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Abstract. This article was prepared for Mike Fellows Festschrift for his
60th Birthday. Since many of the contributed articles revolve around
the concept of parameterized complexity, it seems reasonable to give the
reader a (short) primer to this area. It is not intended as a complete sur-
vey of this very broad area in its current state; rather it is intended to give
a flavour of the techniques used and the directions taken. Whilst not do-
ing the area justice, the basics of the techniques for proving tractability,
establishing hardness, and the philosophy are given. The basics from this
paper will be amplified by many other articles in this Festschrift. Much
fuller accounts can be found in the books Downey-Fellows [DF98,DFta],
Niedermeier [Nie06], Flum-Grohe [FG06], the two issues of the Computer
Journal [DFL08] and the recent survey Downey-Thilikos [DTH11].

1 Introduction

1.1 The idea

The story of classical complexity, as witnessed by the classic cartoons in the
beginning of Garey and Johnson’s book [GJ79], begins with some problem we
wish to find an efficient algorithm for. Now, what do we mean by efficient?
It seems a reasonable idea to idealize the notion of being efficient by being in
polynomial time. Having done this, we discover that the only algorithm we have
for the given problem is to try all possibilities and this takes Ω(2n) for instances
of size n. What we would like is to prove that there is no algorithm running in
feasible time. Using our idealization that feasible=polynomial, this equates to
showing that there is no algorithm running in polynomial time.

Suppose that we succeed in showing that there is no polynomial time algo-
rithm. This would mean to us is that we would (i) need to try some other method
to solve the problem such as some kind of approximate solution because (ii) we
could give up on showing that there was a polynomial time algorithm.

The story continues with the following rhetoric. In spite of the efforts of
a number of researchers, for many problems whose best solution known was
complete search, there was no proof that the problem is not in polynomial time
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found. It was the key realization of Cook, Levin and crucially Karp [Ka72] that
many of these problems could be shown to be polynomial-time reducible to each
other, and to the problem of acceptance for a polynomial time nondeterministic
Turing machine. That is, they are NP-complete. This means that we have a
practical “proof” of hardness in that if any of the problems were in polynomial
time, all would be; and secondly showing them to be in polynomial time would
show that acceptance for a polynomial time nondeterministic Turing machine
would be also. The philosophical argument is that a nondeterministic Turing
machine is such an opaque object, without any obvious algebraic structure, that
it seems impossible to see if it has an accepting path without trying all of them.
That’s the philosophy anyway.

The methodology above seems fine as a first foray into feasible computation.
However, for practical computation, it seems that we ought to refine the analysis
to make it more fine grained. Firstly, when we show that something is NP-
complete or worse, what we are focusing on is the worst case behaviour. Second,
the analysis takes the input as being measured by its size alone. You can ask
yourself the question: when in real life do we know nothing else about a problem
than its size? The answer is never. For instance, the problem is planar, tree-like,
has many parameters bounded, etc. The idea behind parameterized complexity
is to try to exploit the structure of the input to get some practical tractability.
That is, we try to understand what aspect of the problem is to blame for the
combinatorial explosion which occurs. If this parameter can be controlled then
we would have achieved practical tractability.

Anybody working in software engineering will know that it is important to
design tools specific to the type of problem at hand. Suppose that you are con-
cerned with relational databases. Typically the database is huge, and the queries
are relatively small. Moreover, “real life” queries are queries people actually ask.
Hence, such queries tend to be also of low logical complexity (see, for example
Papadimitriou and Yannakakis [PY97], which posits parameterized complexity
as the correct complexity for such analyses). Furthermore, in areas like com-
putational biology, the number 4 is typical, and structure of things like DNA
is far from random. The main idea of parameterized complexity is to design a
paradigm that will address complexity issues in the situation where we know in
advance that certain parameters will be likely bounded and this might signifi-
cantly affect the complexity. Thus in the database example, an algorithm that
works very efficiently for small formulas with low logical depth might well be
perfectly acceptable in practice.

Thus, parameterized complexity is a refined complexity analysis, driven by
the idea that in real life data is often given to us naturally with an underlying
structure which we might profitably exploit. The idea is not to replace poly-
nomial time as the underlying paradigm of feasibility, but to provide a set of
tools that refine this concept, allowing some exponential aspect in the running
times by allowing us either to use the given structure of the input to arrive at
feasibility, or develop some relevant hardness theory to show that the kind of
structure is not useful for this approach.



As I remarked in [Do03], “This simple idea is pretty obvious once you think
about it. For example, when we teach a first course in automata theory we show
the students that regular language acceptance is in linear time. But this is really
not quite true: it is only true if the language is presented to us as, say, a regular
expression, whereas it could be a language presented as the output of a Turing
machine, in which case acceptance is undecidable. The point is that we only
really care about regular languages when they are given to us in a structured
way, namely via regular expressions.”

1.2 Some definitions

I will now discuss the standard examples which we use for the theory. As I discuss
in the companion paper [Do12], Mike Fellows and my early work had the three
problems Vertex Cover, Dominating Set,Independent Set in our hearts.

For a graph G a vertex cover is where vertices cover edges: that is C =
{v1, . . . , vk} is a vertex cover iff for each e ∈ E(G), there is a vi ∈ C such that
vi ∈ e. They should recall that a dominating set is where vertices cover vertices:
D = {v1, . . . , vk} is a dominating set iff for all v ∈ V (G), either v ∈ D or there
is an e ∈ E(G) such that e = 〈vi, v〉 for some vi ∈ D. Finally an independent
set is a collection of vertices no pair of which are connected. Of course, these are
some of the basic NP -complete problems identified by Karp [Ka72].

As in [Do03], and earlier [DF98] and [DFS98], I will motivate the definitions
by looking at a problem in computational biology. As discussed in [Do12] in
this volume, and as seen by [GGKS95,KST94,St00,DFS98,BDFHW95] compu-
tational biology has been interacting with parameterized complexity from the
beginning, and this interaction has continued with throughout, with the work
Langston and his group (who have contracts throughout the world to analyse
biological data, and use Vertex Cover and other FPT techiques routinely),
of Niedermeier and his group, and others. This volume describes many of the
applications to computational biology in Stege [St12]. Suppose we had a conflict
graph of some data from this area. Because of the nature of the data we know
that it is likely the conflicts are at most about 50 or so, but the data set is large,
maybe 1012 points. We wish to eliminate the conflicts, by identifying those 50 or
fewer points. Let’s examine the problem depending on whether the identification
turns out to be a dominating set problem or a vertex cover problem.
Dominating Set. Essentially the only known algorithm for this problem is to
try all possibilities. Since we are looking at subsets of size 50 or less then we
will need to examine all (1012)50 many possibilities. Of course this is completely
impossible.
Vertex Cover There is now an algorithm running in time O(1.2738k + kn)
([CKX10]) for determining if an G has a vertex cover of size k. This and and
structurally similar algorithms has been implemented and is practical for n of un-
limited practical size and k large. The relevant k has been increasing all the time,
evolving from about 400 in [CDRST03], to Langston’s team [LPSSV08,ELRW11]
who now routinely solve instances on graphs with millions of nodes and vertex
covers in the thousands. Moreover, this last work is on actual biological data.



As well as using bounded branching (and parallelization [ALSS06]), the
method used for this algorithm for Vertex Cover is called kernelization and
is based on reduction rules1, which tend to be easy to implement and perform
often much better than anticipated in practice. We will discuss this method in
detail soon. The following table from Downey-Fellows [DF98] exhibits the dif-
ference between the parameter k being part of the exponent like Dominating
Set or as part of the constant like Vertex Cover. This table compares of a
running time of Ω(nk) vs 2kn.

n = 50 n = 100 n = 150

k = 2 625 2,500 5,625

k = 3 15,625 125,000 421,875

k = 5 390,625 6,250,000 31,640,625

k = 10 1.9× 1012 9.8× 1014 3.7× 1016

k = 20 1.8× 1026 9.5× 1031 2.1× 1035

Table 1. The Ratio nk+1

2kn
for Various Values of n and k.

In classical complexity a decision problem is specified by two items of infor-
mation:
(1) The input to the problem.
(2) The question to be answered.

In parameterized complexity there are three parts of a problem specification:
(1) The input to the problem.
(2) The aspects of the input that constitute the parameter.
(3) The question.

Thus one parameterized version of Vertex Cover is the following:

Vertex Cover
Instance: A graph G = (V,E).
Parameter: A positive integer k.
Question: Does G have a vertex cover of size ≤ k?

We could, for instance, parameterize the problem in other ways. For example,
we could parameterize by some width metric, some other shape of the graph,
planarity etc. Any of these would enable us to seek hidden tractability in the
problem at hand.

For a formal definition, for simplicity I will stick to the strongly uniform
definition of being fixed-parameter tractable. There are other definitions of less
importance in practice, and I refer the reader to [DF98] or [FG06] for more
details.

A parameterized language is L ⊆ Σ∗ × Σ∗ where we refer to the second
coordinate as the parameter. It does no harm to think of L ⊆ Σ∗×N. Flum and

1 There are other FPT methods based around reduction rules such as Leizhen Cai
[LeC96] and Khot and Raman [KR02], which work on certain hereditary properties.



Grohe have an alternative formulation where the second coordinate is a function
κ : Σ∗ → Σ∗, but I prefer to keep the second parameter as a string or number.

Definition 1. A parameterized language L is (strongly) fixed parameter tractable
(FPT ), iff there is a computable function f , a constant c, and a (deterministic)
algorithm M such that for all x, k,

〈x, k〉 ∈ L iff M(x, k) accepts,

and the running time of M(x, k) is ≤ f(k)|x|c.

It is not difficult to show that the multiplicative constant in the definition
can be replaced by an additive one, so that L ∈ FPT iff L can be accepted
by a machine in time O(|x|c) + f(k) for some computable f . In the case of
Vertex Cover we have f(k) = 1.2738k, and the O is 2. One nice notation
useful here is the O∗ notation which ignores the polynomial part be it additive
or multiplicative and is only concerned with the exponential part. The algorithm
would be said to be O∗(2k). The table on the web site

http://fpt.wikidot.com/fpt-races

lists 35 (at the time of writing) basic problems which are fixed parameter tractable
with (mostly) practical algorithms, and for which there are current “races” for
algorithms with the best run times.

Now you might (in some cases validly) complain about the presence of an
arbitrarily bad computable function f . Could this not be like, for example Ack-
ermann’s function? This is a true enough complaint, but the argument also
applies to polynomial time. Could not polynomial time allow for running times
like n30,000,000? As noted by Edmonds [Ed65], the practical algorithm builder’s
answer tends to be that “in real life situations, polynomial time algorithms tend
to have small exponents and small constants.” That certainly was true in 1965,
but as we will see this is no longer true. The same heuristic applies here. By and
large, for most practical problems, at least until recently, the f(k)’s tended to
be manageable and the exponents reasonable.

In fact, an important offshoot of parameterized complexity theory is that
it does (sometimes) provide tools to show that bad constants or bad exponents
for problems with algorithms running in polynomial time cannot be eliminated,
modulo some reasonable complexity assumption. As articulated by Alehknovich
and Razborov [AR01] who were considering lower bounds for the automizability2

of resolution and tree-like resolution, what they needed was a complexity the-
ory sensitive to the structure of polynomial time. We emphasize that exploring

2 Alehknovich and Razborov studied proof systems P called in [BPR01] automatizable
meaning that there is a deterministic algorithm A which, when give a tautology τ
returns its shortest proof in time polynomial in the size of the shortest P -proof of τ.
They proved neither resolution nor tree-like resolution is automatizable unless W [P ]
is randomized FPT by a randomized algorithm with one-sided error, where W [P ] is
a class we will meet in Section 2



feasible computation requires something like parameterized complexity as it is a
theory giving hardness within polynomial time. More on this in Section 2.

One of the key features of the theory is a wide variety of associated techniques
for proving parametric tractability. We will discuss them in Section 3, but before
we do so, let’s examine the associated hardness theory.

2 Parametric Intractability

Since we are woefully bad at proving problems to be not in polynomial time,
we have invented a hardness theory, as mentioned in Section 1, based on the
assumption that certain canonical problems are not in polynomial time. The
two key ingredients of a hardness theory are (i) a notion of hardness and (ii) a
notion of “problem A could be solved efficiently if we could solve problem B”;
that is a notion of reducibility.

In the classic theory of NP completeness (i) is achieved by the following:
Nondeterministic Turing Machine Acceptance
Input: A nondeterministic Turing Machine M and a number e.
Question: Does M have an accepting computation in ≤ |M |e steps?

The Cook-Levin argument is that a Turing machine is such an opaque ob-
ject that it seems that there would be no way to decide if M accepts, without
essentially trying the paths. If we accept this thesis, then we probably should
accept that the following problem is not O(|M |c) for any fixed c and is probably
Ω(|M |k) since again our intuition would be that all paths would need to be tried:
Short Nondeterministic Turing Machine Acceptance
Input: A nondeterministic Turing Machine M
Parameter: A number k.
Question: Does M have an accepting computation in ≤ k steps?

So here is a notion of hardness. Personally I would find it difficult to believe
that NP is not P, but that Short Nondeterministic Turing Machine Ac-
ceptance could be in FPT, for example, solved in O(|M |3) for any path length
k. In fact, as we will soon see, Short Nondeterministic Turing Machine
Acceptance not in FPT is closely related to the statement n-variable 3Sat
not being solvable in subexponential time.

Thus to show Dominating Set is likely not FPT could be achieved by
showing that if we could solve it in time O(nc) by for each fixed k, then we could
have a O(nc) for Short Nondeterministic Turing Machine Acceptance.
Our principal working definition for parameterized reductions is the following.

Definition 2. Let L,L′ be two parameterized languages. We say that L ≤fpt L′
iff there is an algorithm M , a computable function f and a constant c, such that

M : 〈G, k〉 7→ 〈G′, k′〉,

so that
(i) M(〈G, k〉) runs in time ≤ g(k)|G|c.
(ii) k′ ≤ f(k).
(iii) 〈G, k〉 ∈ L iff 〈G′, k′〉 ∈ L′.



A simple example of a parametric reduction is from k-Clique to k-Independent
Set, where the standard reduction is parametric (a situation not common). The
following is a consequence of Cai, Chen, Downey and Fellows [CCDF96], and
Downey and Fellows [DF95b]; as I discuss in [Do12], later in this volume.

Theorem 1. The following are hard for Short Nondeterministic Turing
Machine Acceptance: Independent Set, Dominating Set.

Following Karp [Ka72], and then four decades of work, we know that thou-
sands of problems are all NP-complete. They are all reducible to one another
and hence seem to have the same classical complexity. On the other hand, with
parameterized complexity, we have theory which separates Vertex Cover from
Dominating Set and Independent Set. With such refined reducibilties, it
seems highly unlikely that the hardness classes would coalesce into a single
class like NP-complete. And indeed we think that this is the case. We have
seen in the theorem above that Short Nondeterministic Turing Machine
Acceptance≡fpt Independent Set. However, we do not think that Domi-
nating Set≤fpt Independent Set.

A standard parameterized version of the satisfiability problem of Cook-Levin
is the following. (Other parameterized versions are discussed in the article by
Chen and Flum [CF12] in this volume.)
Weighted Cnf Sat
Input: A CNF formula X.
Parameter: A number k.
Question: Does X have a true assignment of weight k (here the weight is the
number of variables set to true)?

Similarly, we can define Weighted 3 Cnf Sat where the clauses have only
3 variables. Classically, using a padding argument, we know that Cnf Sat≡Pm3
Cnf Sat. Recall that to do this for a clause of the form {q1, . . . , qk} we add extra
variables zj and turn the clause into several as per: {q1, q2, z1}, {z1, q3, z2}, etc.

Now this is definitely not a parametric reduction from Weighted Cnf Sat
to Weighted 3 Cnf Sat because a weight k assignment could go to any other
weight assignment for the corresponding instance of 3 Cnf Sat.

Now, early on, as I mention in [Do12], Fellows and I came to the belief that
there is no parametric reduction at all from Weighted Cnf Sat to Weighted
3 Cnf Sat. Fellows and I proved that Dominating Set≡fptWeighted Cnf
Sat. Extending this reasoning further, we can view Weighted Cnf Sat as a
formula that is a product of sums. We can similarly define Weighted t-PoS
Sat as the weighted satisfiability problem for a formula X in product of sums of
product of sums... with t alternations. Fellows and I then defined Weighted Sat
if we have no restriction on the formula. Downey and Fellows [DF95a] called the
collection of parameterized languages FPT-equivalent to Weighted 3 Cnf Sat
W [1], the collection of languages FPT-equivalent to Weighted Cnf Sat W [2],
the collection of languages FPT-equivalent to Weighted t-PoS Sat W [t], and
the collection of languages FPT-equivalent to Weighted Sat W [SAT ]. There
are some other classes W [P ], the weighted circuit satisfiability class, and XP



which has as its defining problem the class whose k-th slice is complete for
DTIME(nk), this being provably distinct from FPT and akin to exponential
time. This gave the W -hierarchy below

W [1] ⊆W [2] ⊆W [3] . . .W [SAT ] ⊆W [P ] ⊆ XP.

There are many, many problems hard for W [1] and complete at many lev-
els of this hierarchy. I won’t list them here, but examples can be found in
this volume, and in the papers and books listed above. The basic papers are
[DF92a,DF92b,DF93,ADF95], and there we define the basic W-classes and es-
say the completeness programme.

The reader might ask about parameterizing space. This issue was addressed
by Abrahamson, Downey and Fellows [ADF93,ADF95], where the complexity
of k-move games was addressed. (It could be argued that a proper treatment
of space is yet to be done.) The complexity of k-move games was addressed
by extending the hierarchy above using ideas of alternation of parameterized
quantifiers, giving a hierarchy called the AW-hierarchy. Again we refer to the
books and survey articles.

There are also other hierarchies based on other ideas of logical depth. One im-
portant hierarchy of this kind was found by Flum and Grohe is the A-hierarchy
which is also based on alternation like the AW-hierarchy but works differently.
For a class Φ of formulae, we can define the following parameterized problem.

p-MC(Φ)
Instance: A structure A and a formula ϕ ∈ Φ.
Parameter: |ϕ|.
Question: Decide if φ(A) 6= ∅, where this denotes the evaluation of φ in A.

Flum and Grohe define

A[t] = [p-MC(Σt)]
FPT.

For instance, for k ≥ 1, k-Clique can be defined by

cliquek = ∃x1, . . . xk(
∧

1≤i<j≤k

xi 6= xj ∧
∧

1≤i<j≤k

Exixj)

in the language of graphs3, and the interpretation of the formula in a graph G
would be that G has a clique of size k. Thus the mapping (G, k) 7→ (G, cliquek) is
a fixed parameter reduction showing that parameterized Clique is in A[1]. Flum
and Grohe populate various levels of the A-hierarchy and show the following.

Theorem 2 (Flum and Grohe [FG02a,FG04]). The following hold:

(i) A[1] =W[1].

3 For narrative flow, I will assume that the reader is familiar with logic, but a more
precise discussion will be given in Section 4.5.



(ii) A[t] ⊆W[t].

Clearly A[t] ⊆XP, but no other containment with respect to other classes of
the W-hierarchy is known. It is conjectured by Flum and Grohe that no other
containments than those given exist. This conjecture is not apparently related to
any other conjecture. One other important hierarchy, called the M -hierarchy will
be discussed later, but in any case it is completely evident that the fine-grained
nature of the notion of parametric complexity will lead to significant structure
within polynomial time. There is still a great deal to do here.

2.1 Connection with PTAS’s

The reader may note that parameterized complexity is addressing intractability
within polynomial time. In this vein, the parameterized framework can be used
to demonstrate that many classical problems that admit a PTAS do not, in fact,
admit any PTAS with a practical running time, unless W[1] =FPT. The idea

here is that if a PTAS has a running time such as O(n
1
ε ), where ε is the error

ratio, then the PTAS is unlikely to be useful. For example if ε = 0.1 then the
running time is already n to the 10th power for an error of 10%. Here is a table
from Downey [Do03]

– Arora [Ar96] gave a O(n
3000
ε ) PTAS for Euclidean Tsp

– Chekuri and Khanna [CK00] gave a O(n12(log(1/ε)/ε
8)) PTAS for Multiple

Knapsack

– Shamir and Tsur [ST98] gave a O(n2
2
1
ε −1)) PTAS for Maximum Subforest

– Chen and Miranda [CM99] gave a O(n(3mm!)
m
ε

+1

) PTAS for General Mul-
tiprocessor Job Scheduling

– Erlebach et al. [EJS01] gave a O(n
4
π (

1
ε2

+1)2( 1
ε2

+2)2) PTAS for Maximum
Independent Set for geometric graphs.

Table 2 below calculates some running times for these PTAS’s with a 20%
error.

Reference Running Time for a 20% Error

Arora [Ar96] O(n15000)

Chekuri and Khanna [CK00] O(n9,375,000)

Shamir and Tsur [ST98] O(n958,267,391)

Chen and Miranda [CM99] > O(n1060)
(4 Processors)

Erlebach et al. [EJS01] O(n523,804)

Table 2. The Running Times for Some Recent PTAS’s with 20% Error.

In Downey [Do03], I argue as follows.



“By anyone’s measure, a running time of n500,000 is bad and n9,000,000 is
even worse. The optimist would argue that these examples are important
in that they prove that PTAS’s exist, and are but a first foray. The
optimist would also argue that with more effort and better combinatorics,
we will be able to come up with some n log n PTAS for the problems. For
example, Arora [Ar97] also came up with another PTAS for Euclidean
Tsp, but this time it was nearly linear and practical.
But this situation is akin to P vs NP. Why not argue that some exponen-
tial algorithm is just the first one and with more effort and better combi-
natorics we will find a feasible algorithm for Satisfiability? What if a
lot of effort is spent in trying to find a practical PTAS’s without success?
As with P vs NP, what is desired is either an efficient4 PTAS (EPTAS),
or a proof that no such PTAS exists5. A primary use of NP-completeness
is to give compelling evidence that many problems are unlikely to have
better than exponential algorithms generated by complete search.”

To use the hardness theory to eliminate the possibility of feasible PTAS’s,
what we could do is regard 1

ε as a parameter and show that the problem is
W[1]-hard with respect to that parameterization. In that case there would likely
be no method of removing the 1

ε from the exponent in the running time and
hence no efficient PTAS, a method first used by Bazgan [Baz95]. For many more
details of the method we refer the reader to the surveys [Do03,DTH11].

It was an insight of Cai and Juedes that tight lower bounds for approximation
and parameterized complexity are intimately related; and indeed, are also related
to classical questions about NP and subexponential time. In particular, Cai
et. al. [CFJR07] who showed that the method of using planar formulae tends
to give PTAS’s that are never practical. The exact calibration of PTAS’s and
parameterized complexity comes through yet another hierarchy called the M-
hierarchy.

The base level of the hierarchy is the problem M[1] defined by the core prob-
lem below.

Instance: A CNF circuit C (or, equivalently, a CNF formula) of size k log n, with
n in unary.
Parameter: A positive integer k.
Question: Is C satisfiable?

That is, we are parameterizing the size of the problem rather than some
aspect of the problem. The idea naturally extends to higher levels for that, for
example, M [2] would be a product of sums of product formula of size k log n and
we are asking whether it is satisfiable. The basic result is thatFPT⊆ M[1]⊆W[1].

4 An Efficient Polynomial-Time Approximation Scheme (EPTAS) is an (1 + ε)-
approximation algorithm that runs in f(1/ε) · nO(1) steps. If, additionally, f is a
polynomial function then we say that we have a Fully Polynomial-Time Approxima-
tion Scheme (FPTAS).

5 The same issue can also be raised if we consider FPTAS’s instead of EPTA S’s.



The hypothesis FPT 6=M[1] is equivalent to a classical conjecture called the ex-
ponential time hypothesis, ETH. This hypothesis is due to Impagliazzo, Paturi
and Zane [IPZ01] and asserts that n-variable 3Sat cannot be solved in “subex-
ponential time”, DTime (2o(n)). This conjecture accords with the intuition that
not only does P 6= NP but actually NP is really at exponential level.

One example of a lower bound was the original paper of Cai and Juedes
[CJ01,CJ03] who proved the following definitive result.

Theorem 3 (Cai and Juedes [CJ01,CJ03]). k-Planar Vertex Cover,
k-Planar Independent Set, k-Planar Dominating Set, and k-Planar

Red/Blue Dominating Set cannot be in O∗(2o(
√
k))-FPT unless FPT=M[1]

(or, equivalently, unless ETH fails).

We remark that Theorem 3 is optimal as all the problems above have been

classified as O∗(2O(
√
k) (see e.g. Downey and Thilikos [DTH11])

The obvious connection between subexponential complexity and parameter-
ized complexity classes as formalized by Chen and Grohe [CG07] by constructing
an isomorphism, the so-called miniaturization, between exponential time com-
plexity (endowed with a suitable notion of reductions) and XP (endowed with
FPT reductions) such that the respective notions of tractability correspond, that
is, subexponential time on the one and FPT on the other side. Other connections
between classical complexity and “canonical” miniaturizations can be found in
Downey, Flum, Grohe and Weyer [DFGW07].

2.2 XP-optimality

There is a new programme akin to the above establishing tight lower bounds on
parameterized problems, assuming various non-collapses of the parameterized
hierarchies. A powerful example of this is what is called XP optimality. This
new programme regards the classes like W[1] as artifacts of the basic problem
of proving hardness under reasonable assumptions, and strikes at membership
ofXP. We illustrate this via Independent Set and Dominating Set which
certainly are in XP. But what’s the best exponent we can hope for for slice k?

Theorem 4 (Chen et. al [CCFHJKX05]). The following hold:

(i) Independent Set cannot be solved in time no(k) unless FPT=M[1].
(ii) Dominating Set cannot be solved in time no(k) unless FPT=M[2].

More on parameterized intractability and its development over time can be
found in the article by Jianer Chen [Ch12] in this volme.

3 Positive Techniques

3.1 Bounded Search Trees

A fundamental source of high running times is branching in algorithms. A very
crude idea to limit the running time is to keep this branching small and a function



of the parameter. For instance, for Vertex Cover, we can do this as follows.
Take any edge e = vw, and begin a search tree, by having leaves labeled by v
and w, and for each leaf recursively do this for the graphs gotten by deleting any
edge covered by v and w respectively. The depth of this process for a k-vertex
cover is k and then we can decide of G has a vertex cover in time O(2k|G|) using
this method.

At a certain point in any of these algorithms, you need to appeal to some
kind of combinatorics to improve performance. A simple illustration of this idea
is that if we can make the search tree smaller than the complete binary tree of
length k, then the performance will improve. Notice that, if G has no vertex of
degree three or more, then G consists of a collection of cycles, and this is pretty
trivial to check. Thus we can assume we have vertices of higher degree than 2.
For vertex cover of G we must have either v or all of its neighbours, so we create
children of the root node corresponding to these two possibilities. The first child
is labeled with {v} and G− v, the second with {w1, w2, . . . , wp}, the neighbours
of v, and G− {w1, w2, . . . , wp}. In the case of the first child, we are still looking
for a size k − 1 vertex cover, but in the case of the second child we need only
look for a vertex cover of size k − p, where p is at least 3. Thus, the bound on
the size of the search tree is now somewhat smaller than 2k. It can be shown
that this algorithm runs in time O(5k\4 ·n), and in typical graphs, there are lots
of vertices of higher degree than 3, and hence this works even faster.

The best algorithms along these lines use more complex branching rules. For
example, Niedermeier [Nie02] uses the following branching rules.

Branching Rule VC1:
If there is a degree one vertex v in G, with single neighbour u, then there is a
minimum size cover that contains u. Thus, we create a single child node labeled
with {u} and G− u.

Branching Rule VC2:
If there is a degree two vertex v inG, with neighbours w1 and w2, then either both
w1 and w2 are in a minimum size cover, or v together with all other neighbours
of w1 and w2 are in a minimum size cover.

Branching Rule VC3:
If there is a degree three vertex v in G, then either v or all of its neighbours are
in.

We remark that using these three rules, (using a recurrence relation) it can
be shown that if there is a solution of size at most k then the size of the corre-
sponding search tree has size bounded above by O(1.47k). More involved rules
of similar ilk exploring the local structure of neighbourhoods in graphs, result
in the algorithm of Chen et. al. [CKX10]) with running time O(1.2738k) for the
branching.

There are a number of problems for which this technique is the only method,
or at least the best method, for parameterized algorithms. The method has been
particularly successful in computational biology with problems like the Clos-



est String problem [GNR01] and Maximum Agreement Forest problem
[HM07].

In passing I remark that this method is inherently parallelizable and as we
see is often used in conjunction with other techniques. The method for Vertex
Cover can be found discussed in [ALSS06].

The paper in this volume by Marx explores the applicability of this technique
against other methods like kernelizability discussed in the next section.

3.2 Kernelization

This is again a pretty simply basic idea. If we can make the problem smaller
then the search will be quicker. This is a data reduction or pre-processing idea,
and is the heart of many heuristics.

Whilst there are variations of the idea below, the simplest version of kernel-
ization is the following.

Definition 3 (Kernelization).
Let L ⊆ Σ∗×Σ∗ be a parameterized language. A reduction to a problem ker-

nel, or kernelization, comprises replacing an instance (I, k) by a reduced instance
(I ′, k′), called a problem kernel, such that

(i) k′ ≤ k,
(ii) |I ′| ≤ g(k), for some function g depending only on k, and
(iii) (I, k) ∈ L if and only if (I ′, k′) ∈ L.

The reduction from (I, k) to (I ′, k′) must be computable in time polynomial
in |I|+ |k|.

There are other notions, where the kernel may be another problem (often
“annotated”) or the parameter might increase, but, crucially, the size of the
kernel depends only on k.

Here are some natural reduction rules for a kernel for Vertex Cover.
Reduction Rule VC1:
Remove all isolated vertices.

Reduction Rule VC2:
For any degree one vertex v, add its single neighbour u to the solution set and
remove u and all of its incident edges from the graph.

These rules are obvious. Sam Buss (see [DF98]) originally observed that, for
a simple graph G, any vertex of degree greater than k must belong to every
k-element vertex cover of G (otherwise all the neighbours of the vertex must be
included, and there are more than k of these).
This leads to our last reduction rule.
Reduction Rule VC3:
If there is a vertex v of degree at least k+1, add v to the solution set and remove
v and all of its neighbours.



After exhaustively applying these rules, we get to a graph (G′, k′), where no
vertex in the reduced graph has degree greater than k′ ≤ k, or less than two.
Then simple combinatorics shows that if such a reduced graph has a size k vertex
cover, its must have size ≤ k2. This is the size k2 kernelization.

Now we can apply the bounded depth search tree rule to this reduced graph,
and get an algorithm for vertex cover running in time O(1.2738k)k2. As observed
by Langston and his team in problems in sequence analysis, and articulated by
Niedermeier and Rossmanith [NR00] better running times can be obtained by
interleaving depth-bounded search trees and kernelization. That is, first kernel-
ize, begin a bounded search tree, and the rekernelize the children, and repeat.
This really does make a difference. In [Nie02] the 3-Hitting Set problem is
given as an example. An instance (I, k) of this problem can be reduced to a
kernel of size k3 in time O(|I|), and the problem can be solved by employing a
search tree of size 2.27k. Compare a running time of O(2.27k · k3 + |I|) (without
interleaving) with a running time of O(2.27k + |I|) (with interleaving).

In actual implementations there are other considerations such as load sharing
amongst processors and the like. We refer to the articles in the Computer Journal
special issue concerning practical FPT.

We also remark that there are many strategies of reduction rules to shrink the
kernel. these include things like crown reductions (Abu-Khzam et. al. [ACFLSS04]),
and other crown structures (such as N. Abu-Khzam et. al.[AFLS07]) which gen-
eralize the notion of a degree 1 vertex having its neighbours in the vertex cover, to
more complicated structures which resemble “crowns” attached to the graph6. In
fact generalizing this to even more complex structures called protrusions which
have a well-behaved structure of small “treewidth” (we will soon meet in Sec-
tion 5.1) is an excellent source of theoretically efficient algorithms as evidenced
by the “metakernelization” paper Bodlaender et. al. [BFLPST09], though the
practicality of such is not at all explored.

Clearly, another game is to seek the smallest kernel. For instance, we know by
Nemhauser and Trotter [NT75] a size 2k kernel is possible for Vertex Cover. A
natural question is “can we do better?”. As we later see, modulo some complexity
considerations, sometimes we can show lower bounds on kernels. (Clearly, if
P = NP then all have constant size kernels, so some assumption is needed.) We
refer to the site

6 Specifically, a crown in a graph G = (V,E) consists of an independent set I ⊆ V (no
two vertices in I are connected by an edge) and a set H containing all vertices in V
adjacent to I. A crown in G is formed by I ∪H iff there exists a size |H| maximum
matching in the bipartite graph induced by the edges between I and H, that is,
every vertex of H is matched. It is clear that degree-1 vertices in V , coupled with
their sole neighbours, can be viewed as the most simple crowns in G. If we find a
crown I ∪H in G, then we need at least |H| vertices to cover all edges in the crown.
Since all edges in the crown can be covered by admitting at most |H| vertices into
the vertex cover, there is a minimum size vertex cover that contains all vertices in H
and no vertices in I. These observations lead to the reduction rules based on deleting
crowns.
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for lots of kernel races.
The state of the art in the theory of kernelization can be found in the article

by Saket Saurabh and Neeldhara Misra [SM12] in this volume.
It is not hard to show that a problem is FPT iff it is kernelizable. How-

ever, it is not true that FPT=polynomial size kernelizable, and this is discussed
in the article by Marx [Ma12] in this volume, along with a future agenda for
parameterized complexity.

Another practical technique for establishing parameterized tractability is the
following.

3.3 Iterative Compression

This technique was first introduced in a paper by Reed, Smith and Vetta in 2004
[RSV04] and more or less re-discovered by Karp [Ka11]. Although currently only
a small number of results are known, it seems to be applicable to a range of
parameterized minimization problems, where the parameter is the size of the
solution set. Most of the currently known iterative compression algorithms solve
feedback set problems in graphs, problems where the task is to destroy certain
cycles in the graph by deleting at most k vertices or edges. In particular, the
k-Graph Bipartisation problem, where the task is to find a set of at most
k vertices whose deletion destroys all odd-length cycles, has been shown to be
FPT by means of iterative compression [RSV04]. This had been a long-standing
open problem in parameterized complexity theory.

Definition 4 (Compression Routine).
A compression routine is an algorithm that, given a problem instance I and a
solution of size k, either calculates a smaller solution or proves that the given
solution is of minimum size.

Here is a compression routine for Vertex Cover. Begin with (G = (V,E), k),
we build the graph G vertex by vertex. We start with an initial set of vertices
V ′ = ∅ and an initial solution C = ∅. At each step, we add a new vertex v to
both V ′ and C, V ′ ← V ′ ∪ {v}, C ← C ∪ {v}. We then call the compression
routine on the pair (G[V ′], C), where G[V ′] is the subgraph induced by V ′ in G,
to obtain a new solution C ′. If |C ′| > k then we output NO, otherwise we set
C ← C ′.

If we successfully complete the nth step where V ′ = V , we output C with
|C| ≤ k. Note that C will be an optimal solution for G.

The compression routine takes a graph G and a vertex cover C for G and
returns a smaller vertex cover for G if there is one, otherwise, it returns C
unchanged. Each time the compression routine is used it is provided with an
intermediate solution of size at most k + 1.

The implementation of the compression routine proceeds as follows. We con-
sider a smaller vertex cover C ′ as a modification of the larger vertex cover C.
This modification retains some vertices Y ⊆ C while the other vertices S = C\Y



are replaced with |S| − 1 new vertices from V \ C. The idea is to try by brute
force all 2|C| partitions of C into such sets Y and S. For each such partition, the
vertices from Y along with all of their adjacent edges are deleted. In the resulting
instance G′ = G[V \Y ], it remains to find an optimal vertex cover that is disjoint
from S. Since we have decided to take no vertex from S into the vertex cover, we
have to take that endpoint of each edge that is not in S. At least one endpoint of
each edge in G′ is in S, since S is a vertex cover for G′. If both endpoints of some
edge in G′ are in S, then this choice of S cannot lead to a vertex cover C ′ with
S ∩ C ′ = ∅. We can quickly find an optimal vertex cover for G′ that is disjoint
from S by taking every vertex that is not in S and has degree greater than zero.
Together with Y , this gives a new vertex cover C ′ for G. For each choice of Y
and S, this can be done in time O(m), leading to O(2|C|m) = O(2km) time
overall for one call of the compression routine. With at most n iterations of the
compression algorithm, we get an algorithm for k-Vertex Cover running in
time O(2kmn).

The parametric tractability of the method stems from the fact that each
intermediate solution considered has size bounded by some k′ = f(k), where k is
the parameter value for the original problem. It works very with with monotone
problems, where if we get an intermediate no then the answer is definitely no.
Note that many minimization problems are not monotone in this sense. For
example, a NO instance (G = (V,E), k) for k-Dominating Set can be changed
to a YES instance by means of the addition of a single vertex that is adjacent
to all vertices in V .

Niedermeier [Nie06] has an excellent discussion of this technique, which would
seem to have a lot of applications.

4 Not-Quite-Practical FPT Algorithms

There are a number of distinctive techniques used in parameterized complexity
which are “not-quite-practical” FPT algorithms, in the sense that the running
times are not feasible in general, but can be in certain circumstances. Addition-
ally, some can be randomized and ones using logical metatheorems can later
admit considerable refinement in practice for a specific problem. These tech-
niques include color-coding and dynamic programming on bounded width graph
decompositions. Since this survey is meant to be brief, I will only allude to these
techniques.

4.1 Colour-coding

This technique is useful for problems that involve finding small subgraphs in
a graph, such as paths and cycles. Introduced by Alon et al. [AYZ94], it can
be used to derive seemingly efficient randomized FPT algorithms for several
subgraph isomorphism problems.

It remains in the “not quite practical” basket due to the large numbers needed
to implement it. Here is a brief description of how the method works. We will



apply the problem to k-Path which seeks to find a (simple) path of k vertices
in G. What we do is to randomly color the whole graph with k colors, and look
for a colorful solution, namely one with k vertices of one of each color.

The two keys to this idea are
(i) we can check for colorful paths quickly.
(ii) if there is a simple path then the probability that it will have k colors for a
random coloring is k!

kk
which is bounded by e−k.

Then, given (i) and (ii), we only need repeat process enough to fast proba-
bilistic algorithm. We prove (i) by using dynamic programming: simply add a
vertex v0 with color 0, connect to those of color 1, then generate the colorful
paths of length i starting from v0 inductively, rather like Dijkstra’s algorithm,
the running time being O(k2k|E|).

Theorem 5 (Alon, Yuster and Zwick [AYZ94]). k-Path can be solved in
expected time 2O(k)|E|.

Alon, Yuster and Zwick demonstrated that this technique could be applied
to a number of problems of the form asking “is G′ a subgraph of G?” The
desired FPT algorithm can now be obtained by a process of derandomization.
A k-perfect family of hash functions is a family F of functions (colorings) taking
[n] = {1, . . . n} onto [k], such that for all S ⊆ [n] of size k there is a f ∈ F
whose restriction to is bijective (colourful). It is known that k-perfect families of
2O(k) log n linear time hash functions. This gives a deterministic 2O(k)|E| log |V |
algorithm for k-Path. More such applications can be found in Downey and
Fellows [DF98], and Niedermeier [Nie02,Nie06]. The O(k) in the exponent hides
evil, and the derandomization method at present seems far from practical.

Note that the method does not work when applied to things like k-Clique
to be shown randomized FPT because (i) above fails. The important part of the
dynamic programming method was that a path was represented by its beginning
v0 and some vertex vi, and to extend the path only needed local knowledge;
namely the colors used so far and vi. This fails for Clique, and would need

(
n
i

)
at step i in the clique case.

We remark that recent work ([BDFH08,BDFH09]) has shown, assuming a
reasonable complexity assumption (namely that the polynomial time hierarchy
does not collapse to two or fewer levels), there is no polynomial size kernel for
k-Path. We meet this result in Section 6.

4.2 Bounded Integer Programming

One technique, not discussed in [DF98,FG06], is the use of Integer Pro-
gramming in the design of FPT algorithms. This is discussed in Niedermeier
[Nie02,Nie06].

Theorem 6 (Lenstra [Le83]). The integer programming feasibility problem

can be solved with O(p
9p
2 L) arithmetical operations in Z of O(p2pL) bits in size,

where p is the number of variables, and L the number of bits of the input.



Niedermeier [Nie02,Nie06] gave one example of the use of this method for
establishing parametric tractability. He showed that the following problem is
FPT.
Closest String (parameterized by the number of strings and length)
Input: k strings s1, . . . sk over an alphabet Σ each having length L, and a non-
negative integer d.
Parameter: k, L, d.
Question: is there a string s of distance ≤ d from si for all i?

We remark that the method’s practicality is far from explored. We also refer
the reader to Gramm, Niedermeier and Rossmanith [GNR01].

4.3 Bounded width metrics

Anyone who has done any course in algorithms has seen various algorithms for
planar this and bounded degree, dimension, pathwidth, bandwidth, etc that.
Clearly, what is going on is some kind of quest to try to map the boundary of
intractability, and using some kind of regularity in the data to get tractability.

Planarity is natural since a road map of a city is more or less planar subject
to a few exceptions. One could view the number of exceptions as a parameter,
or simply view the every increasing genus as the relevant parameter. Similarly
degree. How does the running time vary for the problem at hand as the degree
varies.

Two sweeping generalizations of the notions of bounded global parameters are
found in the notions of width metrics, and in particular through treewidth and
local treewidth (defined in the next section). Treewidth is part of the change
from ad hoc graph theory to structural, topological graph theory which has
revolutionized the area in the last decade or so. The following definition is now
quite mainstream in modern graph theory.

Definition 5 (Robertson and Seymour [RS86a]).

(a) A tree-decomposition of a graph G = (V,E) is a tree T together with a
collection of subsets Tx (called bags) of V labeled by the vertices x of T such
that ∪x∈T Tx = V and (i) and (ii) below hold:
(i) For every edge uv of G there is some x such that {u, v} ⊆ Tx.
(ii) (Interpolation Property) If y is a vertex on the unique path in T from x
to z then Tx ∩ Tz ⊆ Ty.

(b) The width of a tree decomposition is the maximum value of |Tx| − 1 taken
over all the vertices x of the tree T of the decomposition.

(c) The treewidth of a graph G is the minimum treewidth of all tree decomposi-
tions of G.

The point of the notion is that it is a measure of how treelike the graph is.
One can similarly define path decomposition where T must be a path. A tree
decomposition is a road map as to how to build the graph. Knowing a tree or
path decomposition of a graph allows for dynamic programming since what is
important is the “information flow” across a relatively narrow cut in the graph.
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Fig. 1. Example of Tree Decomposition of Width 2

Figure 1 gives an example of a tree decomposition of width 2.
Authors often discovered that intractable problems became tractable if the

problems were restricted to say, “outerplanar” graphs. As we have seen, such
restriction is not purely an academic exercise since, in many practical situations,
the graphs that arise do not in fact demonstrate the full pathology of the class
of all graphs. Families of graph that have been studied which turn out to have
bounded treewidth include Almost Trees (k) (width k+ 1), Bandwidth k (width
k), Cutwidth k (width k), Planar of Radius k (width 3k), Series Parallel (width
2), Outerplanar (width 2), Halin (width 3) k-Outerplanar (width 3k−1), Chordal
with Maximum Clique Size k (width k − 1), and many others.

4.4 Algorithms for graphs of bounded treewidth

We sketch how to run algorithms on graphs of bounded treewidth. This can be
viewed as dynamic programming a very important algorithmic technique. Many
classical problems are known to be algorithmically infeasible on general graphs
(in that they take exponential time) but become polynomial time when restricted
to some bounded treewidth class. A good introduction to this technique is Bi-
enstock and Langston [BL95], Bodlaender and Kloks [BK96], Bodlaender and
Koster [BoK08], or Babette de Fluiter [deF70]. I am always surprised when I
meet people who are unaware of this technique, since it has been around so
long. But for completeness it seems worthwhile to describe the method.

We describe the technique for the Independent Set. Whilst this problem
is classically W [1]-complete, in the case of graphs of bounded treewidth, we can
give a linear time algorithm. So suppose that we have a tree decomposition of
G. Consider the one below

Now what we will do is to use tables to grow the independent set up the tree
starting at the leaves of the decomposition. Notice that once a vertex leaves the
bags it will never come back, and hence we don’t really need to keep track of
its effect. Thus we can work with tables corresponding to all the subsets of the
current bag and need only consider independent sets I relative to the current
bag. That is, we would consider all the subsets of the bag and see how the size
of independent sets relative to in the information flow across the boundary.

Thus at the leaf corresponding to the triangle abc we could have the table
below. Here, for instance ab denotes the set {a, b}, meaning that the independent
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set should contain both a and b, and would have cardinality 2, and bc corresponds
to {b, c} and this entry has a line since {b, c} is not an independent set.‘

∅ a b c ab ac bc abc
0 1 1 1 2 - - -

The table for the next box would have only 4 columns since there are only
4 subsets of {c, d} and we consider maximal independent sets I containing the
specified subset

∅ c e ce
2 1 3 -

The first entry has value 2 since this means neither of c or d in included in
this I and hence we take the maximal one below, namely 2.

The second entry says that I must contain c, and this corresponds to the
entry from below containing c, which is 1. The third one corresponds to the
independent set containing e and not c, and hence we get 3, by choosing the
largest one with this property from below (namely the entry for ab contains no
c, and this together with e gives 1 + 2 = 3.)

Finally, the last entry is 0 since I would need to contain both c and d and
no independent set has this property.

The rest of the table if filled in similarly. With pointers you can also keep
track of the relevant independent set.

The next table is a join node

∅ e g h eg eh gh egh
0 1 1 1 2 - - -

This table corresponds to I ∩{e, g, h} being the specified set. The first entry
corresponds to I having nothing from this set. It has value 3 since we get that
from the 2 on the left and 1 on the right. (We must add here.)

The second entry corresponds to the intersection being {e}, meaning that it
must have e and cannot have h or g. Note e is present in both branches and
hence we get 3. Next is g with e and h not present. There are 2 from the left
(corresponding to the ∅), and g is present on the right so we take its entry giving
3. the next is h and neither e or g, giving 2 from the left branch, 2 from the
right (using f since h is not present) and h itself; giving the total of 4. etc

The final table looks like:
We remark that a sly feature we have not mentioned here is that to run this

method, we need a tree decomposition for the graph G. It turns out that for a
fixed t there is a linear time algorithm determining if G has width t, and then
finds the tree decomposition of G should the graph actually have one. However,
the algorithm has really terrible constants and there is no actually feasible one for
this problem. For more on this we refer the reader to Bodlaender [Bod93,Bod96],
Bodlaender-Kloks [BK96] and Bodlaender’s web site. John Fouhy in his MSc
Thesis [Fou03] looked at computational experiments for treewidth heuristics.



2   1   3
o   c   e   ce

o   e   g   h   eg  eh  gh  egh

o   a   b   c   ab  bc  ac  abc

o   e   g   h   eg  eh  gh  egh

o   h   g   i   hg  hi  hg  hid

o   e   g   d   eg  ed  gd  egd

o   e   g   f   eg  ef  gf  egf

3   5   3   4  

3   3   3   4

3   3   3   5

0   1   1   1

0   1   1   1             2

0   1   1   1    2

Fig. 3. Dynamic programming

(See www.mcs.vuw.ac.nz/∼downey/students.html.) There is a lot of work to be
done here.

Actually, this whole process can be implemented by automata acting on trees.
We refer the reader to Downey and Fellows [DF98], Fellows and Langston [FL89],
or Abrahamson-Fellows [AF93].

Treewidth is the archetype of a number of graph width metrics7 naturally
arise in this context which restrict the inherent complexity of a graph in various
senses. The idea here is that a useful width metric should admit efficient algo-
rithms for many (generally) intractable problems on the class of graphs for which
the width is small. This leads to consideration of these measures from a param-
eterized point of view. The corresponding naturally parameterized problem has
the following form:

Let w(G) denote any measure of graph width.

Instance: A graph G = (V,E).
Parameter: A positive integer k.
Question: Is w(G) ≤ k?

The hope is that this problem is FPT, and then, equipped with the relevant
decomposition, we can run algorithms. Another important example of a width
metric is cliquewidth where a clique decomposition works as follows. We induc-
tively define graphs using sets of k + 1 colours and parse operators as follows.
The first operator is ci which says “create a vertex of colour i.” The second one

7 And have been used in other settings such as matroids where the width corresponds
to the dimension of the intersection of “subspaces” in some decomposition, See, for
example Hlineny Whittle [HW06].



is j(i, j) which says “join all vertices of colour i to all vertices of colour j.” The
is dj which says “form the disjoint union of all graphs constructed so far”, and
finally r(i, j) which says “recolour all vertices of colour i to j.” The width of the
decomposition is the smallest number of colours necessary minus 1. For exam-
ple, a clique has with 1 : to make a clique of size n, create a vertex coloured 1,
and then one of colour 2, apply j(1, 2), then r(1, 2), then create a new vertex of
colour 1, and repeat enough times. It is not hard to show that if G has bounded
treewidth then it also has bounded cliquewith.

It is unknown if Cliquewidth is FPT or W [1] hard. It is known to be NP-
complete for k varying by Fellows, Rosamond, Rotics and Szeider [FRRS06,FRRS09].
There is a lot of evidence that it is parametrically hard such as Fomin et. al.
[FGLS10].

However, sometimes we are lucky and are supplied with a clique decompo-
sition. The point is that given a clique decomposition we can run linear time
algorithms for some problems. Thus the certificated problem where we input G
and its clique decomposition, and ask questions is often FPT.

For much more on treewidth and other width parameters, we refer the article
in this volume by Bodlaender [Bod12].

4.5 Logic

One source of (often impractical) FPT results is the use of metatheorems from
logic. The idea is that to feed in some logical description of the problem, and use
some algorithmic machine to given an FPT algorithm for it. The generality of
the methodology often means that the algorithms obtained have large constants,
and implementations need fine tuning. Sometimes you can use methods from
(parameterized) complexity to show that the large constants can’t be removed,
but more on this later.

We tend to look at problems defined in first-order logic and monadic second-
order logic. We remind the reader that first order logic uses individual variables
and form the logic by the following rules.

1. Atomic formulas: x = y and R(x1, ..., xk), where R is a k-ary relation symbol
and x, y, x1, ..., xk are individual variables, are FO-formulas.

2. Conjunction, Disjunction: If φ and ψ are FO-formulas, then φ ∧ ψ is an
FO-formula and φ ∨ ψ is an FO-formula.

3. Negation: If φ is an FO-formula, then ¬φ is an FO-formula.
4. Quantification: If φ is an FO-formula and x is an individual variable, then
∃x φ is an FO-formula and ∀x φ is an FO-formula.

First order logic allows for the description of local behaviour of structures.
For instance to say that a graph has an independent set of size k,

∃x1 . . . xk
∧

1≤i≤j≤k

¬E(xi, xj),

where E(x, y) denoted the edge relation on the graph.



For monadic second order logic we add set variables, one for each subset of
vertices in the graph. Formulas of monadic second-order logic (MSO) are formed
by the rules for FO and the following additional rules:

1. Additional atomic formulas: For all set variables X and individual variables
y, Xy is an MSO-formula.

2. Set quantification: If φ is an MSO-formula and X is a set variable, then ∃Xφ
is an MSO-formula, and ∀X φ is an MSO-formula.

We can state that a graph is k-colorable using an MSO-formula,

∃X1 . . . ∃Xk

(
∀x

k∨
i=1

Xix ∧ ∀x∀y
(
E(x, y)→

k∧
i=1

¬(Xix ∧Xiy)
))

Actually I am being sloppy here as there are variations of the meaning of this
depending on whether individual and set variables are allowed for edges; and if
so this is denoted by MS2. There is a whole industry here devoted to the use of
logic in algorithmc for computer science, and I will concentrate on MS2 only to
give the flavour of the methodology. For more on this see [DF98,FG06].

Now, whilst model checking for even first order formulae is already PSPACE
complete, we have the following.

Theorem 7 (Courcelle 1990). The model-checking problem for MS2 restricted
to graphs of bounded treewidth is linear-time fixed-parameter tractable.

Thus, the Independent Set problem above can easily be obtained from
Courcelle’s Theorem by simply writing a formula in monadic second order logic
describing that G has a k-independent set.

Actually Courcelle’s Theorem is true for a mild extension of MS2 called MS+
2

where certain “counting” relations are added. The result gives the flavour of the
methods from logic. If we have a suitably restricted class of graphs, then model
checking becomes FPT. Examples include first order logic for families of graphs
of bounded local treewidth. This is the notion of how fast the treewidth grows in a
neighbourhood of an vertex of any graph in the family. This is called bounded if
there is a function f , such that for all n, the treewidth of the n-neighbourhood of
a vertex of any member of the family is bounded by f(n). Examples of classes of
graphs that have bounded local treewidth include graphs of bounded treewidth
(naturally), graphs of bounded degree, planar graphs, and graphs of bounded
genus.

Theorem 8 (Frick and Grohe [FrG01]). Parameterized problems that can
be described as model-checking problems for FO are fixed-parameter tractable on
classes of graphs of bounded local treewidth.

There are other notions of bounded with where this works. In general, things
like treewidth, cliquewith, and any other of these metrics indicate the the mem-
ber of of the graph family will be built by certain inductive methods. Such



methods clearly have reflections in reality when we consider how, for example,
computer chips are designed. It is not surprising that such inductive families
tend to have better algorithmics than general graphs. For more on this we refer
the reader to [GK11].

5 Exotica, WQO theory

In this last section we look at exotic methods for proving problems to be FPT.
These tend to only give membership of FPT and no practical algorithms. As
discussed in Downey [Do12] and Langston [La12] in this Festschrift, this material
is the parent of parameterized complexity, in a sense made clear in those papers,
and emanating from material such as [FL87,FL88].

A quasi-ordering on a set S is a reflexive transitive relation on S. We will
usually represent a quasi-ordering as ≤S or simply ≤ when the underlying set S
is clear. Let 〈S,≤〉 be a quasi-ordered set. We will write x < y if x ≤ y and y 6≤ x,
x ≡ y if x ≤ y and y ≤ x and finally x|y if x 6≤ y and y 6≤ x. Note that if 〈S,≤〉 is
a quasi-ordered set then S/ ≡ is partially ordered by the quasi-order induced by
≤. Recall that a partial ordering is a quasi-ordering that is also antisymmetric.

Definition 6 (Ideal and Filter). Let 〈S,≤〉 be a quasi-ordered set. Let S′ be
a subset of S.

(i) We say that S′ is a filter if it is closed under ≤ upwards. That is, if x ∈ S′
and y ≥ x then y ∈ S′. The filter generated by S′ is the set F (S′) = {y ∈
S : ∃x ∈ S′(x ≤ y)}.8

(ii) We say that S′ is a (lower) ideal if S′ is ≤ closed downwards. That is if
x ∈ S′ and y ≤ x then y ∈ S′. The ideal generated by S′ is the set I(S′) =
{y ∈ S : ∃x ∈ S′(x ≥ y)}.

(iii) Finally, if S′ is a filter (an ideal) that can be generated by a finite subset of
S′ then we say that S′ is finitely generated.

We will need some distinguished types of sequences of elements.

Definition 7. Let 〈S,≤〉 be a quasi-ordered set. Let A = {a0, a1, ...} be a se-
quence of elements of S. Then we say the following.

(i) A is good if there is some i < j with ai ≤ aj.
(ii) A is bad if it is not good.

(iii) A is an ascending chain if for all i < j, ai ≤ aj.
(iv) A is an antichain if for all i 6= j ai|aj.
(v) 〈S,≤〉 is Noetherian if S contains no infinite (strictly) descending sequences.

(i.e. there is no sequence b0 > b1 > b2....)
(vi) 〈S,≤〉 has the finite basis property if for all subsets S′ ⊆ S, F (S′) is finitely

generated.

The following result is relevant to our work.

8 Sometimes, filters are called upper ideals.



Theorem 9 (Folklore, after Higman [Hi52]). Let 〈S,≤〉 be a quasi-ordered
set. The following are equivalent.

(i) 〈S,≤〉 has no bad sequences.

(ii) Every infinite sequence in S contains an infinite chain.

(iii) 〈S,≤〉 is Noetherian and S contains no infinite antichain.

(iv) 〈S,≤〉 has the finite basis property.

Definition 8 (Well Quasi-Ordering). Let 〈S,≤〉 be a quasi-ordering. If 〈S,≤
〉 satisfies any of the characterizations of Theorem 9, then we say that 〈S,≤〉 is
a well quasi-ordering (WQO).

The reader might well wonder what any of this abstract pure mathematics
has to do with algorithmic considerations. The key is provided by the finite basis
characterizations of a WQO. Suppose that ≤ is the relevant quasi-ordering and
for a fixed x the question “Qy: Is x ≤ y?” is FPT (resp. polynomial time). Then
for a WQO, if F is a filter, then F has a finite basis {b1, ..., bn}. Then to decide
if y ∈ F we need only ask “∃i ≤ n(bi ≤S y)?” That is, membership of each filter
is FPT (resp. polynomial time) (even though we don’t know the finite basis!).

Often the argument is phrased in terms of obstruction sets. Let 〈S,≤〉 be a
quasi-ordering. Let I be an ideal of 〈S,≤〉. We say that a set O ⊆ S forms an
obstruction set for I if

x ∈ I iff ∀y ∈ O(y 6≤ x).

That is O is an obstruction set for I if I is the complement of F (O). The WQO
principle says all ideals have finite obstruction sets.

So here is our new engine for demonstrating that problems are in P . Prove
that the problem is characterized by a WQO with a finite obstruction set in a
quasi-ordering with Qy in P .

The best known example of an obstruction set is provided by topological
ordering.

Definition 9 (Topological Ordering). A homeomorphic or topological em-
bedding of a graph G1 = (V1, E1) in a graph G2 = (V2, E2) is an injection from
vertices V1 to V2 with the property that the edges E1 are mapped to disjoint paths
of G2. (These disjoint paths in G2 represent possible subdivisions of the edges of
G1.) The set of homeomorphic embeddings between graphs gives a partial order,
called the topological order. We write G1 ≤top G2.

While topological ordering is not a WQO, there are a number of important
finite basis results. The most famous is the following (which was independently
discovered by Pontryagin).

Theorem 10 (Kuratowski’s Theorem, Kuratowski [Ku30]). The graphs
K3,3 and K5 of Figure 4 form an obstruction set for the ideal of planar graphs
in the topological ordering.



K3,3 K5

Fig. 4. Obstructions for planarity

Very recently, Grohe, Marx, Kawarbayashi, and Wollan,[GMKW11] proved
that ≤top is FPT, with G ≤top H O(|H|3) for a fixed G. A consequence of that
result is that any filter with a finite basis in the topological quasi-ordering has
an FPT membership algorithm. The [GMKW11] argument is very difficult, and
the algorithm has horrendous constants. We remark that graphs of pathwidth 2
are well-quasi-ordered by ≤top, and hence those graphs have FPT membership
for any ideal.

A generalization of topological ordering is much more amenable to being a
WQO. An equivalent formulation of ≤top is the following. G ≤top H iff G can
be obtained from H by a sequence of the following two operations.
(i) (deletions) Deleting vertices or edges.
(ii) (degree 2 contractions) The contraction of an edge xy in a graph W is
obtained by identifying x with y. A contraction has degree 2 iff one of x or y has
degree 2.

The minor ordering is a generalization of ≤top is obtained by relaxing the
degree 2 requirement in (ii).

Definition 10 (Minor Ordering). We say that G is a minor of H if G can be
obtained from H by a sequence of deletions and contractions. We write G ≤minor
H.

An example of the minor ordering is given in Figure 5
The proof of Kuratowski’s Theorem also gives the following.

Theorem 11 (Kuratowski’s Theorem (II)). K3,3 and K5 are an obstruction
set for the ideal of planar graphs under ≤minor.

The way to think of ≤minor is to think of G ≤minor H as taking |G| many
collections Ci of connected vertices of H, and coalescing each collection Ci to
a single vertex, then H being topologically embeddable into the new coalesced
graph, so that the edges of G become disjoint paths from coalesced vertices.
Sometimes this is called the “folio” definition of the minor ordering. Figure 6
below demonstrates this idea.

Notice that H has no vertices of degree 4 and hence there can be no topo-
logical embedding of G into H.
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Wagner [Wa37] conjectured the following.
Wagner’s Conjecture:Finite graphs are well quasi-ordered by the minor or-
dering.

Notice that graphs of genus ≤ g for a fixed g form an ideal in the minor order-
ing. Hence a consequence of Wagner’s conjecture is a Kuratowski Theorem for
surfaces. Graphs of genus ≤ g have a finite obstruction set. One of the triumphs
of 20th century mathematics is the following great theorem of Neil Robertson
and Paul Seymour.

Theorem 12 (Graph Minor Theorem, Robertson and Seymour). Wag-
ner’s Conjecture holds: Finite graphs are well quasi-ordered by the minor order-
ing.

Remarkably, Robertson and Seymour showed that x ≤minor y is O(|y|3) for
a fixed x. Thus every minor ideal has a cubic time recognition algorithm!.

For example, the problem of determining if a graph has genus k for a fixed
k becomes FPT immediately. This is, of course, not the best algorithm, and a
constructive linear time FPT one was given by Mohar [Mo99].

Multiple applications of this metatheorem can be obtained by the following.
We call a parameter p of graphs treewidth bounded if the treewidth of G is
bounded by f(p(G)) for some computable f . We say that p is MSO definable if
{G : p(G) ≤ k} is monadic second order definable by a formula φk for each fixed
k.

Theorem 13 (Adler, Grohe and Kreutzer [AGK08]). If p is a treewidth
bounded MSO definable parameter, then the obstruction set for {G : p(G) ≤ k}
is finite and bounded by g(k) for some computable g. Thus if p is a treewidth
bounded minor closed graph parameter, then checking p(G) ≤ k is construc-
tively9 in FPT with time bound g(k).n

5.1 Protrusions

Using this notion we can prove a structural lemma about the structure of graphs
involving what are called protrusions. In my mind this is an extension of the
concept of a crown.

Definition 11 (Bodlaender et. al. [BFLPST09]). Given a graph G, X ⊂
V (G) is called an r-protrusion if the treewidth of G[X] is ≤ r and the boundary
of X intersection G is ≤ r.

Protrusions are good because they allow for efficient kernelizations in the
same way that crowns do. Here is an archetypical theorem.

9 Given the definition of FPT we have used this seems a strange statement. However,
simply applying the graph minor machinery establishes that some problem has a
cubic time algorithm and we don’t know what it is. To know it requires knowledge
of the relevant obstruction set. Hence we usually get FPT results for a class known
as nonuniform FPT.



Theorem 14 (Bodlaender et. al. [BFLPST09]). If P is a problem of finite
integer index, there is a computable function f and an algorithm which, given an
instance (G, k) and an r-protrusion X of size at least f(r) produces an instance
(G∗, k∗) such that |V (G∗)| < |V (G)|, k∗ ≤ k and (G, k) ∈ P iff (G∗, k∗) ∈ P .
Furthermore this runs in time O(|X|).

The idea here is that we can apply this iteratively to show that methods
from the graph minor project can be used efficiently, at least insofar as the side
of kernels is concerned.

Algorithms based on the structural idea of finding protrusions and kernel-
izing has seen a lot of development here. In the next section we will give one
illustration, and be content with that for this basic introduction.

5.2 Bidimensionality

This is an area that grew from results about excluded minor theorems. Excluded
minor theorems are of the kind that say if we exclude a certain graph or graphs
from being a minor of a members of that family, then that family is well-behaved.
It is one of the underlying intuitions for the Robertson Seymour theory. The
archetype result is the following

Theorem 15 (Robertson and Seymour). For every n > 0 there is a cn such
that every graph of treewidth ≥ cn has an n-grid as a minor.

This result was extended as follows.

Theorem 16 (Demaine and Hajiaghayi [DeH08]). For every fixed H there
is a cH such that every H-minor-free graph or treewidth ≥ cH · n has an n-grid
as a minor.

This result can be seen as the first part of a theory called bidimensionality
theory. This is again a large undertaking and we refer the reader to Demaine
and Hajiaghayi [DeH08] for details of the theory.

Here is one example. We say a graph parameter p is minor bidimensional if
p is closed under minors and p evaluated on the k-grid is Ω(k2). A problem Π
is called subgraph separable if its solutions can be described in terms of vertex
subsets of the input graph, and there is some constant d such that for each G
and S ⊆ V (G), every optimal solution Z for G, every union H of some subsets
of connected components of G\S, and every optimal solution Z ′ for H, we have

|Z ′| − d|S| ≤ |Z ∩H| ≤ |Z ′|+ d|S|.

The conditions above tend to be relatively easy to apply. The relevant struc-
tural lemma is the following.

Lemma 1 (Separation Lemma). Suppose Π is a problem that is subgraph
separable and minor-bidimensional. Fix a graph H. Then there is a constant cH,Π
such that for every H-minor-free graph (G, k) ∈ Π, there is a subset S ⊂ V (G),
with |S| = O(k) and the treewidth of G[V \ S] ≤ cH,Π .



The lemma allows us to kernelize by using protrusion like actions on the non-
core part of the graph. Skipping details, this allows us to show the following.

Theorem 17 (Demaine, Fomin, Hajiaghayi and Thilikos). Every sub-
graph separable minor-bidimensional problem Π with finite index has a linear
kernel on graphs excluding some fixed graph as a minor.

Further details and applications of these ideas are beyond the scope of this
basic survey and we refer the reader to [DeH08,GK11] for further details of
bidimensionality theory and other algorithmic metatheorems.

For much more on the methods for constructivising results on graph minors,
we refer to the article by Daniel Lokshtanov and Dimitrios Thilikos [LT12] in
this volume.

6 Limitations and lower bounds

Many of the results above gave FPT algorithms but an analysis of the algorithms
reveal very bad running times. For many of these if the unparameterized problem
is NP complete then they would have a polynomial running time. However, as-
suming that NP 6=P, or something akin to that, we can ask if these running times
can be improved. Similarly, we have seen that kernelization to a small kernel is
a valuable way to generate practical algorithms (although the kernels and algo-
rithms are far from practical in the case of the algorithms from bidimensionality
theory). Again we can ask the same question.

The combinatorics of FPT are sensitive to the issues of polynomial time, and
can often be used in this way.

For example, we have seen that Frick and Grohe proved that deciding first-
order statements is FPT for every fixed class of graphs of bounded local treewidth.
Courcelle shows a similar result for MS2 for graphs of bounded treewidth. In
each case the algorithmic metatheorem gives algorithms where each alternation
of quantifier (roughly) gives another power of two in towers of powers of two
for the constants. In the case of, for example, local treewidth Frick and Grohe
[FrG02] prove such towers of two’s cannot be removed unless W[P]=FPT. Similar
results were established by Flum and Grohe for treewidth based around P 6=NP.

In terms bounds for kernelizations, there has been a lots of progress in the
last few years. Bodlaender, Downey, Fellows and Hermelin [BDFH08,BDFH09]
gave general methods for establishing that classes of problems (distillable) did
not have polynomial kernels assuming certain unlikely things don’t happen to
complexity classes. For example, using a lemma of Fortnow and Santhanam
[FS11] they showed that no Or-compositional parameterized problem can have
a polynomial sized kernel assuming co-NP 6⊆ NP/Poly. Here we refer to
[BDFH09,CFM11,FS11,BTY08,HKSWWta] for more details.

7 Left out

I have left out many things, likely close to various researcher’s hearts. For ex-
ample, there is work on parameterized counting (McCartin [McC06] and Flum



and Grohe [FG02b]) where we count the number of paths of length k to define,
for instance, #W [1]. One nice theorem here is the following.

Theorem 18 (Flum and Grohe [FG02b]). Counting the number of cycles
of size k in a bipartite graph is #W[1]-complete.

This result can be viewed as a parameterized analog of Valiant’s theorem on
the permanent. Another area is parameterized randomization, such as Downey,
Fellows and Regan [DFR98], and Müller [Mu06,Mu08], but here problems re-
main. Parameterized approximation looks at questions like: Is it possible to
have an FPT algorithm which, on parameter k, either outputs a size 2k domi-
nating set for G, or says no dominating set of size k? Such algorithms famously
exist for Bin Packing and don’t exist for most natural W [P ] complete prob-
lems. Here we refer to Downey, Fellows, McCartin and Rosamond [DFMR08]
and Eickmeyer, Grohe and Grüber [EGG08] for more details. We have left out
discussions of parameterizing above guaranteed values such as Mahajan and Ra-
man [MR99], plus discussions of the breadth of applications. For the last, we can
only point at the relevant books, and the Computer Journal issues [DFL08]. In
this volume we do look at areas such as artificial intelligence (Szeider [Sz12]),
biology (Stege [St12]), cryptography (Koblitz [Ko12]), and social choice (Betzler
and Niedermeier [BN12]). But of course, there are many other applications.

There are many other important topics such as implementations, connections
with exact algorithms, connections with classical complexity and the like. Space
limitations preclude this material being included. Hopefully this brief survey
gives the reader the ability to appreciate the articles of this Festschrift.
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