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1 Introduction

This paper is part of ongoing research to develop constructive mathematics
in the conceptual framework of constructive set theory (CST). The aim is
to highlight the various formal systems for CST, as weak as seems appropri-
ate for the subject matter, in which significant mathematical topics can be
developed.

Some Weak Axiom Systems for CST

The CST conceptual framework is a set theoretical approach to constructive
mathematics initiated by Myhill in [Myh75]. It has been given a philosophical
foundation via formal interpretations into versions of Martin-Löf’s Intuition-
istic Type Theory, [GA06, Acz86, Acz82, Acz78]. There are several axiom
systems for Constructive Set Theory of varying logical strength. Perhaps the
most familiar ones are CZF and CZF+ ≡ CZF + REA, see [AR01]. The
axiom system CZF is formulated in the first order language L∈ for intuition-
istic logic with equality having ∈, an infix binary relation symbol, as the only
non-logical symbol. So the logical symbols are ⊥,∧,∨,→,∀,∃,=. We use
the standard abbreviations for ↔ , ¬ and the bounded quantifiers (∀x ∈ t)
and (∃x ∈ t). A formula is bounded if all its quantifiers are bounded.

We assume a standard axiom system for intuitionistic logic with equality.
The non-logical axioms and schemes of CZF are the axioms of Extensionality,
Emptyset, Union, Pairing and Infinity and the axiom schemes of Bounded
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Separation, Strong Collection, Subset Collection and Set Induction. The
axiom system CZF is much weaker than ZF. Nevertheless when the law of
excluded middle is added the resulting axiom system has the same theorems
as ZF. Moreover when the powerset axiom and the full Separation scheme
are added an axiom system is obtained that has the same theorems as IZF,
an axiom system that has the same logical strength as ZF in virtue of a
double negation interpretation of ZF into IZF due to Harvey Friedman.

The main aim of this paper is to formulate and study a weak axiom
system for Arithmetical CST, ACST, that is strong enough to represent
the class Nat of von Neumann natural numbers and its arithmetic so that
Heyting Arithmetic can be interpreted. A significant feature of CZF is the
role of, possibly infinitary, class inductive definitions that define classes that
may not be sets. We will see a similar role for finitary inductive definitions
in ACST.

A first approach to an axiom system for Arithmetical CST is the axiom
system BCST+MathInd(Nat). Here (i) the axiom system BCST for a ba-
sic CST is obtained by leaving out from CZF the axiom of Infinity and the ax-
iom schemes of Strong Collection, Subset Collection and Set Induction, while
adding the axiom scheme of Replacement, and (ii) MathInd(Nat) is the ax-
iom scheme of mathematical induction for a suitably defined class Nat of the
von Neumann natural numbers. The axiom system BCST+MathInd(Nat)
does not assume that Nat is a set. An alternative basic axiom system for
arithmetic that has been considered is ECST, which is obtained from BCST
by adding the axiom of Strong Infinity, the axiom that expresses the exis-
tence of the smallest inductive set, ω. In contrast to BCST+MathInd(Nat)
the axiom system ECST does not have full mathematical induction, but can
only derive mathematical induction for bounded formulae.

The Union Axiom and the Replacement Scheme can be combined into
a single scheme, the Union Replacement Scheme. The full strength of the
Union Replacement Scheme seems not to be needed for our purposes. It turns
out that a rule of inference, the Global Union Replacement Rule (GURR)
can be used instead and we will see that this rule provides exactly enough
power to enable definitions of the rudimentary functions on sets. The rudi-
mentary functions were originally introduced by Ronald Jensen, see [Jen72],
in the context of classical set theory, in order to develop a good fine structure
theory for Goedel’s constructible sets.

So we are led to consider the very weak axiom system, RCST, of Rudi-
mentary CST. This axiom system has a standard system of axioms and rules
for intuitionistic logic in the language L∈, the rule GURR, the axiom of
extensionality and the set existence axioms, Emptyset, Binary Intersection
and Pairing for the existence of the sets ∅, x1 ∩ x2, {x1, x2} respectively, for
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sets x1, x2. Then ACST ≡ RCST0 +MathInd(Nat) will be our preferred
axiom system for Arithmetical CST, where RCST0 is an axiom system that
has the same theorems as RCST, but has the advantage that it does not use
any non-logical rule of inference.

Although RCST is very weak it is strong enough to allow the derivation
of every instance of the Bounded Separation Scheme. Also each rudimentary
function is a total function V n → V on the universe of sets which can be
defined by a bounded formula φ[x1, . . . , xn, y] such that

RCST ` (∀x1, . . . , xn)(∃!y)φ[x1, . . . , xn, y].

So each rudimentary function can be given in RCST by a provably total
single valued class relation. It is natural to extend the language L∈ to a
language L∗∈ with individual terms to represent the rudimentary functions.
We are led to a simple axiom system RCST∗ in the language L∗∈ which
no longer needs the rule GURR and just has the non-logical axioms of
extensionality and the term comprehension axioms for each form of term
that is not a variable. We show that RCST∗ is a conservative extension
of RCST and we could use ACST∗ ≡ RCST∗ + MathInd(Nat) as our
axiom system for Arithmetical CST. As ACST∗ is a conservative extension
of ACST we could just as well use ACST. As ACST is in the standard
language L∈ for set theory it is our preferred axiom system for arithmetical
CST .

Outline of paper

The paper is in two parts. Sections 2-7 form Part I on Rudimentary CST
and sections 8-10 form Part II on Arithmetical CST. Jensen’s classical def-
inition of the rudimentary functions are reviewed in section 2 along with a
classically equivalent definition that is appropriate for CST. The language
L∗∈ and axiom system RCST∗ are introduced in section 3 where it is shown
how the rudimentary functions are exactly the functions that can be defined
by a term in RCST∗. In section 4 it is shown that each instance of Bounded
Separation can be derived in RCST∗. In section 5 it is shown that every
bounded formula of L∗∈ is equivalent in RCST∗ to a bounded formula of
L∈. The special case when the bounded formula is t[x1, . . . , xn] = y yields
that the graph of each rudimentary function can be defined in RCST∗ by a
bounded formula of L∈. Section 6 introduces the axiom system RCST0, a
rather useful, but unnatural axiom system for Rudimentary CST formulated
in the language L∈. It is shown that RCST∗ is a conservative extension of
RCST0. The axiom system RCST is introduced in section 7 and shown
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to have the same theorems as RCST0 using a result, the Term Existence
Theorem for RCST∗, whose proof has been left for another occasion.

The axiom system ACST = RCST0 +MathInd(Nat) for Arithmetical
CST is introduced in section 8 and the Finite AC Theorem is proved in
section 9 with Finitary Strong Collection derived as a corollary. The theory
of finitary inductive definitions of classes is developed in section 10.

In section 11 we compare various axiom systems for finite set theory with
weak axiom systems for set theories which have an axiom of Infinity. We
have placed in the appendix some definitions concerning the concept of an
interpretation that are used in section 11.
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Part I: Rudimentary CST

2 The Rudimentary Functions on Sets

The Rudimentary functions on sets were introduced by Ronald Jensen in his
famous paper [Jen72].

The definition makes sense in any sufficiently strong axiom system for set
theory. The rudimentary functions are total functions defined on the class V
of all sets.

Definition: 2.1 (Ronald Jensen (1972)) A total function f on V is rudi-
mentary (à la Jensen) if it is generated using the following schemata, where
x = x1, . . . , xn is a list of n distinct variables and 1 ≤ i, j ≤ n.

(a) f(x) = xi,

(b) f(x) = xi−xj1,

(c) f(x) = {xi, xj},

(d) f(x) = h(g1(x), . . . , gm(x)),

(e) f(y,x) = ∪z∈yg(z,x),

where h : V m → V , g1, . . . , gm : V n → V and g : V n+1 → V are rudimentary.

Note that f(x) = ∅ = xi−xi is rudimentary; and so is f(x) = xi ∩ xj =
xi− (xi−xj) using classical logic. It follows that every rudimentary (à la
Jensen) function is rudimentary (à la CST), where the rudimentary (à la
CST) functions are generated using the schemata (a), (b1), (b2), (c), (d), (e),
where

(b1) f(x) = ∅,

(b2) f(x) = xi ∩ xj.

Conversely, the function f(x) = xi−xj is rudimentary (à la CST). To see
this observe that {z} = {z, z} and xi−xj =

⋃
z∈xi

⋃
z′∈g(z,x){z}, where

g(z,x) = {{z} ∩ xj} ∩ {∅}.

It follows that the rudimentary (à la CST) functions are the same as the
rudimentary (à la Jensen) functions in classical set theory, but it seems not

1x− y = {z ∈ x | z 6∈ y}
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in constructive set theory. So, in the constructive context we prefer the
definition for the rudimentary (à la CST) functions; i.e. using the schemes
(b1), (b2) instead of the scheme (b). We can avoid scheme (d) by building
function composition into the other schemes, except for (a). So we are led to
our ‘official’ definition of the rudimentary functions that is appropriate for
constructive set theory and coincides with Jensen’s definition in classical set
theory.

Definition: 2.2 A total function f : V n → V is rudimentary if it is gener-
ated using the following schemata, where x = x1, . . . , xn is a list of distinct
variables and 1 ≤ i ≤ n.

1. f(x) = xi,

2. f(x) = ∅,

3. f(x) = f1(x) ∩ f2(x),

4. f(x) = {f1(x), f2(x)},

5. f(x) =
⋃
z∈f1(x) g(z,x)

where f1, f2 : V n → V , and g : V n+1 → V are rudimentary.

It is routine, following the inductive generation of a rudimentary function
h to show the following result.

Proposition: 2.3 If h : V m → V and g1, . . . , gm : V n → V are rudimentary
functions then so is f : V n → V , where, for x ∈ V n,

f(x) = h(g1(x), . . . , gm(x)).

It follows that adding scheme (d) to the above schemes would not change
the functions that can be generated and so, classically, our official definition
of rudimentary function generates the same functions as the original Jensen
definition.

3 The axiom system RCST∗

The standard axiom system CZF for CST is formulated in the first order
language L∈ for intuitionistic logic, with equality, having ∈, an infix binary
relation symbol, as the only non-logical symbol. So the logical symbols are
=,⊥,∧,∨,→,∀,∃. We use the standard abbreviations for ↔ and ¬. We
assume a standard axiom system for intuitionistic logic.
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In order to formulate RCST∗ we need to extend the language L∈ by al-
lowing individual terms for the sets asserted to exist. We obtain L∗∈ by adding
to L∈ the individual terms of T ∗, where the terms t ∈ T ∗ are inductively
generated using the following syntax equation.

t ::= z | ∅ | {t1, t2} | t1 ∩ t2 | ∪z∈t1t2[z]

Note that z here represents a variable and free occurences of z in t2[z]
become bound in the term

⋃
z∈t1 t2[z]. We use the following convention for

displaying variables in a term. If we write a term as t[z] then this indicates
that z may occur free in the term, and if t′ is also a term then we write
t[t′] for the result of substituting t′ for the free occurences of z, relabelling
bound variables when necessary to avoid variable capture. We use such a
convention when displaying several distinct variables in a term. We carry
over this convention for displaying variables in terms to displaying variables
in formulae and substituting terms for the displayed variables in formulae.

We use the standard abbreviations for the bounded quantifiers; i.e.
(∀x ∈ t)φ[x] abbreviates ∀x(x ∈ t → φ[x]) and (∃x ∈ t)φ[x] abbreviates
∃x(x ∈ t ∧ φ[x]). A formula is bounded if every occurence of a quantifier in
the formula is bounded.

The axiom system RCST∗ has, as non-logical axioms, the following Ex-
tensionality Axiom and Term Comprehension Axioms.

Extensionality Axiom: x = y → (x ∈ z → y ∈ z),

Term Comprehension Axioms:

A1) u ∈ ∅ ↔ ⊥
A2) u ∈ t1 ∩ t2 ↔ (u ∈ t1 ∧ u ∈ t2)
A3) u ∈ {t1, t2} ↔ (u = t1 ∨ u = t2)
A4) u ∈ ∪z∈t1t2[z] ↔ (∃z ∈ t1) (u ∈ t2[z])

Each term t whose free variables are taken from the list x = x1, . . . , xn of
distinct variables defines in an obvious way, an n-place rudimentary function
F x
t on sets where, for a = (a1, . . . , an) ∈ V n, F x

t (a) is given by the following
table.

t F x
t (a)

xi ai
∅ ∅

t1 ∩ t2 F x
t1

(a) ∩ F x
t1

(a)
{t1, t2} {F x

t1
(a), F x

t1
(a)}⋃

z∈t1 t2[z]
⋃
v∈Fx

t1
(a) F

x
t2[z](v, a)
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Proposition: 3.1 An n-place function f on sets is rudimentary iff
f = F x

t for some term t of L∗∈ whose free variables are taken from the list
x = x1, . . . , xn of distinct variables.

Proof: Routine.
�

4 Bounded Separation in RCST∗

We wish to show that for each bounded formula θ[x] of L∗∈ and each term t
of L∗∈ in which x does not occur free there is a term t′ in which x is not free
such that

RCST∗ ` [x ∈ t′ ↔ (x ∈ t ∧ θ[x])].

The following definitions introduce notations for terms that behave in the
expected way. Let t, t1, t2 be terms.

{t} ≡ {t, t}, (t1, t2) ≡ {{t1}, {t1, t2}}, ∪t ≡
⋃
x∈t x,

t1 ∪ t2 ≡ ∪{t1, t2}, t1 × t2 ≡
⋃
x1∈t1

⋃
x2∈t2{(x1, x2)}, t1δt2 ≡ {t1} ∩ {t2}

Note that
x ∈ t1δt2 ↔ [x = t1 = t2].

Definition: 4.1 For each term t let (∃ ∈ t) be the formula (∃x ∈ t)(x = x),
where x is chosen not free in t.

If t1 and t2[x] are terms, with x not free in t1, let

[x ∈ t1 | ∃ ∈ t2[x]] ≡
⋃
x∈t1

⋃
z∈t2[x]

{x}

and let
∆x∈t1t2[x] ≡ [x ∈ t1 | ∃ ∈ t2[x]]δt1.

Observe that

y ∈ [x ∈ t1 | ∃ ∈ t2[x]] ↔ y ∈ t1 ∧ (∃ ∈ t2[y])

so that,
(∃ ∈ ∆x∈t1t2[x]) ↔ (∀x ∈ t1)(∃ ∈ t2[x]).
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For terms t1, t2, with x not free in t2 let

t1 → t2 ≡ ∆x∈t1t2.

Then
(∃ ∈ t1 → t2) ↔ (∃ ∈ t1)→ (∃ ∈ t2).

By structural recursion on the bounded formula θ of L∗∈ we may associate
with θ a term tθ using the following table.

θ tθ
⊥ ∅

t1 = t2 t1δt2
t1 ∈ t2 ({t1} ∪ t2)δt2
θ1 ∨ θ2 tθ1 ∪ tθ2
θ1 ∧ θ2 tθ1 × tθ2
θ1 → θ2 tθ1 → tθ2

(∃x ∈ t0)θ0[x]
⋃
x∈t0 tθ0[x]

(∀x ∈ t0)θ0[x] ∆x∈t0tθ0[x]

Proposition: 4.2 For each bounded formula θ of L∗∈

RCST∗ ` [θ ↔ (∃ ∈ tθ)].

Proof: By a routine structural induction on the bounded formula θ.
�

Corollary: 4.3 Given a bounded formula θ[x] and a term t of L∗∈ in which
x is not free

RCST∗ ` x ∈ [x ∈ t | ∃ ∈ tθ[x]] ↔ (x ∈ t ∧ θ[x])

so that RCST∗ ` (∃y)[x ∈ y ↔ (x ∈ t ∧ θ[x])].

5 A metatheorem

We wish to show that for each bounded formula θ of L∗∈ there is a bounded
formula θ′ of L∈ such that

RCST∗ ` [θ ↔ θ′].

We use a method of proof taken from [Jen72].
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Definition: 5.1 Let t be a term of L∗∈.

1. The term t is simple if, for every bounded formula θ[x] of L∈ there is
a bounded formula θ′ of L∈ such that

RCST∗ ` [θ[t] ↔ θ′].

2. The term t is almost simple if, for each bounded formula θ[x] of L∈
there are bounded formulae θ1, θ2 of L∈ such that

RCST∗ ` [(∀x ∈ t)θ[x] ↔ θ1] and
RCST∗ ` [(∃x ∈ t)θ[x] ↔ θ2.]

Proposition: 5.2 Every almost simple term is simple.

Proof: First observe that, given a bounded formula θ of L∈ we may find a
bounded formula θ′ of L∈ that has the following property and can be proved
equivalent to θ using intuitionistic logic with equality and the extensionality
axiom. The required property of θ′ is that every variable x that occurs free in
θ′ only occurs free as a bound in a bounded quantifier (∀y ∈ x) or (∃y ∈ x).
To see this it suffices to notice that each atomic subformula x ∈ y of θ can be
replaced by the equivalent bounded formula (∃z ∈ y)(x = z) and then each
atomic subformula x = y can be replaced by the equivalent bounded formula

(∀x1 ∈ x)(∃y1 ∈ y)(x1 = y1) ∧ (∀y1 ∈ y)(∃x1 ∈ x)(y1 = x1).

Now let t be an almost simple term. We must show that, given a bounded
formula θ[x] of L∈, there is a bounded formula θ′ of L∈ such that

RCST∗ ` [θ[t] ↔ θ′].

By the above observation we may assume that θ[x] has the property that
each occurence of x is the bound of a bounded quantifier. We can now easily
show, by structural induction on the subformula, that for each subformula
ψ[x] of θ[x] there is a formula ψ′ of L∈ such that

RCST∗ ` [ψ[t] ↔ ψ′].

using the assumption on t for the bounded quantifier induction steps where
the bound is x.
�
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Proposition: 5.3 Every term is almost simple.

Proof:
We show, by structural induction on terms t that t is almost simple. To

see this it suffices to examine the following table where, in the cases of the
terms t1 ∩ t2 and {t1, t2} the previous proposition is used.

t (∀x ∈ t)θ[x] (∃x ∈ t)θ[x]

z (∀x ∈ z)θ[x] (∃x ∈ z)θ[x]

∅ ⊥ → ⊥ ⊥

t1 ∩ t2 (∀x ∈ t1)(x ∈ t2 → θ[x]) (∃x ∈ t1)(x ∈ t2 ∧ θ[x])

{t1, t2} θ[t1] ∧ θ[t2] θ[t1] ∨ θ[t2]⋃
z∈t1 t2[z] (∀z ∈ t1)(∀x ∈ t2[z])θ[x] (∃z ∈ t1)(∃x ∈ t2[z])θ[x]

�

Theorem: 5.4 For every bounded formula φ of L∗∈ there is a bounded for-
mula φ′ of L∈ such that

RCST∗ ` [φ ↔ φ′].

Proof: As in the proof of Proposition 5.2 we may assume that each oc-
curence of a term t in φ that is not a variable is a bound in a bounded
quantifier (∀x ∈ t) or (∃x ∈ t). So it is straightforward to prove the re-
sult for each subformula of φ by structural induction. We just consider the
induction step for a subformula, ψ, of the form (∀x ∈ t)θ[x]. The formula
θ[x] is a bounded formula of L∗∈ and, by the induction hypothesis, there is
a bounded formula θ′[x] of L∈ such that RCST∗ ` (θ[x] ↔ θ′[x]). As
each term is almost simple there is a bounded formula ψ′ of L∈ such that
RCST∗ ` ((∀x ∈ t)θ′[x] ↔ ψ′). It follows that RCST∗ ` (ψ ↔ ψ′).
�
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6 The Axiom System RCST0

The axiom system RCST∗ is in the language L∗∈ having terms for the rudi-
mentary functions. We wish to formulate an axiom system for the rudimen-
tary functions in the basic set theoretic language L∈ that has RCST∗ as a
conservative extension. In order to do so it will be convenient to summarize
the Term Comprehension Axioms of RCST∗ as the formulae of the form

u ∈ t ↔ θt[u],

for each non-variable term t where, for each term t the formula θt[u] is given
by the following table.

t θt[u]
z u ∈ z
∅ ⊥

t1 ∩ t2 u ∈ t1 ∧ u ∈ t2
{t1, t2} u = t1 ∨ u = t2⋃
z∈t1 t2[z] (∃z ∈ t1)(u ∈ t2[z])

By structural recursion on the terms of L∗∈ we define a formula φt[u] of
L∈ for each term t using the following table.

t φt[u]
z u ∈ z
∅ ⊥

t1 ∩ t2 φt1 [u] ∧ φt2 [u]
{t1, t2} ψt1 [u] ∨ ψt2 [u]⋃
z∈t1 t2[z] ∃z(φt1 [z] ∧ φt2[z][u])

where, for each term t, ψt[y] is defined to be the formula

∀u(u ∈ y ↔ φt[u])

of L∈.

Definition: 6.1 Let EXT be the axiom system formulated in the language
L∈ having the logical axioms and rules of a standard axiomatisation of in-
tuitionistic logic with equality and the single non-logical axiom of Extension-
ality. Let RCST0 be obtained from EXT by adding a non-logical axiom
∃y ψt[y] for each term t of L∗∈.

Lemma: 6.2 For all terms t of L∗∈ and variables u, y not free in t the fol-
lowing are theorems of RCST∗.
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1. φt[u] ↔ u ∈ t

2. ψt[y] ↔ y = t

3. ∃yψt[y]

Proof: The derivation in RCST∗ of 1 for each term t is obtained by an
easy structural induction on t. 2 follows immediately from 1 and 3 follows
immediately from 2.
�

Proposition: 6.3 Every theorem of RCST0 is a theorem of RCST∗.

Proof: This is an immediate consequence of the previous lemma.
�

We wish to give an interpretation of RCST∗ in RCST0. For each formula
φ of L∗∈ let φ] be the formula of L∈ obtained from φ by replacing each atomic
subformula t1 ∈ t2 by ∃y(ψt1 [y] ∧ φt2 [y]), where y is chosen to be a variable
that is not free in either t1 or t2.

Proposition: 6.4 For each formula φ of L∈, EXT ` (φ ↔ φ]).

Lemma: 6.5 For each term t of L∗∈ and variable u not free in t

1. EXT ` (u ∈ t)] ↔ φt[u],

2. EXT ` (u = t)] ↔ ψt[u] and

3. EXT ` (θt[u])] ↔ φt[u].

Proof: We work informally in EXT.

1. It suffices to observe that

(u ∈ t)] ↔ ∃y(u = y ∧ φt[y])
↔ φt[u].

2.
(u = t)] ≡ (∀x ∈ u)(x ∈ t)] ∧ ∀x((x ∈ t)] → x ∈ u)

↔ (∀x ∈ u)φt[x] ∧ ∀x(φt[x]→ x ∈ u)
↔ ∀x(x ∈ u ↔ φt[x])
≡ ψt[u].
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3. We use structural induction on the term t.

t ≡ z : θt[u]] ≡ (u ∈ z)
≡ φt[u]

t ≡ ⊥ : θt[u]] ≡ ⊥
≡ φt[u]

t ≡ t1 ∩ t2 : θt[u]] ≡ (u ∈ t1)] ∧ (u ∈ t2)]

↔ (φt1 [u] ∧ φt2 [u])
≡ φt[u]

t ≡ {t1, t2} : θt[u]] ≡ ψt1 [u]] ∨ ψt2 [u]]

↔ φt[u]
t ≡

⋃
z∈t1 t2[z] : θt[u]] ↔ ∃z(φt1 [z] ∧ φt2[z][u])

≡ φt[u]

�

We show that ] translates RCST∗ into RCST0. To deal with substitution
we need the following result.

Lemma: 6.6 For all formulae φ[x] and terms s of L∗∈ the following formulae
are theorems of RCST0.

1. (∀xφ[x]→ φ[s])]

2. (φ[s]→ ∃xφ[x])]

Proof: Observe that it suffices to show that

(∗) RCST0 ` ∃x(φ[s]] ↔ φ[x]])

so that both RCST0 ` ∀xφ[x]] → φ[s]] and RCST0 ` φ[s]] → ∃xφ[x]]; i.e.
1 and 2.

We prove (*) by structural induction on the formula φ[x]. The induction
steps are easy so that we are left with the base case when φ[x] is an atomic
formula t1[x] ∈ t2[x]. In that case it suffices to show that

EXT ` ψs[x]→ ((t1[s] ∈ t2[s])] ↔ (t1[x] ∈ t2[x])]).

As (t1[x] ∈ t2[x])]) is
∃y(ψt1[x][y] ∧ φt2[x][y])

and (t1[s] ∈ t2[s])]) is
∃y(ψt1[s][y] ∧ φt2[s][y])

it suffices to show that, for each term t of L∗∈ the following formulae are
theorems of EXT.
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1. ψs[x]→ (φt[x][y] ↔ φt[s][y])

2. ψs[x]→ (ψt[x][y] ↔ ψt[s][y])

For each term t[x] 2 is an easy consequence of 1. We prove 1 by structural
induction on t[x]. For the base case t[x] is a variable or is ∅. If it is a variable
z distinct from x then 1 is ψs[x]→ (y ∈ z ↔ y ∈ z) and if it is ∅ then 1 is
ψs[x]→ (⊥ → ⊥). If it is the variable x then 1 is ψs[x]→ (y ∈ x ↔ y ∈ s).
In all three cases 1 is a theorem of EXT. If t[x] is {t1[x], t2[x]} then, assuming
ψs[x], using the induction hypotheses on t1[x] and t2[x] and the fact that 1
implies 2, we get the following in EXT.

φt[s][y] ≡ ψt1[s][y] ∨ ψt2[s][y]
↔ ψt1[x][y] ∨ ψt2[x][y]
↔ φt[x][y]

The other induction steps are similar.
�

Theorem: 6.7 For all formulae φ of L∗∈

RCST∗ ` φ implies RCST0 ` φ].

Proof: As the sharp translation preserves the logical operations and
Lemma 6.6 takes care of the logical axioms dealing with substitution the
translation preserves all the logical axioms and rules of inference. If θ is a
non-logical axiom of RCST∗ then it is either the extensionality axiom or else
it is one of the term comprehension axioms. If θ is the extensionality axiom
then it is a formula of L∈ so that, by Proposition 6.4, EXT ` θ] ↔ θ and
hence RCST0 ` θ]. If θ is the term comprehension axiom u ∈ t ↔ θt[u]
then, by Lemma 6.5,

RCST0 ` θ] ↔ (φt[u] ↔ φt[u]).

so that RCST0 ` θ].
�

Corollary: 6.8 RCST∗ is a conservative extension of RCST0.

Proof: By propositions 6.3 and 6.4 and Theorem 6.7.
�
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7 The Axiom System RCST

The axiom system RCST0 is not a particularly natural one. By using a
non-logical rule of inference we can obtain a more natural one, RCST, that
has the same theorems as RCST0. For the non-logical axioms of RCST we
need the usual extensionality axiom and set existence axioms corresponding
to the different forms of term. For the forms of term for ∅, {t1, t2}, t1 ∩ t2 we
have the following axioms.

Emptyset (∃y)(∀z)(z ∈ y ↔ ⊥),

Pairing (∃y)(∀z)(z ∈ y ↔ (z = x1 ∨ z = x2)),

Binary Intersection (∃y)(∀z)(z ∈ y ↔ (z ∈ x1 ∧ z ∈ x2)).

Dealing with the form of term
⋃
z∈t1 t2[z] is not so easy. A first thought is to

add the following Union-Replacement scheme.

Union-Replacement Scheme: For each formula φ[u, v],

∀x[(∀u ∈ x)(∃!v)φ[u, v] → ∃yφ′[x, y]],

where φ′[x, y] is ∀z(z ∈ y ↔ ∃v(z ∈ v∧(∃u ∈ x)φ[u, v]). Adding this scheme
is certainly strong enough to be able to define the graphs of all rudimentary
functions. But it seem to be too strong for two reasons. Firstly, only a global
version of the scheme seems to be needed, as each rudimentary function is
totally defined on the universe of sets. So the following seemingly weaker
scheme is strong enough.

Global Union-Replacement Scheme: For each formula φ[u, v],

(∀u)(∃!v)φ[u, v] → ∀x∃yφ′[x, y].

But even this scheme may be too strong, as the following seemingly weaker
rule version seems strong enough.

Global Union-Replacement Rule (GURR): For each formula φ[u, v],

(∀u)(∃!v)φ[u, v]

∀x∃yφ′[x, y]
,

where φ′[x, y] was defined above. Note that in the schemes and the rule the
formula φ[u, v] may have other variables than u, v occuring free. So, in both
the premiss and the conclusion of the rule those additional free variables are
implicitly universally quantified.
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Definition: 7.1 Let RCST be the axiom system formulated in the language
L∈ having the logical axioms and rules of a standard axiomatisation of intu-
itionistic logic, the non-logical axioms of Extensionality, Emptyset, Pair-
ing and Binary Intersection and the rule GURR for formulae φ[u, v] of
L∈.

Theorem: 7.2 RCST has the same theorems as RCST0 so that RCST∗

is a conservative extension of RCST.

Proof: We first show that every theorem of RCST0 is a theorem of RCST.
So we need to show that ∃yψt[y] is a theorem of RCST for each term t of L∗∈.
We do this by structural induction on the term t. The base cases when t is a
variable or when t is ∅ are trivial, using the emptyset axiom of RCST in the
second case and the induction steps when t is one of t1 ∩ t2, {t1, t2} are easy,
using the binary intersection and pairing axioms of RCST. The induction
step when t is

⋃
z∈t1 t2[z] uses GURR. By the induction hypotheses for t1

and t2[z]

1. ∃xψt1 [x],

2. ∀z∃uψt2[z][u].

By EXT and 2, ∀z∃!uψt2[z][u] so that, by GURR,

(∗) ∀x∃y∀z′(z′ ∈ y ↔ ξ[x, z′])

where
ξ[x, z′] ≡ ∃u(z′ ∈ u ∧ (∃z ∈ x)ψt2[z][u])

Assuming ψt1 [x],

ξ[x, z′] ↔ ∃z(φt1 [z] ∧ ∃u(z′ ∈ u ∧ ψt2[z][u]))
↔ ∃z(φt1 [z] ∧ φt2[z][z

′])
≡ φt[z

′]

So, by (*) ∃y∀z′(z′ ∈ y ↔ φt[z
′]); i.e. ∃yψt[y].

Thus we have proved ∃yψt[y] assuming ψt1 [x]. So, by 1, ∃yψt[y].
It remains to show that every theorem of RCST is a theorem of RCST0.

This is not so easy and uses the following important fact about RCST∗.

Theorem: 7.3 (The Term Existence Property for RCST∗)
If RCST∗ ` ∃vφ[v] then there is a term t of L∗∈ such that RCST∗ `
φ[t].
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The proof of this result uses the so called Friedman realizability, which was
used by Myhill in [Myh73]. We leave the proof for another occasion.

The extensionality axiom and the emptyset, binary intersection and pair-
ing axioms of RCST are easy to deal with using the extensionality axiom
and the axioms ∃yψt[y] of RCST0 for t the terms ∅, x1 ∩ x2 and {x1, x2}
respectively. So it only remains to show that GURR is an admissible rule
of RCST0. Assume that RCST0 ` ∀u∃!vφ[u, v]. We must show that

RCST0 ` ∀x∃yφ′[x, y]

where φ′[x, y] is

∀z(z ∈ y ↔ ∃v(z ∈ v ∧ (∃u ∈ x)φ[u, v])).

By Proposition 6.3, as RCST0 ` ∃!vφ[u, v]

RCST∗ ` ∃!vφ[u, v]

so that, by Theorem 7.3, there is a term t[u] of L∗∈ such that RCST∗ `
φ[u, t[u]]. In fact, by (∗),

RCST∗ ` (φ[u, v] ↔ (v = t[u])

so that, by Theorem 6.7, Proposition 6.4 and part 2 of Lemma 6.5,

RCST0 ` (φ[u, v] ↔ ψt[u][v]).

Let t′[x] ≡
⋃
z∈x t[z]. Then

φt′[x][z] ≡ ∃u(φx[u] ∧ φt[u][z]) ≡ (∃u ∈ x)φt[u][z].

So, working in RCST0, as φt[u][z] ↔ ∃v(z ∈ v ∧ ψt[u][v]),

φt′[x][z] ↔ (∃u ∈ x)∃v(z ∈ v ∧ ψt[u][v])
↔ ∃v(z ∈ v ∧ (∃u ∈ x)φ[u, v]).

Hence

ψt′[x][y] ≡ ∀z(z ∈ y ↔ φt′[x][z])
↔ ∀z(z ∈ y ↔ ∃v(z ∈ v ∧ (∃u ∈ x)φ[u, v]))
≡ φ′[x, y].

As ∀x∃yψt′[x][y] we get ∀x∃yφ′[x, y], as desired.
�
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Corollary: 7.4 (Definable Existence Property for RCST)
If RCST ` ∃xφ[x] then

RCST ` ∃!xψ[x] ∧ ∀x(ψ[x]→ φ[x])

for some bounded formula ψ[x].

Proof: Use Theorems 7.2 and 7.3.
�
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Part II: Arithmetical CST

We are concerned to investigate set theories in which there is a class
of natural numbers which may not be a set. But how should the class be
defined? Here we choose to use the class

Nat = {α ∈ On | α+ ⊆ {0} ∪ {γ+ | γ ∈ On}}

where 0 = ∅, x+ = x∪{x} for any set x and On is the class of transitive sets
of transitive sets; i.e. On = {x | (∀y ∈ x+) ∪ y ⊆ y}. We can now define the
class of finite sets as the class

Fin(Nat) = {x | (∃n ∈ Nat) n ∼ x},

where, for sets X, Y ,

X ∼ Y ≡ (∃f : X → Y ) (f is a bijection).

For each class X let Ind(X) ≡ (0 ∈ X ∧ (∀y ∈ X) y+ ∈ X). We call a
class X inductive if Ind(X) holds.

The Mathematical Induction axiom scheme MathInd(Nat):

For each class X,

Ind(X)→ Nat ⊆ X.

We start by formulating classical finite set theory.

The Finite Set Theories ZFfin, CZFfin and IZFfin

Let ZFfin be the axiom system ZF with the axiom of Foundation replaced
by the Set Induction Scheme and the axiom of Infinity replaced by the axiom
V = Fin(Nat) that expresses that every set is finite.

Working informally in ZFfin it is routine to show that Nat is induc-
tive and derive each instance of MathInd(Nat) so that Nat is the small-
est inductive class. Also we can define the successor, S, addition, +, and
multiplication, ×, on Nat in ZFfin so that, in ZFfin, the class structure
(Nat, 0, S,+,×) satisfies each axiom of PA. It follows that we get an inter-
pretation2 nat : PA→ ZFfin, where Domnat[x] is x ∈ Nat.

2See the Appendix for some definitions concerning the concept of an interpretation and
[Vis06] for a more thorough treatment.
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There is also the Ackerman interpretation3 ack : ZFfin → PA and it is
presumably true that (ack◦nat) ∼ idLPA

: PA→ PA, so that nat : PA →̃ T
for any subtheory T of ZFfin such that nat : PA→ T.

Note that it is the Set Induction Scheme of ZFfin that is used to derive
each instance of MathInd(Nat). The standard proof in ZF of each instance
of Set Induction uses the result of ZF that each set has a transitive closure
and that result makes essential use of the Infinity axiom. See [KW07].

As with ZFfin we can define the constructive set theory CZFfin to be
obtained from CZF by leaving out the axiom of Infinity and replacing it with
the axiom V = Fin(Nat). We can define IZFfin from IZF in the same way.

8 The Axiom System ACST

Arithmetical CST is Rudimentary CST together with the schemeMathInd(Nat).

Definition: 8.1 ACST = RCST0 +MathInd(Nat).

In this and the next two sections, unless otherwise indicated, we
work informally in the axiom system ACST.

Finite Powers of classes and sets

For each class A, if n ∈ Nat let nA be the class of functions n→ A.

Definition: 8.2 (Finite Powers Axiom (FPA)) For each set A the class
nA is a set for all n ∈ Nat.

Proposition: 8.3 FPA is a theorem of
ACST .

Proof: Let A be a set. Note that 0A = {∅} is a set and, for each n ∈ Nat,
if nA is a set then so is n+

A, as

n+

A =
⋃
x∈A

{f ∪ {(n, x)} | f ∈nA}.

Hence, using MathInd(Nat), we get the result.
�

3See, for example, section 6.4 of [Vis06]
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8.1 Decidability on Nat

A formula is decidable if Dφ holds, where Dφ ≡ (φ ∨ ¬φ). The following
proposition gives some standard facts concerning the natural numbers in
constructive mathematics. We leave their proof in ACST as an exercise for
the reader.

Proposition: 8.4

1. For all n,m ∈ Nat, D(n ∈ m) ∧D(n = m).

2. For each formula φ[x] of L∗∈, if n ∈ Nat such that (∀x ∈ n)Dφ[x] then
the following hold

(a) ( D(∃x ∈ n)φ[x] ∧ D(∀x ∈ n)φ[x] ) and

(b) (∃x ∈ n)φ[x] → (∃x ∈ n)(φ[x] ∧ (∀y ∈ x)¬φ[y]).

3. For each formula φ[x] of L∗∈, if (∀x ∈ Nat)Dφ[x] then

(∃x ∈ Nat)φ[x] → (∃x ∈ Nat)(φ[x] ∧ (∀y ∈ x)¬φ[y]).

Note that part 3 is the least number principle for decidable definable prop-
erties of natural numbers. Also note that when φ[x] is a bounded formula
mathematical induction is only needed for bounded formulae.

8.2 The Finite and Finitely Enumerable Sets

Definition: 8.5 A set A is finite if there is a bijection n → A for some
n ∈ Nat and is finitely enumerable (f.e.) if there is a surjection n → A for
some n ∈ Nat.

Proposition: 8.6 For each f.e. set A

(∀x ∈ A)Dφ[x] → D(∃x ∈ A)φ[x] ∧ D(∀x ∈ A)φ[x].

Proof: Let g : n→ A be surjective, with n ∈ Nat, and assume that Dφ[x].
Then (∀x ∈ n)Dφ[gx] so that, by part 2 of Proposition 8.4,

D(∃x ∈ n)Dφ[gx] ∧D(∀x ∈ n)Dφ[gx]

and hence
D(∃x ∈ A)Dφ[x] ∧D(∀x ∈ A)Dφ[x].

�
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8.2.1 Discrete Classes

Definition: 8.7 A class A is discrete if (∀x, y ∈ A) D(x = y).

Proposition: 8.8 A set is finite iff it is an f.e. discrete set.

Proof: For the implication from right to left let A be an f.e. discrete set.
So let g : n → A be surjective, with n ∈ Nat. It suffices to show, by
mathematical induction on k that, for all k ∈ Nat,

(∗) k ∈ n+ → (∃k0 ∈ k+)(∃f0) f0 : k0 ∼ Xk,

where Xk = {gx | x ∈ k}, as then, putting k = n we get that k0 ∼ A for
some k0 ∈ n+, so that A is finite.

Base Case: When k = 0 let k0 = 0 ∈ k+ and f0 = ∅ : k0 ∼ X0.

Induction Step: Assume k ∈ Nat such that (*) and let k+ ∈ n+. We must
show that there is f1 : k1 ∼ Xk+ for some k1 ∈ k++.

Observe that Dθ, where θ ≡ (gk ∈ Xk). This is because

θ ↔ (∃k′ ∈ k)(gk = gk′)

and, as A is discrete, (∀k′ ∈ k)D(gk = gk′) so that, by part 2 of
Proposition 8.4, D(∀k′ ∈ k)(gk = gk′) and hence Dθ.

As Dθ, i.e. θ ∨ ¬θ, we can argue by cases. If θ let k1 ≡ k+
0 ∈ k++ and

f1 ≡ f0 : k1 ∼ Xk+ . If ¬θ let k1 ≡ k+
0 ∈ k++ and f1 ≡ f0 ∪ {(k0, gk)} :

k1 ∼ Xk+ .

For the converse implication let A be a finite set. So let g : n→ A be a bijec-
tion for some n ∈ Nat. Then g is a surjection and so A is an f.e. set. Also,
for x, y ∈ A, x = y iff g−1x = g−1y so that A is discrete, as n is discrete.
�

Definition: 8.9 For each class A, Fin(A) is defined to be the class of finite
subsets of A.

Proposition: 8.10 If A is a discrete class then so is Fin(A).

Proof: Let A be a discrete class. To show that Fin(A) is discrete we
must show that for X, Y ∈ Fin(A), D(X = Y ). As (∀x, y ∈ A)D(x = y)
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and X, Y are finite we get that (∀x ∈ X)D(∃y ∈ Y )(x = y) and hence
D(∀x ∈ X)(∃y ∈ Y )(x = y). Similarily D(∀y ∈ Y )(∃x ∈ X)(x = y). As

X = Y ↔ (∀x ∈ X)(∃y ∈ Y )(x = y) ∧ (∀y ∈ Y )(∃x ∈ X)(x = y)

so that

D(X = Y ) ↔ D(∀x ∈ X)(∃y ∈ Y )(x = y) ∧ D(∀y ∈ Y )(∃x ∈ X)(x = y)

we have D(X = Y ).
�

9 The Finite AC Theorem

We show the familiar result that choice functions can always be defined on
a finite set.

Theorem: 9.1 For each formula φ[x, y], if A is a finite set such that

(∀x ∈ A)(∃y)φ[x, y]

then there is a set f that is a function defined on A such that

(∀x ∈ A)φ[x, fx].

Proof: Given the formula φ[x, y] and the finite set A such that
(∀x ∈ A)(∃y)φ[x, y] let n ∈ Nat with a bijection g : n→ A. So,

(∀k ∈ n)(∃y)φ[gk, y].

Let X be the class of m ∈ Nat such that if m ∈ n+ then there is a function
h defined on m such that

(∗) (∀k ∈ m)φ[gk, hk].

We show that X is inductive. Trivially 0 ∈ X as 0 ∈ n+ and ∅ is the required
function defined on 0. Now assume that m ∈ X, to show that m+ ∈ X. If
m+ ∈ n+ then m ∈ n+ so that there is a function h defined on m such that
(∗). Let h′ = h ∪ {(m, y)}, where y is such that φ[gm, y]. Then h′ is the
required function defined on m+ showing that m+ ∈ X.

As X is inductive and n ∈ Nat, n ∈ X so that there is a function h
defined on n such that

(∀k ∈ n)φ[gk, hk].
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As g : n→ A is a bijection f = {(g(k), h(k)) | k ∈ n} is the required function
defined on A.
�

Corollary: 9.2 (Finitary Strong Collection) If A is an f.e. set such that
(∀x ∈ A)(∃y) φ[x, y] then there is an f.e. set B such that

(∀x ∈ A)(∃y ∈ B)φ[x, y] & (∀y ∈ B)(∃x ∈ A)φ[x, y]

Proof: Let A be an f.e. set such that (∀x ∈ A)∃y φ[x, y]. As A is f.e. there
is n ∈ Nat and a surjection g : n→ A so that

(∀m ∈ n)(∃y) φ[gm, y].

Using AC for finite sets there is a function f : n → V such that, for all
m ∈ n, φ[gm, fm]. The desired f.e. set B is the set ranf .
�

10 Finitary Inductive Definitions of Classes

10.1 Inductive Definitions

In constructive set theory any class Φ can be viewed as an inductive defini-
tion. Each pair (Y, a) in Φ is an (inference) step of the inductive definition
and is called a Φ-step and written Y/a, the set Y being the set of premises
of the step and a being the conclusion of the step.

Definition: 10.1

• A class X is Φ-closed if, for every Φ-step Y/a,

Y ⊆ X ⇒ a ∈ X.

• A Φ-closed class I is the class inductively defined by Φ if it is the
smallest Φ-closed class; i.e. I ⊆ X for each Φ-closed class X. It is
clearly unique if it exists and will then be written I(Φ).
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10.2 Finitary Inductive Definitions

We aim to focus on finitary inductive definitions.

Definition: 10.2 An inductive definition Φ is defined to be finitary if, for
each Φ-step Y/a, the set Y is f.e.; i.e. finitely enumerable.

A fundamental example of a finitary inductive definition is the inductive def-
inition of the class of von Neumann natural numbers. This has the class ΦNat

whose steps are ∅/0 and {a}/a+ for arbitrary a. Thus Nat = I(ΦNat) and
MathInd(Nat) is the axiom scheme that expresses that ΦNat is a generating
inductive definition.

10.3 The finitary Inductive Definition Theorem

We will need the following proposition.

Proposition: 10.3 Every f.e. subset of Nat is a subset of m for some m ∈
Nat.

Proof: An easy proof by mathematical induction shows that for all n ∈ Nat,
if f : n→ Nat then there is m ∈ Nat such that f : n→ m. For the base case
when n = 0 we can let m = 0. For the induction step, if f : n+ → Nat then
f ′ = {(j, k) ∈ f | j ∈ n} : n → Nat so that, by the induction hypothesis
there is m ∈ Nat such that f ′ : n → m. So f = f ′ ∪ {(n, f(n)} so that
f : n+ → m0, provided that m0 ∈ Nat such that m ⊆ m0 and f(n) ∈ m0.
The existence of such an m0 is a consequence of the following claim.

Claim: For all k ∈ Nat, if m ∈ Nat then there is m0 ∈ Nat
such that m ⊆ m0 and k ∈ m0.

This can be proved by induction on k. For the base case use (i) 0 ∈ m+
0 and

for the induction step use (ii) k ∈ m → k+ ∈ m+ for all k,m ∈ Nat. We
leave the proofs of (i) and (ii) as exercises.
�

If Φ is a finitary inductive definition then for each class X let

ΓΦX = {y | (∃Y ∈ Pow(X)) [Y/y is a step in Φ]}.

Theorem: 10.4 If Φ is a finitary inductive definition then there is a smallest
Φ-closed class I(Φ).

26



Proof: For G a subclass of Nat× V and n ∈ Nat let

Gn = {y | (n, y) ∈ G} and G<n =
⋃
m∈n

Gm.

Call such a class G good if Gn ⊆ ΓΦG
<n for all n ∈ Nat, and let

J =
⋃
{G | G is a good set}.

Claim 1: J is a good class.
Proof: Let y ∈ Jn, with n ∈ Nat. Then y ∈ Gn ⊆ ΓΦG

<n

for some good set G. As ΓΦ is monotone y ∈ ΓΦJ
<n. Thus

Jn ⊆ ΓΦJ
<n.

�

Let I =
⋃
n∈Nat J

n

Corollary to Claim 1: If X is a Φ-closed class then I ⊆ X.
Proof: Assume that X is Φ-closed; i.e. ΓΦX ⊆ X. Then, by the
claim, using MathInd(Nat), Jn ⊆ X for all n ∈ Nat and hence
I ⊆ X.
�

Claim 2: I is Φ-closed.
Proof: Let Y/a be a Φ-step for some Y ⊆ I; i.e.

(∀y ∈ Y )(∃G)[G is a good set and (∃n ∈ Nat) y ∈ Gn].

By Finitary Strong Collection, Corollary 9.2 above, as Y is f.e.
there is an f.e. set Y of good sets such that

(∀y ∈ Y )(∃G ∈ Y)(∃n ∈ Nat) y ∈ Gn.

It follows that

(∀y ∈ Y )(∃n ∈ Nat)(∃G ∈ Y) y ∈ Gn.

So, by Finitary Strong Collection again there is a finitely enu-
merable subset P of Nat such that

(∀y ∈ Y )(∃n ∈ P )(∃G ∈ Y) y ∈ Gn.
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So, by Proposition 10.3, P ⊆ m for some m ∈ Nat. It follows
that Y ⊆ G<m

0 where G0 =
⋃
Y is the union of a set of good sets

and so, as in the proof of Claim 2, is itself a good set. As Y/a is
a Φ-step, a ∈ ΓΦG

<m
0 . Hence G = G0 ∪ {(m, a)} is good, so that

a ∈ Gm ⊆ Jm ⊆ I.
�

By Claim 2 and the corollary to Claim 1, the class I is the required class
I(Φ).
�

Proposition: 10.5 If Φ is a finitary inductive definition and J is as in the
previous proof then Jn = ΓΦJ

<n for all n ∈ Nat.

Proof: In the previous proof we showed that, for n ∈ Nat, Jn ⊆ ΓΦJ
<n.

To show that ΓΦJ
<n ⊆ Jn let a ∈ ΓΦJ

<n. So Y/a is a step of Φ for some
Y ⊆ J<n. We have

(∀y ∈ Y )∃G [G is a good set and y ∈ G<n].

So, by Finitary Strong Collection there is a good set G0 such that Y ⊆ G<n
0 .

It follows that G = G0 ∪ {(n, a)} is a good set with a ∈ Gn ⊆ Jn. Thus
ΓΦJ

<n ⊆ Jn.

�

10.4 The Primitive Recursion Theorem

Theorem: 10.6 Let G0 : B → A and F : Nat × B × A → A be class
functions, where A,B are classes. Then there is a unique class function
G : Nat×B → A such that, for all b ∈ B and n ∈ Nat,

(∗)
{
G(0, b) = G0(b),
G(n+, b) = F (n, b,G(n, b)),

Proof: Let G = I(Φ), where Φ is the inductive definition with steps
∅/((0, b), G0(b)), for b ∈ B, and {((n, b), x)}/(n+, F (n, b, x)) for b ∈ B and
x ∈ A. It is routine to show that G is the unique required class function.
�
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Corollary: 10.7 There are unique binary class functions Add,Mult : Nat×
Nat→ Nat such that, for n,m ∈ Nat,

1. Plus(n, 0) = n,

2. Plus(n,m+) = Plus(n,m)+,

3. Mult(n, 0) = 0,

4. Mult(n,m+) = Plus(Mult(n,m), n).

Proof: Apply the theorem with A = B = Nat, first with F (n,m, k) = k+

to obtain Plus and then with F (n,m, k) = Plus(k, n) to obtain Mult.
�

Using this result it is clear that there is an obvious standard interpretation
of Heyting Arithmetic in ACST.

10.5 The Hereditarily Finite sets

The hereditarily finite sets form the smallest class HF of sets such that every
finite subset of HF is in HF; i.e. HF has the following finitary inductive
definition, where we also give two other finitary inductive definitions of what
turn out to be the same class.

Definition: 10.8

1. HF ≡ I(Φfinite), where Φfinite ≡ {a/a | a is a finite set},

2. HFf .e. ≡ I(Φf.e.), where Φf.e. ≡ {a/a | a is f.e.},

3. HF0 ≡ I(Φ0), where Φ0 ≡ {∅/∅} ∪ {{a, b}/(a ∪ {b}) | a, b ∈ V }.

Proposition: 10.9

1. HF is transitive; i.e. (∀x ∈ HF) x ⊆ HF.

2. For each formula φ[x], in order to prove (∀x ∈ HF)φ[x] it suffices to
show that (∀x ∈ HF)((∀x′ ∈ x)φ[x′]→ φ[x]).

3. For each formula φ[x, y], in order to prove (∀x, y ∈ HF)φ[x, y] it suf-
fices to show that

(∀x, y ∈ HF)((∀x′ ∈ x)(∀y′ ∈ y)φ[x′, y′]→ φ[x, y]).
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Proof:

1. It suffices to observe that {x ∈ HF | x ⊆ HF} is Φfinite-closed.

2. It suffices to observe that if (∀x ∈ HF)((∀x′ ∈ x)φ[x′] → φ[x] then
{x | φ[x]} is Φfinite-closed.

3. Assume

(∗) (∀x, y ∈ HF)((∀x′ ∈ x)(∀y′ ∈ y)φ[x′, y′]→ φ[x, y])

and let ψ[x] ≡ (∀y ∈ HF)φ[x, y]. We want to show that(∀x ∈ HF)ψ[x].
By 2 it suffices to show that, for x ∈ HF, (∀x′ ∈ x)ψ[x′] → ψ[x]). So
let x ∈ HF such that (∀x′ ∈ x)ψ[x′]; i.e.

(∗∗) (∀x′ ∈ x)(∀y ∈ HF)φ[x′, y].

We want to show that ψ[x]; i.e. (∀y ∈ HF)φ[x, y]. So let y ∈ HF. By
(∗) it suffices to show that (∀x′ ∈ x)(∀y′ ∈ y)φ[x′, y′]. By 1, if y′ ∈ y
the y′ ∈ HF so that (∗∗) yields this.

�

Proposition: 10.10

1. (∀x, y ∈ HF) D(x = y); i.e. HF is discrete.

2. (∀x, y ∈ HF) D(x ∈ y)

3. (∀x, y ∈ HF) x ∪ {y} ∈ HF; i.e. HF is Φ0-closed so that HF0 ⊆ HF.

Proof:

1. It suffices to show, for x, y ∈ HF, that

(∀x′ ∈ x)(∀y′ ∈ y)D(x′ = y′) → D(x = y).

Assuming the left hand side, as x, y are finite, by ...,

(∀x′ ∈ x)D(∃y′ ∈ y)(x′ = y′)

and hence Dφ1 where

φ1 ≡ (∀x′ ∈ x)(∃y′ ∈ y)(x′ = y′).

Similarily Dφ2 where

φ2 ≡ (∀y′ ∈ y)(∃x′ ∈ x)(x′ = y′).

As (x = y) ↔ φ1∧φ2 and Dφ1∧Dφ2 → D(φ1∧φ2) we get D(x = y),
as desired.
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2. For x, y ∈ HF,
x ∈ y ↔ (∃y′ ∈ y) x = y′.

As y is finite and D(x = y′) for y′ ∈ y, by ..., we get that D(x ∈ y).

3. Let x, y ∈ HF. As x is finite there is a bijection f : n → x for some
n ∈ Nat. By 2 either y ∈ x or y 6∈ x. If y ∈ x then x ∪ {y} = x ∈ HF
and if y 6∈ x then (f ∪ {(n, y)} : n+ → x ∪ {y} is a bijection so that
x ∪ {y} is a finite subset of HF and so is in HF. Thus, in either case
x ∪ {y} ∈ HF.

�

Proposition: 10.11 HF ⊆ HFf.e..

Proof: It suffices to observe that (∀x ⊆ HFf.e.)(x is finite → x ∈ HFf.e.);
i.e. HFf.e. is Φfinite-closed.

�

Proposition: 10.12 HFf.e. ⊆ HF0.

Proof: It suffices to show that HF0 is Φf.e.-closed; i.e. that

(∀x ⊆ HF0)(x is f.e. → x ∈ HF0).

We will show, by mathematical induction on n, that for all n ∈ Nat.

if f : n→ HF0 then ran(f) ∈ HF0.

If n = 0 andf : n → HF0 then ran(f) = ∅ ∈ HF0. For the induction step,
assume that f : n+ → HF0. Then f �n : n→ HF0 so that, by the induction
hypothesis, ran(f �n) ∈ HF0. So ran(f) = ran(f �n) ∪ {fn} ∈ HF0.
�

Theorem: 10.13 HF = HFf.e. = HF0.

Proof: Use Propositions 10.10, 10.11 and 10.12.
�
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Definition: 10.14 A class A is regular if it is transitive (i.e. every element
is a subset) and, for each formula φ[x, y], for every a ∈ A, such that

(∀x ∈ a)(∃y ∈ A)φ[x, y]

there is b ∈ A such that

(∀x ∈ a)(∃y ∈ b)φ[x, y] ∧ (∀y ∈ b)(∃x ∈ a)φ[x, y]

Note that the property of a class being regular is an assertion scheme and
not a single assertion.

Proposition: 10.15 HF is a regular class.

Proof: HF is transitive, by Proposition 10.9. Let a ∈ HF such that

(∀x ∈ a)(∃y ∈ HF)φ[x, y].

As a ∈ HF it is finite so that, by Finitary AC, there is f : a → HF such
that (∀x ∈ a)φ[x, fx]. Let b = ran(f). Then b is an f.e. subset of HF so
that, by Theorem 10.13, it is in HF. Clearly

(∀x ∈ a)(∃y ∈ b)φ[x, y] ∧ (∀y ∈ b)(∃x ∈ a)φ[x, y] ∧ .

Thus HF is a regular class.
�

Definition: 10.16 A transitive class A is functionally regular if, for all
f : a→ A, with a ∈ A, ran(f) ∈ A.

Observe that each regular class is functionally regular.

Proposition: 10.17 If A is a functionally regular class such that Nat ⊆ A
then HF ⊆ A.

Proof: Let A be a functionally regular class such that Nat ⊆ A. Observe
that A is Φf.e.-closed for if f : n → A with n ∈ Nat ⊆ A then ran(f) ∈ A.
It follows that HF = HFf.e. ⊆ A.
�

Corollary: 10.18 HF is the smallest (functionally) regular class which in-
cludes Nat.
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11 Further Remarks

In this final section we look at some other axiom systems for finite set theory
and compare them with some weak axiom systems for set theory that have
an axiom of infinity.

Intuitionistic Finite Set Theories

Recall that ACST ≡ RCST0 +MathInd(Nat) We let

ACSTfin ≡ ACST + (V = Fin(Nat)).

It is not hard to see, using the work in the previous section, that each
instance of the axiom schemes AC and REM are theorems of ACSTfin.
Here REM is the Restricted Excluded Middle scheme, having instances
(φ ∨ ¬φ) for bounded formulae φ. It follows that the Powerset axiom and
each instance of Strong Collection are also theorems of ACSTfin so that
CZFfin à 4(ACSTfin + Set-Ind) and IZFfin à (CZFfin + Sep), where
Set-Ind is the Set-Induction Scheme and Sep is the full Separation Scheme.
Note that, using the schemes Sep and REM we get the full law of excluded
middle; i.e. classical logic, so that IZFfin à ZFfin.

It is also not hard to see that, by restricting quantifiers to HF we get a
conservative interpretation5 hf : CZFfin →̃ ACST.

We have the interpretation nat : HA → ACST and probably also have
the interpretation ack : IZFfin → HA such that ack ◦ nat : HA →̃ HA
which would give us that nat : HA →̃ IZFfin and hence nat : HA →̃ T for
any subtheory T of IZFfin that has ACST as a subtheory.

Weak Intuitionistic set theories with a set ω

We consider some other weak intuitionistic set theories for CST that have
been studied in the literature. The axiom system BCST has the non-
logical axioms of Extensionality, Emptyset, Pairing, Union and the schemes
of Bounded Separation and Replacement. We get ECST by adding to BCST
the axiom of Strong Infinity, which states that there is a smallest inductive
set ω. Let ECSTcoll be obtained from ECST by adding the Strong Collec-
tion scheme and let CZF− be obtained from ECSTcoll by adding the Subset
Collection Scheme. So CZF− has the same theorems as the axiom system

4The relation à holds between two theories if they have the same theorems. See the
Appendix.

5See the Appendix for this notion.
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obtained from CZF by leaving out the Set Induction Scheme and using the
Strong Infinity axiom instead of the Infinity axiom.
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We summarise some results concerning these axiom systems that are ex-
plicit or implicit in [Rat08] and should be compared with the results in this
paper.

The papers [KW07, Cam07] are also relevant.
In the theorem below we use the following.

1. The interpretation natω is defined like the interpretation nat but uses
ω instead of Nat.

2. If T is a theory in the language L∈ then T is Π0
2-conservative over HA

if HA ` φ whenever φ is a Π0
2-sentence of LHA such that

(CZF− +DC/PAx) ` φnatω .

3. DC is the axiom of Dependent Choices and PAx is the Presentation
axiom.

4. ∆0-ITERω

is the scheme that allows the definition of a function g : ω → A, where
A is a bounded class, by iterating a bounded class function F : A→ A
starting from some a0 ∈ A; i.e. g is defined to be the unique function
such that g0 = a0 and gn+ = F (gn) for n ∈ ω.

Theorem: 11.1 (Rathjen)

1. Addition on ω cannot be derived in ECSTcoll.

2. Addition and multiplication on ω can be defined in CZF− so that
natω : HA→ CZF−.

3. (CZF− +DC/PAx) is Π0
2-conservative over HA.

4. (ECST + ∆0-ITERω) ` Consis(CZF−).
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12 Appendix

In the following L,L1,L2 etc. are first order languages with equality and have
the logical symbols =,⊥,∧,∨,→,∀, ∃, with ¬ and ↔ defined in the usual
way. F(L) is the set of formulae of a language L. We assume a standard
axiom system IntL for intuitionistic first order logic with equality for the
language L and ClassL for the classical axiom system obtained by adding
the law of excluded middle, φ∨¬φ for all formulae φ ∈ F(L). Formulae φ, ψ
of L are logically equivalent, written φ ≡L ψ, if (φ↔ψ) is a theorem of IntL.

An L-theory is an axiom system having axioms and rules of inference
whose formulae are in the language L. The theory will have a logical part
which is either IntL or ClassL. Usually the non-logical part will be given
by a set of formulae presented using axiom schemes. But occasionally there
may be some non-logical rules of inference. Note that the axioms of a theory
may be formulae that are implicitly universally quantified.

Given a theory T, let Thm(T) = {φ | T ` φ}, where T ` φ, if the formula
φ can be derived in the theory T. If T′ is a theory of the same language we
write T ` T′ if Thm(T′) ⊆ Thm(T) and T à T′ if Thm(T) = Thm(T′).

Interpretations

Here we summarize some definitions concerning translations and interpreta-
tions that suffice for our purposes. A more thorough treatment can be found
in [Vis06].

Definition: 12.1

1. A translation f : L1 → L2 is an assignment of a formula φf ∈ F(L2),
with the same free variables as φ, to each formula φ ∈ F(L1) together
with a formula Domf [x] of L2, having at most the variable x free, such
that the following hold. Note that a translation f : L1 → L2 is uniquely
determined by its action on atomic formulae and the formula Domf [x].

(a) ⊥f = ⊥,

(b) (φ12φ2)f = (φf12φ
f
2), for 2 ∈ {∧,∨,→},

(c) (∀xφ[x])f = (∀x)(Domf [x]→ φ[x]f ), and

(d) (∃xφ[x])f = (∃x)(Domf [x] ∧ φ[x]f ),

where Domf [x] is a formula of L2.
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2. idL : L → L is the identity translation; i.e. it is the unique translation
such that θidL = θ for each atomic θ ∈ F(L) and DomidL [x] is (x = x).
It follows that (φidL ≡L φ) for each formula φ ∈ F(L).

3. If f : L1 → L2 and g : L2 → L3 then (g ◦f) : L1 → L3 is their
composition; i.e. it is the unique translation where θg◦f = (θf )g for
each atomic θ ∈ F(L1) and Dom(g◦f)[x] is Domg[x] ∧ (Domf [x])g. So
φg◦f ≡L3 (φf )g for each formula φ ∈ F(L1).

4. Let Ti be an Li-theory for i = 1, 2. A translation f : L1 → L2 is an
interpretation f : T1 → T2 if

T1 ` φ ⇒ T2 ` φf

for all formulae φ ∈ F(L1). It is a conservative interpretation6 ,written
f : T1 →̃ T2, if

T1 ` φ ⇔ T2 ` φf

for all formulae φ ∈ F(L1).

5. If f, f ′ : T1 → T2 we write f ∼ f ′ : T1 → T2 if

T2 ` (Domf [x]↔Domf ′ [x]) and

T2 ` (Domf [x1] ∧ · · · ∧Domf [xn])→ (φf ↔ φf
′
)

for all φ ∈ F(L1), where x1, . . . , xn is a list of the distinct variables
that occur free in φ.

6. Interpretations f : T1 → T2 and g : T2 → T1 are inverses of each other
if (g ◦ f) ∼ idL1 : T1 → T1 and (f ◦ g) ∼ idL2 : T2 → T2. When this
holds the theories T1,T2 are said to be synonymous or definitionally
equal.

Proposition: 12.2

1. For each L-theory T, idL : T →̃ T.

2. If f : T1 → ( →̃ )T2 and g : T2 → ( →̃ )T3 then g ◦f : T1 → ( →̃ )T3.

3. Let f : T1 → T2 and g : T2 → T1.

(a) If (g ◦ f) ∼ idL1 : T1 → T2 then g ◦ f : T1 →̃ T1.

(b) If g ◦ f : T1 →̃ T1 then f : T1 →̃ T2.

6This is often called a faithful interpretation
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