotted on the same 

normal or half-normal plot. Therefore, the analysis should be conducted on a stratum-by-

stratum basis.  

An important aspect of the analysis of split-plot type designs is to study the error 

structure of the contrasts. Bisgaard (2000) presents a clear discussion of the standard error 

of contrasts for split-plot designs, including a straightforward rule to identify which effects 

are testable by each of the two error types. Here we use an extension of his results to 

accommodate splits-1-plot designs with several strata, which have as many error types as the 

number of strata (s). 

In a split3-plot design there are four strata. The effects in each stratum have the 

same variance expression, which is different from the variance expression of the effects in 

the other strata. Thus, we divide the effects into groups according to their associated 

2222 2324  
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variances. The correct classification of the effects is crucial. For unreplicated designs, the 

number of effects associated with the first stratum is         and for the stratum i is 

                      

   

   

 

There are 32 runs in the Baja competition experiment and hence 31 degrees of 

freedom. Therefore, there are one, six, eight and sixteen effects associated with the first, 

second, third and fourth stratum, respectively. Since there is only one effect in the first 

stratum, a normal probability plot for this stratum is meaningless. This is the drawback of 

MNC designs: the first strata have few associated effects and in some cases the evaluation 

of active effects for these strata may be impossible. Therefore, such designs are useful when 

the main interest is interaction effects rather than main effects for these strata, as is the 

case of the ceasefire plate (factor A) of the Baja experiment. 

The effect associated with the first stratum is A=BD=CE=FG. The second stratum 

contains the main effects of the factors B, C, D, E + their interactions + interactions of (B, C, 

D, E) × A + their aliases. Thus, the effects B=AD, C=AE, BC=DE=FH, D=AB, E=AC and ABC=GH 

are associated with the second stratum and have the same variance, but different from the 

variance of A. Figures 3(a) and 3(b) show half-normal plots of these effects for acceleration 

time and velocity, respectively. The driven pulley material (Factor C) seems to be an active 

effect on the acceleration time while the driven pulley spring pressure (Factor E) for the 

velocity.  

The main effects of factors (F, G, H) + interactions of these factors + interactions (F, 

G, H) x (A, B, C, D, F) + their aliases are evaluated in group three. Figures 3(c) and 3(d) show 

half-normal plots for the third stratum. Interaction between driven pulley material and 

driver pulley masses (C×G) is a common active effect for acceleration time and velocity. 
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Finally, the effects of the factor J + interactions (A, B, C, D, E, F, G, H) × J + their aliases are 

evaluated in group four. Figures 3(e) and 3(f) show half-normal plots for this stratum. 

(a) (b) 

(c) (d) 

 
(e) 

 
(f) 

Figure 3. Half-normal plots of effects of (a) second stratum for acceleration time, (b) second 
stratum for velocity, (c) third stratum for acceleration time, (d) third stratum for velocity,  

(e) fourth stratum for acceleration time, (f) fourth stratum for velocity . 
 

 Recommended levels of the factors are identified through an analysis of interaction 

plots of possible active effects. Table 3 summarizes these findings.  Note that the design has 
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resolution III and to reach these results, we assume that some interactions are negligible. 

So, we propose confirmatory runs before the choice of the prototype for the competition. It 

is worth noting that, using these recommended levels, the team obtained the best 

performance ever achieved since started participating in the Baja competition.  

Table 3. Recommended levels 

Factor Description of the factor Recommendation 

A Ceasefire plate setting -1 or +1 

B Driven pulley cam angle -1 

C Driven pulley material -1 

D Driven pulley spring -1 

E Driven pulley pressure +1 

F Drive pulley case cap -1 or +1 

G Drive pulley masses -1 

H Drive pulley springs -1 

J Tire pressure -1 

 

6. CATALOGS OF DESIGNS WITH MINIMUM NUMBER OF CHANGES 

Catalogs of selected 32-run split2-plot and split3-plot designs with minimum number 

of changes at each stratum from seven up to eleven factors are presented, respectively, in 

Tables 4 and 5. In each table, information as the number of factors, the number of the 

generators and the number of changes in each stratum are included in the first three 

columns. The next columns show the generators in each stratum employing the codes of 

Table 6, according to the notation used in Chen, Sun and Wu (1993).  Additionally, the word 

pattern length (WLP), the resolution (R), the number of clear main effects (C1) and the 

number of clear two-factor interactions (C2) of the designs are shown in the last four 

columns. The selected designs in Tables 4 and 5 have the properties:      (at least one 

generator in the first stratum) and  N1 < N2 < < Ns
. The design marked by * is used in the 

Baja example and is included in Table 5 for illustration purpose.  
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Table 4. Minimum number of changes 32-run two-level split2-plot designs 

  
# 

factors  

# of  
generators 

# 
changes  

Design WLP 
      

# 1 2 3 1 2 3 1 2 3 stratum 1 stratum 2 stratum 3 3 4 5 6 7 8 9 10 R C1 C2 

7 3 1 3 1 0 1 4 8 32 3 
       

     
29 

     

1 0 1 1 
    3 4 18 

7 3 2 2 1 1 0 4 8 32 3 
     5 

     
  

     

2 1 0 0 0 
   3 2 11 

7 3 3 1 1 1 0 4 16 32 3 
     13 

     
  

     

1 1 1 0 0 
   3 4 12 

7 4 2 1 1 1 0 8 16 32 7 
     11 

     
  

     

0 3 0 0 0 
   4 7 6 

7 5 1 1 2 0 0 8 16 32 3 5                                 2 1 0 0 0       3 2 11 

8 3 1 4 1 0 2 4 8 32 3 
       

     
13 22 

    

1 2 3 1 0 
   3 5 13 

8 3 2 3 1 1 1 4 8 32 3 
     5 

     
30 

     

2 1 2 2 0 
   3 3 18 

8 3 3 2 1 2 0 4 8 32 3 
     5 6 

    
  

     

4 3 0 0 0 
   3 2 13 

8 3 4 1 1 2 0 4 16 32 3 
     5 14 

    
  

     

2 3 2 0 0 
   3 3 9 

8 4 3 1 1 2 0 8 16 32 7 
     11 13 

    
  

     

0 7 0 0 0 
   4 8 7 

8 5 2 1 2 1 0 8 16 32 3 5 
    14 

     
  

     

2 3 2 0 0 
   3 3 9 

8 6 1 1 3 0 0 8 16 32 3 5 6                               4 3 0 0 0       3 2 13 

9 3 1 5 1 0 3 4 8 32 3 
       

     
13 21 26 

   

1 5 6 2 1 
   3 6 9 

9 3 2 4 1 1 2 4 8 32 3 
     5 

     
14 25 

    

2 4 6 2 0 1 
  3 4 11 

9 3 3 3 1 2 1 4 8 32 3 
     5 6 

    
31 

     

4 3 3 4 0 0 1 
 3 3 21 

9 3 4 2 1 3 0 4 8 32 3 
     5 6 7 

   
  

     

7 7 0 0 1 
   3 2 15 

9 3 5 1 1 3 0 4 16 32 3 
     5 9 14 

   
  

     

3 7 4 0 1 
   3 2 9 

9 4 4 1 1 3 0 8 16 32 7 
     11 13 14 

   
  

     

0 14 0 0 0 1 
  4 9 8 

9 5 3 1 2 2 0 8 16 32 3 5 
    9 14 

    
  

     

3 7 4 0 1 
   3 2 9 

9 6 2 1 3 1 0 8 16 32 3 5 6 
   15 

     
  

     

4 6 4 0 0 1 
  3 3 8 

9 7 1 1 4 0 0 8 16 32 3 5 6 7                             7 7 0 0 1       3 2 15 

10 3 1 6 1 0 4 4 8 32 3 
       

     
13 21 25 30 

  

1 10 11 4 3 1 1 
 3 7 8 

10 3 2 5 1 1 3 4 8 32 3 
     5 

     
14 22 25 

   

2 8 12 4 2 3 
  3 5 4 

10 3 3 4 1 2 2 4 8 32 3 
     5 6 

    
9 30 

    

5 6 7 8 3 1 1 
 3 2 13 

10 3 4 3 1 3 1 4 8 32 3 
     5 6 7 

   
25 

     

7 8 3 4 5 3 1 
 3 3 18 

10 3 5 2 1 3 1 4 16 32 3 
     5 9 14 

   
31 

     

3 8 11 4 1 3 1 
 3 3 12 

10 3 6 1 1 4 0 4 16 32 3 
     5 9 14 15 

  
  

     

4 14 8 0 4 1 
  3 1 9 

10 4 4 2 1 3 1 8 16 32 7 
     11 13 14 

   
19 

     

0 18 0 8 0 5 
  4 10 0 

10 4 5 1 1 4 0 8 16 32 3 
     5 9 14 15 

  
  

     

4 14 8 0 4 1 
  3 1 9 

10 5 3 2 2 2 1 8 16 32 3 5 
    9 14 

    
31 

     

3 8 11 4 1 3 1 
 3 3 12 

10 5 4 1 2 3 0 8 16 32 3 5 
    9 14 15 

   
  

     

4 14 8 0 4 1 
  3 1 9 

10 6 2 2 3 1 1 8 16 32 3 5 6 
   9 

     
30 

     

5 6 7 8 3 1 1 
 3 2 13 

10 6 3 1 3 2 0 8 16 32 3 5 6 
   9 14 

    
  

     

6 10 8 4 2 1 
  3 1 9 

10 7 1 2 4 0 1 8 16 32 3 5 6 7 
    

     
25 

     

7 8 3 4 5 3 1 
 3 3 18 

10 7 2 1 4 1 0 8 16 32 3 5 6 7     9                       8 10 4 4 4 1     3 0 0 

11 3 1 7 1 0 5 4 8 32 3 
       

     
5 14 22 25 31 

 

2 14 22 8 6 9 2 
 3 6 0 

11 3 2 6 1 1 4 4 8 32 3 
     5 

     
14 22 25 31 

  

2 14 22 8 6 9 2 
 3 6 0 

11 3 3 5 1 2 3 4 8 32 3 
     5 6 

    
15 23 25 

   

4 14 16 8 12 9 
  3 5 4 

11 3 4 4 1 3 2 4 8 32 3 
     5 6 7 

   
9 26 

    

8 12 10 12 12 7 2 
 3 2 10 

11 3 5 3 1 3 2 4 16 32 3 
     5 9 14 

   
22 26 

    

3 16 13 12 13 3 3 
 3 4 4 

11 3 6 2 1 4 1 4 16 32 3 
     5 9 14 15 

  
22 

     

4 18 12 8 12 5 4 
 3 2 2 

11 3 7 1 1 5 0 4 16 32 3 
     5 6 9 14 15 

 
  

     

8 18 16 8 8 5 
  3 1 10 

11 4 4 3 1 3 2 8 16 32 7 
     11 13 14 

   
19 21 

    

0 26 0 24 0 13 
  4 11 0 

11 4 5 2 1 4 1 8 16 32 3 
     5 9 14 15 

  
22 

     

4 18 12 8 12 5 4 
 3 2 2 

11 4 6 1 1 5 0 8 16 32 3 
     5 6 9 14 15 

 
  

     

8 18 16 8 8 5 0 
 3 1 10 

11 5 3 3 2 2 2 8 16 32 3 5 
    9 14 

    
22 26 

    

3 16 13 12 13 3 3 
 3 4 4 

11 5 4 2 2 3 1 8 16 32 3 5 
    9 14 15 

   
22 

     

4 18 12 8 12 5 4 
 3 2 2 

11 5 5 1 2 4 0 8 16 32 3 5 
    6 9 14 15 

  
  

     

8 18 16 8 8 5 0 
 3 1 10 

11 6 2 3 3 1 2 8 16 32 3 5 6 
   15 

     
23 25 

    

4 14 16 8 12 9 
  3 5 4 

11 6 3 2 3 2 1 8 16 32 3 5 6 
   9 14 

    
31 

     

6 12 16 12 6 7 4 
 3 2 10 

11 6 4 1 3 3 0 8 16 32 3 5 6 
   9 14 15 

   
  

     

8 18 16 8 8 5 0 
 3 1 10 

11 7 1 3 4 0 2 8 16 32 3 5 6 7 
    

     
9 26 

    

8 12 10 12 12 7 2 
 3 2 10 

11 7 2 2 4 1 1 8 16 32 3 5 6 7 
  9 

     
26 

     

8 12 10 12 12 7 2 
 3 2 10 

11 7 3 1 4 2 0 8 16 32 3 5 6 7 
  9 10 

    
  

     

10 16 12 12 10 3 
  3 1 10 

11 9 1 1 6 0 0 8 16 32 3 5 6 9 14 15                         8 18 16 8 8 5 0   3 1 10 
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Table 5. Minimum number of changes 32-run two-level split3-plot designs 

  
# factors 
for stage 

# 
generators 
for stage 

# changes 
for stage 

Design WLP 

      

#  1 2 3 4 1 2 3 4 1 2 3 4 stratum 1 stratum 2 stratum 3 stratum 4 3 4 5 6 7 8 9 10 R C1 C2 

7 3 1 2 1 1 0 1 0 4 8 16 32 3 
        

13 
         

1 1 1 0 
    

3 4 12 

7 3 2 1 1 1 1 0 0 4 8 16 32 3 
   

5 
              

2 1 0 

     
3 2 11 

7 4 1 1 1 2 0 0 0 4 8 16 32 3 
   

5 
              

2 1 0 

     
3 2 11 

8 3 1 3 1 1 0 2 0 4 8 16 32 3 
        

5 14 
        

2 3 2 0 0 
   

3 3 9 

8 3 2 2 1 1 1 1 0 4 8 16 32 3 
   

5 
    

14 
         

2 3 2 0 0 
   

3 3 9 

8 3 3 1 1 1 2 0 0 4 8 16 32 3 
   

5 6 
             

4 3 0 0 0 
   

3 2 13 

9* 1 4 3 1 0 2 2 0 2 8 16 32     3 5    9 14         3 7 4 0 1    3 2 9 

9 3 1 4 1 1 0 3 0 4 8 16 32 3 
        

5 9 14 
       

3 7 4 0 1 
   

3 2 9 

9 3 2 3 1 1 1 2 0 4 8 16 32 3 
   

5 
    

9 14 
        

3 7 4 0 1 
   

3 2 9 

9 3 3 2 1 1 2 1 0 4 8 16 32 3 
   

5 6 
   

15 
         

4 6 4 0 0 1 
  

3 3 8 

9 3 4 1 1 1 3 0 0 4 8 16 32 3 
   

5 6 7 
            

7 7 0 0 1 
   

3 2 15 

10 3 1 4 2 1 0 3 1 4 8 16 32 3 
        

5 9 14 
  

31 
    

3 8 11 4 1 3 1 
 

3 3 12 

10 3 1 5 1 1 0 4 0 4 8 16 32 3 
        

5 9 14 15 
      

4 14 8 0 4 1 
  

3 1 9 

10 3 2 3 2 1 1 2 1 4 8 16 32 3 
   

5 
    

9 14 
   

31 
    

3 8 11 4 1 3 1 
 

3 3 12 

10 3 2 4 1 1 1 3 0 4 8 16 32 3 
   

5 
    

9 14 15 
       

4 14 8 0 4 1 
  

3 1 9 

10 3 3 2 2 1 2 1 1 4 8 16 32 3 
   

5 6 
   

9 
    

30 
    

5 6 7 8 3 1 1 
 

3 2 13 

10 3 3 3 1 1 2 2 0 4 8 16 32 3 
   

5 6 
   

9 14 
        

6 10 8 4 2 1 
  

3 1 9 

10 3 4 1 2 1 3 0 1 4 8 16 32 3 
   

5 6 7 
       

25 
    

7 8 3 4 5 3 1 
 

3 3 18 

10 3 4 2 1 1 3 1 0 4 8 16 32 3 
   

5 6 7 
  

9 
         

8 10 4 4 4 1 
  

3 1 9 

11 3 1 4 3 1 0 3 2 4 8 16 32 3 
        

5 9 14 
  

22 26 
   

3 16 13 12 13 3 3 
 

3 4 4 

11 3 1 5 2 1 0 4 1 4 8 16 32 3 
        

5 9 14 15 
 

22 
    

4 18 12 8 12 5 4 
 

3 2 2 

11 3 1 6 1 1 0 5 0 4 8 16 32 3 
        

5 6 9 14 15 
     

8 18 16 8 8 5 
  

3 1 10 

11 3 2 3 3 1 1 2 2 4 8 16 32 3 
   

5 
    

9 14 
   

22 26 
   

3 16 13 12 13 3 3 
 

3 4 4 

11 3 2 4 2 1 1 3 1 4 8 16 32 3 
   

5 
    

9 14 15 
  

22 
    

4 18 12 8 12 5 4 
 

3 2 2 

11 3 2 5 1 1 1 4 0 4 8 16 32 3 
   

5 
    

6 9 14 15 
      

8 18 16 8 8 5 
  

3 1 10 

11 3 3 2 3 1 2 1 2 4 8 16 32 3 
   

5 6 
   

15 
    

23 25 
   

4 14 16 8 12 9 
  

3 5 4 

11 3 3 3 2 1 2 2 1 4 8 16 32 3 
   

5 6 
   

9 14 
   

31 
    

6 12 16 12 6 7 4 
 

3 2 10 

11 3 3 4 1 1 2 3 0 4 8 16 32 3 
   

5 6 
   

9 14 15 
       

8 18 16 8 8 5 
  

3 1 10 

11 3 4 1 3 1 3 0 2 4 8 16 32 3 
   

5 6 7 
       

9 26 
   

8 12 10 12 12 7 2 
 

3 2 10 

11 3 4 2 2 1 3 1 1 4 8 16 32 3 
   

5 6 7 
  

9 
    

26 
    

8 12 10 12 12 7 2 
 

3 2 10 

11 3 4 3 1 1 3 2 0 4 8 16 32 3 
   

5 6 7 
  

9 10 
        

10 16 12 12 10 3 
  

3 1 10 

 
 

Table 6. Matrix for 16 and 32-run designs used to build Tables 4 and 5 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

                17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 NOTE: The independent columns are in bold and numbered as 1, 2, 4, 8 and 16.  

The 16-run designs use the first four rows; the 32-run designs use the five rows. 
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7. CONCLUSION 

In physical prototype testing experiments with factors which levels have different 

degrees of difficulty to change, split-plot type designs represent a cost-effective method for 

the generation of information to guide the decision-making process. The basic steps for 

planning these experiments are (1) identification of the factors and the corresponding 

degrees of difficulty to change their levels, (2) grouping of the factors with similar degrees of 

difficulty, and (3) choice of a convenient design. The analysis should be conducted on a 

stratum-by-stratum basis. 
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