
Some open(?) problems concerning
Dependent Type Theories∗

Peter Aczel
The University of Manchester

May 29, 2012

1 Introduction

The aim of this note is to state some problems that are open, as far as I am
aware, concerning the logical strength of some dependent type theories. In section
2 I will first state the problems in a rather informal way and then give two more
precise versions concerning specific type theories. A selection of type theories will
be described in sections 3-7 and their rules will be presented in more detail in the
appendix, section 8.

2 The problems

Q1: Is the type theory implemented in the Coq proof assistant, see [Coq], logically
weaker or stronger than ZF?

Q2: Does the addition of Voevodsky’s Univalence Axiom, see [Voevodsky], and
possibly other rules such as rules for higher dimenensional inductive defini-
tions, to a standard dependent type theory increase the logical strength of
the type theory?

∗These problems were raised at a seminar, devoted to the raising of open problems, of the
Syntax and Semantics programme of the Cambridge Newton Institute. I am grateful to the
Institute for providing me the excellent facilities in which this note was prepared.

1



I now state more precise versions of the problems using specific type theories
which will be described in the rest of this note.

Q1′: Is MLWPSU<ω logically weaker or stronger than ZF ?

Q2′: Is MLWU logically weaker than MLWU + UA(U), where UA(U) is Vo-
evodsky’s Univalence Axiom for the type universe U.

In the rest of this note we first give an outline description of a selection of type
theories obtained from a base type theory ML by adding a variety of additional
forms of type. In our description we assume that the reader has some familiarity
with the various forms of type in the literature. A more detailed presentation of
the rules of the type theories has been placed in the appendix.

3 The standard forms of judgement of a dependent type

theory

A type theory will be a system of rules for deriving judgements, each having the
form

Γ ` B

where Γ is its context
x1 : A1, . . . , xn : An

of n ≥ 0 variable declarations xi : Ai, for i = 1, . . . , n, of distinct variables
x1, . . . , xn and B is its body, which has one of the forms

A type A1 = A2 a : A a1 = a2 : A.

The body A type expresses that A is a type, A1 = A2 expresses that A1, A2

are judgementally equal types, a : A expresses that a is a term of type A and
a1 = a2 : A expresses that a1, a2 are judgementally equal terms of type A.

When Γ is the empty context we will usually just write B rather than ` B.
Each rule will have instances, each of the form

J1 · · · Jm
J

where the J1, . . . , Jm, J are forms of judgement. The J1, . . . , Jm above the line are
the premisses of the rule instance and J is its conclusion. The rules will be
presented schematically, using conventions that we hope will mostly be obvious.
Usually, a rule will allow a parametric list of variable declarations to appear in

2



the premisses and conclusion of a rule. In presenting the rule the parametric list
will be left implicit. For example a rule for forming function types A→ B will be
presented

A type B type
(A→ B) type

and will have instances
Γ ` A type Γ ` B type

Γ ` (A→ B) type
.

where Γ can be any context.
A type theory will be presented by listing its rules, and the theorems of the

type theory will form the smallest collection of judgements with the property that
whenever the premisses of an instance of a rule are in the collection then so is
the conclusion. We will first specify each theory by only presenting the rules that
are relevent to the formation of the types of the type theory. A more detailed
presentation of all the rules may be found in the appendix.

4 The Type Theories ML, ML− and MLW

We start with the formation rules for the basic type theory ML. The theory ML−

is obtained from ML by leaving out the rules for the type N of natural numbers

Type Formation Rules for ML

Nn type
(n = 0, 1, . . .)

A type x : A ` B[x] type
(Πx : A)B[x] type

A type a1, a2 : A
IdA(a1, a2) type

N type
A type x : A ` B[x] type

(Σx : A)B[x] type
A1 type A2 type
A1 + A2 type

There are many more rules needed for the type theory. A complete set of rules
is in the appendix. Here we offer the following remarks that may help reader’s
intuition. The type Nn is the n-element type having the n canonical elements
1n, . . . , nn and N is the type of natural numbers, having the canonical elements 0
and s(e) for e : N . The type IdA(a1, a2) is the identity type. When a1 = a2 = a : A
then it has the canonical element rA(a). The Π and Σ types have, as special cases
A → B = (Π− : A)B and A × B = (Σ− : A)B, where − indicates a variable

3



that does not occur free in B. The type (Πx : A)B[x] has canonical elements
(λx : A)b[x] where b[x] : B[x] for x : A and (Σx : A)B[x] has the canonical
elements pair(a, b) where a : A and b : B[a]. Finally the sum type A1 + A2 has
canonical elements in1(a) for a : A1 and in2(a) for a : A2.

We obtain the type theory MLW by adding the following rule.

A type x : A ` B[x] type
(Wx : A)B[x] type

This type W = (Wx : A)B[x] is the inductive type whose canonical elements have
the form sup(y : B[a])c[y] where a : A and c[y] : W for y : B[a]. Here it should be
noted that free occurences of y in c[y] become bound in the term sup(y : B[a])c[y].

5 Adding a Type Universe and an impredicative type of propo-

sitions

Another possibility is to add a type universe to ML that reflects the forms of
type of ML. Here, by a type universe we shall mean a type U whose elements are
themselves types. So we add the following rules.

U type
A : U
A type

That U reflects the forms of type of ML is obtained by also adding the following
rules.

U Term Formation Rules for MLU

Nn : U (n = 0, 1, . . .)
N : U

A : U a1, a2 : A
IdA(a1, a2) : U

A : U x : A ` B[x] : U
(Πx : A)B[x] : U

A : U x : A ` B[x] : U
(Σx : A)B[x] : U

A1, A2 : U
A1 + A2 : U

By adding these rules to ML we obtain the type theory MLU. We obtain MLWU
by adding to MLW the above rules together with the obvious rule to reflect the
formation rule for W -types.

4



So far our type theories are generalised predicative and are well below the
logical strength of full second order arithmetic. We get a fully impredicative type
theory, MLP, by adding a calculus of constructions type universe P having the
following rules.

P type
A : P
A type

A type x : A ` B[x] : P
(Πx : A)B[x] : P

The first two rules just express that P is a type universe. The impredicativity
comes in the third rule which allows the formation of the type (Πx : A)B[x] : P
even though the type A might be P itself or might be a type, such as (N → P)→ P,
that has been formed using P.

We obtain the type theory MLPU by combining the rules of MLP with those
of MLU and adding the following reflection rules.

P : U
A : P
A : U

6 Adding a Hierarchy of Type Universes

Instead of adding just one type universe we can add an infinite increasing cumula-
tive hierarchy of type universes U1,U2, . . ., each reflecting the previous universes.
So each Un has all the rules we have given to U and in addition the rules

Un : Un+1

A : Un

A : Un+1
(n = 1, 2, . . .)

In this way we obtain the type theories MLU<ω and MLWU<ω.

7 An Approximation to the Coq Type Theory

We now turn to a type theory close to the type theory implemented in the proof
assistant Coq. This type theory is thoroughly impredicative. It is obtained from
MLWP by adding a type universe S that also reflects MLW, and has the rule

A : P
A : S

but not the rule P : S . and then adding a hierarchy of type universes U0,U1, . . .

that reflects MLWPS, the resulting type theory being MLWPSU<ω. In Coq the
types P and S are called Prop and Set respectively.

5



8 Appendix

In this appendix we try to give a reasonably complete and accurate presentation
of rules for the type theory MLW. Missing are the congruence rules for the con-
structors as they are very numerous and are determined according to a specific
algorithm applied to the explicitly or implicitly given formation rule for each con-
structor. In fact the congruence rules for the constructors that do not bind any
variables can be derived from the Subsitution rule below. Rather than try to pre-
cisely state the procedure for the constructors that bind variables we will illustrate
it by giving the congruence rules for the constructors Σ and split. To understand
the general pattern it should be noted that the expression (Σx : A)B[x] should be
thought of as prefered notation for Σ(A, (x)B[x]) where it is indicated that free
occurences of x in B[x] become bound in (Σx : A)B[x]. The formation rule for
this type is

A type x : A ` B[x] type
(Σx : A)B[x] type

.

So its congruence rule is

A1 = A2 x : A1 ` B1[x] = B2[x]
(Σx : A1)B1[x] = (Σx : A2)B2[x]

.

The formation rule for split is{
z : (Σx : A)B[x] ` C[z] type
x : A, y : B[x] ` c[x, y] : C[pair(x, y)]{

z : (Σx : A)B[x] ` split[z] : C[z]
x : A, y : B[x] ` split[pair(x, y)] = c[x, y] : C[pair(x, y)]

where split[e] abbreviates split(e, (x, y)c[x, y]). So its congruence rule is{
z : (Σx : A)B[x] ` C[z] type
x : A, y : B[x] ` c1[x, y] = c2[x, y] : C[pair(x, y)]

z : (Σx : A)B[x] ` split(z, (x, y)c1[x, y]) = split(z, (x, y)c2[x, y]) : C[z]

8.1 Assumption and Substitution Rules

Assumption
Γ ` B A type

x : A,Γ ` B and
Γ ` B A type
x : A,Γ ` x : A

, where it is assumed

that x is not declared in Γ or in any implicit parametric context.)

Substitution
x : A,Γ[x] ` B[x] a : A

Γ[a] ` B[a]

6



8.2 Equality Rules

A type
A = A

A1 = A2

A2 = A1

A1 = A2 A2 = A3

A1 = A3

a : A
a = a : A

a1 = a2 : A
a2 = a1 : A

a1 = a2 : A a2 = a3 : A
a1 = a3 : A

a : A1 A1 = A2

a : A2

a1 = a2 : A1 A1 = A2

a1 = a2 : A2

8.3 Finite Type Rules

For n = 0, 1, 2, . . . and k = 1, . . . , n

Nn kn : Nn

{
z : Nn ` C[z] type
ci : C[in] (i = 1, . . . , n){
z : Nn ` Rn(z) : C[z]
Rn(kn) = ck : C[kn]

where Rn[e] abbreviates Rn(e, c1, . . . , cn).

8.4 Natural Number Rules

N type 0 : N
e : N

succ(e) : N


z : N ` C[z] type
c0 : C[0]
z : N, x : C[z] ` d[z, x] : C[succ(z)]

z : N ` RN [z] : C[z]
RN [0] = c0 : C[0]
z : N, x : C[z] ` RN [succ(z)] = d[z,RN [z]] : C[succ(z)]

where RN [e] abbreviates RN(e, c0, (z, x)d[z, x]).

8.5 Identity Type Rules

A type
x1, x2 : A ` IdA(x1, x2)

a : A
rA(a) : IdA(a, a)

7




a : A
y : A, z : IdA(a, y) ` C[y, z] type
e : C[a, rA(a)]{

y : A, z : IdA(a, y) ` J(a, e, y, z) : C[y, z)
J(a, e, a, rA(a)) = e : C[a, rA(a)]

8.6 Pi Type Rules

A type x : A ` B[x] type
(Πx : A)B[x] type

f : (Πx : A)B[x] a : A
app(f, a) : B[a]

x : A ` b[x] : B[x]
(λx : A)b[x] : (Πx : A)B[x]

x : A ` b[x] : B[x] a : A
app((λx : A)b[x], a) = b[a] : B[a]

8.7 Sigma Type Rules

A type x : A ` B[x] type
(Σx : A)B[x] type

x : A ` B[x] a : A b : B[a]
pair(a, b) : (Σx : A)B[x]

{
z : (Σx : A)B[x] ` C[z] type
x : A, y : B[x] ` c[x, y] : C[pair(x, y)]{

z : (Σx : A)B[x] ` split[z] : C[z]
x : A, y : B[x] ` split[pair(x, y)] = c[x, y] : C[pair(x, y)]

where split[e] abbreviates split(e, (x, y)c[x, y]).

8.8 Binary Sum Rules

A1 type A2 type
A1 + A2 type

A1 type A2 type a : Ai

ini(a) : A1 + A2
(i = 1, 2)

{
z : A1 + A2 ` C[z] type
x : Aj ` dj[x] : C[inj(x)] (j = 1, 2){

z : A1 + A2 ` case[z] : C[z]
x : Aj ` case[inj(x)] = dj[x] : C[inj(x)] (j = 1, 2)

(i = 1, 2)

where case[e] abbreviates case(e, (x)d1[x], (x)d2[x]).

8



8.9 W Type Rules

A type x : A ` B[x] type
(Wx : A)B[x] type

a : A y : B[a] ` c[y] : W
(sup y : B[a])c[y] : W

where we use W to abbreviate (Wx : A)B[x].{
z : W ` C[z] type
x : A, u : (B[x]→ W ), v : C ′[x, u] ` d[x, u, v] : C ′′[x, u]{

z : W ` RW [z] : C[z]
x : A, u : (B[x]→ W ) ` RW [sup′[x, u]] = d′[x, u] : C ′′[x, u]

where we use the following abbreviations.

• RW [e] abbreviates RW (e, (x, u, v)d[x, u, v]),

• C ′[x, u] abbreviates (Πy : B[x])C[app(u, y)],

• d′[x, u] abbreviates d[x, u, (λy : B[x])RW [app(u, y)]],

• sup ′[x, u] abbreviates (sup y : B[x])app(u, y), and

• C ′′[x, u] abbreviates C[sup′[x, u]].

References

[Coq] http://coq.inria.fr/

[Voevodsky] http://www.math.ias.edu/~vladimir/

Site3/Univalent_Foundations.html

9


