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Abstract

We introduce infinitary propositional theories over a set and their
models which are subsets of the set, and define a generalized geomet-
ric theory as an infinitary propositional theory of a special form. The
main result is that the class of models of a generalized geometric theory
is set-generated. Here a class X of subsets of a set is set-generated if
there exists a subset G of X such that for each α ∈ X and finitely enu-
merable subset τ of α there exists a subset β ∈ G such that τ ⊆ β ⊆ α.
We show the main result in the constructive Zermelo-Fraenkel set the-
ory (CZF) with an additional axiom, called the set generation axiom
which is derivable in CZF, both from the relativized dependent choice
scheme and from a regular extension axiom. We give some applica-
tions of the main result to algebra, topology and formal topology.

Keywords: constructive mathematics, constructive set theory, infinitary propo-
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1 Introduction

The late Errett Bishop [9] developed his mathematics, Bishop’s constructive
mathematics, not based on the principles of classical logic such as the prin-
ciple of excluded middle, but based on the principles of intuitionistic logic
which is weaker than classical logic; see [25, Chapter 1] for some history
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of constructive mathematics, and see [9, 10, 11, 18, 12] for the practice in
Bishop’s constructive mathematics.

After the publication of Bishop’s book, Myhill [19] developed a construc-
tive set theory as a set theoretical foundation for Bishop’s constructive math-
ematics, and Martin-Löf [17] developed a predicative type theory, the Martin-
Löf type theory, as a foundational approach to Bishop’s constructive mathe-
matics. Aczel [1, 2, 3] introduced a constructive set theory, the constructive
Zermelo-Fraenkel set theory (CZF), which has a quite natural interpretation
into the Martin-Löf type theory, and hence it is a predicative theory without
the power set axiom and the full separation axiom.

When developing mathematics in a predicative way, say in CZF, we are
always faced with a difficulty in constructing an object as a set. Sometimes,
we are able to find, case by case, constructions of objects as sets; see [13] for
a construction of an order completion, [8] for a construction of a completion
of a uniform space and [14] and its references for a construction of the set
of continuous morphisms from a compact regular formal topology into a
completely regular and set-presented formal topology and so on; see [22, 23,
24] for formal topology. However, in general, we have to introduce some
notion of an approximation, and deal with a class whose elements can be
approximated by elements of a subset of the class.

Aczel [4] introduced the notion of a set-generated dcpo using some termi-
nology from domain theory. A partially ordered class is a directed complete
partial order (dcpo) if each directed subset has a least upper bound, where
a subset is directed if any pair of elements of the subset has an upper bound
in the subset. A dcpo X is set-generated if there is a subset G of X such
that, for each a ∈ X , {x ∈ G | x ≤ a} is a directed subset whose least upper
bound is a.

If we restrict our attention to a class X of subsets of a set with the
inclusion ⊆ as a partial order, then we may say that X is set-generated if
there exists a subset G, called a generating subset, of X such that

∀α ∈ X∀τ ∈ Fin(α)∃β ∈ G[τ ⊆ β ⊆ α],

where Fin(α) is the set of finitely enumerable subsets of α. As the reader
has seen in the literature, say [21, 4] for the class of formal points of a
set-presented formal topology, [16] and [20] for constructions of a quotient
topology and a coequalizer in formal topology, and will see in Section 7,
the notion of a set-generated class in this sense has played crucial roles in
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predicative constructive mathematics; see [7] for non-deterministic definitions
and set-generated classes.

In this paper, after reviewing the predicative constructive set theory
(CZF), we introduce infinitary propositional theories over a set S and their
models which are subsets of S, and then introduce a generalized geometric
theory and their rank. Our main result is the following.

The class of models of a generalized geometric theory of rank n is
set-generated.

This will be proved by showing that (1) each theory of rank n + 1 has a
strongly conservative extension of rank max{1, n} (Proposition 4.3), (2) if
the class of models of a strongly conservative extension of a theory is set-
generated, then the class of models of the theory is set-generated (Proposition
4.4), and (3) the class of models of a theory of rank 1 is set-generated (in
Theorem 4.5). We will prove (3) in CZF with an additional axiom, called
the set generated axiom (SGA):

SGA: For each set S and each subset Z of Fin(S)×Pow(Pow(S)), the class

M(Z) = {α ∈ Pow(S) | ∀(σ,Γ) ∈ Z[σ ⊆ α⇒ ∃U ∈ Γ(U ⊆ α)]}

is set-generated.

We will show, in CZF, that the axiom SGA both follows from the relativized
dependent choice (RDC) in Section 5 and also from a regular extension axiom
(RRS2-uREA) in Section 6, respectively. Finally, in Section 7, we will give
some applications of the main result to algebra, topology and formal topology
including some constructions mentioned above; see [15] for applications in the
categories of basic pairs and concrete spaces introduced by Sambin [23, 24].

2 The constructive set theory CZF

The constructive set theory CZF, founded by Aczel [1, 2, 3], grew out of My-
hill’s constructive set theory [19] as a formal system for Bishop’s constructive
mathematics, and permits a quite natural interpretation in Martin-Löf type
theory [17].

Definition 2.1. The language of CZF contains variables for sets, a constant
N, and the binary predicates = and ∈. The axioms and rules are those of
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intuitionistic predicate logic with equality, and the following set theoretic
axioms:

1. Extensionality: ∀a∀b(∀x(x ∈ a⇔ x ∈ b)⇒ a = b).

2. Pairing: ∀a∀b∃c∀x(x ∈ c⇔ x = a ∨ x = b).

3. Union: ∀a∃b∀x(x ∈ b⇔ ∃y ∈ a(x ∈ y)).

4. Restricted Separation:

∀a∃b∀x(x ∈ b⇔ x ∈ a ∧ ϕ(x))

for every restricted formula ϕ(x). Here a formula ϕ(x) is restricted, or
∆0, if all the quantifiers occurring in it are bounded, i.e. of the form
∀x ∈ c or ∃x ∈ c.

5. Strong Collection:

∀a(∀x ∈ a∃yϕ(x, y)⇒ ∃b(∀x ∈ a∃y ∈ bϕ(x, y) ∧ ∀y ∈ b∃x ∈ aϕ(x, y)))

for every formula ϕ(x, y).

6. Subset Collection:

∀a∀b∃c∀u(∀x ∈ a∃y ∈ bϕ(x, y, u)⇒
∃d ∈ c(∀x ∈ a∃y ∈ dϕ(x, y, u) ∧ ∀y ∈ d∃x ∈ aϕ(x, y, u)))

for every formula ϕ(x, y, u).

7. Infinity:

(N1) 0 ∈ N ∧ ∀x(x ∈ N⇒ x+ 1 ∈ N),

(N2) ∀y(0 ∈ y ∧ ∀x(x ∈ y ⇒ x+ 1 ∈ y)⇒ N ⊆ y),

where x+ 1 is x ∪ {x}, and 0 is the empty set ∅ = {x ∈ N | ⊥}.

8. ∈-Induction:

(IND∈) ∀a(∀x ∈ aϕ(x)⇒ ϕ(a))⇒ ∀aϕ(a)

for every formula ϕ(a).
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Let a and b be sets. Using Strong Collection, the cartesian product a× b
of a and b consisting of the ordered pairs (x, y) = {{x}, {x, y}} with x ∈ a
and y ∈ b can be introduced in CZF. A relation r between a and b is a
subset of a × b. A relation r ⊆ a × b is total (or is a multivalued function)
if for every x ∈ a there exists y ∈ b such that (x, y) ∈ r. The class of total
relations between a and b is denoted by mv(a, b), or more formally

r ∈ mv(a, b)⇔ r ⊆ a× b ∧ ∀x ∈ a∃y ∈ b((x, y) ∈ r).

A function from a to b is a total relation f ⊆ a× b such that for every x ∈ a
there is exactly one y ∈ b with (x, y) ∈ f . The class of functions from a to b
is denoted by ba, or more formally

f ∈ ba ⇔ f ∈ mv(a, b) ∧ ∀x ∈ a∀y, z ∈ b((x, y) ∈ f ∧ (x, z) ∈ f ⇒ y = z).

In CZF, we can prove

Fullness: ∀a∀b∃c(c ⊆ mv(a, b) ∧ ∀r ∈ mv(a, b)∃r0 ∈ c(r0 ⊆ r)),

and, as a corollary, we see that ba forms a set, that is

Exponentiation: ∀a∀b∃c∀f(f ∈ c⇔ f ∈ ba).

An inductive definition is a class Φ of ordered pairs. If Φ is an inductive
definition and (X, a) ∈ Φ, then we write X/a ∈ Φ, and call X/a an (infer-
ence) step of Φ. A class Y is Φ-closed if X ⊆ Y implies a ∈ Y for each step
X/a of Φ. We will use the following result [2, 6] for the axiom system CZF;
see [6] for more details of CZF.

Theorem 2.2 (Class Inductive Definition Theorem). For each inductive def-
inition Φ, there is a smallest Φ-closed class I(Φ).

We say that the class I(Φ) is inductively defined by the inductive definition
Φ.

In the following, capital and small letters A,B, . . . and a, b, . . . will de-
note sets, and calligraphic letters A,B, . . . will denote classes unless stated
otherwise.
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3 Infinitary propositional theories

Definition 3.1. The class of S-formulae is defined inductively by the fol-
lowing clauses.

1. ps is an S-formula for each s ∈ S;

2. if ϕ and ψ are S-formulae, then (ϕ→ ψ) is an S-formula;

3. if U is a set of S-formulae, then
∧
U and

∨
U are S-formulae.

If I is a set and ϕi is an S-formula for each i ∈ I, then we write∧
i∈I ϕi ≡

∧
{ϕi | i ∈ I} and

∨
i∈I ϕi ≡

∨
{ϕi | i ∈ I}.

We denote the class of S-formulae by FS, and let FS0 = {ps | s ∈ S}. We
call a subset T of FS an S-theory.

Remark 3.2. Note that the class FS is inductively defined by the steps: ∅/ps
(s ∈ S), {ϕ, ψ}/(ϕ→ ψ), U/

∧
U and U/

∨
U (U is a set). To represent

this class in constructive set theory it is necessary to use some coding. For
example we can let ps ≡ (0, s), (ϕ→ψ) ≡ (1, (ϕ, ψ)),

∧
U ≡ (2, U) and∨

U ≡ (3, U).

Let 0 = ∅, 1 = {0} and Ω = Pow(1). For each formula ϕ of CZF, define
the subclass 〈ϕ〉 of 1 by 〈ϕ〉 = {x ∈ 1 | ϕ}, where the variable x is chosen
not to be free in ϕ. For each class A let !A ≡ (0 ∈ A). Note that ϕ↔ !〈ϕ〉,
and if ϕ is a restricted formula, then 〈ϕ〉 ∈ Ω.
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Proposition 3.3. For each α ∈ Pow(S) there is a unique class function
[[− ]]α : FS→Ω such that for s ∈ S, ϕ, ψ ∈ FS and U ∈ Pow(FS),

1. [[ps]]α = 〈s ∈ α〉,

2. [[ϕ→ψ]]α = 〈![[ϕ]]α→ ![[ψ]]α〉,

3. [[
∧
U ]]α = 〈∀ϕ ∈ U ![[ϕ]]α〉,

4. [[
∨
U ]]α = 〈∃ϕ ∈ U ![[ϕ]]α〉.

Proof. Let Φα be the inductive definition having the following steps, for
s ∈ S, ϕ, ψ ∈ FS, U ∈ Pow(FS) and F : U→Ω.

1. ∅/(ps, 〈s ∈ α〉),

2. {(ϕ, a), (ψ, b)}/(ϕ→ψ, 〈!a→ !b〉),

3. F/(
∧
U, 〈∀ϕ ∈ U !F (ϕ)〉),

4. F/(
∨
U, 〈∃ϕ ∈ U !F (ϕ)〉).

Note that F = {(ϕ, F (ϕ)) | ϕ ∈ U}. Since the class FS×Ω is Φα-closed, the
class I(Φα) is a subclass of FS × Ω. Moreover, since it is straightforward to
see that the class {ϕ | ∃!a ∈ Ω((ϕ, a) ∈ I(Φα))} is closed under the inductive
definition for FS in Remark 3.2, the class I(Φα) is the graph of the required
function [[− ]]α : FS→Ω.

Definition 3.4. For α ∈ Pow(S) and ϕ ∈ FS let

α |= ϕ iff ![[ϕ]]α.

Proposition 3.5. For α ∈ Pow(S), s ∈ S, ϕ, ψ ∈ FS and U ∈ Pow(FS),

1. α |= ps iff s ∈ α,

2. α |= (ϕ→ψ) iff α |= ϕ implies α |= ψ,

3. α |=
∧
U iff α |= ϕ for all ϕ ∈ U ,

4. α |=
∨
U iff α |= ϕ for some ϕ ∈ U .

Proof. Routine.
If T is an S-theory then, for each α ∈ Pow(S) let α |= T iff α |= ϕ for all

ϕ ∈ T and let M(T ) ≡ {α ∈ Pow(S) | α |= T}.
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Definition 3.6. Let ι : S → S ′. Then there is a unique class function
(−)ι : FS → FS′ such that, for s ∈ S, ϕ, ψ ∈ FS and U ∈ Pow(FS),

1. pιs ≡ pι(s);

2. (ϕ→ ψ)ι ≡ (ϕι→ ψι);

3. (
∧
U)ι ≡

∧
U ι;

4. (
∨
U)ι ≡

∨
U ι,

where U ι = {ϕι | ϕ ∈ U}.

Proof. As in the proof of Proposition 3.3.

Proposition 3.7. Let ι : S → S ′, α′ ∈ Pow(S) and α ≡ ι−1(α′). Then

α |= ϕ ⇔ α′ |= ϕι

for each ϕ ∈ FS, and hence

α |= T ⇔ α′ |= T ι

for each S-theory T .

Proof. Let [[− ]]α : FS → Ω and [[− ]]α′ : FS′ → Ω be class functions defined
as in the proof of Proposition 3.3. Then the class

{ϕ ∈ FS | α |= ϕ ⇔ α′ |= ϕι}

is closed under the inductive definition for FS in Remark 3.2.

Let T be an S-theory and let ϕ be an S-formula. Then we write T |= ϕ
if α |= ϕ for each α ∈M(T ).

Definition 3.8. Let ι : S → S ′.

1. An S ′-theory T ′ is an ι-extension of T if T |= ϕ implies T ′ |= ϕι for
each ϕ ∈ FS.

2. An ι-extension T ′ of T is a conservative ι-extension if T ′ |= ϕι implies
T |= ϕ for each ϕ ∈ FS, and it is a strongly conservative ι-extension if
for each α ∈M(T ) there exists α′ ∈M(T ′) such that α = ι−1(α′).
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Note that if T ′ is a strongly conservative ι-extension of T , then it is a
conservative ι-extension, by Proposition 3.7.

Proposition 3.9. Let ι : S → S ′ and let T and T ′ be an S-theory and
S ′-theory, respectively. Then the following are equivalent.

1. T ′ is an ι-extension of T ;

2. T ′ |= ϕι for each ϕ ∈ T ;

3. ι−1(α′) ∈M(T ) for each α′ ∈M(T ′).

Proof. (1) ⇒ (2): Suppose that T ′ is an ι-extension of T . If ϕ ∈ T , then
T |= ϕ, and hence T ′ |= ϕι.

(2) ⇒ (3): Suppose that α′ ∈ M(T ′). Then α′ |= ϕι for each ϕ ∈ T , by
(2), and hence ι−1(α′) |= ϕ, by Proposition 3.7. Therefore ι−1(α′) ∈M(T ).

(3) ⇒ (1): Suppose that T |= ϕ and α′ ∈M(T ′). Then ι−1(α′) ∈M(T ),
by (3), and hence ι−1(α′) |= ϕ. Therefore α′ |= ϕι, by Proposition 3.7. Thus
T ′ |= ϕι.

4 Generalized geometric theories

Let σ be a finitely enumerable subset of FS0 , and let Γ be a set of S-theories.
Then define

σ ( Γ ≡ (
∧
σ→

∨
U∈Γ

∧
U).

Note that α |= (σ ( Γ) if and only if α |= σ implies α |= U for some U ∈ Γ.
For a subclass C of FS, let

∆S
0 (C) = {σ ( Γ | σ ∈ Fin(FS0 ),Γ ∈ Pow(Pow(C))}

and let
∆S(C) = (FS0 ∩ C) ∪∆S

0 (C).

Definition 4.1. For t ∈ S and ϕ ∈ ∆S(FS) let

(t A ϕ) ≡ (σϕ ∪ {pt} −◦ Γϕ).

where σϕ and Γϕ are defined as follows. If ϕ ≡ ps ∈ FS0 then σϕ ≡ ∅ and
Γϕ ≡ {{ps}} and if ϕ = (σ −◦ Γ) ∈ ∆S

0 (FS) then σϕ ≡ σ and Γϕ ≡ Γ.
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Lemma 4.2. Let C be a subclass of FS and let t ∈ S. If ϕ ∈ ∆S(C) then
(t A ϕ) ∈ ∆S

0 (C) such that, for α ∈ Pow(S),

α |= (t A ϕ) iff t ∈ α implies α |= ϕ.

Proof. Let ϕ ∈ ∆S(C). Then, as Γϕ ∈ Pow(Pow(C)),

(t A ϕ) ≡ (σϕ ∪ {pt}( Γϕ) ∈ ∆S
0 (C).

Note that when ϕ ∈ FS0 ∩ C then

α |= (σϕ ( Γϕ) iff α |= (∅( {{ϕ}} iff α |= ϕ.

So, for ϕ ∈ ∆S(C),

α |= (t A ϕ) iff α |= (σϕ ∪ {pt} implies α |= U for some U ∈ Γϕ
iff α |= pt implies α |= (σϕ ( Γϕ)
iff t ∈ α implies α |= ϕ.

For n ∈ N, define a class GSn by

GS0 = FS0 ;

GSn+1 = ∆S(GSn ).

It is straightforward to see that FS0 is a subclass of each GSn so that, for each
n, GSn+1 = FS0 ∪ ∆S

n(GSn ) and GSn is a subclass of GSn+1. An S-theory T is a
generalized geometric theory of rank n over S if T ⊆ GSn for some n ∈ N.

Theorem 4.3. Let T be a generalized geometric theory of rank n + 1 over
a set S. Then there exists a set S ′, a mapping ι : S → S ′, and a general-
ized geometric theory T ′ of rank n′ = max{1, n} over S ′ which is a strongly
conservative ι-extension of T .

Proof. Let T be an S-theory with T ⊆ GSn+1. Then T = P ∪Q with P ⊆ FS0 ∩
GSn and Q ⊆ ∆S

0 (GSn ). Let Q′ = {(ϕ,U, θ) | ϕ ∈ Q,U ∈ Γϕ, θ ∈ U}, and, if
q ∈ Q′, let q = (ϕq, Uq, θq). Let S ′ = S+Q′ = ({0}×S)∪({1}×Q′), and define
ι : S → S ′ by ι(s) = (0, s) for s ∈ S. Let Q∗ = {(1, q) A θιq | q ∈ Q′} ⊆ GS

′

n′ ,
and let

Q̃ = {σιϕ ( Γ′ϕ | ϕ ∈ Q} ⊆ GS
′

1 .
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Here, for ϕ ∈ Q,

Γ′ϕ = {U ′ϕ | U ∈ Γϕ} ∈ Pow(Pow(FS′0 )),

where, for U ∈ Γϕ, U ′ϕ = {p(1,(ϕ,U,θ)) | θ ∈ U} ∈ Pow(FS′0 ). Finally, define a
generalized geometric theory T ′ over S ′ of rank n′ by

T ′ = P ι ∪Q∗ ∪ Q̃.

Then we shall show that T ′ is a strongly conservative ι-extension of T .
First, we show that T ′ is an ι-extension of T using Proposition 3.9; i.e.

we show that if α′ ∈ Pow(S ′) such that α′ |= T ′ and α ≡ ι−1(α′) then

α′ |= T ′ implies α |= T.

So let α′ |= T ′; i.e. (i) α′ |= P ι, (ii) α′ |= Q∗ and (iii) α′ |= Q̃.
We have α |= P , by (i) and Proposition 3.7. So it only remains to show

that α |= Q. If ϕ = (σϕ ( Γϕ) ∈ Q and α |= σϕ we must show that α |= U
for some U ∈ Γϕ. Since α′ |= σιϕ, by (iii),

α′ |= σιϕ ( Γ′ϕ,

so that there exists U ∈ Γϕ such that α′ |= U ′ϕ.
We must show that α |= U . So let θ ∈ U . Then, since q = (ϕ, V, θ) ∈ Q′

and p(1,q) ∈ U ′ϕ, we have α′ |= p(1,q), and hence (1, q) ∈ α′. Since (1, q) A θι ∈
Q∗, we have α′ |= (1, q) A θι, by (ii), and hence α′ |= θι, by Lemma 4.2, and
so α |= θ by Proposition 3.7. Thus we have α |= U . So we have shown that
T ′ is an ι-extension of T .

Next, we show that T ′ is a strongly conservative ι-extension of T . To this
end, let α ∈ Pow(S) such that α |= T . Define a subset α′ of S ′ by

α′ = α + {q ∈ Q′ | α |= θq}.

We show that α′ |= T ′. Clearly α = ι−1(α′), and, since α |= P , we have
α′ |= P ι, by Proposition 3.7. Let q ∈ Q′. If (1, q) ∈ α′, then α |= θq, and
hence α′ |= θιq, by Proposition 3.7. Therefore α′ |= (1, q) A θιq, by Lemma
4.2. Thus α′ |= Q∗. Let ϕ ∈ Q and suppose that α′ |= σιϕ. Then α |= σϕ,
and, since α |= ϕ, there exists U ∈ Γϕ such that α |= U . Therefore α′ |= U ′ϕ,
and so

α′ |= σιϕ ( Γ′ϕ.

Thus α′ |= Q̃. As T ′ ≡ P ι ∪Q∗ ∪ Q̃ we are done.
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Proposition 4.4. Let ι : S → S ′, and let T and T ′ be generalized geometric
theories over S and S ′, respectively, such that T ′ is a strongly conservative
ι-extension of T . If the class M(T ′) is set-generated, then the class M(T ) is
set-generated.

Proof. Suppose that M(T ′) is set-generated. Then there exists a generating
subset G of M(T ′). Let H = {ι−1(α′) | α′ ∈ G}. Then for each α ∈ M(T )
there exists α′ ∈ M(T ′) such that α = ι−1(α′). Hence for each τ ∈ Fin(α),
since ι(τ) ∈ Fin(α′), there exists β′ ∈ G such that ι(τ) ⊆ β′ ⊆ α′, and
therefore τ ⊆ ι−1(β′) ⊆ ι−1(α′) = α. Thus H is a generating subset of
M(T ).

Theorem 4.5. Assume SGA. Then the class M(T ) of models of a general-
ized geometric theory T of rank n is set-generated.

Proof. It is enough to show that the class of models of a generalized geometric
theory of rank 1 is set-generated, by Theorem 4.3 and Proposition 4.4. Let
T be a generalized geometric theory over a set S of rank 1. Then, since
α |= ps if and only if α |= ∅( {{ps}} for each α ∈ Pow(S), we may assume
without loss of generality that T ⊆ ∆S

0 (FS0 ). For each ϕ ≡ σϕ ( Γϕ ∈ T ,
let σ = {s ∈ S | ps ∈ σϕ}, and let Γ = {{s ∈ S | ps ∈ U} | U ∈ Γϕ}. Then
we have M(Z) = M(T ), and hence M(T ) is set-generated, by SGA.

In the following two sections, we will show that SGA can be proved in
CZF + RDC, where RDC is the relativized dependent choice, and can also
be proved in CZF + RRS2-uREA, where RRS2-uREA is a regular extension
axiom.

5 The relativized dependent choice

The relativized dependent choice is stated as follows.

RDC: If ∀x ∈ A∃y ∈ A((x, y) ∈ R) and b0 ∈ A, then there exists a function
f : N→ A such that f(0) = b0 and ∀n ∈ N((f(n), f(n+ 1)) ∈ R),

where A is a class and R is a class relation. Note that RDC clearly implies
the dependent choice:

DC: If ∀x ∈ A∃y ∈ A((x, y) ∈ R) and b0 ∈ A, then there exists a function
f : N→ A such that f(0) = b0 and ∀n ∈ N((f(n), f(n+ 1)) ∈ R),
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where A is a set and R is a class relation.
In this section, we will give a proof of the following theorem.

Theorem 5.1. RDC implies SGA.

Before proving the theorem, we show the following small lemma which
will be used in the proof.

Lemma 5.2. Let a, b and R be sets, and let

r ∈ mvR(a, b) ⇔ r ∈ mv(a, b) ∧ r ⊆ R,

FullR(a, b, c) ⇔ c ⊆ mvR(a, b) ∧ ∀r ∈ mvR(a, b)∃r0 ∈ c(r0 ⊆ r).

Then there exists a set c such that FullR(a, b, c).

Proof. By Fullness, there exists a set d such that d ⊆ mv(a, b) and ∀r ∈
mv(a, b)∃r0 ∈ d(r0 ⊆ r). Let c = {r ∈ d | r ⊆ R}, by Restricted Separation.
Then c ⊆ mvR(a, b). For each r ∈ mvR(a, b), since r ∈ mv(a, b), there exists
r0 ∈ d such that r0 ⊆ r, and therefore, since r0 ⊆ r ⊆ R, we have r0 ∈ c.

Let S be a set, and let Z be a subset of Fin(S) × Pow(Pow(S)). For
α ∈ Pow(S), let Zα = {(σ,Γ) ∈ Z | σ ⊆ α}.

Let b =
⋃

(σ,Γ)∈Z Γ, let R = {((σ,Γ), U) ∈ Z × b | U ∈ Γ)}, and define a
class V by

V = {(α, c) | α ∈ Pow(S) ∧ FullR(Zα, b, c)}.

Proposition 5.3. There exists a set V ⊆ V such that

1. ∀τ ∈ Fin(S)∃c((τ, c) ∈ V ),

2. ∀(α, c) ∈ V ∀r ∈ c∃(α′, c′) ∈ V (α ∪
⋃

ran(r) = α′).

Proof. Let R be a class relation defined by

(X, Y ) ∈ R ⇔ ∀(α, c) ∈ X∀r ∈ c∃(α′, c′) ∈ Y (α ∪
⋃

ran(r) = α′).

We show that ∀X ∈ Pow(V)∃Y ∈ Pow(V)((X, Y ) ∈ R). To this end, suppose
that X is a set with X ⊆ V . Then for each (α, c) ∈ X and r ∈ c, letting
α′ = α ∪

⋃
ran(r) and constructing a set c′ such that FullR(Zα′ , b, c

′), by
Lemma 5.2, we have (α′, c′) ∈ V . Therefore

∀((α, c), r) ∈
∑

(α,c)∈X

c∃(α′, c′) ∈ V(α ∪
⋃

ran(r) = α′),

13



and hence there exists a set Y ⊆ V such that

∀((α, c), r) ∈
∑

(α,c)∈X

c∃(α′, c′) ∈ Y (α ∪
⋃

ran(r) = α′),

by Strong Collection. Clearly, we have (X, Y ) ∈ R.
Since ∀τ ∈ Fin(S)∃cFullR(Zτ , b, c), by Lemma 5.2, there exists a set X0 ⊆

V such that ∀τ ∈ Fin(S)∃c((τ, c) ∈ X0) by Strong Collection. Applying RDC
to ∀X ∈ Pow(V)∃Y ∈ Pow(V)((X, Y ) ∈ R) and X0, we have a function
f : N→ Pow(V) such that f(0) = X0 and

∀n ∈ N[(f(n), f(n+ 1)) ∈ R].

Let V =
⋃
n∈N f(n). Then it is straightforward to see (1) and (2).

Using Exponentiation, Restricted Separation and Strong Collection, de-
fine sets B and G by

B = {〈(αn, cn)〉n∈N ∈ V N | ∀n ∈ N∃r ∈ cn(P ∪ αn ∪
⋃

ran(r) = αn+1))},
G = {

⋃
n∈N αn | 〈(αn, cn)〉n∈N ∈ B}.

Proposition 5.4. G is a subset of M(Z).

Proof. Let α ∈ G. Then there exists 〈(αn, cn)〉n∈N ∈ B such that α =⋃
n∈N αn. Suppose that (σ,Γ) ∈ Z and σ ⊆ α. Then, since σ ∈ Fin(S)

and αn ⊆ αn+1 for each n ∈ N, there exist m ∈ N and r ∈ cm such that
σ ⊆ αm and αm ∪

⋃
ran(r) = αm+1. Therefore, since r ∈ mvR(Zαm , b) and

(σ,Γ) ∈ Zαm , there exists U ∈ b such that U ∈ Γ, and hence U ⊆
⋃

ran(r) ⊆
αm+1 ⊆ α. Thus α ∈M(Z).

Proposition 5.5. Let γ ∈ M(Z), and let τ ∈ Fin(γ). Then there exists
β ∈ G such that τ ⊆ β ⊆ γ.

Proof. Let Vγ = {(α, c) ∈ V | α ⊆ γ}. We show that

∀(α, c) ∈ Vγ∃(α′, c′) ∈ Vγ∃r0 ∈ c(α ∪
⋃

ran(r0) = α′).

To this end, suppose that (α, c) ∈ Vγ. Define a set

r = {((σ,Γ), U) ∈ Zα × b | U ∈ Γ ∧ U ⊆ γ},

14



by Restricted Separation. Then, since Zα ⊆ Zγ and γ is a model of T ,
for each (σ,Γ) ∈ Zα there exists U ∈ Γϕ such that U ⊆ γ. Therefore
r ∈ mvR(Zα, b), and so there exists r0 ∈ c such that r0 ⊆ r. Note that⋃

ran(r0) ⊆
⋃

ran(r) ⊆ γ. Then there exists (α′, c′) ∈ V such that α′ =
α ∪

⋃
ran(r0) ⊆ γ, by Proposition 5.3 (2). Thus (α′, c′) ∈ Vγ.

By Proposition 5.3 (1), there exists c such that (τ, c) ∈ Vγ. Applying DC,
we have a function h : n 7→ (αn, cn) with domain N and range Vγ such that
(α0, c0) = (τ, c) and ∀n ∈ N∃r0 ∈ cn(αn ∪

⋃
ran(r0) = αn+1). Therefore,

since h ∈ B, we have β =
⋃
n∈N αn ∈ G and τ ⊆ β ⊆ γ.

Remark 5.6. We can prove Proposition 5.3 using the relation reflection scheme
(RRS) of Aczel [5] which is weaker than RDC.

RRS: For a class A and a class relation R such that ∀x ∈ A∃y ∈ A((x, y) ∈
R), if A is a subset of A, then there is a subset B of A such that A ⊆ B
and ∀x ∈ B∃y ∈ B((x, y) ∈ R).

However, in the proof of Proposition 5.5, we have invoked the dependent
choice (DC) which, together with RRS, implies RDC; see [5, Theorem 2.4].

6 A regular extension axiom

A set A is regular if it is transitive, i.e. a ⊆ A for each a ∈ A, and for each
a ∈ A and R ∈ mv(a,A) there exists b ∈ A such that

∀x ∈ a∃y ∈ b((x, y) ∈ R) ∧ ∀y ∈ b∃x ∈ a((x, y) ∈ R).

A set A is union-closed if
⋃
a ∈ A for each a ∈ A.

The union-closed regular extension axiom is stated as follows.

uREA: Every set is a subset of a union-closed regular set.

A regular setA is RRS2-regular if for eachA′ ⊆ A andR ∈ mv(A′×A′, A′),
if a0 ∈ A′, then there exists A0 ∈ A such that a0 ∈ A0 ⊆ A′ and ∀x, y ∈
A0∃z ∈ A0(((x, y), z) ∈ R).

We will use the following strong form of the union-closed regular extension
axiom to prove our result.

RRS2-uREA: Every set is a subset of a union-closed RRS2-regular set.

15



Proposition 6.1. uREA and DC imply RRS2-uREA.

Proof. Let S be a set. Then, by uREA, there exists a union-closed regular
set A such that {N}∪S ⊆ A. Note that a× a ∈ A for each a ∈ A. We show
that A is RRS2-regular. Suppose that A′ ⊆ A and R ∈ mv(A′ ×A′, A′). Let
AA′ = {a ∈ A | a ⊆ A′}, and let a ∈ AA′ . Then ∀(x, y) ∈ a × a∃z ∈ A(z ∈
A′ ∧ ((x, y), z) ∈ R), and therefore, since a × a ∈ A and A is regular, there
exists b ∈ A such that

∀(x, y) ∈ a× a∃z ∈ b(z ∈ A′ ∧ ((x, y), z) ∈ R)

and
∀z ∈ b∃(x, y) ∈ a× a(z ∈ A′ ∧ ((x, y), z) ∈ R).

Since 2 ∈ A, a, b ∈ A, and A is regular and union closed, we have c = a∪ b ∈
A, and so c ∈ AA′ Hence

∀a ∈ AA′∃c ∈ AA′ [a ⊆ c ∧ ∀(x, y) ∈ a× a∃z ∈ c(((x, y), z) ∈ R)].

Let a0 ∈ A′. Then {a0} ∈ A, and hence {a0} ∈ AA′ . Therefore, by DC, there
exists a function f : N → AA′ such that f(0) = {a0}, and f(n) ⊆ f(n + 1)
and ∀(x, y) ∈ f(n) × f(n)∃z ∈ f(n + 1)(((x, y), z) ∈ R) for each n ∈ N.
Letting A0 =

⋃
{f(n) | n ∈ N}, since A is regular and union closed, we have

a0 ∈ A0 ∈ A. If x, y ∈ A0, then there exists n ∈ N such that x, y ∈ f(n),
and hence there exists z ∈ f(n+ 1) ⊆ A0. Therefore A0 satisfies the desired
condition.

In the following, we will give a proof of the following theorem.

Theorem 6.2. RRS2-uREA implies SGA.

Let S be a set, and let Z be a subset of Fin(S) × Pow(Pow(S)). For
α ∈ Pow(S), let Zα = {(σ,Γ) ∈ Z | σ ⊆ α}, and note that, since σ ∈ Fin(S)
for each (σ,Γ) ∈ Z, we have Zα =

⋃
τ∈Fin(α) Zτ . Let A be a union-closed

RRS2-regular set containing {N, S} ∪ {Zτ | τ ∈ Fin(S)} ∪ {Γ | (σ,Γ) ∈ Z},
and let

G = {α ∈ A | α ∈ Pow(S), α ∈M(Z)}.

Then G is a set by Restricted Separation.

Proposition 6.3. Let γ ∈ M(Z), and let τ ∈ Fin(γ). Then there exists
β ∈ G such that τ ⊆ β ⊆ γ.
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Proof. Let Aγ = {α ∈ A | α ⊆ γ}, and define a binary relation R on Aγ by

R = {(α, α′) | ∀(σ,Γ) ∈ Zα∃U ∈ Γ(U ⊆ α′), α ⊆ α′}.

Let α ∈ Aγ. Then Fin(α) ∈ A, by [4, Lemma 49], and

∀τ ∈ Fin(α)∃y ∈ A(y = Zτ ).

Since A is regular, there exists C ∈ A such that

∀τ ∈ Fin(α)∃y ∈ C(y = Zτ ) ∧ ∀y ∈ C∃τ ∈ Fin(α)(y = Zτ ).

Since C = {Zτ | τ ∈ Fin(α)} and A is union-closed, we have Zα =
⋃
C ∈ A,

and therefore, since Zα ⊆ Zγ and γ ∈M(Z), we have

∀(σ,Γ) ∈ Zα∃U ∈ A(U ∈ Γ ∧ U ⊆ γ).

Since A is regular, there exists D ∈ A such that

∀(σ,Γ) ∈ Zα∃U ∈ D(U ∈ Γ∧U ⊆ γ)∧∀U ∈ D∃(σ,Γ) ∈ Zα(U ∈ Γ∧U ⊆ γ).

Therefore, since A is union-closed, we have δ =
⋃
D ∈ Aγ and, since {α, δ} ∈

A and A is union-closed, we have α′ = α ∪ δ ∈ A. Hence we have α′ ∈ Aγ
and (α, α′) ∈ R. Thus R is a total binary relation on Aγ ⊆ A.

Define a relation R′ between Aγ × Aγ and Aγ by

R′ = {((α, α′), η) | (α ∪ α′, η) ∈ R}.

Then for each α, α′ ∈ Aγ, since {α, α′} ∈ A and A is union-closed, we have
α ∪ α′ ∈ A, and hence α ∪ α′ ∈ Aγ. Since R is a total relation on Aγ, we
have R′ ∈ mv(Aγ × Aγ, Aγ). Let τ ∈ Fin(γ). Then, since τ ∈ Fin(S), we
have τ ∈ A, and hence τ ∈ Aγ. Therefore by RRS2-uREA, there exists
A0 ∈ A such that τ ∈ A0 ⊆ Aγ and ∀α, α′ ∈ A0∃η ∈ A0(((α, α′), η) ∈ R′).
Letting β =

⋃
A0, since A is union-closed, we have τ ⊆ β ∈ A. Assume that

(σ,Γ) ∈ Z and σ ⊆ β. Then, since σ ∈ Fin(β), there exists α ∈ A0 such that
σ ⊆ α, and hence there exists α′ ∈ A0 such that

∀(σ′,Γ′) ∈ Zα∃U ∈ Γ′(U ⊆ α′).

Therefore, since (σ,Γ) ∈ Zα, there exists U ∈ Γ such that U ⊆ α′ ⊆ β. Thus
β ∈M(Z), and so β ∈ G.
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7 Applications

In this section, we will give some applications of the results in the previ-
ous sections to algebra, topology and formal topology. Before giving these
applications, we show the following property of a set-generated class.

Proposition 7.1. Let X be a class of inhabited subsets of a set S, and let
Min(X ) be a class of minimal elements of X , that is, Min(X ) = {x ∈ X |
∀y ∈ X (y ⊆ x⇒ y = x)}. If X is set-generated, then Min(X ) is a set.

Proof. Let G be a generating subset of X . Assume that x ∈ Min(X ). Then,
since x is inhabited, there exists s ∈ S such that s ∈ x, and therefore there
exists z ∈ G such that {s} ∈ z ⊆ x. Since x is minimal elements of X , we have
x = z ∈ G. Thus Min(X ) ⊆ Min(G). Conversely, assume that x ∈ Min(G).
Then for each y ∈ X with y ⊆ x, since there is s ∈ S with s ∈ y, there
exists z ∈ G such that {s} ∈ z ⊆ y ⊆ x, and hence z = y = x, and hence
x ∈ Min(X ). Therefore Min(G) ⊆ Min(X ). Clearly, Min(X ) = Min(G) is a
set, by Restricted Separation.

7.1 Algebra and topology

Let (R,+, ·, 0, 1) be a commutative ring. Then a subset p of R is a prime
ideal if

1. 0 ∈ p;

2. a, b ∈ p⇒ a− b ∈ p;

3. a ∈ R, b ∈ p⇒ a · b ∈ p;

4. a · b ∈ p⇒ a ∈ p ∨ b ∈ p;

5. 1 6∈ p.

Proposition 7.2. Assume SGA. Then the class of prime ideals of a com-
mutative ring is set-generated.

Proof. Let (R,+, ·, 0, 1) be a commutative ring. Then a subset of R is a
prime ideal if and only if it is a model of the following generalized geometric
theory over R of rank 1:

{p0} ∪ {
∧
{pa, pb}→ pa−b | a, b ∈ R} ∪ {pb→ pa·b | a, b ∈ R}

∪ {pa·b→
∨
x∈{a,b} px | a, b ∈ R} ∪ {¬p1}.
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Hence the class of prime ideals of (R,+, ·, 0, 1) is set-generated, by Theorem
4.5.

Corollary 7.3. Assume SGA. Then the class of minimal prime ideals of a
commutative ring forms a set.

Proof. By Proposition 7.2 and Proposition 7.1.

Similarly, we are able to show that the class of ideals of a commutative ring
is set-generated, and the class of minimal non-trivial ideals of a commutative
ring forms a set.

A neighbourhood space [9] is a pair (X, τ) consisting of a set X and a
subset τ of Pow(X) such that

1. ∀x ∈ X∃U ∈ τ(x ∈ U),

2. ∀x ∈ X∀U, V ∈ τ [x ∈ U ∩ V ⇒ ∃W ∈ τ(x ∈ W ⊆ U ∩ V )].

We say that τ is an open base on X. A subset A of X is open if for each
x ∈ A there exists U ∈ τ such that x ∈ U ⊆ A. A function f between
neighbourhood spaces (X, τ) and (Y, σ) is continuous if f−1(V ) is open for
each V ∈ σ.

Let {(Xi, τi) | i ∈ I} be a family of neighbourhood spaces, and let {fi :
Xi → X | i ∈ I} be a family of functions. Then an open base τ on the set
X is final for the family {fi | i ∈ I} if for any neighbourhood space (Y, σ)
and any function g : X → Y , g is continuous if and only if g ◦ fi : Xi → Z is
continuous for each i ∈ I.

Proposition 7.4 (Theorem 4.3 of [16]). Assume SGA. Let {(Xi, τi) | i ∈ I}
be a family of neighbourhood spaces, and let {fi : Xi → X | i ∈ I} be a family
of functions. Then there exists a final open base on the set X for the family
{fi | i ∈ I}.

Proof. Note that a subset U of X is a final open if and only if f−1
i (U) is open

in (Xi, τi) for each i ∈ I. Hence a subset of X is a final open if and only if it
is a model of the following generalized geometric theory over X of rank 1:

{pfi(x)→
∨
V ∈{W∈τi|x∈W}

∧
y∈V pfi(y) | x ∈ Xi, i ∈ I}.

Therefore the class of final opens on X is set-generated by Theorem 4.5, and
its generating set forms a final open base.
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7.2 Formal topology

In this subsection, we will give some applications of our main results in formal
topology developed by Sambin [22, 23, 24].

A formal topology (S,≤,C) is a preordered set (S,≤) equipped with a
class relation C ⊆ S × Pow(S) such that

1. a ∈ U ⇒ aC U ;

2. aC U and ∀c ∈ U(cC V )⇒ aC V ;

3. aC U and aC V ⇒ aC ↓ U∩ ↓ V ;

4. a ≤ b⇒ aC {b},

where ↓ U = {a ∈ S | ∃b ∈ U(a ≤ b)}.
A formal topology (S,≤,C) is set-presented if there exists a family of

subsets C(a, i) (i ∈ I(a), a ∈ S) of S, called a set-presentation of (S,≤,C),
such that

aC U ⇔ ∃i ∈ I(a)(C(a, i) ⊆ U).

Let (S,≤,C) be a formal topology. Then a formal point of a formal
topology (S,≤,C) is a subset α ⊆ S such that

1. α is inhabited;

2. a, b ∈ α⇒ (↓ a∩ ↓ b) G α;

3. a ∈ α and aC U ⇒ U G α,

where ↓ a =↓ {a} and U G V stands for ∃a(a ∈ U∩V ). Note that, if (S,≤,C)
is set-presented with a set-presentation C(a, i) (i ∈ I(a), a ∈ S), then the
last condition is equivalent to

∀i ∈ I(a)[a ∈ α⇒ C(a, i) G α].

Proposition 7.5 (Theorem 4.3 of [21]). Assume SGA. Then the class of
formal points of a set-presented formal topology is set-generated.

Proof. Let (S,≤,C) be a set-presented formal topology with a set-presentation
C(a, i) (i ∈ I(a), a ∈ S). Then a subset of S is a formal point if and only if
it is a model of the following generalized geometric theory over S of rank 1:

{
∨
a∈S pa} ∪ {

∧
{pa, pb}→

∨
c∈↓a∩↓b pc | a, b ∈ S}

∪ {pa→
∨
b∈C(a,i) pb | i ∈ I(a), a ∈ S}.
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Hence the class of formal points of (S,≤,C) is set-generated, by Theorem
4.5.

Corollary 7.6. Assume SGA. Then the class of minimal formal points of a
set-presented formal topology forms a set.

Proof. By Proposition 7.5 and Proposition 7.1.

A formal topology (S,≤,C) is T1 if α ⊆ β ⇒ α = β for each formal
points α and β.

Corollary 7.7 (Corollary 4.4 of [21]). Assume SGA. Then the class of
formal points of a set-presented T1 formal topology is a set.

Proof. By Corollary 7.6.

A continuous morphism from a formal topology (S,≤,C) into a formal
topology (T,≤′,C′) is a relation r ⊆ S × T such that

1. a r b and bC′ V ⇒ aC r−1(V );

2. aC r−1(T );

3. a r b and a r c⇒ aC r−1(↓ b∩ ↓ c).

Note that, if (S,≤,C) and (T,≤′,C′) are set-presented with set-presentations
C(a, i) (i ∈ I(a), a ∈ S) and D(b, j) (j ∈ J(b), b ∈ T ), respectively, then these
conditions are respectively equivalent to

1. ∀j ∈ J(b)[a r b⇒ ∃i ∈ I(a)∀a′ ∈ C(a, i)∃b′ ∈ D(b, j)(a′ r b′)];

2. ∃i ∈ I(a)∀a′ ∈ C(a, i)∃b ∈ T (a′ r b);

3. a r b and a r c⇒ ∃i ∈ I(a)∀a′ ∈ C(a, i)∃d ∈↓ b∩ ↓ c(a′ r d).

Proposition 7.8. Assume SGA. Then the class of continuous morphisms
between set-presented formal topologies is set-generated.

Proof. Let (S,≤,C) and (T,≤′,C′) be set-presented formal topologies with
set-presentations C(a, i) (i ∈ I(a), a ∈ S) and D(b, j) (j ∈ J(b), b ∈ T ),
respectively. Then a subset of S × T is a continuous morphism if and only

21



if it is a model of the following generalized geometric theory over S × T of
rank 2:

{p(a,b)→
∨
i∈I(a)

∧
a′∈C(a,i)

∨
b′∈D(b,j) p(a′,b′) | j ∈ J(b), a ∈ S, b ∈ T}

∪ {
∨
i∈I(a)

∧
a′∈C(a,i)

∨
b∈T p(a′,b) | a ∈ S}

∪ {
∧
{p(a,b), p(a,c)}→

∨
i∈I(a)

∧
a′∈C(a,i)

∨
d∈↓b∩↓c p(a′,d) | a ∈ S, b, c ∈ T}.

Hence the class of continuous morphisms between (S,≤,C) and (T,≤′,C′)
is set-generated, by Theorem 4.5.

As the final application, we show the following proposition which is the
crucial step in the construction, given by Erik Palmgren [20], of coequalizers
in the category of set-presented formal topologies; see [15] for applications of
our main result in the categories of basic pairs and concrete spaces introduced
by Sambin [23, 24].

Proposition 7.9 (Lemma 2–4 of [20]). Assume SGA. If r and s are con-
tinuous morphisms between a set-presented formal topology (S,≤,C) and a
formal topology (T,≤′,C′), then the class C of subsets of T defined by

C = {U ∈ Pow(T ) | ∀a ∈ S(aC r−1(U)⇔ aC s−1(U))}

is set-generated.

Proof. Let C(a, i) (i ∈ I(a), a ∈ S) be a set-presentation of (S,≤,C). Then,
since

∀a ∈ S(aC r−1(U)⇒ aC s−1(U))

⇔ ∀a ∈ S(a ∈ r−1(U)⇒ aC s−1(U))

⇔ ∀b ∈ T [b ∈ U ⇒ ∀a ∈ r−1(b)∃i ∈ I(a)∀a′ ∈ C(a, i)∃b′ ∈ s(a′)(b′ ∈ U)],

a subset of T is in the class C if and only if it is a model of the following
generalized geometric theory over T of rank 3:

{pb→
∧
a∈r−1(b)

∨
i∈I(a)

∧
a′∈C(a,i)

∨
b′∈s(a′) pb′ | b ∈ T}

∪ {pb→
∧
a∈s−1(b)

∨
i∈I(a)

∧
a′∈C(a,i)

∨
b′∈r(a′) pb′ | b ∈ T}.

Hence the class C is set-generated, by Theorem 4.5.
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