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Abstract. Let G be a reductive affine algebraic group, and let X
be an affine algebraic G-variety. We establish a (poly)stability cri-
terion for points x ∈ X in terms of intrinsically defined closed sub-
groups Hx of G, and relate it with the numerical criterion of Mum-
ford, and with Richardson and Bate-Martin-Röhrle criteria, in the
case X = GN . Our criterion builds on a close analogue of a theorem
of Mundet and Schmitt on polystability and allows the generaliza-
tion to the algebraic group setting of results of Johnson-Millson and
Sikora about complex representation varieties of finitely presented
groups. By well established results, it also provides a restatement
of the non-abelian Hodge theorem in terms of stability notions.

1. Introduction and Main Results

Let G be a connected complex affine reductive group, and Γ a finitely
presented group. The G-representation variety of Γ, defined as X :=
Hom(Γ, G), is a complex affine G-variety under the canonical conjuga-
tion action of G on X. In the context of Geometric Invariant Theory,
and building on earlier work by Johnson-Millson, Richardson and oth-
ers (see [JM87, Ric88]), a recent article of Sikora [Sik09] establishes a
close relationship between stability properties of a point x ∈ X and the
property that the image of the representation, x(Γ) ⊂ G, is irreducible
or completely reducible as a subgroup of G.

In this article, we generalize these relationships to a bigger class of
affine G-varieties, where G is an affine reductive group, not necessarily
irreducible, defined over an algebraically closed field k, of characteristic
zero.

Besides its intrinsic relevance as stability criteria, the constructions
examined here perfectly agree with other known results for certain spe-
cific classes of G-varieties. For example, the non-abelian Hodge theo-
rem (see [GPGMiR09b] or [Wel08]), in the case of complex reductive
groups, can be restated as a correspondence between stable points in
distinct (however homeomorphic) varieties. Also, from our set up, one
can recover the Mundet-Schmitt criterion for polystability [MiR10].

To describe our main results, let Y (G) denote the set of one param-
eter subgroups (1PS for short) of G, that is, homomorphisms λ from
the multiplicative group k× to G. Given a 1PS λ ∈ Y (G), and g ∈ G,
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the morphism t 7→ λ(t)gλ(t)−1 may or may not extend to k (as a mor-
phism of affine varieties). In case there is such an extension, we say
that limt→0 λ(t)gλ(t)

−1 exists. It is known that

P (λ) = {g ∈ G : lim
t→0

λ(t)gλ(t)−1 exists}

is always a parabolic subgroup of G.
Let X be an affine variety with an action of G, that is, an affine G-

variety. Recall that a point x ∈ X is called polystable if its G-orbit is
closed. Let Gx denote the stabilizer of x ∈ X, and consider the normal
subgroup

GX :=
∩
x∈X

Gx ⊂ G.

A point x ∈ X will be called stable if it is polystable and the quotient
Gx/GX is finite. Note that there are many slightly different notions of
stability in the literature (see [MFK94, New78, Ric88]), but all of them
coincide when GX is finite. We also define x to be equicentral if x is
polystable and Gx = GX .

We denote by Λx the subset of Y (G) consisting of 1PS λ such that
limt→0 λ(t) ·x exists (where g ·x denotes the action of g ∈ G on x ∈ X,
see Section 3 for details). We say that a subset Λ ⊂ Y (G) is symmetric
if given any λ ∈ Λ, there is another 1PS λ′ ∈ Λ such that P (λ)∩P (λ′)
is a Levi subgroup of both P (λ) and P (λ′). Following the constructions
in Mundet-Schmitt [MiR10], one can show (See Theorem 4.9).

Theorem 1.1. Let G be a reductive algebraic group and X be an affine
G-variety, both defined over k. Then, a point x ∈ X is polystable if
and only if Λx is symmetric.

Consider now another natural construction. Given x ∈ X, define the
closed subgroup of G,

Hx :=
∩
λ∈Λx

P (λ).

Recall that a closed subgroup H of G is called irreducible if it is not
contained in a proper parabolic subgroup of G, and it is called com-
pletely reducible if, for any inclusion of H in a parabolic P of G, there
is a Levi subgroup L of P such that H ⊂ L. These natural notions,
generalizing the well known definitions for the general linear group (see
[Ser05]), can be extended to algebraic groups which are not necessarily
connected (see Section 2, below).

Our main result applies to certain affine G-varieties where the exis-
tence of limits under one parameter subgroups in X is related to the
existence of limits under conjugation in G. More precisely, consider
the following condition for every pair x ∈ X and λ ∈ Y (G):

(1.1) if Hx ⊂ P (λ), then λ ∈ Λx.
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The main result can be presented as follows (see Theorems 4.16 and
4.19). Let Z(G) denote the center of G.

Theorem 1.2. Let G be reductive and X be an affine G-variety, as
above. Suppose condition (1.1) is satisfied. Then:

(1) the subgroup Hx is completely reducible if and only if x is polystable;
(2) if GX = Z(G), then Hx = G if and only if x is stable.

The proof of (1) above follows similar arguments in Mundet-Schmitt
(see[MiR10]), which in turn rely on several techniques available, such as
the strengthening of Hilbert-Mumford criterion by Birkes/Richardson
and Kempf [Kem78, Bir71]. The proof of (2) uses the notion of 1PS
stability: a point x is called 1PS stable if λ ∈ Λx implies λ ∈ Y (GX) ⊂
Y (G). Although this looks more general than the notion of stability
above, we show that the two definitions agree (see Theorem 3.10).

Suppose now X is a closed G-invariant subvariety of GN , where G
acts on GN diagonally by conjugation. For a given x ∈ X, let ϕx be the
subgroup of G generated by the elements f1(x), ..., fN(x) ∈ G, where
f = (f1, ..., fN) : X ↪→ GN is the natural inclusion. For this class
of G-varieties X, condition (1.1) is automatically satisfied (although
GX ̸= Z(G) in general).

Our setup provides another approach to results of Richardson (see
[Ric88, Theorems 3.6 and 4.1]), Martin and Bate-Martin-Röhrle (see
[Mar03, BMR05, Proposition 2.13 and Corollary 3.7]) relating stability
(resp. polystability) of x ∈ X with irreducibility (resp. complete re-
ducibility) of ϕx. Together with a corresponding relation for equicentral
points of X, they can be stated as follows (see Theorem 5.5). We say
that a subgroup H ⊂ G is isotropic if it is completely reducible and its
centralizer equals Z(G). An isotropic subgroup is always irreducible,
but not conversely (see Section A.2 in the Appendix).

Theorem 1.3. Let X be a closed G-invariant subvariety of GN , as
above. Then,

(1) A point x is stable (resp. polystable) if and only if ϕx is an
irreducible (resp. completely reducible) subgroup of G.

(2) If GX = Z(G), then x is equicentral if and only if ϕx is isotropic.

This result also generalizes to the algebraic group setting the recent
result of Sikora ([Sik09, Thm. 29, Cor. 31]), as representation varieties
over C of finitely generated groups are a particular class of closed G-
invariant subvarieties of GN . As a corollary of Theorems 1.2 and 1.3,
we can write the relation between Hx and ϕx as follows:

Theorem 1.4. Let X be a closed G-invariant subvariety of GN as
above. Then Hx is completely reducible if and only if ϕx is completely
reducible. Moreover, assuming GX = Z(G), then Hx = G if and only
if ϕx is irreducible.
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Another consequence of Theorem 1.3 is that we can restate one form
of the non-abelian Hodge theorem (see, for example [GPGMiR09b]) as
a relation between stability of G-Higgs bundles over a Riemann surface
and stability of representations in the character variety of its funda-
mental group, in a framework also valid for reductive groups which are
not necessarily connected.

The article is organized as follows. In section 2, after introducing
the basic definitions, we describe some properties of irreducible and
completely reducible subgroups of a given affine reductive group, and
in section 3, we provide the stability definitions we will need, present
relations between them and prove the relevant versions of the Hilbert-
Mumford numerical criterion. In section 4, we prove our main results,
and re-derive the Mundet-Schmitt criterion for polystability. We also
analyse condition (1.1) showing that it holds for the adjoint represen-
tation of G (in the complex case). In section 5, we apply our results to
the setting of closed subvarieties of GN and of G-representation vari-
eties of finitely presented groups, adding to the work of Richardson and
Sikora alluded above. We also briefly recall G-Higgs bundles theory (in
the complex case) in order to present a restatement of the non-abelian
Hodge theorem.

In the appendix, we collect some results that are useful in comparing
the distinct notions of irreducibility and related properties that appear
in the literature.

2. Irreducible and Completely Reducible Subgroups

We start by recalling some important definitions and properties of
the main objects considered, and by fixing terminology.

Let G be an affine algebraic group (not necessarily irreducible) over
an algebraically closed field k of characteristic zero, and let G0 be the
connected component of the unit element of G. The unipotent radical
of G, denoted by Ru(G), is the maximal connected unipotent normal
subgroup of G.

An affine algebraic groupG is called reductive if the unipotent radical
of G0 is the trivial group1. In the representation theory of reductive
groups, parabolic and Levi subgroups play an important role. Recall
that a parabolic subgroup P of G is a closed subgroup such that the
coset space G/P is a complete variety and a Levi subgroup of G is a
connected subgroup isomorphic to G/Ru(G).

Note that, by definition, any parabolic subgroup P of G is identified
with the semidirect product P = LnRu(P ), where L is a Levi subgroup
of P .

1Note that, contrary to many references, we do not assume that a reductive
group is itself connected.
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We will use the notation Z(H) for the center of a group H, and when
H is a subgroup of G, ZG(H) will denote the centralizer of H in G.

2.1. Parabolic and one parameter subgroups. In practice, we
need another characterization of parabolic subgroups for which we re-
call the definition of one-parameter subgroup. Let k× be the multi-
plicative group of invertible elements of the field k.

A morphism of algebraic groups λ : k× → G is called a one parameter
subgroup (1PS), or cocharacter of G. The trivial 1PS is the morphism
given by λ(t) = e, ∀t ∈ k×, where e ∈ G is the identity element. The
set of cocharacters of G will be denoted by Y (G).

Definition 2.1. Given a 1PS λ ∈ Y (G) and an element g ∈ G, consider
the morphism λg : k

× → G, defined by

λg(t) := λ(t)gλ(t)−1, t ∈ k×.

We say that limt→0 λg(t) exists when λg can be extended to a morphism
λ̃g : k → G (that is, we have λg = λ̃g ◦ i, for the obvious inclusion
i : k× → k). In this case we write

λ+g = lim
t→0

λg(t)

for the element λ̃g(0) ∈ G, which is uniquely defined.

We follow the convention that, whenever a formula with limits is
written, we are assuming that they exist.

Definition 2.2. Given a 1PS λ ∈ Y (G), define the following subsets
of G:

P (λ) :=
{
g ∈ G : λ+g exists

}
U(λ) :=

{
g ∈ G : λ+g = e

}
L(λ) :=

{
g ∈ G : λ+g = g

}
.

We call P (λ) a R-parabolic subgroup of G, U(λ) a R-unipotent sub-
group of P (λ) and L(λ) a R-Levi subgroup of P (λ).

The terminology R-parabolic and R-Levi was introduced in [BMR05]
referring to its relevance in the work of Richardson. For a 1PS λ ∈
Y (G), λ(k×) denotes the subgroup λ(k×) := {λ(t) : t ∈ k×} ⊂ G.
When G is reductive, the following is well known.

Proposition 2.3. Let G be an affine reductive group and let λ ∈ Y (G).
Then,

(i) P (λ) is a parabolic subgroup of G, L(λ) is a Levi subgroup of
P (λ), and U(λ) is the unipotent radical of P (λ); in particular P (λ) =
L(λ)n U(λ).

(ii) L(λ) coincides with the centralizer of the subgroup λ(k×).
(iii) In the case that G is connected, then all parabolic subgroups of

G are R-parabolic subgroups.
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Proof. See [MFK94] or [Spr09, Prop. 8.4.5 and Thm. 13.4.2]. �
Note that P (λ) = G if and only if λ(k×) is contained in the center

of G, Z(G). To rule out this trivial case, the parabolics P (λ) ̸= G will
be called proper R-parabolics.

2.2. Irreducible and completely reducible subgroups. Assume,
from now on that G is an affine reductive group.

Definition 2.4. Let H be a subgroup of G.
(1) We say that H ⊂ G is irreducible (in G) if H is not contained

in any proper R-parabolic subgroup of G.
(2) We say that H ⊂ G is completely reducible (in G) if for every

R-parabolic subgroup P which contains H there is a R-Levi
subgroup L of P , such that H ⊂ L.

Note that in particular, an irreducible subgroup is completely re-
ducible. These definitions are given in [BMR05, §6] and coincide with
the original definition of Serre ([Ser05]), when G is connected; they
were introduced to generalize standard methods in the representation
theory of GL(V ) to arbitrary reductive algebraic groups.

Remark 2.5. Observe that a subgroup H ⊂ G is irreducible (resp. com-
pletely reducible) if and only if H, its Zariski closure in G, is irreducible
(resp. completely reducible). Indeed, this easily follows from the fact
that any R-parabolic subgroup of G is Zariski closed in G.

Here, and except when explicitly mentioned otherwise, all topological
notions on algebraic varieties will refer to the Zariski topology.

3. Stability Notions for Affine G-varieties

In this section we study the natural notions of (poly)stability that
turn out to be most useful for the statement of Theorem 1.2. Here, X
denotes a G-variety and G an affine reductive group (neither of which
is assumed to be irreducible).

3.1. Stability, proper stability and polystability. The structure
of G-variety on X assumes the existence of a morphism satisfying the
usual axioms for an action

ψ : G×X → X

and will be denoted by (g, x) 7→ g · x, (g ∈ G, x ∈ X) where no
confusion arises. The orbit space X/G is generally not an algebraic
set. However, since G is reductive, there exists a categorical quotient
X//G which is an affine algebraic variety. In fact, this quotient is also
the so-called affine quotient defined as the spectrum of the ring k[X]G

of regular G-invariants inside the coordinate ring k[X]. It can also be
shown that the affine quotient parametrizes the set of closed G-orbits
in X.
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For a given point x ∈ X, denote by Ox or by G · x its G-orbit, and
by Gx its stabilizer in G.

Definition 3.1. The closed subgroup GX :=
∩

x∈X Gx ⊂ G will be
called the center of the action of G on X, or simply the center of X
when the action is understood. When GX is not trivial, it makes sense
to consider the normalized stabilizer, defined as NGx := Gx/GX .

Remark 3.2. Note that for any G-variety, GX is a normal subgroup of
G. Indeed, for any x ∈ X the stabilizers verify gGxg

−1 = Gg·x for all
g ∈ G.

Let Ĝ = G/GX denote the space of (left) cosets of GX , which is again
an affine reductive group (see Borel [Bor91, 6.8 Theorem]). Then, the
G-variety X has also the structure of a Ĝ-variety, since the action ψ
factors through a map (henceforth called the reduced action)

ψ̂ : Ĝ×X → X

defined by (gGX , x) 7→ g · x (well defined since GX is normal).
It is clear that, as affine algebraic varieties, both quotients X//G and

X//Ĝ are isomorphic. This idea has been explored in affine GIT, and
because of this, one usually considers the reduced action ψ̂.

In contrast, in this article, we want to consider the original action ψ
because it turns out to be more adapted to relate with the concept of
irreducibility in reductive groups.

More abstractly, this construction can be seen as a correspondence
from the category of G-spaces to the category of G/GX-spaces, and we
want to understand how stability behaves under this correspondence.
For this, we will use the following definitions of stability closely related
to the original definitions given in [MFK94]. Recall that we are using
the Zariski topology.

Definition 3.3. Let X be a G-variety and x be a point in X.
(1) We say that x is polystable if Ox = G · x is closed;
(2) We say that x is properly stable if it is polystable and Gx is

finite;
(3) We say that x is stable if it is polystable and NGx is finite;
(4) We say that x is equicentral if it is polystable and NGx is trivial,

that is Gx = GX .

Remark 3.4. As far as we known, the definition of stability in (3) was
introduced by Richardson ([Ric88]) and coincides with proper stability
(as defined by Mumford), when GX is finite. Note also that, if either
x ∈ X is properly stable, or x is equicentral, then x is stable.

Let X be an affine G-variety, and consider, for all x ∈ X, the orbit
morphism, defined as

ψx : G→ X, g 7→ g · x.
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It is clear that ψx is an affine morphism and that its image ψx(G) co-
incides with the orbit of x, G · x ⊂ X. In the same way as proper
stability is equivalent to properness of the orbit morphism (see New-
stead [New78, Lemma 3.17]), stability is equivalent to properness of
the reduced orbit morphism.

Proposition 3.5. Let X be an affine G-variety. Then, x ∈ X is
stable if and only if the reduced orbit morphism ψ̂x : G/GX → X,
ψ̂x(gGX) := g · x is proper.

Proof. It is clear that ψ̂x is well defined. If ψ̂x is proper, then the
image of ψ̂x is closed. First we show that ψ̂x(G/GX) = G · x, the
inclusion ψ̂x(G/GX) ⊂ G · x being clear. Note that ψ̂x factors through
the canonical projection πx : G/GX → G/Gx so that we also have
G · x = (G/Gx) · x = ψ̂x(G/Gx) ⊂ ψ̂x(G/GX). So the image of ψ̂x

coincides with the orbit through x, and we have concluded that the
orbit is closed. Moreover, since every proper map is a finite morphism
onto its image, ψ̂x : G/GX → G · x is a finite morphism. Its fibers are
the stabilizer of the reduced action, that is, (G/GX)x. This means that
(G/GX)x = Gx/GX is finite, and we have concluded that x is stable.

Conversely, if G · x is closed and Gx/GX is finite, then the induced
morphism ψ̂x : G/GX → G · x is finite, because it has finite fibers (see
[New78, Lemma 3.17]), and therefore it is proper. �

3.2. The Numerical Criterion. The following notions extend, to
any G-variety X, the definitions given before for the action of G on
itself under conjugation (Definition 2.1).

Definition 3.6. Given a 1PS λ ∈ Y (G) and a point x ∈ X, consider
the morphism λx : k× → X, defined by

λx(t) := λ(t) · x, t ∈ k×.

It will be called the λ-ray through x. We say that limt→0 λx(t) exists
when λx can be extended to a morphism λ̄x : k → X , and write

λ+x = lim
t→0

λx(t)

for the unique element λ̄x(0) ∈ X. As before, whenever a formula with
limits is written, we are assuming that they exist.

Consider the natural map π∗ : Y (G) → Y (G/GX) defined by com-
position with the canonical projection π : G → G/GX . The following
are easily deduced properties of λ-rays.

Proposition 3.7. Let X, Y be affine G-varieties.
(i) Let f : X → Y be a G-morphism (ie, a morphism that is G-

equivariant), x ∈ X, and λ ∈ Y (G). Then, the λ-rays in X and Y
(through x and f(x), respectively) are related by λf(x) = f ◦ λx.
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(ii) If f : X → Y is an inclusion of affine G-varieties, λ+x exists in
X if and only if λ+(f(x)) exists in Y .

(iii) We can define a λ-ray through x, for each λ ∈ Y (G/GX), since
GX ⊂ Gx for all x ∈ X. Then, µ+x exists, µ ∈ Y (G), if and only if
(π∗µ)

+x exists.

Using these notions, the numerical criterion of Mumford ([MFK94])
can be rephrased in the following way.

Theorem 3.8. Let X be a G-variety and x ∈ X. Then, x is properly
stable for the G/GX action if and only if for every non trivial 1PS
λ ∈ Y (G/GX), the limit λ+x does not exist.

Proof. This is the direct application of Mumford’s numerical criterion
to the G/GX action, the reduced action on X (See [MFK94]). �

Obviously, given a 1PS λ ∈ Y (G) contained in GX (that is, such
that λ(k×) ⊆ GX), the limit λ+x exists for all x ∈ X. To avoid these
redundant one-parameter subgroups, we introduce the following notion.

Definition 3.9. Let x ∈ X. We say that x is 1PS stable if it is
polystable and for every 1PS λ ∈ Y (G) not contained in GX , the limit
λ+x does not exist.

From Mumford’s criterion above, one easily sees that if x ∈ X is
stable, then it is also 1PS stable. However, it turns out that the two
concepts are indeed equivalent, as follows.

Theorem 3.10. Let X be a G-variety and x ∈ X. Then, the following
are equivalent:

(1) The point x is stable;
(2) The point x is properly stable for the G/GX action;
(3) The point x is 1PS stable for the G/GX action;
(4) The point x is 1PS stable.

Proof. Let x be properly stable for the G/GX action. Then, by Theo-
rem 3.8, this is equivalent to the non-existence of the limit λ+x, for all
λ ∈ Y (G/GX) nontrivial. Since

(G/GX)X =
∩
x∈X

(G/GX)x =

(∩
x∈X

Gx

)
/GX = {e},

this means that x is 1PS stable for the G/GX action. So (2) and
(3) are equivalent. Now, suppose x ∈ X is properly stable for the
action of G/GX . Then, NGx = (G/GX)x = Gx/GX is finite, and
so, x is stable for the G-action, so (2) implies (1). Conversely if x ∈
X is stable, then the reduced orbit morphism ψ̂x : G/GX → X is
proper, by Proposition 3.5. This means that x is properly stable for the
reduced G/GX action. The equivalence of (1) and (4) is the statement
of Theorem 3.12 below. �
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To proceed, we need the following lemma.

Lemma 3.11. Let f : G → G′ be a surjective morphism of algebraic
groups, and let f∗ : Y (G) → Y (G′) be the canonical push-forward map.
For every µ ∈ Y (G′), there exists λ ∈ Y (G) and p ∈ N such that
f∗(λ) = µp.

Proof. Assume, first, thatG andG′ are tori. So there are n,m ∈ N with
m ≤ n such that G ∼= (k×)n and G′ ∼= (k×)m. Let µ ∈ Y (G′) = Zm,
µ(t) = (tl1 , · · · , tlm) for every t ∈ k× and some (l1, · · · , lm) ∈ Zm.
The map f : G ∼= (k×)n → G′ ∼= (k×)m applied to (t1, · · · , tn) ∈
(k×)n is f(t1, · · · , tn) = (tp11 , · · · , tpmm ) for (p1, · · · , pm) ∈ Zm. Let p
be the least common multiple of |p1|, · · · , |pm|. In particular, there
exist α1, · · · , αm ∈ Z, so that p = α1p1 = · · · = αmpm. We define
λ ∈ Y (G) by λ(t) = (tα1l1 , · · · , tαmlm , txm+1 , · · · , txn), for each t ∈ k×

and some xm+1, · · · , xn ∈ Z. It is easy to check that f∗(λ) = µp, where
µp(t) = (tpl1 , · · · , tplm).

In the general case, let µ ∈ Y (G′). Then, there is a maximal torus
T of G′ so that µ(k×) ⊂ T . By [Bor91, 22.6], there exists a maximal
torus S of G such that f(S) = T . Now, we apply the previous case to
prove the statement. �

This allows to complete the proof of Theorem 3.102.

Theorem 3.12. Let x ∈ X. Then, x is stable if and only if x is 1PS
stable.

Proof. If x is not 1PS stable, then there exists a 1PS λ ∈ Y (G) such
that λ(k×) * GX and λ+x exists. So, λ̃+x exists as well, where λ̃ is
the (non-trivial) push forward 1PS of G/GX . Thus, x is not stable by
Theorem 3.10.

Now assume that x is not stable. By Theorem 3.10, there exists
a non-trivial µ ∈ Y (G/GX) such that µ+x exists. By Lemma 3.11,
applied to the canonical surjection π : G → G/GX , we have µp = π∗λ
for some λ ∈ Y (G) and p ∈ N. Moreover µp is non trivial and (µp)+x
exists (because p ∈ N). So λ(k×) * GX since µ is non-trivial. If
the limit λ+x did not exist, then (µp)+x would not exist as well, by
Proposition 3.7(ii), so we conclude that λ+x exists, and so, x is not
1PS stable. �
Corollary 3.13. Let X be a G-variety with GX finite. Then all three
stability notions are equivalent (stable, properly stable and 1PS stable).

Proof. By definition, x is stable if x is polystable and Gx/GX is finite,
but since GX is finite, this means that Gx is finite, so x is stable if
and only if x is properly stable. The equivalence of stability and 1PS
stability was established in the previous Theorem. �

2We thank A. Schmitt for suggesting the use of tori in showing the equivalence
of stability and 1PS stability.
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To summarize, we showed the following relations between stability
notions of a point x in a general affine G-variety X: x properly stable
=⇒ x stable ⇐⇒x 1PS stable =⇒ x 1PS polystable ⇐⇒ x polystable.

4. Stability and Polystability Criteria

In this section, we prove our main results (in particular Theorem 1.2)
on the relation between polystability of a point x in an affine G-variety
and the complete reducibility of a subgroup of G, naturally associated
to x. Along the way, we prove an analogue of a Theorem of Mundet-
Schmitt in the context of affine G-varieties, and provide some examples
of the constructions.

4.1. 1PS polystability. Let G be an affine reductive group and X
be an affine G-variety. Recall that, for any x ∈ X, the closure of its
orbit G · x contains a unique closed orbit. The following well known
statement characterizes non-closed orbits.

Theorem 4.1. If x ∈ X is such that G · x \ G · x is non-empty then
there is a y ∈ X in the unique closed orbit of G · x and a one parameter
subgroup λ ∈ Y (G) such that λ+x = limt→0 λ(t) · x = y.

Proof. See [Bir71] or [Kem78]. �

This result motivates the following definition introduced by J. Levy
(see [Lev03] and also [BMRT09, Definition 3.8])

Definition 4.2. Let x ∈ X. We say that x is 1PS polystable if λ+x ∈
G · x for all λ ∈ Y (G) such that λ+x exists.

With this terminology, Theorem 4.1 can be restated as an equivalence
between the notions of polystability and 1PS polystability.

Proposition 4.3. Let x ∈ X. Then, x is polystable if and only if x is
1PS polystable.

Proof. If x is polystable, then G · x is closed and the orbit G · x is a
subvariety of X. Thus, if λ+x exists in X, for some λ ∈ Y (G), then
λ+x is in fact in G · x (see Proposition 3.7). So x is 1PS polystable.
Conversely, if x is not polystable, so that G · x \ G · x is non-empty,
then by Theorem 4.1, there exists λ ∈ Y (G) and y /∈ G · x such that
y = λ+x, which, by definition, implies that x is not 1PS polystable. �

Remark 4.4. In [BMRT09, Corollary 4.11] it is shown that this Propo-
sition also holds for affine G-varieties defined over non-algebraically
closed perfect fields.
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4.2. Opposite 1PS and the Theorem of Mundet-Schmitt. Let λ
be a 1PS of G. Recall the notions of R-parabolic and R-Levi subgroups,
given in Definition 2.2.

Recall that, given λ ∈ Y (G), one says that another 1PS λ̃ is opposite
to λ, if P (λ) ∩ P (λ̃) is a R-Levi subgroup of both P (λ) and P (λ̃). For
later convenience, we record the following fact.

Lemma 4.5. Let λ, λ̃ ∈ Y (G) be opposite 1PS lying in the same max-
imal torus of G. Then P (λ−1) = P (λ̃).

Proof. We will use two uniqueness results, valid also for non-connected
reductive G: (i) Given a R-parabolic subgroup P and a maximal
torus T of G contained in P , there is a unique R-Levi subgroup of
P containing T ; (ii) Given a R-parabolic subgroup P and one of its
R-Levi subgroups L, there is a unique opposite R-parabolic P ′ such
that P ∩ P ′ = L (see [BMR05, Cor. 6.5, Lem. 6.11, resp.]).

To start, let T be a maximal torus containing both λ and λ̃. Then,
T ⊂ L(λ) and T ⊂ L(λ̃) so both P (λ) and P (λ̃) contain T . Since λ
and λ̃ are opposite, P (λ) ∩ P (λ̃) is a R-Levi subgroup L of both, and
clearly L contains T . By the uniqueness result (i) above, and since L(λ)
is a R-Levi of P (λ) containing T , we conclude that L = L(λ). Finally,
since both P (λ−1) and P (λ̃) are opposite to P (λ), and L(λ) is a R-
Levi of P (λ), the uniqueness result (ii) implies that P (λ−1) = P (λ̃), as
wanted. �
Definition 4.6. A subset Λ ⊂ Y (G) is called symmetric if for any 1PS
λ ∈ Λ there exists another 1PS λ̃ ∈ Λ, which is opposite to λ.

Given x ∈ X, we use the following notation:
Λx := {λ ∈ Y (G) : λ+x exists}.

Note that if λ+x exists, and g ∈ P (λ), then a computation yields
λ+(g · x) = (λ+g) · (λ+x).

In particular, if u ∈ U(λ), then λ+(u · x) = λ+x. So, it is clear that
Λx = Λu·x for any u ∈ U(λ) such that λ ∈ Λx. The following properties
of Λx are straightforward.

Proposition 4.7. Consider the natural inclusion Y (Gx) ⊂ Y (G). For
all x ∈ X, we have

(i) If G · x = x then Λx = Y (G).
(ii) Y (GX) ⊂ Y (Gx) ⊂ Λx ⊂ Y (G).
(iii) If x is stable, then Y (Gx) = Λx = Y (GX).

LetX and Y be affine G-varieties, and f : X → Y be a G-equivariant
morphism. The following properties are also easily established.

Proposition 4.8. (i) For all x ∈ X, Λx ⊂ Λf(x).
(ii) If f : X → Y is an inclusion, then Λx = Λf(x) for all x ∈ X.



STABILITY AND IRREDUCIBILITY IN REDUCTIVE GROUPS 13

(iii) If X×Y is the product variety endowed with the natural product
G-action, then Λ(x,y) = Λx ∩ Λy for every (x, y) ∈ X × Y .

Given a 1PS λ ∈ Y (G) and x ∈ X, we have defined the limit λ+x.
Similarly, we define λ−x as the limit (when it exists)

λ−x := lim
t→∞

λ(t) · x = lim
t→0

λ−1(t) · x.

We now prove Theorem 1.1.

Theorem 4.9. x ∈ X is polystable if and only if Λx is symmetric.

Proof. Let x ∈ X be polystable, and suppose that λ ∈ Λx. Then
λ+x exists, and because G · x is closed, λ+x ∈ G · x. By the general
theorems, [BMRT09] and references in [MiR10], λ+x = u · x for some
u ∈ U(λ). Now, it is clear that the limit u · x centralizes λ, so that
λ−1 · (u · x) = u · x. This means that λ−1 ∈ Λu·x = Λx. Since λ−1 and
λ are obviously opposite, we conclude that Λx is symmetric.

Conversely, if G · x is not closed, then by Theorem 4.1, there exists
λ ∈ Y (G) such that λ+x ∈ G · x\G ·x. This implies that {λ(t) ·x : t ∈
k×} ⊂ X is not a single point. Suppose to get a contradiction, that Λx

was symmetric: there is an opposite λ̃ ∈ Y (G) such that λ̃+x exists.
By the same argument in [MiR10, Appendix] we can find a u ∈ U(λ)

such that uλ(t)u−1 and λ̃(t) lie on the same maximal torus (and are
still opposite). So, by Lemma 4.5, and because u ∈ U(λ) ⊂ P (λ)

P (λ̃−1) = P (uλu−1) = P (λ).

Now, this means that λ̃−1 ∈ Λx, so that

λ̃+x = (λ̃−1)−x = λ−x.

Then, λx : k → X extends to a morphism λ : P1
k → X which has to be

constant, contradicting the previous claim; we conclude that Λx is not
symmetric. �

We now summarize the setting in Schmitt’s appendix to Mundet’s
article [MiR10]. Suppose our G-variety is a k-vector space V . We say
that v is semistable if 0 /∈ G · v. Given a 1PS λ ∈ Y (G) and a weight
n ∈ Z, define

V (n) :=
{
v ∈ V |λ(t) · v = tnv ∀t ∈ k×

}
.

Then, we have a finite vector space decomposition in non-empty sub-
spaces V = V (n1) ⊕ · · · ⊕ V (nm) where n1 < · · · < nm. With respect
to this decomposition, write v = v1 + · · ·+ vm and define

µ(v, λ) := min {nj|vj ̸= 0}
Then, we have

Lemma 4.10. Let v be semistable. Then µ(v, λ) = 0 if and only if
λ+v exists.
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Proof. By construction

λ(t) · v = λ(t) · (v1 + · · ·+ vm) = tn1v1 + · · ·+ tnmvm,

with n1 < · · · < nm, so the limit λ+v = limt→0 λ(t) · v exists if and
only if µ(v, λ) ≥ 0. On the other hand, if µ(v, λ) > 0, we would have
λ+v = 0, contradicting the semistability of v. �

Corollary 4.11. [Mundet-Schmitt, [MiR10, Thm A.5]] A semistable
v ∈ V is polystable if and only if for every λ ∈ Y (G) with µ(v, λ) = 0
there exists an opposite λ′ such that µ(v, λ′) = 0.

Proof. In view of the previous Lemma, this is a simple restatement of
Theorem 4.9. �

4.3. Polystability and completely reducible subgroups. In this
subsection we provide a correspondence between the notion of polysta-
bility (resp. stability) for points of the G-variety X and the notion of
complete reducibility (resp. irreducibility) for subgroups of G. In order
to obtain this, we introduce the following construction:

Given Λ ⊂ Y (G) we define HΛ :=
∩

λ∈Λ P (λ); For any such Λ, HΛ is
a closed subgroup of G.

Let S(G) be the set of closed subgroups of G. We consider the map
η : X → S(G) given by

x 7→ Hx := HΛx ⊂ G.

The following properties are clear, in view of Propositions 4.7 and 4.8.
Again, f : X → Y denotes a G-equivariant morphism of affine G-
varieties, and X × Y the product G-variety.

Proposition 4.12. Let Z = Z(G) and x ∈ X.
(i) If Λx ⊂ Y (Z), then Hx = G.
(ii) If Gx = G then Hx = Z.
(iii) Z ⊂ Hx ⊂

∩
λ∈Y (Gx)

P (λ).
(iv) Hx is irreducible if and only if Hx = G.
(v) Hf(x) ⊂ Hx for all x ∈ X.
(vi) If f : X → Y is an inclusion, then Hx = Hf(x) for all x ∈ X.
(vii) For every (x, y) ∈ X × Y , Hx ∪Hy ⊂ H(x,y).

Now, we give a name to the condition (1.1) alluded in the Introduc-
tion.

Definition 4.13. We say that η : X → S(G) is proper if for every
x ∈ X and λ ∈ Y (G), Hx ⊂ P (λ) implies that λ ∈ Λx.

Note that, for any action, with η proper or not, the converse implica-
tion is valid ie, if λ ∈ Λx then Hx ⊂ P (λ). Indeed, assume that λ ∈ Λx,
and that g ∈ Hx =

∩
µ∈Λx

P (µ); then, g ∈ P (µ), for every µ ∈ Λx, in
particular g ∈ P (λ).
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Lemma 4.14. Let η : X → S(G) be proper, x ∈ X and λ ∈ Y (G).
Then Hx ⊂ P (λ) if and only if λ ∈ Λx.

Proposition 4.15. Let η be proper and x ∈ X. If Λx is symmetric
then η(x) = Hx is completely reducible in G.

Proof. Suppose that η(x) = Hx =
∩

λ∈Λx
P (λ) ⊂ P (µ) for some µ ∈

Y (G). So, for every g ∈ Hx, there exists µ+g. As η is proper, µ+x
exists, then µ ∈ Λx. We have that Λx is symmetric, this implies that
there is µ̃ ∈ Λx opposite to µ. Thus η(x) ⊂ P (µ) ∩ P (µ̃) = L with
L a R-Levi subgroup of P (µ). We can conclude that η(x) = Hx is
completely reducible in G. �

Now, we prove the first part of our main result.

Theorem 4.16. Let η : X → S(G) be proper. Then, x ∈ X is
polystable if and only if Hx = η(x) is completely reducible in G.

Proof. From Proposition 4.15 and Theorem 4.9, Hx is completely re-
ducible in G, for any x ∈ X which is polystable. Conversely, sup-
pose that Hx ⊂ G is completely reducible, and let λ ∈ Λx. Then
Hx =

∩
µ∈Λx

P (µ) ⊂ P (λ), by definition. Since Hx is completely re-
ducible, there is λ̃, opposite to λ such that Hx ⊂ P (λ̃). Since η is
proper, this implies that λ̃ ∈ Λx. We have concluded that Λx is sym-
metric, so that by Theorem 4.9, x is polystable. �
Corollary 4.17. Let η : X → S(G) be proper and x ∈ X. Then Λx is
symmetric if and only if Hx = η(x) is completely reducible in G.

Proof. This is an immediate consequence of Theorems 4.9 and 4.16. �
Definition 4.18. We say that the action of G on X is central (or X
is a central G-variety) if GX = Z(G).

Theorem 4.19. Let X be a G-variety and assume that Z(G) ⊂ GX .
Let η be proper and x ∈ X. Then

(1) If x is stable, then Hx = G.
(2) Assume that X is central. Then x is stable if and only if Hx = G.

Proof. By Theorem 3.12, x is stable in X if and only if it is 1PS stable,
so that for every 1PS, λ such that λ(k∗) * GX it does not exist λ+x.
As η is proper, for every such 1PS, λ, of G, λ+g does not exist for
some g ∈ η(x) = Hx. But this is equivalent to saying that Hx * P (λ)
for every 1PS, λ, of G which is not in GX . Since Z(G) ⊂ GX this
means that Hx is not in P (λ) for every non-central λ. Thus Hx, is
not contained in any proper R-parabolic, so that Hx is irreducible in
G. Then, by Proposition 4.12(iv) Hx = G, and we have shown (1).
To prove (2) suppose GX = Z(G). If x is stable, by (1) Hx = G.
Conversely, if x is not stable, then it is not 1PS stable which means
that λ+x exists for some λ ∈ Y (G), with λ(k×) * GX = Z(G). So
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λ ∈ Λx, which by properness of η means Hx ⊂ P (λ), a proper R-
parabolic. So Hx ̸= G. �

Theorems 4.16 and 4.19 finish the proof of Theorem 1.2.

Example 4.20. Let G = SL2(k) and X =M2(k), the vector space of
2 × 2 matrices, where G acts by conjugation on X. By general facts,
any non-trivial 1PS in G is conjugated to

λn(t) :=

(
tn 0
0 t−n

)
,

for some n = 1, 2, .... Let λ = hλnh
−1, for h ∈ G and x ∈ X. Then, by

definition, λ+x exists, if and only if

(4.1) lim
t→0

λn(t)h
−1xhλn(t)

−1

exists, which implies, by a simple computation, that h−1xh ∈ U, where
U is the set of upper triangular matrices inM2(k). First, let us compute
Λx and Hx = η(x) for x in the form:

x =

(
α 0
0 β

)
∈ X.

Writing

(4.2) h =

(
a b
c d

)
∈ SL2(k),

another computation shows that, in the case that x is generic, that is
α ̸= β, h−1xh ∈ U is equivalent to ac = 0. So, we conclude that

Λx = {hλnh−1 : h ∈ H1} ∪ {hλnh−1 : h ∈ H2},

where H1 is the set of elements h ∈ SL2(k) in the form (4.2) such that
a = 0, and H2 = U the set of those h with c = 0. We note that the
decomposition of Λx above, corresponds to opposite 1PS, in the sense
that, for h ∈ H1 and h̃ ∈ H2 the 1PS hλnh−1 and h̃λnh̃−1 are opposite.

Now, let h ∈ H1 be fixed. Computing as in (4.1), with g ∈ G instead
of x ∈ X,

P (hλnh
−1) =

{
g ∈ G : h−1gh ∈ U ∩ SL2(k)

}
= U ∩ SL2(k)

and, in the case h ∈ H2, we have

P (hλnh
−1) =

{
g ∈ G : h−1gh ∈ U ∩ SL2(k)

}
= L ∩ SL2(k)

where L is the set of lower triangular matrices in M2(k). Finally, then

Hx =
∩
λ∈Λx

P (λ) =
∩

h∈H1

P (hλnh
−1)

∩
h∈H2

P (hλnh
−1) = U ∩ L ∩ SL2(k)

is the subgroup of diagonal matrices in SL2(k), a completely reducible
subgroup in SL2(k).
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When x is scalar, it is easy to see that Λx = Y (G) and Hx = {e}.
Finally, when x is of the form

x =

(
α β
0 α

)
∈ X,

for β ̸= 0, by similar computations we obtain Hx = U ∩ SL2(k), which
is not completely reducible in G.

To conclude, because in this case the map η is clearly proper (as the
action of G on itself is the restriction of the action of G on X), this
example serves as a simple illustration of our main results, namely that
the orbit G · x is closed if and only if Hx is completely reducible.

The above constructions can be interpreted in the language of build-
ings. In fact, there is a natural way to pass from Y (G) to the building
of G, under which Λx corresponds to a convex subset in this building
(See [MFK94, §2]). This observation, for which we thank G. Röhrle,
will be explored in a later work.

4.4. A sufficient criterion for properness of η. Above, we have
discussed actions with η proper. However, it is easy to find examples
where η is not proper. For instance, consider G = C∗ and X = Cn,
with the action of G on X given by t ·(x1, · · · , xn) = (t−1x1, · · · , t−1xn)
(where t ∈ G and (x1, · · · , xn) ∈ X). Trivially, Hx = G for all x ∈ X
because for every λ ∈ Y (G), P (λ) = G. But λ /∈ Λx for the identity
character (λ(t) := t for t ∈ C∗) and every x ∈ X \ {0}.

Some easy properties of the properness notion are the following. Let
againX, Y be affine G-varieties, andX×Y the product G-variety, with
respective maps ηX , ηY and ηX×Y . Let f : X → Y be a G-morphism.

Proposition 4.21. (i) If f : X → Y is an inclusion and ηY is proper,
then ηX is also proper.

(ii) If ηX and ηY are proper then ηX×Y is also proper.

Proof. (i) Let x ∈ X, λ ∈ Y (G), and suppose that Hx ⊂ P (λ). By
Propositions 4.8(i) and 4.12(vi), we have Λx = Λf(x) and Hf(x) = Hx,
so Hf(x) ⊂ P (λ). Since ηY is proper, by hypothesis, λ+f(x) exists in
Y and so λ ∈ Λf(x) = Λx. Thus ηX is proper.

(ii) Let (x, y) ∈ X × Y and λ ∈ Y (G). Suppose that H(x,y) ⊂ P (λ),
by 4.12(vii) Hx∪Hy ⊂ H(x,y) so Hx and Hy are contained on P (λ). By
hypothesis ηX and ηY are proper then λ ∈ Λx ∩Λy. Thus λ ∈ Λ(x,y) by
Proposition 4.8. Therefore ηX×Y : X × Y → S(G) is proper. �

The following is a simple sufficient condition to obtain properness.

Lemma 4.22. Let ψ : X → G be a map that verifies the following
condition: For every pair x ∈ X, λ ∈ Y (G), λ+(ψ(x)) exists if and
only λ+x exists. Then, η is proper.
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Proof. The condition implies that if λ ∈ Λx, then ψ(x) ∈ P (λ), so
ψ(x) ∈ Hx =

∩
λ∈Λx

P (λ). Now let Hx ⊂ P (µ), for some µ ∈ Y (G).
Then, ψ(x) ∈ Hx ⊂ P (µ), so that µ+(ψ(x)) exists. Then, the condition
implies that µ ∈ Λx, so η is proper. �

Such a ψ does not exist in general (see the example in the begin-
ning of this subsection), but when it is a G-equivariant morphism, the
existence of λ+x implies that of λ+(ψ(x)), by a simple calculation.

We now apply this Lemma to the adjoint representation, restricting
to the case of complex affine reductive groups (i.e, to the field k = C).
Let Lie(G) denote the Lie algebra of G, which is naturally a G-variety
with the conjugation action of G, and let exp : Lie(G) → G be the
exponential map. Note however, that exp is not an algebraic morphism.

Lemma 4.23. Let V be a finite dimensional complex vector space,
and G = GL(V ) be the complex general linear group. Then, for all
v ∈ Lie(G) ∼= End(V ) and λ ∈ Y (G), λ+exp(v) exists iff λ+v exists.

Proof. By choosing basis for V , we can assume that λ(t) is repre-
sented by a diagonal matrix λ(t) = diag(tk1 , ..., tkn), for some weights
k1, ..., kn ∈ Z with k1 ≥ k2 ≥ · · · ≥ kn. Since λ+exp(v) equals
limt→0 λ(t)exp(v)λ(t−1), it exists if and only if the matrix representing
exp(v) has zero entries below the main diagonal. By an elementary cal-
culation, this is equivalent to the matrix v ∈ Lie(G) having zero entries
below the main diagonal, which in turn means that λ+v exists. �
Corollary 4.24. Let G be a complex affine reductive group, and let
Lie(G) be its Lie algebra. Then, exp : Lie(G) → G verifies the condition
in Lemma 4.22. Thus, η is proper for the adjoint representation.

Proof. Assume that G is equivariantly embedded in GL(V ) for some
vector space V . Then, we have the commutative diagram,

EndV exp→ GL(V )
φ ↑ ↑ φ

Lie(G)
exp→ G.

Suppose that λ+(exp(v)) exists inG, for v ∈ Lie(G) so that λ+(φ(exp(v))) =
λ+(exp(φ(v))) exists in GL(V ). By the previous Lemma, this means
that λ+φ(v) exists in EndV , which implies that λ+v exists in Lie(G)
(note that φ are inclusions of closed varieties). Similarly, one shows
that the existence of λ+v implies that of λ+(exp(v)). �
Remark 4.25. There are many other examples of affine G-varieties with
η proper. For instance, one obtains a new example by removing some
closed G-invariant algebraic subset from a G-variety with η proper.
Naturally, it is more interesting to work in the opposite direction: start
from the proper case and extend the action of G to a bigger affine vari-
ety, preserving properness. We plan to exploit these natural questions
in a future work.
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5. Application to G-invariant subvarieties of GN

Let G be an affine reductive group defined over k. In this section,
we apply the techniques of the last sections to a particularly interest-
ing class of G-varieties, namely to closed G-invariant subvarieties of
the variety of N -tuples in G. This class includes the representation
varieties of finitely generated groups, which are varieties of the form
Hom(Γ, G), consisting of homomorphisms from a fixed finitely gener-
ated group Γ into G. Because of the natural conjugation action, the
variety X = Hom(Γ, G) becomes a G-variety. An application of these
results is a restatement of the well known correspondence between G-
Higgs bundles over an algebraic curve and character varieties of surface
groups.

5.1. Polystability for subvarieties of GN . Let X be an affine closed
G-subvariety ofGN , whereGN is theG-variety on whichG acts component-
wise by simultaneous conjugation. Let f : X ↪→ GN be the G-
equivariant inclusion. Fix x ∈ X and let f(x) = (f1(x), · · · , fN(x)).
Let ϕx be the subgroup ofG generated by the elements f1(x), ..., fN(x) ∈
G.

Recall the construction of the map η : X → S(G), with η(x) = Hx =∩
λ∈Λx

P (λ) . We have:

Proposition 5.1. Let X be an affine closed G-subvariety of GN .
(i) Let x ∈ X and µ ∈ Y (G), then µ ∈ Λx if and only if ϕx ⊆ P (µ).
(ii) Let x ∈ X then ϕx ⊂ Hx.
(iii) η is proper.

Proof. To show (i), let x ∈ X and µ ∈ Y (G). Consider µx : k× → X
and µf(x) : k

× → GN the µ-rays through x and f(x), respectively. We
have that µf(x) = f ◦ µx by Proposition 3.7 (i).

Suppose that µ ∈ Λx, meaning that µ+x exists. So if µ+x exists
then µ+f(x) exists. This is equivalent to the existence of µ+fi(x), for
every i = 1, · · · , N . But this one implies the existence of µ+g, for every
g ∈ ϕx. Thus ϕx ⊂ P (µ).

Conversely, suppose now that ϕx ⊆ P (µ), this implies, in particular,
that µ+fi(x) exists for every i = 1, · · · , N . Thus, µ+f(x) exists. Since
X is a closed subset of GN , we can guarantee the existence of µ+x (see
Proposition 3.7 (ii)). Thus if ϕx ⊆ P (µ) then µ ∈ Λx.

To show (ii), using (i) we have ϕx ⊆ P (µ) for every µ ∈ Λx so
ϕx ⊂

∩
λ∈Λx

P (λ) = Hx.
Suppose that Hx ⊂ P (µ). Then, by (ii) ϕx ⊂ Hx ⊂ P (µ), which

means that µ ∈ Λx, according to (i). So, η is proper. �
For this class of varieties we have the next properties.

Proposition 5.2. Let x ∈ X. Then Hx is completely reducible in G if
and only if ϕx is completely reducible in G.



STABILITY AND IRREDUCIBILITY IN REDUCTIVE GROUPS 20

Proof. By (ii) of Proposition 5.1, we have that ϕx ⊂ Hx.
Suppose thatHx =

∩
λ∈Λx

P (λ) is completely reducible. If ϕx ⊂ P (µ)
for some µ ∈ Y (G), then by (i) of Proposition 5.1 µ ∈ Λx and so
ϕx ⊂ P (µ). As Hx is completely reducible, Hx ⊂ L, with L a R-Levi
subgroup of P (µ). Thus ϕx ⊂ L and then ϕx is completely reducible
in G.

Conversely, suppose that ϕx is completely reducible in G and Hx =∩
λ∈Λx

P (λ) ⊂ P (µ) for some µ ∈ Y (G). By (ii) of Proposition 5.1,
ϕx ⊂ Hx then ρ(Γ) ⊂ P (µ), so by (i) of Proposition 5.1, µ ∈ Λx. On
the other hand, as ϕx is completely reducible in G, there exists a R-Levi
subgroup L = L(uµu−1) of P (µ), with u ∈ U(µ), such that ρ(Γ) ⊂ L.
Now, we can find a R-parabolic subgroup of G, P , opposite to P (µ)
so that P (µ) ∩ P = L, and P = P (uµ−1u−1). Thus ϕx ⊂ P , so again
by (i) of Proposition 5.1 uµ−1u−1 ∈ Λx. Then Hx ⊂ P and as also
Hx ⊂ P (µ) we get that Hx ⊂ L. Thus Hx is completely reducible in
G. �
Proposition 5.3. Let x ∈ X. If Hx = G, then ϕx is irreducible in G.

Proof. If ϕx is not irreducible in G, by definition, there exists a non
central µ ∈ Y (G) such that ϕx ⊂ P (µ). So by (i) of Proposition 5.1, µ ∈
Λx, thus Hx ⊂ P (µ), and we conclude that Hx is not irreducible. �
Proposition 5.4. For any x ∈ X, we have Gx = ZG(ϕx), where
ZG(ϕx) is the centralizer of ϕx and Z(G) ⊂ GX .

Proof. The first statement is clear. To show the second one, first note
that the stabilizer of any x ∈ X contains the center of the group. Thus,
Z(G) ⊂

∩
x∈X Gx = GX . �

The proof of next result (Theorem 1.3) follows easily from the work of
several authors on N -tuples in algebraic groups (see [Ric88, Theorems
3.6 and 4.1], [BMR05, Corollary 3.7] and [Mar03]). We include a self-
contained proof for the convenience of the reader. Recall that a G-
variety is called central when GX = Z(G).

Theorem 5.5. Let x ∈ X ⊂ GN . Then
(1) x is polystable if and only if ϕx is completely reducible.
(2) x is stable if and only if ϕx is irreducible.
(3) If X is central then x is equicentral if and only if ϕx is isotropic.

Proof. (1) By Proposition 5.2 and Theorem 4.16 we just need to see
that η is proper. But this is true by (iii) of Proposition 5.1.

(2) If x is stable in X, as Z(G) ⊂ GX (Proposition 5.4) and η
is proper ((iii) of Proposition 5.1), we can apply Theorem 4.19 (2)
and therefore Hx is irreducible in G. Thus by Proposition 5.3, ϕx is
irreducible.

Conversely, if ϕx is irreducible in G, since ϕx is completely reducible
in G, by (1) we get that x is polystable, that is, G · x is closed in
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G. Then by [Ric88, 1.3.3] Gx is reductive. If we suppose that Gx/GX

is infinite, this implies that Gx/Z(G) is infinite, as Z(G) ⊂ GX . So
there exists λ ∈ Y (Gx) such that λ(k×) * Z(G). Then P (λ) is a
proper parabolic subgroup of G containing ϕx. This contradicts the
assumption, concluding that Gx/GX is finite and thus x is stable.

(3) It is enough to show that Gx = GX if and only if ZG(ϕx) = Z(G).
This is immediate by the assumption GX = Z(G) and the fact proven
in Proposition 5.4 that Gx = ZG(ϕx). �

From Proposition 5.2 and Theorem 5.5 (2), Theorem 1.4 follows.
Consider now, for N ∈ N and a complex reductive G, with Lie algebra
Lie(G), the vector space X = (Lie(G))N , with the diagonal adjoint
action of G. The next result follows easily from Richardson ([Ric88,
Thm. 3.6 and 4.1]), being also a natural corollary of our approach.

Theorem 5.6. Let k = C and X be a closed G-invariant subvariety of
(Lie(G))N . An element x ∈ X is polystable (resp. stable) if and only if
Hx is completely reducible in G (resp. Hx = G).

Proof. Consider first the case X = (Lie(G))N , in which Z(G) = GX .
Then, the statement is an easy consequence of Corollary 4.24 and
Proposition 4.21 (ii), in view of Theorem 1.2. The case when X ⊂
(Lie(G))N then follows from Proposition 4.21 (i). �

5.2. Stability in representation varieties. Let Γ be a finitely gener-
ated group. In this subsection we let X be the G-representation variety
of Γ, that is X = Hom(Γ, G), where the G-action is by conjugation. It
is an affine closed G-invariant subvariety of GN , so the results obtained
in the last subsection can be immediately applied to this case. We will
phrase them using the following standard terminology.

Definition 5.7. Let ρ ∈ Hom(Γ, G), and ρ(Γ) be its image in G. The
representation ρ is called:

(1) irreducible, if ρ(Γ) is an irreducible subgroup in G.
(2) reductive, if ρ(Γ) is completely reducible in G.
(3) good, if it is reductive and Gρ = Z(G).

Remark 5.8. (1) Because of these definitions, all properties satisfied
by irreducible (resp. completely reducible) subgroups are satisfied by
irreducible (resp. reductive) representations. In particular, we have the
analogues of the Propositions in Subsection 2.2.(2) Another definition
of irreducible representation, in the case k algebraically closed and G
connected, appears in the work of Ramanathan ([Ram75]) which is
equivalent to our definition if we use Proposition A.4 and [Ram75,
Prop. 2.1.2].

Suppose now Γ = ⟨γ1, · · · , γN |r1, · · · , rN⟩ is a presentation of the
group Γ, where γ1, · · · , γN are generators for some N ∈ N. From this,
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we form the canonical projection map

π : FN � Γ

where FN is a free group of rank N . This allows us to view any rep-
resentation variety X = Hom(Γ, G), by composing any representation
with π, as a closed G-invariant affine subvariety of GN = Hom(FN , G).
This allows the direct application of the previous results to this class
of varieties.

Remark 5.9. Note that, however, not all G-invariant closed affine sub-
varieties of GN are character varieties for some Γ, as simple examples
show.

Recalling the notation of the previous subsection applied to this
particular case, we have f : Hom(Γ, G) ↪→ Hom(FN , G) the inclu-
sion such that for ρ ∈ Hom(Γ, G), f(ρ) = (ρ(γ1), · · · , ρ(γN)) = ϕ ∈
Hom(FN , G) = GN and ϕρ = ρ(Γ) = ρ(π(FN)) = ϕ(FN). By Proposi-
tion 5.4, Z(G) ⊆ GX and for each ρ ∈ Hom(Γ, G), Gρ = ZG(ρ(Γ)). So
it is easy to notice that a representation ρ is good if and only if ρ(Γ)
is isotropic.

Because we are in the conditions of Proposition 5.1 withX = Hom(Γ, G),
we conclude the following.

Proposition 5.10. Let ρ ∈ Hom(Γ, G).
(i) Let µ ∈ Y (G); Then µ ∈ Λρ if and only if ρ(Γ) ⊆ P (µ).
(ii) ρ(Γ) ⊂ η(ρ) = Hρ.
(iii) The map η is proper.
(iv) Hρ is completely reducible in G if and only if ρ(Γ) is completely

reducible in G.

Proof. As ϕρ = ρ(Γ), all claims follow from Propositions 5.1 and 5.2.
�

As a consequence of Theorem 5.5, we obtain an equivalence between
stability and irreducibility notions.

Proposition 5.11. Let X = Hom(Γ, G) and ρ ∈ X. We have:
(i) ρ is polystable if and only if ρ is reductive
(ii) If η(ρ) is irreducible in G then ρ is irreducible.
(iii) ρ is stable if and only if ρ is irreducible.
(iv) If X is central, then ρ is equicentral if and only if ρ is good.

Proof. To show (i), (iii) and (iv), we use again the equality ρ(Γ) = ϕρ

and Theorem 5.5. To prove (ii) note that showing irreducibility of
ρ is the same proving that ρ(Γ) is irreducible in G. We know that
ρ(Γ) = ϕρ, so if Hρ is irreducible, by Proposition 5.3 we get that ρ(Γ) =
ϕρ is irreducible. The last statement follows from (i) and Theorem
5.5(3). �
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Remark 5.12. It is very common for representation varieties to be cen-
tral. A sufficient condition is that for every g ∈ G, there exists a
ρ ∈ Hom(Γ, G) and an element γ of Γ such that ρ(γ) = g, as one easily
checks.

We therefore obtained the following table that summarizes the sit-
uation for a character variety X = Hom(Γ, G). In each line we have
equivalences, and at the bottom line, the * indicates that we require
that X is central: GX = Z(G).

Representation ρ Image Subgroup H = ρ(Γ) Affine GIT ρ ∈ X

reductive completely reducible (CR) polystable
reductive, Lie(Gρ) = Lie(Z) irreducible stable
good (reductive, Gρ = Z)∗ isotropic (CR, ZG(H) = Z)∗ equicentral∗

5.3. Stability in character varieties and Higgs bundles. In this
last subsection, we present a restatement of the well known correspon-
dence between G-Higgs bundles and representations in terms of the sta-
bility notions considered above, restricting to the case k = C. We start
with a brief review the theory of G-Higgs bundles, following mainly the
article [GPGMiR09b] and references therein.

As mentioned in Section 3.1, the affine GIT quotient XΓ(G) :=
Hom(Γ, G)//G is an affine algebraic set defined over C called the G-
character variety of Γ. It is an elementary fact that the properties of
irreducibility and complete reducibility are invariant by conjugation, so
they can be defined unambiguously for points of the character variety.

Let Σ be a compact Riemann surface of genus g ≥ 2 and let π1(Σ)
be the fundamental group of Σ. The space Hom(π1(Σ), G) is naturally
identified with an algebraic subvariety of G2g.

Let us consider the universal central extension Γ of π1(Σ) given by
the short exact sequence 0 → Z → Γ → π1(Σ) → 1 and Ω1

Σ denote the
canonical line bundle of Σ.

Recall that a G-Higgs bundle over Σ is a pair (E,φ) where E is a
holomorphic G-bundle over Σ and φ is a holomorphic section of E(g)⊗
Ω1

Σ with E(g) being the adjoint bundle of E . In particular, a GLn(C)-
Higgs bundle is what is called a Higgs bundle, that it is a pair (V, ϕ)
with V a holomorphic rank n vector bundle and ϕ ∈ H0(X,End(V )⊗
Ω1

Σ).
There is a notion of (poly)stability for G-Higgs bundles. When G =

GLn(C) stability can be defined using what is called the slope of a
Higgs bundle. The notion was later generalized to the case of G-Higgs
bundles for G complex (for the details, see [Sim92] or [GPGMiR09b]).

Consider now the moduli space of G-Higgs bundles over X, MX(G),
that is the set of isomorphism classes of polystable G-Higgs bundles.
This moduli space has the structure of a complex algebraic variety, for
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the details of its construction see Kobayashi ([Kob87]), Ramanathan
([Ram96]), Simpson ([Sim94a, Sim94b]) and Schmitt ([Sch05, Sch08]).

Denote by XΓ(G) the character variety of representations ρ : Γ → G
such that ρ(J) ∈ Z(G)0, where J is a central element of Γ and by
Xr

Γ(G) the moduli space of reductive representations in XΓ(G). In
the Appendix (Proposition A.3), we recall that a representation ρ is
reductive (that is, ρ(Γ) is completely reducible in G), if and only if the
Zariski closure of ρ(Γ) in G is a reductive group.

Now, we are ready to state the non-abelian Hodge theorem. For
details see [Hit87, Sim92, GPGMiR09b] and [Cor88, Don87].

Theorem 5.13. Let G be a connected reductive complex Lie group.
There is a homeomorphism Xr

Γ(G) ≃ MX(G) under which a G-Higgs
bundle is stable if and only if it comes from an irreducible representa-
tion. Moreover, the G-Higgs bundle is stable and simple if and only if
the representation is reductive with ZG(ρ) = Z(G).

Note that this result generalizes both the Theorem of Narasimhan-
Seshadri which states that a vector bundle on X of rank n is stable if
and only if it is associated to a irreducible representation of Γ in U(n)
and the Theorem of Ramanathan which states that a holomorphic prin-
cipal G-bundle is stable if and only if it is associated to an irreducible
unitary representation of Γ in G, satisfying ρ(Γ) ⊂ K, where K is the
maximal compact subgroup of G. We observe that in [GPGMiR09b]
this result is extended also to the case of real reductive groups, which
we do not consider here.

Using Theorem 5.11, we can restate the non-abelian Hodge theorem
as follows. Note that, by Theorem 5.11, and Proposition A.3 we have
the identity Xr

Γ(G) = Xps
Γ (G), where Xps

Γ (G) denotes the moduli space
of polystable representations inside XΓ(G).

Corollary 5.14. Let G be a complex connected reductive Lie group.
There is a homeomorphism Xps

Γ (G) ≃ MX(G) under which a G-Higgs
bundle is stable if and only if it comes from a stable representation.
Moreover, the G-Higgs bundle is stable and simple if and only if the
representation is good.

As a concluding remark, we note that the setup in this article allows
the consideration of the moduli space Xr

Γ(G) of polystable represen-
tations of Γ in a complex reductive group G which is not necessarily
connected. As far as we know, Theorem 5.13 has not been proved in
general for the case of G-Higgs bundles with G not connected (see how-
ever [GPGMiR09a, Oli11] for definitions and some non-connected real
reductive groups). On the other hand, our results seem to indicate that
this form of the non-abelian Hodge theorem should still be valid in this
case, for an adequate notion of stability of G-Higgs bundles, defined in
terms of reduction of structure group to R-parabolics.
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Appendix A. Completely Reducible, Irreducible and
Isotropic subgroups

Let G be a reductive affine algebraic group (not necessarily irre-
ducible) defined over an algebraically closed field k of characteristic
0. For the convenience of the reader, in this appendix we state some
known properties of completely reducible, irreducible, isotropic and
Ad-irreducible subgroups of G, and compare to other relevant results
in the literature (See [BMR05, BMR08, Mar03, Sik09]).

A.1. Alternative characterizations of complete reducibility and
irreducibility. We begin by recalling the following characterization of
the centralizer of an irreducible subgroup,

Proposition A.1. The centralizer of an irreducible subgroup of G is
a finite extension of Z(G).

Proof. See [Mar03, Lemma 6.2]. We give an alternative proof analogous
to the proof of Theorem 5.5 (2). Let H be an irreducible subgroup of
G then ZG(H) is reductive (see [BMR05, Section 6.3]). Suppose that
ZG(H) is an infinite extension of Z(G). As ZG(H) is reductive, this
implies that there exists λ ∈ Y (ZG(H)) such that λ(k×) * Z(G). So
P (λ) is a proper R-parabolic of G and H ⊂ P (λ). Then H is not
irreducible. �

To see if a completely reducible subgroup is irreducible we have the
next criterion. We denote by Lie(H) the Lie algebra of an algebraic
group H.

Proposition A.2. For a completely reducible subgroup H of G, the
following claims are equivalent.

(1) H is irreducible in G;
(2) dimZG(H) = dimZ(G);
(3) Lie(ZG(H)) = LieZ(G).

Proof. (1)⇒(2) See A.1.
(2) ⇒ (1)[Sik09, Corollary 16].
(2)⇔(3) By Corollary 3.6 of [Bor91] we have dim Lie(ZG(H)) =

dimZG(H) and dim Lie(Z(G)) = dimZ(G) . So it is easy to see that
(3) =⇒ (2). For the other implication, if dimZG(H) = dimZ(G) then
dim Lie(ZG(H)) = dim Lie(Z(G)), as Lie(Z(G)) is a k-vector subspace
of Lie(ZH(G)), they must be equal. �

The next results provide other ways to check complete reducibility
and irreducibility.

Proposition A.3. Consider a subgroup H ⊂ G. Then H is completely
reducible in G if and only if H, the Zariski closure of H in G, is a
reductive group.



STABILITY AND IRREDUCIBILITY IN REDUCTIVE GROUPS 26

Proof. See [BMR08, Section 2.2] �
Proposition A.4. Assume that G is connected. A subgroup H ⊂ G is
irreducible if and only if H does not leave any parabolic subalgebra of
Lie(G) invariant.

Proof. If H is irreducible, suppose that there is a parabolic subalgebra,
p, of Lie(G), such that, H leaves it invariant, i.e., Ad(H)(p) ⊂ p(Ad
is the adjoint representation of G in Lie(G)). Let P be the parabolic
group whose Lie algebra is p. So H ⊂ NG(P ) = P (where NG(P ) is the
normalizer of P in G and it is equal to P because this one is parabolic).
This contradicts the assumption of H being irreducible.

If H is not irreducible then there is a parabolic subgroup P such that
H ⊂ P . Let p be the Lie algebra of P which is a parabolic subalgebra of
Lie(G). Via the adjoint representation, P acts on p. Now we just have
to prove that Ad(H)(p) ⊂ p. We can suppose that G ⊂ GL(n) for some
n ∈ N, in this case Ad(g)(Y ) = gY g−1 for every g ∈ G and Y ∈ Lie(G).
So if we restrict to g ∈ H and Y ∈ p, as H ⊂ P , gY g−1 ∈ p. Thus H
leaves invariant a parabolic subalgebra of Lie(G). �
A.2. Irreducible, Ad-irreducible and isotropic subgroups.

Definition A.5. A completely reducible subgroup H ⊂ G is called
isotropic in G if ZG(H) = Z(G).

Remark A.6. For ρ ∈ Hom(Γ, G) is trivial to see that ρ is good in
Hom(Γ, G) if and only if ρ(Γ) is isotropic in G.

By Proposition A.2, we can see that if H is isotropic, then it is
irreducible. But the converse is not true, as the following example
shows.

Example A.7. LetG = PGL2(C) andH be the subgroup of PGL2(C)

generated by γ1 :=
(
i 0
0 −i

)
and γ2 :=

(
0 1
−1 0

)
. The subgroup H

is reductive because it is finite and by Proposition A.3 it is completely
reducible. We can prove thatH = ZPGL2(C)(H) ̸= Z(PGL2(C)) = 1, to
see this it is enough to check that all h ∈ H centralizes γ1 and γ2. Thus,
H is not isotropic, but it is irreducible because dimZPGL2(C)(H) =
dimZ(PGL2(C)) = 0 by Proposition A.2.

Remark A.8. In [HP04] for the case G = PSL2(C) and in [Sik09]
for G an algebraic group over C, it is also introduced the definition
of Ad-irreducible subgroup of G which is a subgroup whose image by
the adjoint representation is irreducible in GL(Lie(G)). By [Sik09,
Proposition 13] every Ad-irreducible subgroup of G is isotropic.

In the remainder of the appendix, we will see that the notion of
irreducible subgroup is unaffected when we restrict the group to its
semisimple quotient. The same will hold for the notion of completely
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reducible subgroup. On the contrary, this will not hold for the notion
of a isotropic subgroup.

Proposition A.9. Let ϕ : G1 → G2 be a homomorphism of reductive
algebraic groups.

(i) If H is a completely reducible subgroup of G1 then ϕ(H) is a
completely reducible subgroup of G2.

(ii) Suppose that ϕ is an epimorphism, then if H is an irreducible
subgroup of G1 then ϕ(H) is an irreducible subgroup of G2.

Proof. See [BMR05, 6.2]. �
As G is reductive, we know that G/Z(G) is a semisimple group . Let

ϕ : G → G/Z(G) be the canonical projection. We have the following
results.

Proposition A.10. Let H ⊂ G be a subgroup of G. Then
(i) H is completely reducible if and only if ϕ(H) is completely re-

ducible.
(ii) H is irreducible if and only if ϕ(H) is irreducible.

Proof. For the proof of (i) and the implication (ii) ⇒, see [BMR05,
6.2].

To show (ii)⇐, suppose ϕ(H) is irreducible. If H ⊂ P for P a
proper R-parabolic subgroup of G, by [BMR05, Lemma 6.15] ϕ(P ) is
a R-parabolic subgroup of G/Z(G).

If ϕ(P ) = G/Z(G) = ϕ(G), as Z(G) ⊂ P we have that P/Z(G) =
G/Z(G) and then P = G. So ϕ(P ) is proper. And ϕ(H) ⊂ ϕ(P ) which
is impossible because ϕ(H) is irreducible. �

By Proposition A.1, if a subgroup H of G is irreducible then the
centralizer of H in G, ZG(H), is a finite extension of the center of G,
Z(G). Using Proposition A.10(ii), we see that ZG/Z(G)(ϕ(H)) is also a
finite extension of the center of G/Z(G). The same does not happen
for the property ZG(H) = Z(G), as we see next.

Example A.11. Let G = GL2(C) and H be the subgroup of GL2(C)
generated by the matrices γ1 and γ2 of Example A.7. The subgroup H
is reductive because it is finite and by Proposition A.3 it is completely
reducible. We can prove that ZGL2(C)(H) = Z(GL2(C)) = C∗, so that
H is isotropic. However, consider now the image ϕ(H) of H under the
quotient ϕ : G → PGL2(C) = G/Z(G). Using example A.7 we know
that ϕ(H) is not isotropic because ZPGL2(C)(ϕ(H)) ̸= Z(PGL2(C)) = 1.
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