Some open(?) problems concerning Dependent Type Theories*

Peter Aczel
The University of Manchester

May 29, 2012

1 Introduction

The aim of this note is to state some problems that are open, as far as I am aware, concerning the logical strength of some dependent type theories. In section 2 I will first state the problems in a rather informal way and then give two more precise versions concerning specific type theories. A selection of type theories will be described in sections 3-7 and their rules will be presented in more detail in the appendix, section 8 .

2 The problems

Q1: Is the type theory implemented in the Coq proof assistant, see [Coq], logically weaker or stronger than ZF?

Q2: Does the addition of Voevodsky's Univalence Axiom, see [Voevodsky], and possibly other rules such as rules for higher dimenensional inductive definitions, to a standard dependent type theory increase the logical strength of the type theory?

[^0]I now state more precise versions of the problems using specific type theories which will be described in the rest of this note.

Q1': Is $\mathrm{MLWPSU}_{<\omega}$ logically weaker or stronger than ZF ?
Q2': Is MLWU logically weaker than MLW $\mathbb{U}+\mathbf{U A}(\mathbb{U})$, where $\mathbf{U A}(\mathbb{U})$ is Voevodsky's Univalence Axiom for the type universe \mathbb{U}.

In the rest of this note we first give an outline description of a selection of type theories obtained from a base type theory ML by adding a variety of additional forms of type. In our description we assume that the reader has some familiarity with the various forms of type in the literature. A more detailed presentation of the rules of the type theories has been placed in the appendix.

3 The standard forms of judgement of a dependent type theory

A type theory will be a system of rules for deriving judgements, each having the form

$$
\Gamma \vdash \mathcal{B}
$$

where Γ is its context

$$
x_{1}: A_{1}, \ldots, x_{n}: A_{n}
$$

of $n \geq 0$ variable declarations $x_{i}: A_{i}$, for $i=1, \ldots, n$, of distinct variables x_{1}, \ldots, x_{n} and \mathcal{B} is its body, which has one of the forms

$$
A \text { type } \quad A_{1}=A_{2} \quad a: A \quad a_{1}=a_{2}: A .
$$

The body A type expresses that A is a type, $A_{1}=A_{2}$ expresses that A_{1}, A_{2} are judgementally equal types, $a: A$ expresses that a is a term of type A and $a_{1}=a_{2}: A$ expresses that a_{1}, a_{2} are judgementally equal terms of type A.

When Γ is the empty context we will usually just write \mathcal{B} rather than $\vdash \mathcal{B}$. Each rule will have instances, each of the form

$$
\frac{J_{1} \cdots J_{m}}{J}
$$

where the J_{1}, \ldots, J_{m}, J are forms of judgement. The J_{1}, \ldots, J_{m} above the line are the premisses of the rule instance and J is its conclusion. The rules will be presented schematically, using conventions that we hope will mostly be obvious. Usually, a rule will allow a parametric list of variable declarations to appear in
the premisses and conclusion of a rule. In presenting the rule the parametric list will be left implicit. For example a rule for forming function types $A \rightarrow B$ will be presented

$$
\frac{A \text { type } B \text { type }}{(A \rightarrow B) \text { type }}
$$

and will have instances

$$
\frac{\Gamma \vdash A \text { type } \quad \Gamma \vdash B \text { type }}{\Gamma \vdash(A \rightarrow B) \text { type }}
$$

where Γ can be any context.
A type theory will be presented by listing its rules, and the theorems of the type theory will form the smallest collection of judgements with the property that whenever the premisses of an instance of a rule are in the collection then so is the conclusion. We will first specify each theory by only presenting the rules that are relevent to the formation of the types of the type theory. A more detailed presentation of all the rules may be found in the appendix.

4 The Type Theories ML, ML ${ }^{-}$and MLW

We start with the formation rules for the basic type theory ML. The theory ML^{-} is obtained from ML by leaving out the rules for the type N of natural numbers

Type Formation Rules for ML		
N_{n} type $(n=0,1, \ldots)$	$\frac{A \text { type } \quad x: A \vdash B[x] \text { type }}{(\Pi x: A) B[x] \text { type }}$	$\frac{A \text { type } \quad a_{1}, a_{2}: A}{I d_{A}\left(a_{1}, a_{2}\right) \text { type }}$
N type	$\frac{A \text { type } \quad x: A \vdash B[x] \text { type }}{(\Sigma x: A) B[x] \text { type }}$	A_{1} type A_{2} type $A_{1}+A_{2} \text { type }$

There are many more rules needed for the type theory. A complete set of rules is in the appendix. Here we offer the following remarks that may help reader's intuition. The type N_{n} is the n-element type having the n canonical elements $1_{n}, \ldots, n_{n}$ and N is the type of natural numbers, having the canonical elements 0 and $s(e)$ for $e: N$. The type $I d_{A}\left(a_{1}, a_{2}\right)$ is the identity type. When $a_{1}=a_{2}=a: A$ then it has the canonical element $r_{A}(a)$. The Π and Σ types have, as special cases $A \rightarrow B=(\Pi-: A) B$ and $A \times B=(\Sigma-: A) B$, where - indicates a variable
that does not occur free in B. The type $(\Pi x: A) B[x]$ has canonical elements $(\lambda x: A) b[x]$ where $b[x]: B[x]$ for $x: A$ and $(\Sigma x: A) B[x]$ has the canonical elements pair (a, b) where $a: A$ and $b: B[a]$. Finally the sum type $A_{1}+A_{2}$ has canonical elements $\mathrm{in}_{1}(a)$ for $a: A_{1}$ and $\mathrm{in}_{2}(a)$ for $a: A_{2}$.

We obtain the type theory MLW by adding the following rule.

$$
\frac{A \text { type } x: A \vdash B[x] \text { type }}{(W x: A) B[x] \text { type }}
$$

This type $W=(W x: A) B[x]$ is the inductive type whose canonical elements have the form $\sup (y: B[a]) c[y]$ where $a: A$ and $c[y]: W$ for $y: B[a]$. Here it should be noted that free occurences of y in $c[y]$ become bound in the term $\sup (y: B[a]) c[y]$.

5 Adding a Type Universe and an impredicative type of propositions

Another possibility is to add a type universe to ML that reflects the forms of type of ML. Here, by a type universe we shall mean a type \mathbb{U} whose elements are themselves types. So we add the following rules.

That \mathbb{U} reflects the forms of type of ML is obtained by also adding the following rules.

\mathbb{U} Term Formation Rules for $\mathbf{M L} \mathbb{U}$		
$\frac{N_{n}: \mathbb{U}}{}(n=0,1, \ldots)$	$\frac{A: \mathbb{U} a_{1}, a_{2}: A}{N: \mathbb{U}}$	$\frac{A d_{A}\left(a_{1}, a_{2}\right): \mathbb{U}}{}$
$\frac{A: \mathbb{U} \quad x: A \vdash B[x]: \mathbb{U}}{(\Pi x: A) B[x]: \mathbb{U}}$	$\frac{A: \mathbb{U}}{(\Sigma x: A) B[x]: \mathbb{U}}$	$\frac{A_{1}, A_{2}: \mathbb{U}}{A_{1}+A_{2}: \mathbb{U}}$

By adding these rules to ML we obtain the type theory MLU. We obtain MLWU by adding to MLW the above rules together with the obvious rule to reflect the formation rule for W-types.

So far our type theories are generalised predicative and are well below the logical strength of full second order arithmetic. We get a fully impredicative type theory, MLP , by adding a calculus of constructions type universe \mathbb{P} having the following rules.

| | $\frac{A: \mathbb{P}}{A} \quad \frac{A \text { type } x: A \vdash B[x]: \mathbb{P}}{(\Pi x: A) B[x]: \mathbb{P}}$ |
| :--- | :--- | :--- |

The first two rules just express that \mathbb{P} is a type universe. The impredicativity comes in the third rule which allows the formation of the type $(\Pi x: A) B[x]: \mathbb{P}$ even though the type A might be \mathbb{P} itself or might be a type, such as $(N \rightarrow \mathbb{P}) \rightarrow \mathbb{P}$, that has been formed using \mathbb{P}.

We obtain the type theory MLPU by combining the rules of MLP with those of MLU and adding the following reflection rules.

$\mathbb{P}: \mathbb{U}$	$A: \mathbb{P}$
	$A: \mathbb{U}$

6 Adding a Hierarchy of Type Universes

Instead of adding just one type universe we can add an infinite increasing cumulative hierarchy of type universes $\mathbb{U}_{1}, \mathbb{U}_{2}, \ldots$, each reflecting the previous universes. So each \mathbb{U}_{n} has all the rules we have given to \mathbb{U} and in addition the rules

$$
\begin{array}{lll}
& \frac{A: \mathbb{U}_{n}}{\mathbb{U}_{n}: \mathbb{U}_{n+1}} & (n=1,2, \ldots) \\
\hline
\end{array}
$$

In this way we obtain the type theories $\mathrm{ML}_{<\omega}$ and $\mathbf{M L W} \mathbb{U}_{<\omega}$.

7 An Approximation to the Coq Type Theory

We now turn to a type theory close to the type theory implemented in the proof assistant Coq. This type theory is thoroughly impredicative. It is obtained from MLWP by adding a type universe \mathbb{S} that also reflects MLW, and has the rule

$$
\frac{A: \mathbb{P}}{A: \mathbb{S}}
$$

but not the rule $\overline{\mathbb{P}: \mathbb{S}}$. and then adding a hierarchy of type universes $\mathbb{U}_{0}, \mathbb{U}_{1}, \ldots$ that reflects MLWPS, the resulting type theory being MLWPSU M . In Coq the types \mathbb{P} and \mathbb{S} are called Prop and Set respectively.

8 Appendix

In this appendix we try to give a reasonably complete and accurate presentation of rules for the type theory MLW. Missing are the congruence rules for the constructors as they are very numerous and are determined according to a specific algorithm applied to the explicitly or implicitly given formation rule for each constructor. In fact the congruence rules for the constructors that do not bind any variables can be derived from the Subsitution rule below. Rather than try to precisely state the procedure for the constructors that bind variables we will illustrate it by giving the congruence rules for the constructors Σ and split. To understand the general pattern it should be noted that the expression $(\Sigma x: A) B[x]$ should be thought of as prefered notation for $\Sigma(A,(x) B[x])$ where it is indicated that free occurences of x in $B[x]$ become bound in $(\Sigma x: A) B[x]$. The formation rule for this type is

$$
\frac{A \text { type } \quad x: A \vdash B[x] \text { type }}{(\Sigma x: A) B[x] \text { type }} .
$$

So its congruence rule is

$$
\frac{A_{1}=A_{2} \quad x: A_{1} \vdash B_{1}[x]=B_{2}[x]}{\left(\Sigma x: A_{1}\right) B_{1}[x]=\left(\Sigma x: A_{2}\right) B_{2}[x]} .
$$

The formation rule for split is

$$
\frac{\left\{\begin{array}{l}
z:(\Sigma x: A) B[x] \vdash C[z] \text { type } \\
x: A, y: B[x] \vdash c[x, y]: C[\operatorname{pair}(x, y)]
\end{array}\right.}{\left\{\begin{array}{l}
z:(\Sigma x: A) B[x] \vdash \operatorname{split}[z]: C[z] \\
x: A, y: B[x] \vdash \operatorname{split}[\operatorname{pair}(x, y)]=c[x, y]: C[\operatorname{pair}(x, y)]
\end{array}\right.}
$$

where split $[e]$ abbreviates split $(e,(x, y) c[x, y])$. So its congruence rule is

$$
\left\{\begin{array}{l}
z:(\Sigma x: A) B[x] \vdash C[z] \text { type } \\
x: A, y: B[x] \vdash c_{1}[x, y]=c_{2}[x, y]: C[\operatorname{pair}(x, y)]
\end{array}\right]
$$

8.1 Assumption and Substitution Rules

Assumption $\frac{\Gamma \vdash \mathcal{B} \quad A \text { type }}{x: A, \Gamma \vdash \mathcal{B}}$ and $\frac{\Gamma \vdash \mathcal{B} \quad A \text { type }}{x: A, \Gamma \vdash x: A}$, where it is assumed that x is not declared in Γ or in any implicit parametric context.)

Substitution $\frac{x: A, \Gamma[x] \vdash \mathcal{B}[x] \quad a: A}{\Gamma[a] \vdash \mathcal{B}[a]}$

8.2 Equality Rules

A type	$\frac{A_{1}=A_{2}}{A_{2}=A_{1}}$	$\frac{A_{1}=A_{2} A_{2}=A_{3}}{A_{1}=A_{3}}$
$A=A$	$\frac{a_{1}=a_{2}: A}{a: A}$	$\frac{a_{1}=a_{2}: A \quad a_{2}=a_{3}: A}{a_{2}=a_{1}: A}$
$a=a: A$	$a_{1}=a_{3}: A$	

$$
\begin{array}{|cc|}
\hline a: A_{1} A_{1}=A_{2} \\
a: A_{2} & \frac{a_{1}=a_{2}: A_{1} \quad A_{1}=A_{2}}{a_{1}=a_{2}: A_{2}} \\
\hline
\end{array}
$$

8.3 Finite Type Rules

For $n=0,1,2, \ldots$ and $k=1, \ldots, n$

$$
\begin{array}{|lc|}
\hline N_{n} & \left\{\begin{array}{l}
z: N_{n} \vdash C[z] \text { type } \\
c_{i}: C\left[i_{n}\right](i=1, \ldots, n)
\end{array}\right. \\
\left\{\begin{array}{l}
z: N_{n} \vdash \mathrm{R}_{n}(z): C[z] \\
\mathrm{R}_{n}\left(k_{n}\right)=c_{k}: C\left[k_{n}\right]
\end{array}\right. \\
\hline
\end{array}
$$

where $\mathrm{R}_{n}[e]$ abbreviates $\mathrm{R}_{n}\left(e, c_{1}, \ldots, c_{n}\right)$.

8.4 Natural Number Rules

N type	$\frac{e: N}{\operatorname{succ}(e): N}$

$$
\frac{\left\{\begin{array}{l}
z: N \vdash C[z] \text { type } \\
c_{0}: C[0] \\
z: N, x: C[z] \vdash d[z, x]: C[\operatorname{succ}(z)]
\end{array}\right.}{\left\{\begin{array}{l}
z: N \vdash \mathrm{R}_{N}[z]: C[z] \\
\mathrm{R}_{N}[0]=c_{0}: C[0] \\
z: N, x: C[z] \vdash \mathrm{R}_{N}[\operatorname{succ}(z)]=d\left[z, \mathrm{R}_{N}[z]\right]: C[\operatorname{succ}(z)]
\end{array}\right.}
$$

where $\mathrm{R}_{N}[e]$ abbreviates $\mathrm{R}_{N}\left(e, c_{0},(z, x) d[z, x]\right)$.

8.5 Identity Type Rules

$\frac{A \text { type }}{}$	$a: A$
$x_{1}, x_{2}: A \vdash I d_{A}\left(x_{1}, x_{2}\right)$	$r_{A}(a): I d_{A}(a, a)$

$$
\begin{gathered}
\left\{\begin{array}{l}
a: A \\
y: A, z: I d_{A}(a, y) \vdash C[y, z] \text { type } \\
e: C\left[a, r_{A}(a)\right]
\end{array}\right. \\
\left\{\begin{array}{l}
y: A, z: I d_{A}(a, y) \vdash J(a, e, y, z): C[y, z) \\
J\left(a, e, a, r_{A}(a)\right)=e: C\left[a, r_{A}(a)\right]
\end{array}\right. \\
\hline
\end{gathered}
$$

8.6 Pi Type Rules

| $\frac{A \text { type } x: A \vdash B[x] \text { type }}{(\Pi x: A) B[x] \text { type }}$ | $\frac{f:(\Pi x: A) B[x] \quad a: A}{\operatorname{app}(f, a): B[a]}$ |
| :---: | :---: | :---: |

$\frac{x: A \vdash b[x]: B[x]}{(\lambda x: A) b[x]:(\Pi x: A) B[x]}$	$\frac{x: A \vdash b[x]: B[x]}{\operatorname{app}((\lambda x: A) b[x], a)=b[a]: B[a]}$

8.7 Sigma Type Rules

$\frac{A \text { type } x: A \vdash B[x] \text { type }}{(\Sigma x: A) B[x] \text { type }}$		$x: A \vdash B[x] \quad a: A \quad b: B[a]$
$\operatorname{pair}(a, b):(\Sigma x: A) B[x]$		

$$
\begin{gathered}
\left\{\begin{array}{l}
z:(\Sigma x: A) B[x] \vdash C[z] \text { type } \\
x: A, y: B[x] \vdash c[x, y]: C[\operatorname{pair}(x, y)]
\end{array}\right. \\
\left\{\begin{array}{l}
z:(\Sigma x: A) B[x] \vdash \operatorname{split}[z]: C[z] \\
x: A, y: B[x] \vdash \operatorname{split}[\operatorname{pair}(x, y)]=c[x, y]: C[\operatorname{pair}(x, y)]
\end{array}\right.
\end{gathered}
$$

where split $[e]$ abbreviates $\operatorname{split}(e,(x, y) c[x, y])$.

8.8 Binary Sum Rules

$$
\begin{aligned}
& \frac{A_{1} \text { type } A_{2} \text { type }}{A_{1}+A_{2} \text { type }} \quad \frac{A_{1} \text { type } A_{2} \text { type } a: A_{i}}{\operatorname{in}_{i}(a): A_{1}+A_{2}}(i=1,2) \\
& \frac{\left\{\begin{array}{l}
z: A_{1}+A_{2} \vdash C[z] \text { type } \\
x: A_{j} \vdash d_{j}[x]: C\left[\mathrm{in}_{j}(x)\right](j=1,2)
\end{array}\right.}{\left\{\begin{array}{l}
z: A_{1}+A_{2} \vdash \operatorname{case}[z]: C[z] \\
x: A_{j} \vdash \operatorname{case}\left[\mathrm{in}_{j}(x)\right]=d_{j}[x]: C\left[\mathrm{in}_{j}(x)\right](j=1,2)
\end{array}\right.}(i=1,2) \\
& \hline
\end{aligned}
$$

where case $[e]$ abbreviates case $\left(e,(x) d_{1}[x],(x) d_{2}[x]\right)$.

8.9 W Type Rules

$$
\frac{A \text { type } x: A \vdash B[x] \text { type }}{(W x: A) B[x] \text { type }} \quad \frac{a: A \quad y: B[a] \vdash c[y]: W}{(\sup y: B[a]) c[y]: W}
$$

where we use W to abbreviate $(W x: A) B[x]$.

$$
\frac{\left\{\begin{array}{l}
z: W \vdash C[z] \text { type } \\
x: A, u:(B[x] \rightarrow W), v: C^{\prime}[x, u] \vdash d[x, u, v]: C^{\prime \prime}[x, u]
\end{array}\right.}{\left\{\begin{array}{l}
z: W \vdash \mathrm{R}_{W}[z]: C[z] \\
x: A, u:(B[x] \rightarrow W) \vdash \mathrm{R}_{W}\left[\sup ^{\prime}[x, u]\right]=d^{\prime}[x, u]: C^{\prime \prime}[x, u]
\end{array}\right.}
$$

where we use the following abbreviations.

- $\mathrm{R}_{W}[e]$ abbreviates $\mathrm{R}_{W}(e,(x, u, v) d[x, u, v])$,
- $C^{\prime}[x, u]$ abbreviates $(\Pi y: B[x]) C[\operatorname{app}(u, y)]$,
- $d^{\prime}[x, u]$ abbreviates $d\left[x, u,(\lambda y: B[x]) \mathrm{R}_{W}[\operatorname{app}(u, y)]\right]$,
- $\sup ^{\prime}[x, u]$ abbreviates (sup $\left.y: B[x]\right) \operatorname{app}(u, y)$, and
- $C^{\prime \prime}[x, u]$ abbreviates $C\left[\sup ^{\prime}[x, u]\right]$.

References

[Coq] http://coq.inria.fr/
[Voevodsky] http://www.math.ias.edu/~vladimir/
Site3/Univalent_Foundations.html

[^0]: *These problems were raised at a seminar, devoted to the raising of open problems, of the Syntax and Semantics programme of the Cambridge Newton Institute. I am grateful to the Institute for providing me the excellent facilities in which this note was prepared.

