
EXACT PAIRS FOR THE IDEAL OF THE K-TRIVIAL

SEQUENCES IN THE TURING DEGREES

GEORGE BARMPALIAS AND ROD G. DOWNEY

Abstract. The K-trivial sets form an ideal in the Turing degrees, which is

generated by its computably enumerable (c.e.) members and has an exact pair
below the degree of the halting problem. The question of whether it has an

exact pair in the c.e. degrees was first raised in [MN06, Question 4.2] and later

in [Nie09, Problem 5.5.8].
We give a negative answer to this question. In fact, we show the following

stronger statement in the c.e. degrees. There exists a K-trivial degree d such

that for all degrees a,b which are not K-trivial and a > d,b > d there exists
a degree v which is not K-trivial and a > v,b > v. This work sheds light to

the question of the definability of the K-trivial degrees in the c.e. degrees.

1. Introduction

The algebraic study of the Turing degrees has been a topic of considerable re-
search in computability theory, ever since the establishment of degree theory as a
research area in [KP54]. In this study, the ideals of this uppersemilattice are of par-
ticular interest. These are downward closed sets of degrees that also closed under
the join operator. The recent study of algorithmic information theory by people in
computability theory has brought forward a wealth of interactions between the two
areas, including the discovery of a new ideal in the Turing degrees: the degrees of
sequences with trivial initial segment complexity, the so-called K-trivial sequences.
Since this discovery in [DHNS03, Nie05], the study of the K-trivial sequences and
degrees have been established as a major area of research in the interface between
computability theory and algorithmic information theory.

Issues of definability have been of special interest in the study of ideals in the
Turing degrees. Such issues were already present in [KP54], where the notion of
exact pairs of ideals was introduced. Two degrees a,b form an exact pair of an
ideal C in the Turing degrees if they are both upper bounds for the degrees in C
and any degree below both a and b is in C. By [KP54, Spe56] every ideal in the

Last revision: May 18, 2012.

2010 Mathematics Subject Classification. 03D25, 03D32, 68Q30.
Key words and phrases. Computably enumerable, Turing degrees, Kolmogorov complexity,

K-trivial sets, exact pairs.
This research was partially done whilst the authors were visiting fellows at the Isaac New-

ton Institute for the Mathematical Sciences, Cambridge U.K., in the programme ‘Semantics &
Syntax’. Barmpalias was supported by the Research fund for international young scientists num-

ber 611501-10168 from the National Natural Science Foundation of China, and an International

Young Scientist Fellowship number 2010-Y2GB03 from the Chinese Academy of Sciences; partial
support was also received from the project Network Algorithms and Digital Information number

ISCAS2010-01 from the Institute of Software, Chinese Academy of Sciences. Downey was sup-

ported by a Marsden grant of New Zealand. The authors wish to thank André Nies and Ted
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Turing degrees has an exact pair. By [Nie05] every K-trivial degree is bounded by
a computably enumerable (c.e. for short) K-trivial degree. Hence for the purpose
of finding exact pairs for this ideal it suffices to consider its restriction to the c.e.
degrees. This turns out to be a Σ0

3 ideal, in the sense that the index set of its
members is Σ0

3. Moreover by [BN11] it has a c.e. upper bound that is strictly
below the degree 0′ of the halting problem (moreover, by [KS09] it has a low upper
bound b, which means that the halting problem relativized to b has degree 0′). By
[Sho81], such ideals have an exact pair strictly below 0′. However it is well known
that such an ideal may or may not have an exact pair in the c.e. degrees (this follows
from the existence of branching and non-branching degrees that was established in
[Lac66, Yat66]). Hence whether or not such an ideal have an exact pair in the c.e.
degrees depends on the specific properties of it. The following question has come
into focus.

Problem (Question 4.2 in [MN06] and Problem 5.5.8 in [Nie09]). Is there an exact
pair for the ideal of the K-trivial sequences in the c.e. degrees?

The purpose of this paper is to give a negative answer to this question. In fact, our
main result can be seen as a very strong negative answer to this question.

Theorem 1.1. There exists a K-trivial c.e. degree d with the following property.
For each pair of c.e. degrees a,b which are not K-trivial, there exists a c.e. degree
v which is not K-trivial and v < a ∪ d,v < b ∪ d.

Here a ∪ d denotes the join (i.e. supremum) of the degrees a,d.
This theorem provides new and interesting information about the K-trivial se-

quences and their computational power. Moreover, as we elaborate in Section 2, it
rests upon deeper information-theoretic properties that are specific to the K-trivial
sequences, rather than some general property that this ideal happened to have. In
contrast, the existence of a low bound of this ideal (another question from [MN06])
was obtained in [KS09] by observing that it satisfied a certain domination property,
and proving that all ideals which share this property have a low bound.

We may obtain a negative answer to our problem by using some known properties
of the K-trivial sequences.

Corollary 1.2. The ideal of the K-trivial sequences does not have an exact pair of
c.e. degrees.

Proof. By [Nie02] there is no low c.e. upper bound for the K-trivial degrees. By
[Nie05] every K-trivial degree is low. Therefore, if two c.e. degrees are an exact
pair for the K-trivial degrees, then both of them are not K-trivial. The corollary
now follows directly from Theorem 1.1. �

Note that the proof of Corollary 1.2 rests on the following weak (and nonuniform)
version of Theorem 1.1: ‘given a pair a,b of c.e. degrees which are not K-trivial,
there exists a K-trivial c.e. degree d and c.e. degree v which is not K-trivial such
that (d ≤ a ∧ d ≤ b)→ (v ≤ a ∧ v ≤ b)’.

The following fact is a direct consequence of the splitting theorem from [Bar11a,
Section 5] and [Ste11, Chapter 2]. It shows that by replacing v < a ∪ d,v < b ∪ d
with v ≤ a ∪ d,v ≤ b ∪ d in Theorem 1.1 we obtain an equivalent statement.

Proposition 1.3. If c is a c.e. degree which is not K-trivial then there exist c.e.
degrees a < c and b < c which are not K-trivial and c = a ∪ b.
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Since there exists a ∆0
2 exact pair for the K-trivial degrees, the phenomenon

described in Theorem 1.1 is specific to c.e. sets. The following observation contrasts
Proposition 1.3 and confirms this intuition from a different angle.

Proposition 1.4. There exists a degree x < 0′ which is not K-trivial and for every
K-trivial degree d, the only c.e. degrees that are computable from x ∪ d are also
computable from d.

Proof. A degree that is 1-generic relative to every K-trivial degree has the required
properties, but is not necessarily below 0′. Moreover 0′ is not 1-generic. Hence it
suffices to show that there exists a degree that is 1-generic relative to every K-
trivial degree and is computable from the halting problem. This follows from the
fact (see [KS09]) that there exists a function that is computable from the halting
problem and dominates all partial computable functions relative to any K-trivial
set. �

The proof of Theorem 1.1 rests on a few facts about K-trivial sequences and
initial segment Kolmogorov complexity. We present these, along with their use in
the proof, in Section 2. Some background on Kolmogorov complexity and K-trivial
sequences that is directly relevant to our result is given in Section 2.1. For back-
ground material on computability theory we refer to [Odi89]. The main property
of Kolmogorov complexity that is used in the proof of Theorem 1.1 is discussed
in Section 2.2. It is a result from [Bar11b] which roughly says that any two c.e.
sets of nontrivial initial segment complexity must have common lengths in their
characteristic sequences where their complexity rises simultaneously. Our proof is
essentially a derivation of Theorem 1.1 from this result. This route reduces the
complexity of the main construction and results in a transparent presentation.

Two more tools from Kolmogorov complexity are used in order to reduce the
calculations further and avoid the dynamic construction of machines in the main
construction. The first is the use of Solovay functions to express K-triviality, which
is based on [BD09, BMN11]. The second one is the standard computable invariance
property that is intrinsic to most notions in Kolmogorov complexity. Both of these
tools are discussed in Section 2.4. Section 2.5 provides the exact form of the result
from [Bar11b] that will be used in the main argument, which is given in Section
3. These few preparatory steps (including the formulation of a sufficient set of
requirements in Section 3.1) reduce the main argument to the simple construction
and verification of Sections 3.3 and 3.4.

2. Preliminary facts

2.1. Background on Kolmogorov complexity and K-trivial sequences. A
standard measure of the complexity of a finite string was introduced by Kolmogorov
in [Kol65] (an equivalent approach was due to Solomonoff [Sol64]). The basic idea
behind this approach is that simple strings have short descriptions relative to their
length while complex or random strings are hard to describe concisely. Kolmogorov
(and Solomonoff) formalized this idea using the theory of computation. In this
context, Turing machines play the role of our idealized computing devices, and
we assume that there are Turing machines capable of simulating any mechanical
process which proceeds in a precisely defined and algorithmic manner. Programs
can be identified with binary strings.
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A string τ is said to be a description of a string σ with respect to a Turing
machine M if this machine halts when given program τ and outputs σ. Then
the Kolmogorov complexity of σ with respect to M (denoted by KM (σ)) is the
length of its shortest description with respect to M . It can be shown that there
exists an optimal machine V , i.e. a machine which gives optimal complexity for all
strings, up to a certain constant number of bits. This means that for each Turing
machine M there exists a constant c such that KV (σ) < KM (σ) + c for all finite
strings σ. Hence the choice of the underlying optimal machine does not change
the complexity distribution significantly and the theory of Kolmogorov complexity
can be developed without loss of generality, based on a fixed underlying optimal
machine U .

When we come to consider the initial segment complexity of infinite strings, it
becomes important to consider machines whose domain satisfies a certain condition;
the machine M is called prefix-free if it has prefix-free domain (which means that
no program for which the machine halts and gives output is an initial segment of
another). Similarly to the case of ordinary Turing machines, there exists an optimal
prefix-free machine U so that for each prefix-free machine M the complexity of
any string with respect to U is up to a constant number of bits larger than the
complexity of it with respect to M . We let K denote the prefix-free complexity
with respect to a fixed optimal prefix-free machine.

The original motivation behind Kolmogorov complexity was a mathematical def-
inition of random infinite sequences. Kolmogorov’s idea was that these should be
infinite sequences with very complex initial segments. Based on this intuition, Levin
[Lev73] and Chaitin [Cha75] gave a robust definition of randomness for infinite bi-
nary sequences. They called X random if ∃c∀n,K(X �n) ≥ n− c. In other words,
X is random if its initial segments cannot be ‘compressed’ (i.e. be described more
concisely) by more than a constant number of bits. For a thorough presentation of
this theory we refer to the monographs [Nie09, DH10], while [LV97] is a standard
reference for the more general theory of Kolmogorov complexity.

In this paper we are concerned with the other end of the spectrum: sequences
with trivial initial segment complexity. These are sequences whose initial segments
are very highly compressible, in the sense that they have very short descriptions.

Definition 2.1 (K-trivial sequences). An infinite binary sequence X is called K-
trivial if ∃c∀n, K(X �n) ≤ K(n) + c.

Here K(n) denotes the complexity of the number n (which may be seen as a name
for the sequence 0n). Hence the first n bits of a K-trivial sequence have the same
complexity as the sequence 0n. By identifying subsets of N with their characteristic
sequence we can also talk about K-trivial sets of numbers. Chaitin drew some
attention to K-trivial sets by noticing that they are computable from the halting
problem and by asking whether they are all computable. Solovay [Sol75] produced
the first example of a noncomputable K-trivial set. The work in [DHNS03] sig-
naled a renewed interest on this notion and initiated a deeper study of K-triviality
which revealed surprising connections between initial segment complexity and clas-
sical computability. For example, Hirschfeldt and Nies showed in [Nie05] that
K-triviality is downward closed under Turing computation. Moreover the K-trivial
sets form an ideal in the Turing degrees, which is generated by its c.e. members (in
the sense that every K-trivial set is computable by a c.e. K-trivial set). In the fol-
lowing we focus on aspects of K-triviality that are directly relevant with the proof of
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Theorem 1.1. For a more thorough presentation of this area of complexity-theoretic
weakness we refer to [DH10, Chapter 11].

2.2. Common complexity in pairs of c.e. sets of nontrivial complexity.
Much of the excitement about the K-trivial sequences comes from the fact that they
provide an ideal platform for the study of the interaction between the information
that can be coded into an infinite binary sequence and the complexity of its initial
segments. The latter has been a primary focus of research in the interface between
computability theory and Kolmogorov complexity. The fact that there are noncom-
putable K-trivial sequences showed that one can code nontrivial information into
a sequence without increasing the complexity of its initial segments. A limitation
to this phenomenon was revealed in [DHNS03] where it was shown that K-trivial
sequences cannot compute the halting problem (in other words, they are not Tur-
ing complete). In contrast, there are Turing complete sequences of arbitrarily low
nontrivial prefix-free initial segment complexity. More precisely, in [Bar11b] it was
shown that for every c.e. set A which is not K-trivial, there exists a Turing com-
plete c.e. set V of lower complexity, i.e. such that ∃c∀n, K(V �n) ≤ K(A �n) + c.
This was also generalized for the case of any finite collection Ai, i < k of c.e.
sets which are not K-trivial, producing a Turing complete c.e. set V such that
∃c∀n∀i < k, K(V �n) ≤ K(Ai �n) + c. One of the many consequences of this result
(see [Bar11b, Corollary 1.7]) is that any two c.e. sets of nontrivial initial segment
prefix-free complexity exhibit common lengths of nontrivial prefix-free complexity.

(2.1)
Let A,B be c.e. sets which are not K-trivial.
Then ∀c∃n [K(A �n) > K(n)+c and K(B �n) > K(n)+c].

This fact is the crux of the proof of Theorem 1.1. Moreover it is just one of a
series of results which indicate that any two c.e. sets of non-trivial initial segment
complexity have some kind of common complexity, or even information. In view
of the existence of minimal pairs in the c.e. Turing degrees (a classic result from
[Lac66]), such information is not common in the terms of the Turing reducibility
but in terms of weaker measures of relative complexity. See [Bar11b, Theorem 1.2]
and [Bar10, Theorem 1.3].

There are alternative roots to the proof of Theorem 1.1. We have chosen to
derive it as a consequence of (2.1), with the use of an additional device that is
known as ‘Solovay functions’ (see Section 2.4). This root reduces the bulk of the
proof to the rather simple construction and verification of Section 3.

2.3. Construction of prefix-free machines. A (rather simple) direct construc-
tion of a prefix-free machine will be used in Section 2.5. There are certain notions
and tools associated with such constructions, which are standard in the arguments
employed in algorithmic randomness and also relate to the main argument of Sec-
tion 3. We briefly discuss them. The weight of a prefix-free set S of strings, denoted
wgt(S), is defined to be the sum

∑
σ∈S 2−|σ|. The weight of a prefix-free machine

M is defined to be the weight of its domain and is denoted wgt(M). Prefix-free
machines are most often built in terms of request sets. A request set L is a set
of pairs 〈ρ, `〉 where ρ is a string and ` is a positive integer. A ‘request’ 〈ρ, `〉
represents the intention of describing ρ with a string of length `. We define the
weight of the request 〈ρ, `〉 to be 2−`. We say that L is a bounded request set if the
sum of the weights of the requests in L is less than 1. This sum is the weight of
the request set L and is denoted by wgt(L). The Kraft-Chaitin theorem (see e.g.
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[DH10, Section 2.6]) says that for every bounded request set L which is c.e., there
exists a prefix-free machine M with the property that for each 〈ρ, `〉 ∈ L there
exists a string τ of length ` such that M(τ) = ρ. Hence the dynamic construction
of a prefix-free machine can be reduced to a mere description of a corresponding
c.e. bounded request set.

For each prefix-free machine N and string σ, let PN (σ) be the weight of all the
strings τ such that N(τ) = σ (if this set of strings is empty, let this weight be 0). A
basic result in Kolmogorov complexity from [Sol64, Lev74, Cha75] (also see [Nie09,
Theorem 2.2.25] or [DH10, Theorem 3.9.4] for a modern presentation) is called the
coding theorem. This says that for each prefix-free machine N , there is a constant
c such that 2−K(σ) > 2−c · PN (σ) for each string σ.

2.4. Solovay functions and computable invariance. Building on work from
[Sol75], the following characterization of K-trivial sets was given in [BD09].

(2.2)

There exists a computable function g : N→ N such that

(?) X is K-trivial ⇐⇒ ∃c∀n (K(X �n) ≤ g(n) + c)

for all sets X and also
∑
n 2−g(n) is a random real.

Here by a random real we mean a real number in (0, 1) whose binary expansion is
a random sequence. Later it was demonstrated in [BMN11] that the functions g
of (2.2) are exactly the computable tight upper bounds of the Kolmogorov function
K(n), in the sense for some constant c we have K(n) ≤ g(n) + c for all n and
g(t) ≤ K(t)+c for infinitely many t. These functions were called Solovay functions.

Note that (2.2) replaces a non-computable component in the definition of K-
triviality (namely K(n)) with a computable function. In certain situations this
allows for a simplification of the calculations involved in arguments about the K-
trivial sets. This is the case with the proof of Theorem 1.1. In the following sections,
we fix a computable function g as in (2.2) and use (?) as a definition of K-triviality.

Another device that we will use in the proof of Theorem 1.1 is a certain com-
putable invariance that is common in many notions related to Kolmogorov com-
plexity.

Proposition 2.2 (Computable invariance of Solovay functions). Let f be a Solovay
function and let mi : N→ N be a computable increasing sequence. Then i 7→ f(mi)
is a Solovay function.

Proof. Since (mi) is increasing and computable, ∃c∀i, K(i) ≤ K(mi) + c. Hence
i 7→ f(mi) is a computable upper bound of K(i). Also ∃b∀i, K(mi) ≤ K(i) + b. So
i 7→ f(mi) is a computable tight upper bound of K(i) and the proposition follows
from the characterization of Solovay functions from [BMN11]. �

The following observation is a consequence of ∃b∀i, K(X �i) ≤ K(X �mi) + b and
Proposition 2.2.

Proposition 2.3 (K-triviality in terms of Solovay functions). Let f be a Solovay
function and let mi : N → N be a computable increasing sequence. A set X is
K-trivial if and only if ∃c∀i, K(X �mi

) ≤ f(mi) + c.

The following observation is a direct consequence of the fact that
∑
t 2−f(t) is

noncomputable when f is a Solovay function.



EXACT PAIRS FOR THE K-TRIVIAL TURING DEGREES 7

Proposition 2.4 (Accumulation of weight in Solovay functions). If (mi) is a com-
putable increasing sequence and f is a Solovay function then for every k there exist
infinitely many n such that

∑
t>mn

2−f(t) > 1
n−k−1 .

Finally we give (2.1) in terms of an arbitrary monotone computable injection.

(2.3)
Let A,B be c.e. sets which are not K-trivial and (mi) a computable
increasing sequence.
Then ∀c∃i [K(A �mi) > g(mi) + c and K(B �mi) > g(mi) + c].

Indeed, by [Bar11b] there exists a Turing complete c.e. set X and a constant x such
that ∀n, K(X �n) ≤ K(A �n)+x and ∀n, K(X �n) ≤ K(B �n)+x. By [DHNS03],
X is not K-trivial so (2.3) follows from Proposition 2.3.

2.5. Modulus functions of c.e. sets and K-triviality. We use the following
standard notion of ‘modulus of convergence’ which is associated with the approxi-
mation to a function or a set.

Definition 2.5 (Modulus functions of c.e. sets). Let A be a c.e. set with a com-
putable enumeration (A[s]). The modulus function n 7→ a(n) of A maps each n to
the least stage s > n such that A[s] �n⊂ A.

Note that the modulus function of a c.e. set A always refers to a particular com-
putable enumeration (A[s]) of it. In this paper all c.e. sets will be given via a certain
computable enumeration of them. Hence we may talk about the modulus function
of a given c.e. set (suppressing the corresponding computable enumeration) without
causing confusion. Modulus functions and K-triviality are related.

Proposition 2.6. Let A,B be c.e. sets which are not K-trivial, let a(n), b(n) be
their modulus functions and let d(n) := min{a(n), b(n)}. If g is a Solovay function,
then for each c there exists n such that

∑
i>d(n) 2−g(i) < 2−c ·

∑
i>n 2−g(i).

For the proof of Theorem 1.1 we will use a more explicit (stronger) version of
Proposition 2.6. This is based on the following fact.

Lemma 2.7 (Modulus and Solovay functions). Let A be a c.e. set which is not
K-trivial and let a be its modulus function. If g is a Solovay function, there exists
a constant q such that

K(A �n) > g(n) + c+ q ⇒
∑
i≥a(n)

2−g(i) < 2−c ·
∑
i>n

2−g(i)

for all numbers n, c.

Proof. By the coding theorem (see Section 2.3) it suffices to construct a prefix-free
machine N such that for all numbers n, c,

2−c ·
∑
i>n

2−g(i) ≤
∑
i≥a(n)

2−g(i) ⇒ PN (A �n) ≥ 2−g(n)−c.

Let Ωn =
∑

0≤i<n 2−g(n). Hence it suffices to construct a prefix-free machine N
such that

(2.4) PN (A �n) ≥
( ∑
i≥a(n)

2−g(i)
)
· 2−g(n)

1− Ωn
for all n.
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We define the approximation to the modulus function of A. Let ae(n)[s] be n if
s ≤ n and the least stage t > n with t ≤ s such that A[t] �n⊂ A[s] otherwise. We
construct N by enumerating a suitable set of requests. The set Vn[s] contains the
requests that have been enumerated for A[s] �n by the end of stage s. At stage
s+ 1, for each n < s let

pn[s] = 2−g(n) ·
∑
a(n)[s]≤i<s 2−g(i)

1− Ωn
− wgt(Vn[s])

and if pn[s] > 0 enumerate a set of requests for A[s] �n in N of total weight pn[s]
(formally, if

∑
i<k ti ·2−i is the unique binary representation of pn[s], for each i < k

such that ti 6= 0 enumerate request 〈A[s] �n, i〉 into N).
We verify that the request set is bounded by 1. Indeed, fix n and let si, i < t

be the successive stages where a(n)[s] changes value (and s0 = 0). Note that
a(n)[s0] = n and a(n)[si] < a(n)[si+1]. The weight of requests that we enumerate
for the current approximation to A �n in the interval [si, si+1) is bounded by

2−g(n)

1− Ωn
·
(∑
i∈J

2−g(i)
)
, where J = [a(n)[si], a(n)[si+1])

(and st :=∞). Since a(n)[s0] = n, the total weight of requests that we enumerate
for the various approximations to A �n is bounded by

2−g(n)

1− Ωn
·
(∑
i≥n

2−g(i)
)

= 2−g(n).

Hence the total weight of N is bounded by
∑
n 2−g(n) < 1 and N is a prefix-free

machine. Finally, (2.4) is an explicit feature of the construction of N . �

Finally, we may derive the statement that we actually need in Section 3.

Corollary 2.8 (Convergence of two sets and weight of Solovay functions). Let A,B
be c.e. sets which are not K-trivial and let a(n), b(n) be their modulus functions. If
d(n) := min{a(n), b(n)} and g is a Solovay function, there exists q such that

K(A �n) > g(n) + c+ q
K(B �n) > g(n) + c+ q

}
⇒

∑
i>d(n)

2−g(i) < 2−c ·
∑
i>n

2−g(i)

for all numbers n, c.

This is a direct consequence of Lemma 2.7.

3. Proof of Theorem 1.1

We formulate a sufficient set of requirements in Section 3.1 and give the specifics
of the construction in Section 3.2. We conclude with the formal construction in
Section 3.3 and the verification of the requirements in Section 3.4.

3.1. Requirements for the construction of D. Let U be the universal prefix-
free machine which underlies the prefix-free Kolmogorov complexity function, i.e.
such that K = KU . We may assume that wgt(U) < 2−4. Also let (Ae, Be) be
an effective list of all pairs of c.e. sets. Note that the sets Ae, Be are given via
specific computable enumerations that are provided by a fixed universal Turing
machine. The sets Ae, Be correspond to guesses about representatives of the de-
grees a,b of Theorem 1.1. For each pair (Ae, Be) let ae, be denote the corresponding
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modulus functions. Moreover let ae[s], be[s] denote their approximations at stage
s. In particular, ae(n)[s] is n if s ≤ n and the least stage t > n with t ≤ s such
that A[t] �n⊂ A[s] otherwise; similarly for be(n)[s]. Let (i, j) 7→ 〈i, j〉 be a stan-
dard computable increasing (in both arguments) pairing function and define N[k] =
{〈k, n〉 | n ∈ N}. We define a version of the parameter min{ae(n), be(n)} which
can be treated dynamically (at any stage of the construction) as a number that is
eligible for enumeration into the set D that will be constructed. Define de(n)[s] to
be the least number in N[〈e,n〉] −D[s] which is larger than min{ae(n)[s], be(n)[s]}.
Moreover let de(n) = lims de(n)[s]. The parameters ae(n)[s], be(n)[s], de(n)[s] can
be seen as movable markers on N. Moreover a direct consequence of their definition
is that they always move monotonically, i.e. ae(n)[s] ≤ ae(n)[s + 1] and similarly
for be(n)[s], de(n)[s].

We will define a K-trivial c.e. set D and a sequence of c.e. sets (Ve) such that
the following conditions are met.

Re : Ve ≤T Ae ⊕D ∧ Ve ≤T Be ⊕D.
We will also ensure the following condition on Ve.

Pe : If Ae, Be are not K-trivial then Ve is not K-trivial.

These conditions on D, (Ve) are sufficient for the proof of Theorem 1.1. Let g be a
fixed Solovay function, i.e. a function satisfying (2.2), for the duration of this proof.
Without loss of generality we may assume that

∑
i 2−g(i) < 2−4. We may split

each condition Pe into more elementary conditions P ∗ekt. Let (e, k, i) 7→ nek(i) be a
computable function such that nek(i) < nek(i+ 1). In Section 3.2 we will define a
specific such function, but at this point we may express P ∗ekt in terms of any fixed
such choice. We may write nekt to denote nek(t) in the interest of space.

P ∗ekt :
( ∑
i>de(nekt)

2−g(i) < 2−e−k ·
∑
i>nekt

2−g(i)
)
⇒ K(Ve �nekt

) > g(nekt) + k.

We let P ∗ek denote the conjunction of all P ∗ekt , t ∈ N. We verify that the satisfaction
of Pe may be reduced to the satisfaction of P ∗ek, k ∈ N.

Lemma 3.1 ((∀k P ∗ek) → Pe). Fix a computable function (e, k, i) 7→ nek(i) which
is increasing on i. For each e, the conjunction of P ∗ek, k ∈ N implies Pe.

Proof. Assume that Ae, Be are not K-trivial and P ∗ekt are met for all k, t. It
suffices to show that for each y there exists some n such that K(Ve �n) > g(n) + y.
Let qe be the constant q of Corollary 2.8 for A = Ae and B = Be. Since Ae, Be
are not K-trivial, by (2.3) there exists some t > x0 such that K(Ae �nekj

) >
g(nekj) + y + e + qe and K(Be �nekj

) > g(nekj) + y + e + qe. By the choice of
qe, the fact that ∀n, s, de(n)[s] ≥ min{ae(n)[s], be(n)[s]} and Corollary 2.8, the
left hand side of the implication in P ∗ekt is met for k = y and t = j. Therefore
K(Ve �n) > g(n) + y for n = neyj . �

The requirement that D is K-trivial can be expressed as

(3.1) ∃c∀n, K(D �n) ≤ g(n) + c.

The cost associated with the enumeration of a number n in D at stage s+ 1 of the
construction in view of (3.1) is given by

(3.2) c(n, s) =
∑
n≤i≤s

2−g(i).
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The satisfaction of (3.1) will be achieved by ensuring that the total cost of the
enumerations into D is bounded, in other words

(3.3)
∑

(n,s)∈ID

c(n, s) < 1 where ID =
{
(n, s) | n = min{x | x ∈ D[s+ 1]−D[s]}

}
.

The fact that (3.3) implies (3.1) was established in [DHNS03] when g is replaced by
the Kolmogorov function K(n) (also see [DH10, Section 11.1] and [Nie09, Section
5.3] for elaborate presentations of this method). The same argument shows that this
implication holds when K(n) is replaced by any right-c.e function (i.e. a function
with a computable approximation ‘from above’) f such that

∑
i 2−f(i) < 1.

We close this section by providing a condition which implies Re and shows ex-
plicitly the required Turing reductions. By the definition of ae[s] it follows that
ae(n) (the final position of a(n)[s]) is computable from Ae. Similarly, be(n) is com-
putable from Be. Hence Ae⊕D computes an upper bound of n 7→ de(n) (provided
that N[〈e,n〉] −D is finite) and the same is true of Be ⊕D. The following condition
expresses a weak coding of Ve into D.

R∗e : ∀n, s
(
n ∈ Ve[s+ 1]− Ve[s]⇒ de(n)[s] ∈ D[s+ 1]−D[s]

)
.

Condition R∗e implies condition Re. Indeed, suppose that R∗e holds. Then to deter-
mine if n ∈ Ve it suffices compute ae(n) (using Ae) and then (using Ae ⊕D) find a
stage where the approximation to D �de(n)+1 has reached a limit. Assuming that

N[〈e,n〉] − D is finite, de(n)[s] reaches a limit as s → ∞ and such a stage will be
found. At such a stage, de(n)[s] has reached a limit. Hence by R∗e the approxima-
tion to Ve(n) has also reached a limit. The same procedure can be performed via
Be ⊕D-computations, with the use of be(n) which can also reveal an upper bound
for de(n) (with the help of D).

We have established that a construction of D, (Ve) which meets conditions (3.3)
and R∗e , Pek for e, k ∈ N (and at at least one choice of a computable function
(e, k, i) 7→ nek(i) which is increasing on i) is sufficient for the proof of Theorem 1.1.
An underlying assumption is that for each e, k the set N[〈e,n〉] − D is finite. The
latter will be an immediate feature of the construction.

3.2. Strategy and witnesses for conditions P ∗ek. Recall that P ∗ek denotes the
conjunction of the conditions P ∗ekt of Section 3.1 (which depend on the choice of
(e, k, i) 7→ nek(i)). The construction of Section 3.3 is driven by actions (enumera-
tions into D,Ve) for the satisfaction of P ∗ek. Here we define some parameters that
are used in these actions. For each e, k we define an increasing sequence (nek(i)) of
numbers. Recall the definitions of (i, j) 7→ 〈i, j〉 and N[k] from Section 3.1. Define

Jek(〈k, x〉) =
{
〈k,m〉 | m > x+ 1 ∧

∑
t>〈k,m〉

2−g(t) >
1

m− x− 1

}
.

The sets Jek are uniformly c.e. and by Proposition 2.4 they are all infinite. Hence
we may choose a uniformly computable family of sets J∗ek such that J∗ek ⊆ Jek for
each e, k. Define (nek(i)) recursively as follows.

nek(−1) = minN[k]

nek(i) = min J∗ek
(
nek(i− 1)

)
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Note that the function (e, k, i) 7→ nek(i) is computable. Moreover

(3.4)
∑
i>nek(t)

2−g(i) > 1/
∣∣(nek(t− 1), nek(t)

)
∩ N[k]

∣∣.
From this point on, P ∗ekt refers to this choice of (e, k, i) 7→ nek(i). We say that P ∗ek
requires attention at stage s+ 1 if there is some t < s such that

(3.5)
∑

de(nek(t))[s]<i≤s

2−g(i) < 2−e−k ·
∑

nek(t)<i≤s

2−g(i)

and

(3.6) ∀i ≤ pek[s], K(Ve �i)[s] ≤ g(i) + k

where pek[s] is the largest stage ≤ s where P ∗ek required attention (and pek[s] = 0
if such a stage does not exist). In this case we say that P ∗ek requires attention for t
at stage s+ 1.

The intuition for the main action of the construction is that if (3.5) holds, by
enumerating de(nek(t))[s] into D and changing the approximation to Ve �nek(t)

the cost of the opponent for maintaining (3.6) is a large multiple of our cost for
maintaining (3.3). Our choice of the sequence (nek(i)) ensures that such attacks
are sufficient in order to drive the opponent out of the available descriptions that
are needed for maintaining (3.6). Moreover recall that by the analysis of Section
3.1, (3.5) has to hold for infinitely many t if Ae, Be are indeed not K-trivial.

3.3. Construction of the sets D,Ve. At stage s+1 check if there is some 〈e, k〉 <
s such that P ∗ek requires attention. If there is such a number, let 〈e, k〉 be the least
one and let t be the least number such that (3.5) and (3.6) hold. Enumerate
de(nek(t))[s] into D and enumerate the largest number of

(3.7) N[k] ∩
(
nek(t− 1), nek(t)

)
− Ve[s]

into Ve.

3.4. Verification of the requirements. At every stage s+ 1 where P ∗ek requires
attention for t and 〈e, k〉 < s, a change in Ve �nek(t) is caused by an enumeration of
a number of the set in (3.7) into Ve (provided that the set in (3.7) is nonempty).
There are ∣∣(nek(t− 1), nek(t)

)
∩ N[k]

∣∣
many such enumerations that can be performed. Because of (3.4) and (3.6), each
time that P ∗ek requires attention after such an enumeration, we can count an addi-
tional weight of

1/
∣∣(nek(t− 1), nek(t)

)
∩ N[k]

∣∣
in the underlying universal prefix-free machine U . Consequently, since wgt(U) <
2−2,

(3.8) P ∗ek requires attention less than 2nek(t) times for t.

Marker de(t) moves at stage s+ 1 only if one of the following events occur:

(a) A �i [s] 6⊂ A[s+ 1] or B �i [s] 6⊂ B[s+ 1];
(b) de(i)[s] ∈ Ve[s+ 1]− Ve[s].
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Clearly (a) can only occur at most finitely many times. Moreover (b) only occurs
if i = nek(t)[s] for some t such that P ∗ek requires attention for t at stage s+ 1. By
(3.8), case (b) only occurs at most finitely many times. Consequently,

(3.9) lims de(i)[s] exists for each e.

In other words N[〈e,i〉] − D is finite, which was an underlying assumption for the
requirements of Section 3.1.

Lemma 3.2. For each e, condition Re is met.

Proof. Fix e. The construction clearly meets condition R∗e . By (3.9) and the
analysis in Section 3 it follows that Re is met. �

Lemma 3.3. For each e, condition Pe is met.

Proof. Fix e > 3. By Lemma 3.1, it suffices to show that P ∗ekt is met for each k, t.
Fix k, t and assume that the left hand side of the implication in P ∗ekt holds. Then
according to the construction, (3.8) implies that K(Ve �nekt

) > g(nekt) + k. �

Lemma 3.4. The set D is K-trivial.

Proof. By the analysis in Section 3.1 it suffices to show (3.3). Let

ID(e, k) =
{(
de(nek(t)[s− 1], s

)
∈ ID | s, t > 0

}
.

Note that ID(e, k) contains the pairs in ID that correspond to actions for P ∗ek. In
particular, ID =

⋃
e,k ID(e, k) and it suffices to show that

(3.10)
∑

(n,s)∈ID(e,k)

c(n, s) < 2−e−k−3

for each e, k. Fix e, k and let (ni, si) be a monotone enumeration of ID(e, k), in
the sense that si < si+1 for each i. Let us say that at stage si+1 the ith cycle
of Pek is completed. Note that the sequence (ni, si) is possibly infinite. However
upon the completion of the ith cycle of Pek we may count an additional set of
descriptions of the universal machine U (describing current values of Ve) of weight
at least 2e+k · c(ni, si). This is a consequence of (3.5) and (3.6). For the case that
(ni, si) is finite (so the last cycle is never completed) note that c(ni, si) < 2−e−k−4

for all i due to (3.5). Since wgt(U) < 2−4 we obtain
∑
i c(ni, si) < 2−e−k−3, i.e.

(3.10). �

According to the analysis of Section 3.1, this concludes the proof of Theorem 3.

4. Conclusion

Our result shows that a certain simple definition of the ideal of the K-trivial de-
grees with parameters is not possible in the c.e. degrees. The question of parameter
definability of this ideal in the c.e. degrees remains open.
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