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Abstract. The article was prepared for the LATA 2012 conference where
I will be presenting two one and half hour lecctures for a short tutorial
on parameterized complexity. Much fuller accounts can be found in the
books Downey-Fellows [DF98,DFta], Niedermeier [Nie06], Flum-Grohe
[FG06], the two issues of the Computer Journal [DFL08] and the recent
survey Downey-Thilikos [DTH11].

1 Introduction

1.1 Preamble

Following early ideas of Fellows and Langston (such as [FL87,FL88,FL89]) in the
early 1990’s Mike Fellows and the author initiated a new direction in complexity
theory with a series of papers [DF92a,DF92b,DF93], and then a number of other
papers with talented co-authors, the state of the art (at the time) being given
in the monograph [DF98].

The idea was that to try to devise a complexity theory more attuned to the
considerations of practical computation than other kinds of complexity such as
the classical theory of NP-completeness.

Now over 20 years have passed. Moreover, the 14 years since the publication
of [DF98] has seen remarkable development in the area. There have appeared
new books, many surveys, and more importantly, a whole host of new techniques,
applications, and structural complexity. A remarkable number of young talented
people have entered the field.

It is also remains true that in many computer science departments, and
departments applying complexity the theory only penetrates in a kind of random
fashion. Whilst I am sure that in the audience there will be people who now
know more about parameterized complexity than I do, my plan is to give a basic
tutorial for the others. I hope that they will see some applications for themselves,
and perceive the two sided dialog that the theory allows between the hardness
theory and the methods of establishing parameterized tractability.
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1.2 The idea

The pioneers of complexity theory (such as Edmonds [Ed65]) identified polyno-
mial time as a mathematical idealization of what might be considered feasible
for the running times of algorithms. As the familiar story of complexity theory
runs, we soon discover that for many problems, the only algorithm we can find
is to try all possibilities. To do so takes Ω(2n) for instances of size n. In spite of
the combined efforts of many algorithm designers, we are unable to show that
there is no polynomial time algorithm for a wide class of such problems.

The celebrated work of Cook, Levin and crucially Karp [Ka72] that many of
these problems could be shown to be polynomial-time reducible to each other,
and to the problem of acceptance for a polynomial time nondeterministic Turing
machine. That is, they are NP-complete. This means that we have a practical
“proof” of hardness. If any of the problems were in polynomial time, all would be;
and secondly showing them to be in polynomial time would show that acceptance
for a polynomial time nondeterministic Turing machine would be also. The belief
is that a nondeterministic Turing machine is such an opaque object, without any
obvious algebraic structure, that it seems impossible to see if it has an accepting
path without trying all of them.

Parameterized complexity views the story above as a first foray into feasi-
ble computation. However, for practical computation, it seems that we ought
to refine the analysis to make it more fine grained. Firstly, when we show that
something is NP-complete or worse, what we are focusing on is the worst case
behaviour. Second, the analysis takes the input as being measured by its size
alone. You can ask yourself the question: when in real life do we know noth-
ing else about a problem than its size? The answer is never. For instance, the
problem is planar, tree-like, has many parameters bounded, etc. The idea be-
hind parameterized complexity is to try to exploit the structure of the input
to get some practical tractability. That is, we try to understand what aspect of
the problem is to blame for the combinatorial explosion which occurs. If this
parameter can be controlled then we would have achieved practical tractability.

Anyone working where they design actual algorithms for real-life problems
knows that you should fine tune the algorithm for the situation at hand. More-
over, in applications such as computational biology, structure of things like DNA
is far from random. The main idea of parameterized complexity is to design a
paradigm that will address complexity issues in the situation where we know in
advance that certain parameters will be likely bounded and this might signifi-
cantly affect the complexity. Thus in the database example, an algorithm that
works very efficiently for small formulas with low logical depth might well be
perfectly acceptable in practice.

The idea is not to replace polynomial time as the underlying paradigm of
feasibility, but to provide a set of tools that refine this concept, allowing some
exponential aspect in the running times by allowing us either to use the given
structure of the input to arrive at feasibility, or develop some relevant hardness
theory to show that the kind of structure is not useful for this approach.



There will be two parts to this theory. First, there have evolved distinct
techniques which seem generally applicable to parameterized problems. In this
tutorial, I will look at the main players which include bounded search trees,
kernelization, other reduction techniques such a crown reductions [AFLS07] and
Cai’s technique [LeC96], iterative compression, and somewhat less practical but
still useful bounded width metrics, as well as things like colour coding methods
from logic, and impractical things like WQO theory.

Hand in hand with this is a hardness theory. I will look at the basic hardness
classes such as the W-, A-, M- and other hierarchies. I will also look at how these
hierarchies can be exploited to establish practical limitations of the techniques.

1.3 Some definitions

I will now discuss the standard examples which we use for the theory. Mike Fel-
lows and my early work had the three problems Vertex Cover, Dominating
Set,Independent Set motivating the theory.

For a graph G a vertex cover is where vertices cover edges: that is C =
{v1, . . . , vk} is a vertex cover iff for each e ∈ E(G), there is a vi ∈ C such that
vi ∈ e. They should recall that a dominating set is where vertices cover vertices:
D = {v1, . . . , vk} is a dominating set iff for all v ∈ V (G), either v ∈ D or there
is an e ∈ E(G) such that e = 〈vi, v〉 for some vi ∈ D. Finally an independent
set is a collection of vertices no pair of which are connected. Of course, these are
some of the basic NP -complete problems identified by Karp [Ka72].

As in [Do03], and earlier [DF98], I will motivate the definitions by looking at
a problem in computational biology. Computational biology has been interact-
ing with parameterized complexity from the beginning, and this interaction has
continued with throughout, with the work Langston and his group (who have
contracts throughout the world to analyze biological data, and use Vertex
Cover and other FPT techniques routinely), of Niedermeier and his group, and
others. The paper [LPSSV08] describes a classic application to computational
biology.

Suppose we had a conflict graph of some data from this area. Because of
the nature of the data we know that it is likely the conflicts are at most about
50 or so, but the data set is large, maybe 1012 points. We wish to eliminate
the conflicts, by identifying those 50 or fewer points. Let’s examine the problem
depending on whether the identification turns out to be a dominating set problem
or a vertex cover problem.
Dominating Set. Essentially the only known algorithm for this problem is to
try all possibilities. Since we are looking at subsets of size 50 or less then we
will need to examine all (1012)50 many possibilities. Of course this is completely
impossible.
Vertex Cover There is now an algorithm running in time O(1.2738k + kn)
([CKX10]) for determining if an G has a vertex cover of size k. This and and
structurally similar algorithms has been implemented and is practical for n of un-
limited practical size and k large. The relevant k has been increasing all the time,
evolving from about 400 in [CDRST03], to Langston’s team [LPSSV08,ELRW11]



who now routinely solve instances on graphs with millions of nodes and vertex
covers in the thousands. Moreover, this last work is on actual biological data.

As well as using bounded branching (and parallelization [ALSS06]), the
method used for this algorithm for Vertex Cover is called kernelization and
is based on reduction rules1, which tend to be easy to implement and perform
often much better than anticipated in practice. We will discuss this method in
detail soon. The following table from Downey-Fellows [DF98] exhibits the dif-
ference between the parameter k being part of the exponent like Dominating
Set or as part of the constant like Vertex Cover. This table compares of a
running time of Ω(nk) vs 2kn.

n = 50 n = 100 n = 150

k = 2 625 2,500 5,625

k = 3 15,625 125,000 421,875

k = 5 390,625 6,250,000 31,640,625

k = 10 1.9 × 1012 9.8 × 1014 3.7 × 1016

k = 20 1.8 × 1026 9.5 × 1031 2.1 × 1035

Table 1. The Ratio nk+1

2kn
for Various Values of n and k.

In classical complexity a decision problem is specified by two items of infor-
mation:
(1) The input to the problem.
(2) The question to be answered.

In parameterized complexity there are three parts of a problem specification:
(1) The input to the problem.
(2) The aspects of the input that constitute the parameter.
(3) The question.

Thus one parameterized version of Vertex Cover is the following:

Vertex Cover
Instance: A graph G = (V,E).
Parameter: A positive integer k.
Question: Does G have a vertex cover of size ≤ k?

We could, for instance, parameterize the problem in other ways. For example,
we could parameterize by some width metric, some other shape of the graph,
planarity etc. Any of these would enable us to seek hidden tractability in the
problem at hand.

For a formal definition, for simplicity I will stick to the strongly uniform
definition of being fixed-parameter tractable. There are other definitions of less
importance in practice, and I refer the reader to [DF98] or [FG06] for more
details.

1 There are other FPT methods based around reduction rules such as Leizhen Cai
[LeC96] and Khot and Raman [KR02], which work on certain hereditary properties.



A parameterized language is L ⊆ Σ∗ × Σ∗ where we refer to the second
coordinate as the parameter. It does no harm to think of L ⊆ Σ∗×N. Flum and
Grohe have an alternative formulation where the second coordinate is a function
κ : Σ∗ → Σ∗, but I prefer to keep the second parameter as a string or number.

Definition 1. A parameterized language L is (strongly) fixed parameter tractable
(FPT ), iff there is a computable function f , a constant c, and a (deterministic)
algorithm M such that for all x, k,

〈x, k〉 ∈ L iff M(x, k) accepts,

and the running time of M(x, k) is ≤ f(k)|x|c.

It is not difficult to show that the multiplicative constant in the definition
can be replaced by an additive one, so that L ∈ FPT iff L can be accepted by a
machine in time O(|x|c) + f(k) for some computable f . In the case of Vertex
Cover we have f(k) = 1.2738k, and the O is 2. One nice notation useful here
is the O∗ notation which ignores the f(k) be it additive or multiplicative and
is only concerned with the exponential part. The algorithm would be said to be
O∗(n1). The table on the web site

http://fpt.wikidot.com/fpt-races

lists 35 (at the time of writing) basic problems which are fixed parameter tractable
with (mostly) practical algorithms, and for which there are current “races” for
algorithms with the best run times.

In the following I will briefly mention some of the techniques I will discuss
in the tutorial.

2 Positive Techniques

2.1 Bounded Search Trees

A fundamental source of high running times is branching in algorithms. A very
crude idea to limit the running time is to keep this branching small and a function
of the parameter. For instance, for Vertex Cover, we can do this as follows.
Take any edge e = vw, and begin a search tree, by having leaves labeled by v
and w, and for each leaf recursively do this for the graphs gotten by deleting any
edge covered by v and w respectively. The depth of this process for a k-vertex
cover is k. Thus, using this idea, we can decide of G has a vertex cover in time
O(2k|G|) using this method.

The running time of this method can often be exploited by by making the
tree smaller, or by using some kind of asymptotic combinatorics to constrain the
search. For example, if G has no vertex of degree three or more, then G consists
of a collection of cycles, and this is pretty trivial to check. Thus we can assume we
have vertices of higher degree than 2. For vertex cover of G we must have either
v or all of its neighbours, so we create children of the root node corresponding to



these two possibilities. The first child is labeled with {v} and G− v, the second
with {w1, w2, . . . , wp}, the neighbours of v, and G−{w1, w2, . . . , wp}. In the case
of the first child, we are still looking for a size k−1 vertex cover, but in the case
of the second child we need only look for a vertex cover of size k−p, where p is at
least 3. Thus, the bound on the size of the search tree is now somewhat smaller
than 2k. It can be shown that this algorithm runs in time O(5k\4 · n), and in
typical graphs, there are lots of vertices of higher degree than 3, and hence this
works even faster.

More involved rules exploring the local structure of neighbourhoods in graphs,
result in the algorithm of Chen et. al. [CKX10]) with running time O∗(1.2738k)
for the branching.

There are a number of problems for which this technique is the only method,
or at least the best method, for parameterized algorithms. The method has been
particularly successful in computational biology with problems like the Clos-
est String problem [GNR01] and Maximum Agreement Forest problem
[HM07].

In passing I remark that this method is inherently parallelizable and as we
see is often used in conjunction with other techniques. The method for Vertex
Cover can be found discussed in [ALSS06].

2.2 Kernelization

The idea is that if we make the problem smaller then the search will be quicker.
This is a data reduction or pre-processing idea, and is the heart of many heuris-
tics.

Whilst there are variations of the idea below, the simplest version of kernel-
ization is the following.

Definition 2 (Kernelization).
Let L ⊆ Σ∗×Σ∗ be a parameterized language. A reduction to a problem ker-

nel, or kernelization, comprises replacing an instance (I, k) by a reduced instance
(I ′, k′), called a problem kernel, such that

(i) k′ ≤ k,
(ii) |I ′| ≤ g(k), for some function g depending only on k, and
(iii) (I, k) ∈ L if and only if (I ′, k′) ∈ L.

The reduction from (I, k) to (I ′, k′) must be computable in time polynomial
in |I|+ |k|.

There are other notions, where the kernel may be another problem (often
“annotated”) or the parameter might increase, but, crucially, the size of the
kernel depends only on k.

Here are some natural reduction rules for a kernel for Vertex Cover.
Reduction Rule VC1:
Remove all isolated vertices.



Reduction Rule VC2:
For any degree one vertex v, add its single neighbour u to the solution set and
remove u and all of its incident edges from the graph.

These rules are obvious. Sam Buss (see [DF98]) originally observed that, for
a simple graph G, any vertex of degree greater than k must belong to every
k-element vertex cover of G (otherwise all the neighbours of the vertex must be
included, and there are more than k of these).
This leads to our last reduction rule.
Reduction Rule VC3:
If there is a vertex v of degree at least k+1, add v to the solution set and remove
v and all of its neighbours.

After exhaustively applying these rules, we get to a graph (G′, k′), where no
vertex in the reduced graph has degree greater than k′ ≤ k, or less than two.
Then simple combinatorics shows that if such a reduced graph has a size k vertex
cover, its must have size ≤ k2. This is the size k2 kernelization.

Now we can apply the bounded depth search tree rule to this reduced graph,
and get an algorithm for vertex cover running in time O(1.2738k)k2. As observed
by Langston and his team in problems in sequence analysis, and articulated by
Niedermeier and Rossmanith [NR00] better running times can be obtained by
interleaving depth-bounded search trees and kernelization. That is, first kernel-
ize, begin a bounded search tree, and the re-kernelize the children, and repeat.
This really does make a difference. In [Nie02] the 3-Hitting Set problem is
given as an example. An instance (I, k) of this problem can be reduced to a
kernel of size k3 in time O(|I|), and the problem can be solved by employing a
search tree of size 2.27k. Compare a running time of O(2.27k · k3 + |I|) (without
interleaving) with a running time of O(2.27k + |I|) (with interleaving).

In actual implementations there are other considerations such as load sharing
amongst processors and the like. We refer to the articles in the Computer Journal
special issue concerning practical FPT.

The best kernelization for Vertex Cover is due to Nemhauser and Trotter
[NT75] and has size 2k. It is based on matching and we will look at this technique
in the tutorial. The technique is quite powerful.

There are many other reduction techniques based on locan graph structure
like crown reductions ([AFLS07]), and then the generalization to the less prac-
tical prortusions. See Downey and Thilikos [DTH11].

2.3 Iterative Compression

This technique was first introduced in a paper by Reed, Smith and Vetta in 2004
[RSV04] and more or less re-discovered by Karp [Ka11]. Although currently only
a small number of results are known, it seems to be applicable to a range of
parameterized minimization problems, where the parameter is the size of the
solution set. Most of the currently known iterative compression algorithms solve
feedback set problems in graphs, problems where the task is to destroy certain
cycles in the graph by deleting at most k vertices or edges. In particular, the



k-Graph Bipartisation problem, where the task is to find a set of at most
k vertices whose deletion destroys all odd-length cycles, has been shown to be
FPT by means of iterative compression [RSV04]. This had been a long-standing
open problem in parameterized complexity theory.

Definition 3 (Compression Routine).

A compression routine is an algorithm that, given a problem instance I and a
solution of size k, either calculates a smaller solution or proves that the given
solution is of minimum size.

Here is a compression routine for Vertex Cover. Begin with (G = (V,E), k),
we build the graph G vertex by vertex. We start with an initial set of vertices
V ′ = ∅ and an initial solution C = ∅. At each step, we add a new vertex v to
both V ′ and C, V ′ ← V ′ ∪ {v}, C ← C ∪ {v}. We then call the compression
routine on the pair (G[V ′], C), where G[V ′] is the subgraph induced by V ′ in G,
to obtain a new solution C ′. If |C ′| > k then we output NO, otherwise we set
C ← C ′.

If we successfully complete the nth step where V ′ = V , we output C with
|C| ≤ k. Note that C will be an optimal solution for G.

The compression routine takes a graph G and a vertex cover C for G and
returns a smaller vertex cover for G if there is one, otherwise, it returns C
unchanged. Each time the compression routine is used it is provided with an
intermediate solution of size at most k + 1.

The implementation of the compression routine proceeds as follows. We con-
sider a smaller vertex cover C ′ as a modification of the larger vertex cover C.
This modification retains some vertices Y ⊆ C while the other vertices S = C\Y
are replaced with |S| − 1 new vertices from V \ C. The idea is to try by brute
force all 2|C| partitions of C into such sets Y and S. For each such partition, the
vertices from Y along with all of their adjacent edges are deleted. In the resulting
instance G′ = G[V \Y ], it remains to find an optimal vertex cover that is disjoint
from S. Since we have decided to take no vertex from S into the vertex cover, we
have to take that endpoint of each edge that is not in S. At least one endpoint of
each edge in G′ is in S, since S is a vertex cover for G′. If both endpoints of some
edge in G′ are in S, then this choice of S cannot lead to a vertex cover C ′ with
S ∩ C ′ = ∅. We can quickly find an optimal vertex cover for G′ that is disjoint
from S by taking every vertex that is not in S and has degree greater than zero.
Together with Y , this gives a new vertex cover C ′ for G. For each choice of Y
and S, this can be done in time O(m), leading to O(2|C|m) = O(2km) time
overall for one call of the compression routine. With at most n iterations of the
compression algorithm, we get an algorithm for k-Vertex Cover running in
time O(2kmn).

The parametric tractability of the method stems from the fact that each
intermediate solution considered has size bounded by some k′ = f(k), where k
is the parameter value for the original problem.



2.4 Other techniques

Other methods we will discuss will include colour coding (Alon, Yuster and Zwick
[AYZ94]), treewidth (e.g. [BoK08]), and more exotic methods. Given time, we
will look at constructivization of the methods via what is called bidimensionality
theory.

For colour-coding, it is most easily understood with a simple example. The
method remains not-quite-practical as the numbers involved are large, but not
astronomical. We will apply the problem to k-Path which seeks to find a (simple)
path of k vertices in G. What we do is to randomly colour the whole graph with
k colors, and look for a colourful solution, namely one with k vertices of one of
each color.

The two keys to this idea are
(i) we can check for colourful paths quickly.
(ii) if there is a simple path then the probability that it will have k colors for a
random coloring is k!

kk
which is bounded by e−k.

Then, given (i) and (ii), we only need repeat process enough to fast proba-
bilistic algorithm. We prove (i) by using dynamic programming: simply add a
vertex v0 with color 0, connect to those of color 1, then generate the colorful
paths of length i starting from v0 inductively, rather like Dijkstra’s algorithm,
the running time being O(k2k|E|).

Theorem 1 (Alon, Yuster and Zwick [AYZ94]). k-Path can be solved in
expected time 2O(k)|E|.

Alon, Yuster and Zwick demonstrated that this technique could be applied
to a number of problems of the form asking “is G′ a subgraph of G?” The de-
sired FPT algorithm can now be obtained by a process of derandomization. The
desired FPT algorithm can now be obtained by a process of derandomization.
A k-perfect family of hash functions is a family F of functions (colorings) taking
[n] = {1, . . . n} onto [k], such that for all S ⊆ [n] of size k there is a f ∈ F
whose restriction to is bijective (colourful). It is known that k-perfect families of
2O(k) log n linear time hash functions. This gives a deterministic 2O(k)|E| log |V |
algorithm for k-Path. More such applications can be found in Downey and Fel-
lows [DF98], and Niedermeier [Nie02,Nie06]. The O(k) in the exponent is where
the problem lies, and the derandomization method at present seems far from
practical. It should be noted that the method does not show that k-Clique is
in randomized FPT because (i) above fails. We also remaark that recent work
([BDFH09]) has shown, assuming a reasonable complexity assumption (namely
that the polynomial time hierarchy does not collapse to two or fewer levels), there
is no polynomial size kernel for k-Path. Thus, this is a classic problem which
is in O∗(2O(k))-FTP yet has no polynomial kernel under widely held complexity
assumptions.

Another use of dynamic programming concernes optimization problem on
graphs with inductively defined internal structure. One example of this is treewidth,
but there are other width metrics like cliquewidth, branchwidth, and others.



Definition 4 (Robertson and Seymour [RS86a]).

(a) A tree-decomposition of a graph G = (V,E) is a tree T together with a
collection of subsets Tx (called bags) of V labeled by the vertices x of T such
that ∪x∈T Tx = V and (i) and (ii) below hold:
(i) For every edge uv of G there is some x such that {u, v} ⊆ Tx.
(ii) (Interpolation Property) If y is a vertex on the unique path in T from x
to z then Tx ∩ Tz ⊆ Ty.

(b) The width of a tree decomposition is the maximum value of |Tx| − 1 taken
over all the vertices x of the tree T of the decomposition.

(c) The treewidth of a graph G is the minimum treewidth of all tree decomposi-
tions of G.

The point of the notion is that it is a measure of how treelike the graph is.
One can similarly define path decomposition where T must be a path. A tree
decomposition is a road map as to how to build the graph. Knowing a tree or
path decomposition of a graph allows for dynamic programming since what is
important is the “information flow” across a relatively narrow cut in the graph.

Figure 1 gives an example of a tree decomposition of width 2.
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Fig. 1. Example of Tree Decomposition of Width 2

The point is that suppose you were seeking a dominating set in the graph of
the example. Starting at the bag {f, e, h}, there are 23 = 8 possible beginnings
of a dominating set: ∅, {f}, {e}, {g}, {e, f}, {f, g}, {e, g}, {e, f, g}, that is, the
subsets of {e, f, g}. These correspond to dominating sets of sizes, respectively
0,1,1,1,2,2,2,3. Now, if we move to the next bag, {g, e, h}, up the path we lose the
vertex f and it will never appear again (because of the interpolation property).
So that to figure out the possible dominating sets, we only need to remember to
point at what we have done before, and the information flow across the boundary
of the cut. Thus if we choose ∅ from the first bag, we must choose one of {e}, {g},
or {e, g} from bag {g, e, h}, but choosing {e} from bag {f, e, h}, would allow for ∅,
for example, from {g, e, h}. Join bags are handled in a similar manner. Then one
has to simply climb up the decomposition to the top and read off the minimum
dominating set. The crucial thing is that the exponential part of running time
of this process depends on the bag size, and the complexity of the definition of
the property of the problem being analysed.



This vague statement can be made more formal using Courcelle’s Theorem
([Co87]) which shows that any problem in “monadic second order counting logic”
is linear time FPT for graphs on a fixed treewidth, and later work shows a similar
statement for graphs of bounded “local treewidth” for first order properties.
The key problem with these methods is that it can be hard to actually find
the tree decomposition, though the problem is FPT by Bodlaender [Bod96].

Unfortunately, this algorithm is O(235t
3 |G|) for a fixed treewidth t, which is

far from practical. It also seems unlikely that the problem of treewidth k has
a polynomial kernel as argued in [BDFH09]. Moreover, assuming reasonable
assumptions, it has been shown that the big towers of 2’s in the constants for
the running times obtained from Courcelle’s Theorem cannot be gotten rid of.
(Frick and Grohe [FrG02], also Flum and Grohe [FG04])

3 Parametric Intractability

The two key ingredients of a hardness theory are (i) a notion of hardness and
(ii) a notion of “problem A could be solved efficiently if we could solve problem
B”; that is a notion of red reducibility.

In the classic theory of NP completeness (i) is achieved by the following:
Nondeterministic Turing Machine Acceptance
Input: A nondeterministic Turing Machine M and a number e.
Question: Does M have an accepting computation in ≤ |M |e steps?

The Cook-Levin argument is that a Turing machine is such an opaque ob-
ject that it seems that there would be no way to decide if M accepts, without
essentially trying the paths. If we accept this thesis, then we probably should
accept that the following problem is not O(|M |c) for any fixed c and is probably
Ω(|M |k) since again our intuition would be that all paths would need to be tried:
Short Nondeterministic Turing Machine Acceptance
Input: A nondeterministic Turing Machine M
Parameter: A number k.
Question: Does M have an accepting computation in ≤ k steps?

Assuming the rhetoric of the Cook-Levin Theorem, it seems hard to believe
that Short Nondeterministic Turing Machine Acceptance could be in
FPT, for example, solved in O(|M |3) for any path length k. Indeed, Short
Nondeterministic Turing Machine Acceptance not in FPT is closely
related to the statement n-variable 3Sat not being solvable in subexponential
time.

Thus to show Dominating Set is likely not FPT could be achieved by
showing that if we could solve it in time O(nc) by for each fixed k, then we could
have a O(nc) for Short Nondeterministic Turing Machine Acceptance.
Our principal working definition for parameterized reductions is the following.

Definition 5. Let L,L′ be two parameterized languages. We say that L ≤fpt L′
iff there is an algorithm M , a computable function f and a constant c, such that

M : 〈G, k〉 7→ 〈G′, k′〉,



so that
(i) M(〈G, k〉) runs in time ≤ g(k)|G|c.
(ii) k′ ≤ f(k).
(iii) 〈G, k〉 ∈ L iff 〈G′, k′〉 ∈ L′.

A simple example of a parametric reduction is from k-Clique to k-Independent
Set, where the standard reduction is parametric (a situation not common). The
following is a consequence of Cai, Chen, Downey and Fellows [CCDF96], and
Downey and Fellows [DF95b].

Theorem 2. The following are hard for Short Nondeterministic Turing
Machine Acceptance: Independent Set, Dominating Set.

In the tutorial, I plan to discuss the proof of Theorem 2.
A classic non-example of a parameterized reduction is the classical reduction

of Sat to 3Sat. Early on Downey and Fellows conjectured that there is no
parametric reduction of k-Dominating Set to k-Independent Set, and we
see that the refined reduction of parameterized complexity theory give rise to
several hierarchies based on logical depth. In particular, the W -hierarchy is based
on weighted versions of satsifiabillity (i.e., the number of literals set to true) for
a formula in PoSoP... form or depth t. I will discuss the W -hierarchy below.

W [1] ⊆W [2] ⊆W [3] . . .W [SAT ] ⊆W [P ] ⊆ XP.
Here the other classes W [P ], the weighted circuit satisfiability class, and

XP which has as its defining problem the class whose k-th slice is complete for
DTIME(nk), this being provably distinct from FPT and akin to exponential
time. There are many, many problems hard for W [1] and complete at many
levels of this hierarchy. There are also other hierarchies based on other ideas
of logical depth. One important hierarchy of this kind was found by Flum and
Grohe is the A-hierarchy which is also based on a logical alternation. For a class
Φ of formulae, we can define the following parameterized problem.

p-MC(Φ)
Instance: A structure A and a formula ϕ ∈ Φ.
Parameter: |ϕ|.
Question: Decide if φ(A) 6= ∅, where this denotes the evaluation of φ in A.

Flum and Grohe define

A[t] = [p-MC(Σt)]
FPT.

For instance, for k ≥ 1, k-Clique can be defined by

cliquek = ∃x1, . . . xk(
∧

1≤i<j≤k

xi 6= xj ∧
∧

1≤i<j≤k

Exixj)

in the language of graphs, and the interpretation of the formula in a graph G
would be that G has a clique of size k. Thus the mapping (G, k) 7→ (G, cliquek) is



a fixed parameter reduction showing that parameterized Clique is in A[1]. Flum
and Grohe populate various levels of the A-hierarchy and show the following.

Theorem 3 (Flum and Grohe [FG02a,FG04]). The following hold:

(i) A[1] =W[1].
(ii) A[t] ⊆W[t].

Clearly A[t] ⊆XP, but no other containment with respect to other classes of
the W-hierarchy is known. There are also hierarchies like the M -hierarchy based
around parameterizing the problem size.

As discussed in [Do03], this hierarchy is related to PTAS’s; the connec-
tion of parameterized complexity with PTAS’s going back to Bazgan [Baz95].
The reader may note that parameterized complexity is addressing intractability
within polynomial time. In this vein, the parameterized framework can be used
to demonstrate that many classical problems that admit a PTAS do not, in fact,
admit any PTAS with a practical running time, unless W[1] =FPT. The idea

here is that if a PTAS has a running time such as O(n
1
ε ), where ε is the error

ratio, then the PTAS is unlikely to be useful. For example if ε = 0.1 then the
running time is already n to the 10th power for an error of 10%. The idea is
then to use 1

ε as a parameter and show W [1]-hardness, say, for that parame-
terization. Then the problem cannot have a PTAS without 1

ε (or worse) in the
exponent. Thus it will be unlikely that any feasible PTAS can be found. More
precise measurements can be obtained using the M -hierarchy, as we now see.

It was an insight of Cai and Juedes that tight lower bounds for approximation
and parameterized complexity are intimately related; and indeed, are also related
to classical questions about NP and subexponential time. In particular, Cai
et. al. [CFJR07] who showed that the method of using planar formulae tends
to give PTAS’s that are never practical. The exact calibration of PTAS’s and
parameterized complexity comes through yet another hierarchy called the M-
hierarchy.

The base level of the hierarchy is the problem M[1] defined by the core prob-
lem below.

Instance: A CNF circuit C (or, equivalently, a CNF formula) of size k log n.
Parameter: A positive integer k.
Question: Is C satisfiable?

That is, we are parameterizing the size of the problem rather than some as-
pect of the problem. The idea naturally extends to higher levels for that, for ex-
ample, M [2] would be a product of sums of product formula of size k log n and we
are asking whether it is satisfiable. The basic result is thatFPT⊆M[1] subseteqW[1].
The hypothesis FPT 6=M[1] is equivalent to a classical conjecture called the ex-
ponential time hypothesis, ETH. This hypothesis is due to Impagliazzo, Paturi
and Zane [IPZ01] and asserts that n-variable 3Sat cannot be solved in “subex-
ponential time”, DTime (2o(n)). This conjecture accords with the intuition that
not only does P 6= NP but actually NP is really at exponential level.



One example of a lower bound was the original paper of Cai and Juedes
[CJ01,CJ03] who proved the following definitive result.

Theorem 4 (Cai and Juedes [CJ01,CJ03]). k-Planar Vertex Cover,
k-Planar Independent Set, k-Planar Dominating Set, and k-Planar

Red/Blue Dominating Set cannot be in O∗(2o(
√
k))-FPT unless FPT=M[1]

(or, equivalently, unless ETH fails).

We remark that Theorem 4 is optimal as all the problems above have been

classified as O∗(2O(
√
k) (see e.g. Downey and Thilikos [DTH11])

3.1 XP-optimality

There is a new programme akin to the above establishing tight lower bounds on
parameterized problems, assuming various non-collapses of the parameterized
hierarchies. A powerful example of this is what is called XP optimality. This
new programme regards the classes like W[1] as artifacts of the basic problem
of proving hardness under reasonable assumptions, and strikes at membership
ofXP. We illustrate this via Independent Set and Dominating Set which
certainly are in XP. But what’s the best exponent we can hope for for slice k?

Theorem 5 (Chen et. al [CCFHJKX05]). The following hold:

(i) Independent Set cannot be solved in time no(k) unless FPT=M[1].
(ii) Dominating Set cannot be solved in time no(k) unless FPT=M[2].

4 Other things

The other things I plan to discuss is how to use parameterized complexity to
show that various methods such as logical metatheorems (such as Courcelle’s
Theorem and the Frick Grohe [FrG01] theorem on local treewidth) which make
very large constants, cannot be improved assuming the W -hierarchy does nor
collapse. Also I will look at recent work on lower bounds for kernelization such as
[BDFH09,CFM11,FS11,BTY08,HKSWWta]. This is quite exciting work which
allows us to demonstrate that the kernelization technique cannot be used to give
polynomial sized kernels.

I won’t have time to discuss the use of parameterized complexity to rule out
various techniques in other areas such as Aleknovich and Razborov [AR01].

5 Left out

Clearly in 2 lectures I won’t have time to deal with things in a lot of depth. I
have alose left out a lot. For example, there is work on parameterized counting
(McCartin [McC06] and Flum and Grohe [FG02b]) where we count the number
of paths of length k to define, for instance, #W [1]. One nice theorem here is the
following.



Theorem 6 (Flum and Grohe [FG02b]). Counting the number of cycles of
size k in a bipartite graph is #W[1]-complete.

This result can be viewed as a parameterized analog of Valiant’s theorem on
the permanent. Another area is parameterized randomization, such as Downey,
Fellows and Regan [DFR98], and Müller [Mu06,Mu08], but here problems re-
main. Parameterized approximation looks at questions like: Is it possible to have
an FPT algorithm which, on parameter k, either outputs a size 2k dominating
set for G, or says no dominating set of size k? Such algorithms famously exist for
Bin Packing and don’t exist for most natural W [P ] complete problems. Here we
refer to Downey, Fellows, McCartin and Rosamond [DFMR08] and Eickmeyer,
Grohe and Grüber [EGG08] for more details. We have left out discussions of
parameterizing above guaranteed values such as Mahajan and Raman [MR99],
plus discussions of the breadth of applications. For the last, we can only point
at the relevant books, and the Computer Journal issues [DFL08].

There are many other important topics such as implementations, connections
with exact algorithms, connections with classical complexity and the like. Time
and space limitations preclude this material being included.
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