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1. Introduction

Computability theorists have studied many different reducibilities be-
tween sets of natural numbers including one reducibility (≤1), many-one
reducibility (≤m), truth table reducibility (≤tt), weak truth table reducibil-
ity (≤wtt) and Turing reducibility (≤T ). The motivation for studying re-
ducibilities stronger that Turing reducibility stems from internally motivated
questions about varying the access mechanism to the oracle, and the fact
that most natural reducibilities arising in classical mathematics tend to be
stronger than ≤T . For instance consider the reduction of, say, the word
problem to the conjucacy problem in combinatorial group theory. Deeper
examples include Downey and Remmel’s [7] proof that if V is a enumerable
subspace of V∞, then the degrees of computably enumerable (c.e.) bases
of V are precisely the weak truth table (wtt-)degrees below the degree of
V . Similarly, wtt-reducibility proved fundamental in the work on differen-
tial geometry Nabutovsky and Weinberger [18], as studied by Csima [3] and
Soare [27]. Also Downey, LaForte and Terwijn [6, 8] showed that presen-
tations of halting probabilities in algorithmic randomness coincided with
ideals in the c.e. wtt-degrees, and also from algorithmic randomness recent
work of Reimann and Slaman (e.g. [23]) has demonstrated that truth table
degrees are precisely the correct notion for studying randomness notions for
continuous meansures.

A final motivation is a technical one: results about strong reducibilities
and their interactions with Turing reducibility can lead to significant insight
into the structure of (for example) the Turing (T -)degrees. There are innu-
merable examples of this phenomenon and a good example is the first paper
of Ladner and Sasso [16] in which they construct locally distributive parts of
the c.e. T -degrees using the wtt-degrees (via contiguous degrees) and their
interactions with the T -degrees. Extensions of this concept resulted in the
first naturally definable antichain by Cholak, Downey and Walk [1], and
similar definability results from Downey, Greenberg and Weber [5]. These
definability results are actively being extended via notions of wtt-reducibility
by Downey and Greenberg [4].

For general information concerning these reducibilities, we refer the reader
to the survey article by Odifreddi [19] as well as the books by Rogers [22],
Odifreddi [20] and Soare [26].
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The concern of this paper is the interaction of minimality and enumer-
ability, two of the basic objects of classical computability. All constructions
of minimal degrees are basically effective forcing arguments of one kind or
another and such constructions are relatively incompatible with the con-
struction of effective objects. In particular, by Sacks Splitting Theorem, no
c.e. T -degree can be a minimal T -degree. On the other hand, it is known that
there can be c.e. sets of minimal m-degree (for example, Lachlan [14]) and of
minimal tt-degree (for example Fejer and Shore [9]). Since wtt-reducibility
is intermediate between ≤tt and ≤T , it is natural to wonder what happens
here. Again, Sacks Splitting Theorem shows that no wtt-degree of a c.e. set
can have minimal wtt-degree, but this leaves open the intriguing possibility
that a minimal wtt-degree might have c.e. T -degree. This question served
as the primary motivation for this paper. Before we present our answers,
we discuss the history and motivation in more detail.

It is surely a basic question in any degree structure whether minimal de-
grees exist. Frequently, a positive answer to this algebraic question leads to
a negative answer to the logical question of whether the first order theory
(in the language of a partial order or an upper semi-lattice) is decidable.
Spector [28] proved the existence of a minimal T -degree using a forcing
argument with perfect trees. This type of construction eventually led to
Lachlan’s proof [12] that every countable distributive lattice can be embed-
ded as an initial segment of the T -degrees and hence that the structure of
the T -degrees (as an upper semi-lattice) is undecidable. Furthermore, the
method of forcing with perfect closed sets is now a mainstay in set theory.

Spector’s construction uses a 0′′ oracle to construct a sequence of total
trees which force T -minimality and hence gives a ∆0

3 minimal T -degree.
Because the trees are total, his construction also gives a minimal wtt-degree
and a minimal tt-degree. Sacks [24] strengthened Spector’s theorem to show
that there are ∆0

2 minimal T -degrees by using a 0′ oracle to define a sequence
of partial recursive trees which force T -minimality. Because these trees are
partial, his construction does not immediately give either a minimal wtt-
degree or a minimal tt-degree. The use of an oracle in the construction of
a minimal T -degree can be completely removed with a full approximation
argument and such arguments can be used to build minimal T -degrees in a
variety of contexts such as below any noncomputable c.e. T -degree or below
any high T -degree. This technique also uses partial trees and hence does
not automatically produce minimal wtt or tt-degrees.

The other studied theme for the present paper is that of enumerability,
and hence the c.e. sets. For strong reducibilities such as ≤1, ≤m and ≤tt, the
techniques for building minimal degrees and c.e. degrees can be combined.
Lachlan proved that there is a c.e. minimal 1-degree ([13]) and a c.e. minimal
m-degree ([14]). (That is, there is a set A with minimal 1-degree such that
A ≡1 We for some c.e. set We. Of course, in the 1-degrees and the m-
degrees, the property of being c.e. is closed downwards. Therefore, to build
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such minimal degrees, it suffices to make them minimal within the c.e. 1-
degrees or in the c.e. m-degrees.) Marchenkov [17] proved that c.e. minimal
tt-degrees exist, although the first direct construction of such a degree was
given by Fejer and Shore [9].

As we remarked earlier, for weaker reducibilities such as ≤T and ≤wtt,
the techniques for constructing minimal degrees and c.e. degrees do not
mix. Sacks [25] proved that the c.e. T -degrees are dense and Ladner and
Sasso [16] proved that the c.e. wtt-degrees are dense, so there are even no
c.e. minimal T or wtt-covers. Thus, Turing and weak truth table reducibil-
ity differ from the stronger reducibilities with respect to the existence of
c.e. minimal degrees. However, it is possible to get some positive results
concerning the relationship between minimal T -degrees and c.e. T -degrees.
For example, Yates [29] used a full approximation argument together with
c.e. permitting to show that in the T -degrees, every noncomputable c.e. set
bounds a minimal T -degree.

In this paper, we look at Yates’ Theorem from a different perspective.
Instead of looking at whether noncomputable c.e. degrees bound minimal
degrees, we look at whether minimal degrees can bound noncomputable
c.e. degrees or can even be of c.e. degree. Obviously, if we work entirely
within the T -degrees or the wtt-degrees, this is not possible, but it becomes
nontrivial if more than one reducibility is involved. Although a minimal
wtt-degree d cannot wtt-bound a noncomputable c.e. set, we look at what d
bounds under Turing reducibility. Specifically, if A is a ∆0

2 set with minimal
wtt-degree, can A Turing bound a noncomputable c.e. set? Can A have
c.e. T -degree? The main theorem of this paper gives a positive answer to
the first question.

Theorem 1.1. There is a ∆0
2 set A and a noncomputable c.e. set B such

that A has minimal wtt degree and B ≤T A.

We feel that the proof of this theorem is also of significant technical in-
terest. The proof combines a full approximation argument to make A wtt-
minimal with permitting to build the noncomputable c.e. set B such that
B ≤T A. Because of the complexity of the interactions between the wtt-
minimality strategies and the permitting strategies, we need to use a ∆0

3

method with linking in our tree of strategies to control the construction
of the partial computable trees in the full approximation argument. The
kind of inductive considerations needed for the construction of the reduction
somewhat resemble the methods used by Lachlan [15] in embedding nondis-
tributive lattice in the c.e. degrees. Such techniques have hitherto never
been used in the full approximation construction, which is why we will only
slowly work up to the details. The majority of this paper is concerned with
the proof of Theorem 1.1: in Section 4, we give an informal sketch of the
proof and in Section 5, we present the formal construction.
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Before presenting the proof of Theorem 1.1, we prove two results giving
limitations on possible extensions of Theorem 1.1. In particular, we con-
sider whether a ∆0

2 set with minimal wtt-degree can have c.e. T -degree and
whether a ∆0

2 set with minimal wtt-degree can Turing bound a noncom-
putable c.e. set which is “close to” 0′ in some sense.

While these limitations could be stated in terms of having minimal wtt-
degree, the proofs yield slightly stronger results using a different notion of
minimality.

Definition 1.2. A noncomputable set A is wtt-minimal over the Turing
degrees if for any C ≤wtt A, either C is computable or C ≡T A.

The notion of being wtt-minimal over the Turing degrees is more general
than the notion of being wtt-minimal (in the sense that every set of minimal
wtt-degree is wtt-minimal over the Turing degrees) while not implying that
the set is T -minimal. In Section 2, we show that we cannot extend Theorem
1.1 by making A and B have the same Turing degree.

In Section 2, we prove the following which says that our result is, in some
sense, optimal.

Theorem 1.3. No c.e. Turing degree can contain a set of which is wtt-
minimal.

Again this result is on some technical interest since it involves an essential
nonuniformity in its proof. This fact is also proven in Section 2.

Finally, in Section 3, we show that the set B in Theorem 1.1 cannot be
promptly simple and hence cannot be “close” to 0′ in this sense.

Theorem 1.4. Let V be a promptly simple c.e. set and let A be a ∆0
2 set

such that A ≥T V . There exists a c.e. set B such that 0 <T B ≤wtt A.

By Sacks’ Splitting Theorem, no noncomputable c.e. set is wtt-minimal.
Hence if A computes a promptly simple c.e. set then it is not wtt-minimal.

Most of our terminology is standard and follows Soare [26]. To distinguish
between T and wtt-reducibilities, we use ϕe for the eth Turing reduction and
[e] for the eth weak truth table reduction. The proof of Theorem 1.1 uses a
full approximation argument for which Posner [21] provides an excellent in-
troduction. The proof of Theorem 1.4 relies on basic results about promptly
simple sets which can be found in Chapter XIII of Soare [26].

2. Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3. For convenience, we
restate it here.

Theorem 1.3. No c.e. Turing degree can contain a set of which is wtt-
minimal.

That is, given any set A of non-computable c.e. degree, there is some
non-computable C <wtt A. The proof of Theorem 1.3 is nonuniform, in the
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sense that there is no (partial) computable function which produces, when
given an index for an approximation to A, the index of the reduction from
A to C.

We first show that the non-uniformity in the proof of Theorem 1.3 is
necessary.

Let Ze be the eth computable approximation of a Σ0
2 set. One can ef-

fectively translate between 〈e, k, i, j〉 where A is ∆0
2 via Ze, A = ΦWk

i and

Wk = ΦA
j , and the pair 〈e, i〉 where A is ∆0

2 via Ze, and ΦA
i is the modulus

of convergence for Ze. We prefer to use the latter definition for a set of c.e.
degree. The following proposition says that if we only consider a single R
requirement with all the P requirements in the proof of Theorem 1.1, we
can make A ≡T B.

Proposition 2.1. For any wtt-functional [e], we can build a non-computable
set A of c.e. degree such that if [e]A is total, then [e]A is either computable
or [e]A ≥wtt A.

Proof. We build a computable approximation {As} to A and a Turing func-
tional Φ such that ΦA is the modulus of convergence of {As}. Again we
build a sequence of computable function trees {Ts}. We approximate the
sequence {σs} and define As = Ts(σs). We sketch the proof and omit the
details. The proof proceeds along the lines of Theorem 1.1; we refer the
reader to Section 3 for more details. We start with T (α) = α for every α.
We incorporate stretching to ensure that the splitting nodes wtt-computes
A. Since we are only dealing with a single [e] we may assume that [e]T (α) is
convergent for any α we consider in the construction. Hence every node α
is either in the low or the high state.

At stage s we define σs of length 2s. The location σs � 2i is used to
meet Pi. At every stage s and for every α of odd length we always define
ΦT (α∗0)(|T (α)|) = s if it is not already defined. At stage s suppose Pi de-
mands that we move σ(2i). In Theorem 1.1 our strategy was to move σ and
issue a low challenge to the new path. If we the find a split (incorporating
stretching, of course) we do not act for Pi and instead promote the node
to the high state. Only if the low challenge returns successfully do we then
change B (to satisfy Pi) and forbid the old path.

Now to make A have c.e. degree we have to move σ at a cost. Assume
σ � 2s = 02s. For convenience we let αk = σ � k. If we move σ away
from α2i+1 then we are immediately forbidding α2i+2, since we had earlier
committed to ΦT (α2i+2)(|T (α2i+1)|) < s. Therefore if we later find that
T (σnew) splits with T (σold), the latter may be unusable since these splitting
nodes may be much longer than T (α2i+2). The solution is to issue lots of
low challenges one after another. We start by first moving σ to α2s−2 ∗ 1
and low challenge along this new path. We ensure that T (α2s−2 ∗1) is much
longer than the use of any computation being challenged. This movement
immediately forbids α2s which is fine since we have not yet looked at any
computation with use extending T (α2s−1). Note that α2s−1 has not yet been
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forbidden, since it is consistent with Φ for A to extend T (α2s−1), so long as
we take (α2s−1) ∗ 1. Hence if we find a split in the low challenge, we have
T (α2s−2 ∗ 0 ∗ 1) and T (α2s−2 ∗ 1) form a split, and we can put α2s−2 in the
high state.

Assume the low challenge on α2s−2 ∗ 1 returns successfully. Now we move
σ to α2s−3 ∗ 1 and stretch to ensure T (α2s−3 ∗ 1) is long enough. This
movement forbids α2s−2 ∗ 1 ∗ 0 but leaves α2s−2 ∗ 1 free. Since we ensured
that T (α2s−2 ∗ 1) was long enough, this means that if we now find a split,
we must have T (α2s−2 ∗ 1 ∗ 1) and T (α2s−3 ∗ 1) splits and are both usable.
We continue this way until we either find a split and grow the high state
subtree, or we end up getting a successful return on the low challenge for
α2i ∗ 1. In the latter case we satisfy Pi. We delay the actions of all other Pj
while waiting for the Pi challenge to be complete. Since there is only a single
R requirement, it is easy to see that the requirements can be combined in a
straightforward way. �

Considering the interactions between different R requirements will in-
troduce a fatal obstacle. Indeed we can exploit this by showing that a
non-uniform proof of Theorem 1.3 is necessary.

Proposition 2.2. There is no partial computable function f such that for
every e, k, i, j where A is non-computable and ∆0

2 via Ze, B = Wk, A = ΦB
i

and B = ΦA
j , we have f(e, k, i, j) ↓ and ∅ <T ΦA

f(e,k,i,j) <wtt A.

Proof. Observe that the proof of Proposition 2.1 is uniform. Namely there is
a computable function g such that given any r, g(r) gives the tuple e, k, i, j
such that A is non-computable and ∆0

2 via Ze, B = Wk, A = ΦB
i and

B = ΦA
j and if ΦA

r is total it is either computable or wtt-computes A. Since

f(g(r)) is total, we apply the recursion theorem to get some r such that
Φr = Φf(g(r)) and get a contradiction. �

In the rest of this section we present the proof of Theorem 1.3. We first
identify a property of a c.e. degree which gives rise to one case of the non-
uniformity.

Definition 2.3. A set A ≤T ∅′ has an almost c.e. approximation if there
exists a computable sequence of finite strings {σis | i < s, s ∈ ω} such that
A = ∪s ∪i<s σis, satisfying the following properties for every i, s.

(i) σis ⊂ σi+1
s .

(ii) σis and σis−1 are either equal or incomparable, and in the latter case

we have |σis| ≥ |σis−1|.
(iii) If σis and σis−1 are incomparable for some least i, then there is no t > s

such that σt−1t ⊇ σis−1.
(iv) For each i, lims σ

i
s exists.

In other words, A has an almost c.e. approximation if there is an approxi-
mation of a sequence of “marked” initial segments σ0s ⊂ σ1s ⊂ · · · ⊂ As such
that each time we move away from a mark (i.e. As+1 6⊃ σis), then at no
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future stage t > s+1 can we return to extend the mark (i.e. At 6⊃ σis). Note
that this is not a left- nor right- c.e. approximation, since it is possible for
At ∩ σis ⊃ As+1 ∩ σis.

We first show that each set with an almost c.e. approximation is equiva-
lent to computing a modulus of convergence in a strong sense. We say that
A ≤`T B if there is a limitwise monotonic function f : ω 7→ ω with com-
putable approximation f(x, s) which is increasing in x and non-decreasing
in s, such that for every x, A � f(x) is computed from B � f(x).

Proposition 2.4. Let A ≤T ∅′. Then A has an almost c.e. approximation
if and only if there is a computable approximation to A such that mA ≤`T A,
where mA is the modulus of convergence.

Proof. (⇒): Fix an almost c.e. approximation {σis | i < s, s ∈ ω} of A. Let
f(x, s) = |σxs |, which clearly has the properties we want. It is easy to see
inductively that for each i, A can figure out σi = lims σ

i
s using at most |σi|

many bits of A. Hence for each x ∈ [|σi−1|, |σi|) we can find the first stage
s such that σis ⊂ A, using only f(i) many bits of A.

(⇐): Fix a computable approximation As to A where mA ≤`T A via
the computable approximation f(x, s) and Turing functional Φ. We may
assume, by speeding up the approximation to A, that at every stage s, we
have ΦAs � f(i, s) uses at most f(i, s) bits of As holds for every i < s. Now
for each s, and i < s, define σis = At � f(i, t) for a large enough t > s such
that ΦAt(x) < t for every x <� f(i, t). �

Lemma 2.5. If A has an almost c.e. approximation then there is a c.e. set
B such that A ≤T B ≤wtt A.

Proof. Fix an almost c.e. approximation {σis | i < s, s ∈ ω} of A. Let
B be the set of all strings σis such that i is the least at stage s such that
σis 6= σis+1. Then B can compute lims σ

i
s for each i. On the other hand it is

easy to see inductively that for each i, A can figure out σi = lims σ
i
s using

at most |σi| many bits of A. Now to figure out if σ ∈ B we use A � |σ| to
find σ0, σ1, · · · until we either end up asking if σ = σis for some i is an initial
segment of A, or we find some σis where |σis| > |σ|. In the latter case we
immediately conclude that σ 6∈ B (whether σis ⊂ A is irrelevant), since |σis|
is non-decreasing in s. �

We now turn to the proof of Theorem 1.3. Fix a set A of non-computable
c.e. degree. Since no c.e. set can be wtt-minimal, by Lemma 2.5 we may
assume that A does not have an almost c.e. approximation, otherwise we are
done. We use this assumption in an essential way during the construction.
For the rest of this section we denote X � n to be the first n+ 1 bits of X.

2.1. Assumptions. We fix a computable approximation {As} of A and a
Turing functional Ψ such that ΨA computes the modulus of convergence
with respect to {As}. We may assume that at every stage s and every
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x < s, ΨA(x)[s] ↓, and if ΨA(x)[s] ↓= t then t < s and Au � x = At � x for
every stage t ≤ u ≤ s. This can be done speeding up the approximation to
A and ignoring the Ψ-computations which are obviously incorrect.

This approximation defines, in the obvious way, a Σ0
1 set of nodes, which

we denote by αi[s], such that at every stage s, and i < s, the nodes αi[s]
satisfy inductively the following: α0[s] = As � 0, and αi+1[s] ⊂ As is least
string such that Ψαi+1(|αi|)[s] ↓. The string αi[s] is said to be new at s
if αi[s] 6= αi[t] for every t < s. We may also assume that if αi[s] is new
then |αi[s]| ≥ |αi[t]| for every t ≤ s. A very important property of this
approximation is the following: If At 6⊃ αi[s] for some stage t > s then at
every future stage u > t, whenever Au ⊃ αi[s] we must αi+1[u] 6= αi+1[s

′]
for every s′ ≤ s.

2.2. Definition of C ≤wtt A. The reduction C ≤wtt A will have identity
bounded use. We build C indirectly using the notion of marks. At each
stage of the construction we may declare a previously unmarked number
marked, or declare an already marked number unmarked. Since competing
R requirements may have different views about wanting to have a number
marked or unmarked, we will allow a number to be unmarked with respect
to a neighbourhood.

A neighbourhood is defined to be a pair (i, s), which represents the set of
all X such that X ⊃ αi[s] and X 6⊃ αi+1[t] for any t ≤ s. The neighbourhood
(i, s) is said to apply at stage u > s if Au ∈ (i, s).

Each number may be declared marked at most once (this declaration is
global), and declared unmarked with respect to some neighbourhood only if
it is currently marked. We will ensure during the construction that a mark
on n can only be placed after stage n. We define the stage s approximation
Cs by the following. For each x < s if As 6⊃ At � x for every x < t < s
we define Cs(x) = 1 iff a mark is currently on x which has not yet been
removed with respect to a neighbourhood that currently applies. Otherwise
set Cs(x) = Ct(x) for the largest x < t < s such that As ⊃ At � x.
Obviously it holds that for every x and s > t > x, if As ⊃ At � x then
Cs(x) = Ct(x). Hence C = limsCs exists and it is straightforward to check
that C is computable from A with identity bounded use.

2.3. Requirements. We need to ensure the following requirements suc-
ceed:

Pe : C 6= δe

Re : ΦC
e 6= A

Here δe is the eth partial computable function and Φe is the eth possible
Turing functional with partial computable use function ϕe. The construction
is a finite injury construction and the requirements are given priority P0 <
R0 < P1 < · · · . These requirements ensure that C is not computable and
that C 6≥T A.
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2.4. Informal description of strategies. We first describe the strategies
involved via a high level and intuitive sketch. In the second part of this
section we then narrow down to the specifics and give more details about
the technical issues which arise when considering the actual workings of the
individual strategies.

Each strategy is (or will eventually turn out) finitary. A P-strategy picks a
follower p(i) and waits for δ � |αp(i)| = C � |αp(i)|. Since A is not computable
A must eventually change below |αp(i)| for which we have already seen the
agreement between δ and C. This change allows us to define C(m) differently
for some m < |αp(i)|. Assuming this is a new A configuration and stays as
the final A segment, P will be satisfied finitarily.

The basic module for R is also straightforward. We pick a follower r(i)
and wait for ΦC ⊃ αr(i)+1. Similarly the non-computability of A ensures
that A must change below |αr(i)+1| for which we have already obtained a

computation ΦC ⊃ αr(i)+1. Assuming this is a new A configuration and stays
as the final A segment we define C in exactly the same way as indicated in
the use for ΦC . This allows R to be met since A is now different but ΦC is
the same as the old value.

We now describe the interaction between strategies. The only interesting
case is to consider a single R requirement above infinitely many P require-
ments. R could show us the axioms in Φ very slowly. While waiting for this,
a P of lower priority has to act as described above. It might produce two
strings σ0 ⊂ As and σ1 ⊂ At where the associated C values γ0 ⊂ Cs and
γ1 ⊂ Ct are different. If R now enumerates the axioms Φγi ⊃ βi, i = 0, 1
then it is now possible in future for A to alternate between σ0 and σ1 with-
out contradicting the Φ axioms. We can view this as allowing the opponent
to “enumerate a split” which potentially allows the opponent to use C to
compute A. Due to the fact that there are infinitely many P requirements
below R, the combined action of all the P requirements might allow R to
build an infinite “splitting tree” {σiu} with splits of arbitrarily long length
(here σiu denotes the splits at the ith level of the splitting tree we are allowing
the opponent to build). This causes a problem for us because A can move
within the splitting tree (and hence can have arbitrarily high complexity)
without violating the Φ axioms.

The reader will observe that we have not yet used the fact that A is of
c.e. degree. The computable approximation αi[s] of A cannot always return
to a previous configuration in the sense as described in the last paragraph of
Section 2.1. That is, if we have αi[s0] 6= αi[s1] and αi[s2] = αi[s0] for stages
s0 < s1 < s2 then αi+1[s2] is new at s2. This means that if we can stretch
the splitting tree and only allow the splits at different levels to be placed
far apart, then we will be able to force the opponent to play A outside this
splitting tree. This will allow us to diagonalize against ΦC if C has not yet
been defined outside this splitting tree: We can define C to agree with the
previous Φ-computation.



10 ROD DOWNEY, KENG MENG NG, AND REED SOLOMON

To ensure the splits are always placed far apart we will have to ensure
that if σi0u0 = αk0 [s0] ⊂ σi1u1 = αk1 [s1] then k0 + 1 < k1. In this way if the

opponent moves A from σi0 to σi1 then in future A cannot again extend σi+1
u

for any such string σi+1
u ⊃ σi0. That is, the entire splitting tree we have

allowed the opponent to build above σi0 is now forbidden to him. This will
allow us to build an almost c.e. approximation to A. By assumption this
cannot happen so each R requirement will only see finitely many splits, and
have finite effect on the rest of the construction.

This concludes the intuitive discussion. We now give details about how
various strategies interact and some of the technical issues which arise. First,
it is clear that the strategy described above for P is too simple. We need
to ensure that each movement of A will result in a new segment for A � m.
If A � m is not new then we cannot define C(m) differently, and so this A
change would be useless to us. To fix this we will choose m to be a large
enough number such that m is larger than all the |αp(i)+1| seen so far, and
wait for C � m = δ � m. Since only finitely many different versions of αp(i)+1

can appear during the construction, this number m exists. When m is seen,
say at stage s, we place a mark on number m. If A were to ever change
below |αp(i)[s]| we can be sure that Ct(m) will forever equal 1, for t > s,
even if A were to return to αp(i)[s]. This is certainly true if At 6⊃ αp(i)[s],
since At � m was first visited after s, and so Ct(m) = 1. If At ⊃ αp(i)[s] then
At 6⊃ αp(i)+1[u] for every u ≤ s. Since m was chosen larger than αp(i)+1[u]
for every u ≤ s this means that At � m is also first visited after s, and so
Ct(m) is again 1. This describes how P is satisfied.

The strategy to meet R would be to enumerate a sequence of strings σiu.
Each σiu will equal αr(i)[s] at the stage s where σiu is defined, and σiu will

be defined at stage s if ΦC [s] is found to extend αr(i)+1[s]. The main issue

is that the use U for this ΦC computation may be very large. In order to
carry out the intuitive plan described above we need to ensure that at every
future stage t > s where At ⊃ αr(i)[s] we have Ct � U = Cs � U . For this
reason at stage s if we find some m < U such that Cs(m) = 0 and the mark
on m has already been set, R will need to remove the mark on m. This
ensures that henceforth any new value for C(m) is defined to be 0 and equal
Cs(m).

It is not hard to see that R should not be allowed to remove the mark
on m globally. This removal has no negative impact on the P requirements
because lower priority requirements are all initialized. Unfortunately there
could be a higher priority requirement, which we will call R′, waiting on the
convergence of some Φ′C . If we allow R to remove the mark on m globally
then later on R′ might see Φ′C converge with C(m) = 1. The action of R
removing the mark on m conflicts with the fact that R′ now wants to keep
C(m) = 1 forever. To resolve this issue we will allow each requirement to
remove the mark on m with respect to a local neighbourhood.
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This describes the key features of the proof and outlines the solution to
the more serious issues which arise. There are several other minor technical
issues which we will not discuss here, but will instead be discussed and
resolved in the formal construction and verification.

2.5. Formal construction. First we describe the parameters associated
with each requirement. Each Re requirement defines a c.e. set of strings
{σie,u | i, u ∈ ω} which threatens to generate an almost c.e. approximation
to A. It also defines an increasing sequence of numbers re(0) < re(1) < · · ·
which ensures that αre(i) does not split with respect to C. A Pe requirement
will define an increasing sequence of numbers pe(0) < pe(1) < · · · where
αpe(i) will attempt to compute A. The impossibility of this will allow Pe
to diagonalize C. me(i) is the mark associated with pe(i). During the
construction the P requirements will place marks while the R requirements
will remove them (with respect to certain neighbourhoods).

At stage 0 initialize every requirement. This means we make every pa-
rameter associated with a requirement undefined. As usual we assume that
the value of the parameters re(i), pe(i) and me(i) always larger than the last
stage where the requirement (Re or Pe) is initialized.

Suppose we are at stage s > 0. We define what it means for a requirement
to require attention at stage s. For requirement Pe this means the following
situation holds. Let i0 be the largest such that pe(i0) ↓. We say that Pe
requires attention if one of the following holds:

(Pe.1) pe(0) ↑.
(Pe.2) A large number t < s never before used as a mark is found so that

αpe(i0) had not changed between stage t and s, and t is larger than the
maximum value of all |αpe(i0)+1[u]| seen so far, larger than me(i0−1),
and δe � t = Cs � t.

To give Pe attention means in the first case to set pe(0) to be a fresh number.
Otherwise we set me(i0) = t and set pe(i0 + 1) to be a fresh number. Mark
the number me(i0).

For requirement Re denote i to be the largest such that σie,u ⊂ As for
some u, and i = −1 if no such i is found. To say that requirement Re
requires attention means that one of the following holds:

(Re.1) re(0) ↑.
(Re.2) As−1 6⊃ αre(i+1)+1[s].

(Re.3) ΦC
e [s] ⊃ αre(i+1)+1[s].

To give Re attention means to act accordingly by picking the first in the
list above which applies. If Re.1 is the first to apply we simply pick r(0)
fresh. If Re.2 is the first in the list we do nothing.

If Re.3 is the first in the list that applies we declare σi+1
e,v = αre(i+1)[s],

for the least v such that σi+1
e,v has not yet received a value. If re(i + 2) has

not yet received a value we now pick a fresh value for it (otherwise leave
the value alone). For every number n > |αre(i+1)+1| such that Cs(n) = 0
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we remove the mark on n with respect to the neighbourhood (re(i + 1), s)
(henceforth we define n to be marked at a stage s if the mark on a number
n is not removed with respect to an applicable neighbourhood at s).

Now the construction at stage s picks the least requirement requiring
attention (from amongst the first smany requirements), and give it attention
according the description above. Initialize all lower priority requirements.
Go to the next stage. This ends the description of the construction.

2.6. Verification. We begin with observing an easy fact about the con-
struction.

Fact 2.6. For each m, i and t < s if the mark on m is removed with respect
to (i, t) and (i, s) then αi[s] 6= αi[t].

Proof. Suppose the mark on m is removed at stage t by Re and removed
at stage s by Rk. Clearly k = e and between t and s, Rk is not initialized.

Hence i = re(j)[t] which is declared to be σjk,v. If αi[s] = αi[t] then the same

thing cannot happen at stage s. �

Lemma 2.7. Suppose s1 < s2 is such that As1 � m = As2 � m, where
As1 � m is new at s1, and the mark on m applies at s2. Then it also applies
at s1 provided the mark on m was set before s1.

Proof. Suppose on the contrary that the mark on m does not apply at s1.
Since the mark was set before s1 this means that the mark on m had been
removed with respect to some neighbourhood (i, t) for some t ≤ s1, which
applies at s1. By the construction at t we have m > |αi[t]|, which means
that t < s1. Observe that As1 � m must be incomparable with αi[u] for each
u ≤ t: To see this consider the two cases |αi[u]| < m and |αi[u]| ≥ m. In
the former case use the fact that the neighbourhood (i, t) must apply at s1,
and in the latter case use the fact that As1 � m is new at stage s1. Since
As1 � m = As2 � m this means that (i, t) must apply at s2, contradiction. �

Lemma 2.8 (Consistency lemma). Suppose that requirement P marks the
number m = m(i0) at stage u. If s > u is such that As 6⊃ αp(i0)[u], then at
every future stage s′ ≥ s, as long as m is still marked we have Cs′(m) = 1.

Proof. We assume that s in the statement of the lemma is the least such.
Let p = p(i0)[u]. At stage s we have αp[s] 6= αp[u]. By the fact that P.2
held at stage u, we have that αp did not change between stage m and s− 1.
This means that As 6⊃ Av � m for every stage v ∈ (m, s), and since s
is minimal, the mark on m cannot have been removed with respect to an
applicable neighbourhood at s. Hence Cs(m) = 1 by the definition of the
approximation Cs.

Let s′ > s where m is still marked. Assume for a contradiction that s′

is least such that Cs′(m) = 0. A � m cannot be new at s′, since otherwise
we have Cs′(m) = 1, hence we must have As′ ⊃ Av � m for some least
v ∈ (m, s′). So Av � m is new at stage v, and Cv(m) = 0.
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By the minimality of s′, we must have v < s, because otherwise v > s
(v 6= s since the values of C(m) are different). Since Av � m = As′ � m
and m is marked at s′, we conclude by Lemma 2.7 that m has to be marked
at v. This contradicts the minimality of s′. Thus we have v < s and
αp[s

′] = αp[v] = αp[u]. We clearly cannot have αp+1[s
′] = αp+1[u

′] for any
u′ < s, by the properties of the approximation α. At the point (at stage u)
when m was marked it was chosen to be larger than any of the |αp+1| seen
so far. So this means that v ∈ (u, s), because if v ≤ u then we contradict
the fact that αp+1[s

′] 6= αp+1[u
′] for any u′ < s.

Since Av � m is new, and since v > u, by Lemma 2.7 this implies that the
mark is on m at v and hence Cv[m] = 1. Hence Cs′(m) = 1, a contradiction.

�

Lemma 2.9. Fix requirement Re and assume it is never initialized again.
Let t be a stage where σie,u is defined as αr[t] by Re, where r = re(i). Then for
every t′ ≥ t such that αr[t

′] = αr[t], we have Ct′ � |αr+1[t
′]| = Ct � |αr+1[t

′]|.

Proof. Let v ≤ t′ be the smallest stage such that αr+1[v] = αr+1[t
′], i.e.

αr+1[v] is fresh at v. Note that at stage v, re(i) must have already been
picked by the final version of Re. There are three cases to consider.

Case 1: |αr+1[t
′]| ≤ |αr+1[t]|. In this case we necessarily have v ≤ t

because of the assumption in the last line of Section 2.1. We assume v 6= t
else there is nothing to prove. Suppose there is |αr[t]| < m ≤ |αr+1[v]|
such that Cv(m) = Ct′(m) 6= Ct(m). Hence m must be marked by some P
requirement. This must clearly be done by a requirement of lower priority.
This P cannot mark m before re(i) was picked because otherwise we would
have picked re(i) > m and hence m < re(i) < |αr|, which cannot be. Hence
P has to mark m after re(i) is picked. This means that P will pick p(j)
(corresponding to m = m(j)) larger than re(i)+1. Let u be the stage where
P marks m = m(j). Since v ≤ t we have u < t. Now let u′ be the smallest
stage u ≤ u′ such that αr+1[v] � m or αr+1[t] � m is first accessed after u.
Clearly u′ 6= u (otherwise m is too small) and u′ < t (because v < t), so we
in fact have u < u′ < t.

At u′ we can conclude several things:

(i) A must have changed below |αp(j)[u]| (by considering separately the
two possibilities αr[u] 6= αr[t] and αr[u] = αr[t]).

(ii) The mark is still on m at u′.

To justify (ii), suppose the mark on m at u′ has been removed with respect
to an applicable neighbourhood (x, u′′). If x < r then clearly the same
neighbourhood (x, u′′) is applicable at both stages v and t and it is easy to
see that the values of Ct′(m) and Ct(m) must both be 0. On the other hand
if x = r = re(i) we also have αx[u′′] = αr[t], which can only be removed
by Re with respect to i, and σie defined equal to αx[u′′] = αr[t]. Since
u′′ < u′ < t this is a contradiction.
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Claim. Between [u′, t) the mark on m can never be removed with respect to
any applicable neighbourhood which is a prefix of αt[t].

Proof. Clearly any such removal can only be done by Re. As before if this
neighbourhood is of the form (x, u′′) then x 6= r for the same reason. If
x < r then αr[t] cannot extend αx+1[u

′′′] for any u′′′ ≤ u′′ (otherwise this
neighbourhood would not be applicable to αr[t] and has no effect on the
values of Ct(m) and Ct′(m)). Hence we must have u′′ < u′ since αr[t] =
αr[u

′]. Clearly maxu′′<u{|αr+1[u
′′]|} < m since m is picked large at u, hence

the first visits to αr+1[v] � m and αr+1[t] � m must be on or after u′. This
means that both of Ct′(m) and Ct(m) have to be 0, a contradiction. �

This claim together with (ii) says that at every every stage [u′, t) the mark
on m must apply if αr[t] is again visited. Since the first visits to αr+1[v] � m
and αr+1[t] � m must be on or after u′, both of Ct′(m) and Ct(m) have to
be 1, a contradiction.

Case 2: |αr+1[t
′]| > |αr+1[t]| and v < t. As above we fix m such that

Ct′(m) 6= Ct(m). If m ≤ |αr+1[t]| then the same argument in Case 1 pro-
duces a contradiction. Hence we assume that |αr+1[t

′]| ≥ m > |αr+1[t]|. Fix
P, j and stage u as in Case 1. Similarly u < t. There are two subcases.

• (Subcase 2.1 ) Assume that at stage u we have αr+1[u] 6= αr+1[t].
In this case we let u′ be the first stage larger than u where either
αr+1[t] or αr+1[v] � m is visited. As before u < u′ < t. It is easy to
check in a similar fashion that (i) and (ii) in Case 1 holds at u′ (note
that to verify (ii) now we need to consider the case m > |αr+1|). In
fact we can say a bit more in place of (ii): Between u and u′ the
mark on m is not removed with respect to a string comparable with
αr+1[t].

Now as in Case 1 we can conclude that the mark on m cannot be
removed by any R requirement with respect to an applicable prefix
of αr[t] between [u′, t), and by the consistency lemma the mark on
m cannot be removed with respect to a string extending αr+1[t].

Together with (ii) we have that the mark on m must apply at
the first stage after u′ for which At � m or αr[v] � m is first visited.
As above we may conclude that maxu′′<u{|αr+2[u

′′]|} < m which of
course says that the first visit to αr+1[t

′] � m is on or after u′ and
so Ct′(m) = 1. At t since αr+2[t] have to be new (since αr+1[u] 6=
αr+1[t]) which means that At � m is first visited on or after u′, so in
this case we also have Ct(m) = 1, a contradiction.
• (Subcase 2.2 ) Assume that αr+1[u] = αr+1[t]. It is not hard to see

that u < v because otherwise at u we would have picked m larger
than |αr+1[v]|. Let u′ > u be the first stage after u where αr+2[u

′]
is found fresh. Note that Au′ � m is fresh at u′. Clearly u < u′ ≤ v.

Claim. The first visit to αr+1[v] � m and the first visit to At � m are
both at or after u′ and no later than t.
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Proof. It is not hard to see that αr+1[v] � m cannot be first visited
before u, and clearly not between u and u′. Hence the first visit to
αr+1[v] � m is at or after u′. Let Ξ = {αr+2[u

′′] | u′′ ≤ u}. Clearly
αr+2[t] 6∈ Ξ, since αr+1[v] 6= αr+1[u] = αr+1[t]. Since m > is larger
than the length of every string in Ξ, it follows that At � m is first
visited at or after u′. �

Claim. Between [u′, t) the mark on m can never be removed with
respect to any applicable neighbourhood which is a prefix of At � m.

Proof. Between stages (u, u′) the requirement Re cannot remove the
mark on m with respect to any neighbourhood, because t > u′ and
we never leave αr[u]. By the proof of Claim 2.6 it cannot be a lower
priority R because between stages (u, u′) we never leave the set Ξ.

It is straightforward to see that at the beginning of stage u′ the
neighbourhoods which the mark on m have been removed with re-
spect to must all extend Ξ. Furthermore since (i) and (ii) above in
Case 1 applies at u′, we can apply the consistency lemma to conclude
that the mark on m can only be removed with respect to neighbour-
hoods extending Ξ between [u′, t). This proves the claim. �

By Claims 2.6 and 2.6 it follows that Ct(m) = Cv(m) = Ct′(m) =
1, a contradiction. This contradiction finishes Subcase 2.1, and Case
2.

Case 3: v > t. We proceed by induction on v. Assume for all smaller
v′ where t < v′ < v we have Cv′ � |αr+1[v

′]| = Ct � |αr+1[v
′]| provided

αr[v
′] = αr[t]. Now assume that αr[v] = αr[t] and αr+1[v]. By assumption

on v, αr+1[v] is new at v. Let v′ < v be a stage such that αr+1[v
′] ∩ αr+1[v]

is maximal. If v′ > t we apply induction hypothesis, otherwise if v′ ≤ t we
apply Case 1 or 2 to obtain Cv(m) = Ct(m) for everym ≤ |αr+1[v

′]∩αr+1[v]|.
We now only have to consider |αr+1[v

′]∩αr+1[v]| < m ≤ |αr+1[v]|. For such
an m, Cv(m) is new. Let w ≤ t be the least stage where Aw � m = At � m.
There are now again two subcases to consider.

• (Subcase 3.1 ) Assume Ct(m) = 0. Suppose first that m ≤ |αr+1[t]|.
If m is never marked during the construction then certainly we have
Ct(m) = Cv(m). Suppose that m is marked by a lower priority
requirement P. Then m cannot be marked before r was picked by
Re because otherwise we would have picked r > m. Similarly m
cannot be marked after stage w because otherwise P would have
picked m larger. Some requirement must have removed the mark on
m with respect to some initial segment of αr[t] at some stage before
w (since Ct(m) = Cw(m) = 0). Clearly such an action must be
with respect to a neighbourhood which also applies at v > w. Hence
Cv(m) = 0 and we are done.
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Now assume that m > |αr+1[t]|. The construction at stage t will
ensure that the mark on m is removed with respect to (αr[t], t), and
thus Cv(m) = 0.
• (Subcase 3.2 ) Suppose now Ct(m) = 1 but Cv(m) = 0. The mark

must be removed between w and v with respect to a prefix β of
αr[t]. If β 6= αr[t] this neighbourhood cannot apply at stage v, since
the removal is after w. On the other hand if β = αr[t] then the
removal must be done by Re at stage t. This is impossible since
Ct(m) = 1. �

Lemma 2.10. Each requirement is initialized finitely often.

Proof. We proceed by induction on the ordering of requirements. Assume
that requirement Pe is initialized finitely often. We argue that Pe receives
attention finitely often. Suppose the contrary. Observe that for priority
reasons, every number me(i) marked by Pe is never removed with respect to
any neighbourhood, and that pe and me are totally defined. Let u0 < u1 <
· · · be the stages where pe(i+ 1) and me(i) are defined at stage ui. At stage
ui we must have Cui(me(i)) = 0, since me(i) was never before chosen as a
mark. Hence δe(me(i)) = 0.

We claim that αpe(i+1)[ui+1] ⊃ αpe(i)[ui]. Suppose not. By the consistency
lemma we must have Cui+1(me(i)) = 1, but this means that Pe.1 cannot
possibly be true at stage ui+1, a contradiction. This means that for each
i there are infinitely many stages where the approximation to A extends
αpe(i)[ui], which means that A is computable, another contradiction. Hence
Pe receives attention finitely often, and makes finitely many initializations
to lower priority requirements.

We now turn to Re, and assume it is initialized finitely often. Again
we argue that Re receives attention finitely often. Suppose the contrary.
Re.3 must be applicable infinitely often. Clearly each σie,u, if defined, is

equal to αre(i)[s] where s is the stage where σie,u receives its definition. It
is easy to check that re has to be totally defined, since for each k there can
only be finitely many different versions of αk ever seen in the construction.
Furthermore it is easy to see that the set {σie,u} can be easily modified

to get an approximation {σ̂is} satisfying (i),(ii) and (iv) of Definition 2.3.
Informally σ̂is at a stage s of the construction is simply σ2ie,u such that As ⊃
σ2ie,u. Of course for many stages this u may not exist; we simply speed up
the construction until this u is found. The fact that (iii) holds follows from
the following claim.

Claim. If u is such that σie,u 6= σie,u+1 which are defined at stages s1 and t1
of the construction respectively. Then for no stage s2 > t1 can we have σ̂is2
being comparable with σie,u.

Proof. Suppose not. Fix some s2 > t1 where σ̂is2 ⊃ σie,u. At stage s1 we

have ΦC
e [s1] ⊃ αre(i)+1[s1], say with use U > |αre(i)+1[s1]|. Since we must
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have some stage t ∈ (s1, s2) such that At 6⊃ αre(i)[s1] (t exists because

of the assumption on σie,u+1), we have As2 6⊃ αre(i)+1[s1]. We have that

|αre(i)+1[s2]| > U since it has to new after s1. We assume that in the

definition of σ̂is we always wait for Re.3 to hold for some large j before
defining the next value of σ̂is; this is fine because we assume initially that
Re acts often and will certainly hold again above the true initial segment of
A. By Lemma 2.9 we have Cs2 � U = Cs1 � U , but since As2 6⊃ αre(i)+1[s1]
we cannot have Re.3 holds at s2 for any j ≥ i, a contradiction. �

We conclude that {σ̂is} generates an almost c.e. approximation. For each
i the final version for σ̂is must be an initial segment of A. This contradicts
the assumption that A has no almost c.e. approximation. Hence Re can
receive attention only finitely often, and makes finitely many initializations
to lower priority requirements. �

Lemma 2.11. Each requirement is satisfied.

Proof. By Lemma 2.10 each requirement only receives attention finitely of-
ten. Clearly this means that for Pe we clearly cannot have δe = C, and for
Re we cannot have ΦC

e = A. �

This ends the proof of Theorem 1.3.

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. For convenience, we restate it here.
(We refer the reader to Soare [26] for information on promptly simple sets
and degrees. Below, we state the property of promptly simple sets which we
will use in the construction.)

Theorem 1.4. Let V be a promptly simple c.e. set and let A be a ∆0
2 set

such that A ≥T V . There exists a c.e. set B such that 0 <T B ≤wtt A.

Before presenting the formal construction, we fix notation and give an
intuitive sketch of how to meet one requirement. Let V and A be as in the
statement of the theorem and fix a Turing reduction ΓA = V . We speed up
the ∆0

2 approximation to A, the enumeration of V and the reduction Γ so
that the length of agreement function

l(s) = max{x|∀y ≤ x(ΓAss (x) ↓= Vs(x))}.

satisfies l(s + 1) > l(s) for all s. (That is, we assume that every stage of
our construction is expansionary.) Because V is promptly simple, there is a
fixed computable function p(s) for which we have the following property for
all e (see Soare [26] Chapter XIII, Theorem 1.7):

We infinite ⇒ ∃∞x∃s(x ∈We at s ∧ Vs|x 6= Vp(s)|x).

We at s means that x ∈ We,s and x 6∈ We,s−1. For x ≤ l(s), we use γ(x, s) to
denote the use of ΓAss (x).
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To make B noncomputable, we meet the requirement Re that B 6= We

for every e. Re is met by choosing a witness which we attempt to put into
B if it ever enters We. To make B ≤wtt A, we guarantee that

As|x = A|x⇒ Bs|x = B|x.

Consider a single Re requirement in the presence of our permitting. We
attempt to meet Re in cycles (which may be initialized by higher priority
requirements, but only finitely often). The prompt simplicity of V will insure
that only finitely many cycles are needed for Re.

Assume that the nth cycle for Re starts at stage s. Pick a large prefollower
zn. (In the formal construction, we will denote such a witness by ze,n to

indicate it is the nth prefollower for Re. For now, we leave off the extra
subscript e since we are only considering one requirement.) Wait for a stage
s1 > s such that l(s1) > zn. At stage s1, pick a large follower ys1n such that
ys1n > γ(zn, s1). Notice that if there is a change in Vs1 |zn, then there must
be a corresponding change in As1 |γ(zn, s1), which we would like to use as a
permission to put ys1n into B.

We say ys1n is realized at t ≥ s1 if ys1n ∈ We,t. We say that ys1n is canceled
at stage t > s1 if γ(zn, t) 6= γ(zn, s1) and ys1n has not yet been realized. If
ys1n is canceled at stage t, then we pick a new follower ytn > γ(zn, t). Notice

that since t > s1, we have l(t) > l(s1) > zn and so the computation ΓAtt (zn)
does converge and γ(zn, t) is defined. In general, we use the notation ytn for
the follower of zn at stage t, if there is one. Because there is a final use
γ(zn) for ΓA(zn), the sequence of followers for any given prefollower zn is
finite and must eventually settle down on a single follower.

Assume that at some stage s2 > s1, the current follower ys2n becomes
realized (that is, it enters We at s2). We want to use the prompt simplicity
of V to get permission to put ys2n into B. Two technical problems arise
at this point. Prompt simplicity tells us that if We is infinite, then there
are infinitely many numbers x ∈ We for which if x enters We at stage t,
then a number below x must enter V between stage t and stage p(t). The
first technical problem is that ys2n may not be one of these infinitely many
elements of We for which the condition of prompt simplicity holds. The
second technical problem is that even if ys2n is one of the numbers for which
the condition of prompt simplicity holds, it only causes a number below ys2n
(and not necessarily below zn) to enter V . Numbers below ys2n are potentially
too large to force the desired change in A below γ(zn, s2) (which is < ys2n
and so would give us permission to put ys2n into B). We want to force a
number below zn into V in order to cause a change in A below ys2n .

We solve these problems with a computable function f which for any e
gives an index for a Turing procedure ϕf(e) which does the following on
input x. (The existence of such a function f follows from the Recursion
Theorem.) First, it runs our construction until it finds out if x = zn for
some n in a cycle of Re. If it never finds such a zn, then ϕf(e)(x) ↑. Once it
finds x = zn, it watches the construction until it sees a realized follower ysn.
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Again, if it never sees one, then ϕf(e)(x) ↑. Once it sees a realized follower,
ϕf(e)(x) converges and outputs 0. (The output is irrelevant; only the fact
that it converges matters.) The point of this procedure is that it halts on
exactly the prefollowers of Re which have realized followers. Notice also that
if ytn enters We at stage t, then ϕf(e) takes at least t steps to halt.

Returning to the scenario of our construction, recall that zn is our follower
and that ys2n has just entered We at stage s2. This scenario implies that
ϕf(e)(zn) halts. Calculate the stage t ≥ s2 such that zn enters Wf(e) at t.

Look at each stage t̂ between s2 and p(t) to see if

Vs2 |zn 6= Vt̂|zn.
If we find such a stage, then we know

As2 |γ(zn, s2) 6= At̂|γ(zn, s2).

Furthermore, since Vs2 |zn 6= V |zn (recall that V is c.e.), we know that
As2 |γ(zn, s2) 6= A|γ(zn, s2) (even though A is ∆0

2). Therefore, we have
permission to put ys2n into B and win Re. If we do not find such a stage
t̂, then we start the (n + 1)st cycle of Re and initialize everything of lower
priority.

The prompt simplicity of V guarantees that Wf(e) cannot be infinite, for if
so, there would have been a chance to put one of the followers into B. This
would imply there were no new prefollowers for Re, which in turn makes
Wf(e) finite.

We now present the formal construction and lemmas verifying that the
construction succeeds. The priority on our requirements is R0 < R1 < · · ·
and the construction is finite injury. As above, we assume that ΓA = V
and that for every s, l(s + 1) > l(s). Let p denote the prompt permitting
function for V under this enumeration. At stage 0, set B0 = ∅.

At stage s+1, run the current cycle (as described below) for each Re with
e ≤ s (in order of their priority) which is not already satisfied. If some Re
ends a cycle and initializes all Ri with i > e, then end the stage early. (We
initialize Ri by canceling any current prefollowers and followers and setting
it at the start of its next cycle.)

Cycle n for Re: Assume that the cycle starts at stage s. Pick a large
prefollower ze,n. The cycle takes no more action until the first stage s1 at
which l(s1) > ze,n. At stage s1 pick a large follower ys1e,n > γ(ze,n, s1). As

noted above, we use the notation yte,n for the current follower of ze,n at stage
t.

We say that yte,n is realized at t > s1 if yte,n ∈ We,t. The current follower
ys1e,n is canceled and a new large follower is chosen at t if γ(ze,n, s1) 6= γ(ze,n, t)
and ys1e,n has not yet been realized. The cycle takes no more action, except to
cancel and pick new followers as necessary, until a stage s2 when the current
follower ys2e,n is realized.

Suppose ys2e,n is realized at stage s2. Find the number t ≥ s2 such that

ze,n enters Wf(e) at t. Calculate Vt̂ for each t̂ such that s2 < t̂ < p(t) and
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for each such value of t̂ check if Vs2 |ze,n = Vt̂|ze,n. If there is a t̂ such that
Vs2 |ze,n 6= Vt̂|ze,n, then put ys2e,n into B and declare Re satisfied. If there

is no such t̂, then end this stage and initialize all requirements of lower
priority. (At the next stage, Re will begin its (n+ 1)st cycle.) This ends the
description of cycle n for Re and the description of the formal construction.

Lemma 3.1. B ≤wtt A.

Proof. Each element in B is a realized follower yse,n. Suppose yse,n is realized

at stage s and we enumerate it into B. There must be a number t̂ with
s < t̂ < p(t) (where t is the stage at which ze,n entered Wf(e)) such that
Vs|ze,n 6= Vt̂|ze,n. Because V is c.e., this inequality implies that Vs|ze,n 6=
V |ze,n.

We claim that As|yse,n 6= A|yse,n and hence enumerating yse,n into B is
allowed by our permitting. For a contradiction, suppose that As|yse,n =
A|yse,n. Since γ(ze,n, s) < yse,n, we have As|γ(ze,n, s) = A|γ(ze,n, s). Because

l(s) > ze,n, ΓAss |ze,n = ΓA|ze,n and hence Vs|ze,n = V |ze,n. This contradicts
the condition on V in the last sentence of the previous paragraph. �

Lemma 3.2. Each Re requirement is won.

Proof. This proof proceeds as a finite injury argument. Assume that at stage
s, requirement Re has priority. That is, assume that Re is never initialized
by any Ri with i < e after stage s. For a contradiction, assume that B = We.

Claim. Re has infinitely many realized followers.

Suppose Re is in cycle n. We have chosen ze,n and when l(s1) > ze,n we
chose a follower ys1e,n. This follower may be canceled, but eventually we get
to a stage s2 with a true use γ(ze,n, s2). After this stage, ys2e,n will never
be canceled. We do not need to worry about ze,n being initialized since
nothing of higher priority initializes it and Re only initiates a new cycle
after a realized follower is found.

If ys2e,n 6∈ We, then B 6= We because we never put ys2e,n into B. Hence,

ys
2

e,n ∈We, but since we never get to put this element into B, we know that
we eventually move on to the next cycle. The same scenario happens in the
(n + 1)st cycle: ze,n+1 eventually gets a realized follower, but doesn’t put
it into B and so moves on to the next cycle. In this way it is clear that
for every m > n, there is a prefollower ze,m which eventually get a realized
follower. This completes the proof of the claim.

Since each ze,m for m ≥ n eventually gets a realized follower, we have
that ze,m ∈Wf(e) and so Wf(e) is infinite. Also, since we did not put any of
the followers into B, there is a sequence of stages sn, sn+1, . . . , sm, . . . such
that

ze,m ∈Wf(e) at sm but Vsm |ze,m = Vp(sm)|ze,m.
However, since Wf(e) ⊆ {ze,n|n ∈ ω}, there can be at most finitely many x
for which the prompt permitting function works. This violates the fact that
V is promptly simple. �
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4. Informal Construction for Theorem 1.1

In this section, we present an informal description of the construction
used to prove Theorem 1.1. For convenience, we restate the theorem be-
low. Recall that [e] denotes the eth wtt-reduction, while ϕe denotes the eth

Turing-reduction. We use λ to denote the empty string and α′ to denote
the string obtained from α by removing the last element. For uniformity of
presentation (that is, to be able to treat λ like any other string), we regard
λ′ and λ′′ are distinct symbols. Whenever we define a number to be large
or the length of a string to be long, we mean for it to be larger than (or
longer than) any number or string used in the construction so far. (We will
be more precise about this definition in the formal construction.)

Theorem 1.1. There is a ∆0
2 set A and a noncomputable c.e. set B such

that A has minimal wtt-degree and B ≤T A.

To make A have minimal wtt-degree, we meet

Re : [e]A total ⇒ A ≤wtt [e]A or [e]A is computable.

To make B noncomputable, we satisfy

Pe : B 6= We.

We also need to meet the global requirements that B is c.e. and B ≤T A by
a Turing reduction Γ which we build.

We use a full approximation argument to satisfy the Re requirements. (We
assume the reader is familiar with full approximation arguments. Posner
[21] is an excellent introduction to these arguments.) To meet a single Re
requirement, we build a sequence of computable trees Te,s on which we
attempt to find [e]-splittings. A node Te,s(α) is said to [e]-split if there is an
x ≤ s such that

[e]
Te,s(α∗0)
s (x) ↓6= [e]

Te,s(α∗1)
s (x) ↓ .

We say that the number x is a splitting witness for the node Te,s(α). A node
which [e]-splits is said to be in the high state and a node which does not
[e]-split is said to be in the low state. In addition, we define a current path
As which represents our stage s approximation to A. (Technically, we define
As at the beginning of stage s and then allow strategies which act during
stage s to change this path. Therefore, in the full construction As really
has two subscripts Aη,s where η was the last strategy to act. For simplicity
of notation right now, we omit the second subscript. We also occasionally
leave off the stage number subscripts, especially in our diagrams where they
cause unnecessary clutter.)

We make two significant modifications to a typical full approximation
argument. First, rather than look for [e]-splits for every node, we only look
for [e]-splits along the current path. To be more specific, suppose Te,s(α)
has been defined and we are trying to define Te,s(α ∗ i) for i = 0, 1. If
Te,s(α) ⊆ As, then we look for extensions τ0 and τ1 which [e]-split and
such that either τ0 or τ1 is on As. If we find such strings, then we define
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Anew Aold

Te(σ ∗ 1) Te(σ ∗ 0)

Te(σ)

Figure 1. When the current path moves from Te(σ ∗ 0) to
Te(σ ∗ 1), we challenge Re to verify that it converges on all
elements of Xe = {x | [e]τs(x) converges for some τ ⊇ Te(σ ∗
0)} using oracles along the new current path Anew.

Te,s(α ∗ i) = τi. Otherwise we define Te,s(α ∗ i) as they were defined at stage
s−1 (if these nodes are still available) and if not, we extend Te,s(α) trivially
(that is, we take the first available extension strings). If Te,s(α) is not on
the current path, then we define Te,s(α∗ i) as they were defined on Te,s−1 (if
possible) and otherwise define them by taking the first available extensions.

The second important modification is that we will occasionally move the
current path As for the sake of a P requirement. (See Figure 1.) When a
requirement moves the current path, it may challenge Re to prove that [e] is
total on some finite set Xe of number using oracles on the new current path.
In this situation, [e] has converged on all the numbers in Xe using oracles
from the old current path. As long as there is a number x ∈ Xe for which [e]
does not see an oracle along the new current path which makes [e] converge
on x, Re remains in a nontotal state and we define Te,s trivially. (That is,
we attempt to keep the nodes of Te,s as they were at the last stage and take
the first possible extensions when this is not possible.) If Re remains in a
nontotal state forever, then [e]A is not total and Re is satisfied.

The current path As settles down on larger and larger initial segments
as the construction proceeds and gives us A in the limit. Furthermore,
nodes Te,s(α) which are on A reach pointwise limits and final [e]-states. At
the end of the construction, we are in one of three situations. Either Re
is eventually in a permanent nontotal state, the nodes Te,s(α) along A are
eventually in the high state or there is a string α such that Te,s(α) is on
A and all extensions of Te,s(α) are permanently in the low state. If Re is
permanently in the nontotal state, then we win Re because [e]A is not total.
If the nodes along A are each eventually in the high state, then A ≤wtt [e]A.
If sufficiently long nodes along A are eventually always in the low state, then
[e]A is computable.

The basic idea of these computation lemmas is as in a typical full ap-
proximation argument. For the low state case, we show that once we see
[e]Te,s(α)(x) converge at a stage s for some node Te,s(α) on the current path,
then this computation is equal to [e]A(x). As usual, this equality follows
(for sufficiently long nodes Te,s(α)) because if not, we would later have the
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option of using Te,s(α) and the node along A which gives the correct com-
putation for [e]A(x) to make Te,t(α

′) high splitting (where t > s is a stage
at which the correct computation appears).

For the high case, we can define A inductively using [e]A because the
computations of [e]A tell us which half of each high split A eventually has to
pass through. In general, this computation procedure gives a T -reduction
A ≤T [e]A and not a wtt-reduction A ≤wtt [e]A. To achieve a wtt-reduction,
we incorporate stretching. (Stretching is also used by P strategies as de-
scribed below.) Before describing the stretching procedure, we give the al-
gorithm for determining the computable use for the wtt-reduction and then
explain how to alter the construction so that this use function works.

To compute the use u(m) of the reduction A ≤T [e]A (and show it is a
wtt-reduction) on a number m proceed as follows. Wait for a stage s and a
node Te,s(α) ⊆ As such that Te,s(α) is in the high state and |Te,s(α)| > m.
Define u(m) to be the maximum of the splitting witnesses that Re has seen
in the construction so far.

The apparent problem with this definition is that the current path may
move below Te,s(α) at a later stage t > s and along the new current path,
there may not be a node of length > m which is high splitting. To handle
this potential problem, we redefine our trees by stretching each time we
move the current path. (See Figure 2.) Suppose the current path moves
from Te,t(β ∗ 0) ( Te,t(α) to Te,t(β ∗ 1) at stage t (for the sake of some
lower priority requirement). Because Te,s(β) ( Te,s(α) and Te,s(α) is high
splitting, we know that Te,s(β) is high splitting (and is still high splitting at
stage t). We let βe,H be the shortest node along the new current path such
that Te,t(βe,H) is not high splitting. (In other words, Te,t(β

′
e,H) is the longest

node on the new current path which is high splitting so β ⊆ β′e,H ( βe,H .)
Because we only look for new high splits along the current path and because
either β′e,H = β (so Te,s(β

′
e,H) is high splitting) or β ( β′e,H (so Te,t(β

′
e,H)

is not on the current path and cannot change from low to high splitting
between stages s and t), Te,s(β

′
e,H) must have been high splitting at stage s.

Therefore, the splitting witness for Te,t(β
′
e,H) is less than the purported use

u(m).
Redefine Te,t(βe,H) so that it extends its old value, it has long length and

is along the current path. (That is, its new length is longer than any number
used so far in the construction and in particular is longer than m. For strings
α such that βe,H ( α, extend the definition of Te,t trivially.) We refer to
this redefinition process as stretching and say that the node Te,t(βe,H) is
stretched. The node Te,t(β

′
e,H) is not changed by this process and it remains

in the high state with the same splitting witness (which is less than u(m)).
Assume that the current path does not move below Te,t(β

′
e,H) after stage

t. In this case, the reduction A ≤T [e]A uses the witness for the high split
at Te,t(β

′
e,H) to tell us that A passes through Te,t(βe,H) (which has length

> m) since this node remains on the current path forever and hence is



24 ROD DOWNEY, KENG MENG NG, AND REED SOLOMON

Anew Aold

T new
e (βe,H)

T old
e (βe,H) Te(α)

Te(β
′
e,H)

Te(β ∗ 1) Te(β ∗ 0)

Te(β)

Figure 2. If Te(α) is high splitting and the current path
moves from Te(β ∗ 0) to Te(β ∗ 1), then we stretch T old

e (βe,H)
to have value T new

e (βe,H) such that |T new
e (βe,H)| > |Te(α)| >

m.

on A. However, this splitting witness is less than the purported use u(m)
for A ≤T [e]A, so u(m) is correct. If the current path does move below
Te,t(β

′
e,H) after stage t, then we repeat this stretching procedure at the next

place where the current path moves. As long as such movement of the
current path occurs only finitely often, we have the desired wtt-reduction.

To see that stretching does not interfere with the pointwise convergence of
nodes along A, notice that a node is only stretched when the current path is
moved and that node is the shortest node along the new current path which
is not high splitting. Therefore, once a node becomes high splitting it is not
stretched again. Since the current path will settle down on longer and longer
segments, we will show that stretching only causes a finite disruption in the
definition of the nodes along A. There are more subtle issues with stretching
when multiple R strategies are involved and we address these below.

The basic strategy for meeting one Pe requirement (in the presence of a
single Re requirement of higher priority which is defining Te,s) is to pick a
node Te,s(α) such that Te,s(α ∗ 0) ⊂ As at which to diagonalize and a large
witness x with which to diagonalize. Since we have not yet put x into B, we
define ΓTe,s(α∗0)(x) = 0. (Recall that Γ is the reduction we build to witness
B ≤T A.) We wait for x to enter We. If this never happens, then we never
put x into B and we win Pe. If x does enter We at some later stage t, then
we try to put x into B. (If the node Te,s(α ∗ 0) ever changes because of a
new [e]-split, then we initialize this Pe strategy and start over with a new
large witness x. In the full construction, we will have different Pe strategies
guessing what the final state of the Re strategy is.)

Before putting x into B, we need to get permission from A by changing
A below the use of the computation ΓTe,t(α∗0)(x) = 0 which we defined at
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stage s. We would like to move the current path At from Te,t(α ∗ 0) ⊆ At
to Te,t(α ∗ 1) ⊆ At, declare ΓTe,t(α∗1)(x) = 1 and put x into B. However,
there is a potential problem with this strategy. If the current path Au, for
some u > t, is ever moved so that Te,t(α ∗ 0) ⊆ Au again, then we will have

ΓAu(x) = 0 (by our definition that ΓTe,t(α∗0)(x) = 0) and x ∈ B. Since B
must be c.e., we cannot remove x from B. Therefore, before we can put
x into B, we must forbid the cone above Te,t(α ∗ 0) in the sense that we
promise never to move the current path Au for u ≥ t back to this cone
again. If Te,t(α) is in the high state, then this strategy is fine because there
is no reason to look at nodes above Te,t(α ∗ 0) for a potential high split of
Te,t(α) since this node is already in the high state. Furthermore, we can tell
from [e]A that Te,t(α ∗ 1) ⊆ A as opposed to Te,t(α ∗ 0) ⊆ A.

However, there is a problem if Te,t(α) is in the low state. If the true final
state of Re is low, then to compute [e]A(y) for any value y, we look for a node

Te,v(β) on the current path in the low state such that [e]Te,v(β)(y) converges
and declare this to be the value of [e]A(y). This computation will be correct
since otherwise we could put up another high split. However, if the node
Te,v(β) happens to be in a cone like Te,t(α∗0) which is later forbidden, then
it is possible that [e]A(y) has a different value and the forbidding process
restricts us from putting up the new high splitting. Therefore, in this case,
we do not want to rule out the possibility of using nodes above Te,t(α ∗0) to
make Te,t(α) high splitting at a later stage unless we have further evidence
that Te,t(α) should be in the low state. To accomplish this, we start a
low challenge procedure to check that to the best of our knowledge, Te,t(α)
should be in the low state.

For the low challenge procedure, we let Xe be the finite set of numbers
y for which we have seen [e] convergence using a node above Te,t(α ∗ 0) as
the oracle but we have not seen [e] convergence using Te,t(α) as the oracle.
We move the current path At from Te,t(α ∗ 0) to Te,t(α ∗ 1) and declare the
cone above Te,t(α ∗ 0) to be frozen. (See Figure 3.) This means that we
no longer look at computations involving nodes in this cone as oracles. Pe
challenges Re to verify that Te,t(α) should be in the low state by providing
computations along the new current path which agree with the computations
from the old current path for all the numbers in Xe. We also pick a large
auxiliary diagonalization spot Te,t(σ) with Te,t(σ ∗ 0) on the (new) current

path such that Te,t(α ∗ 1) ( Te,t(σ). We define ΓTe,t(σ∗0)(x) = 0 since x has
not yet been enumerated into B.

This auxiliary diagonalization spot is chosen to have length larger than
the use of any of the computations for numbers in Xe. Since we are working
with wtt-computations, Re is only concerned with nodes on the current
path below Te,t(σ) as oracles for the [e] computations on numbers from Xe.
Furthermore, while Re is waiting for verification that Te,t(α) really should
be in the low state, it can suspend building Te any further. That is, with
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Anew

frozen

Te(σ ∗ 1) Te(σ ∗ 0)

Te(σ) Aold

Te(α ∗ 1) Te(α ∗ 0)

Te(α)

Figure 3. If Te(α) is in the low state and we move the
current path from Te(α∗0) to Te(α∗1) for the sake of Pe, then
we freeze the cone above Te(α∗0) until we have seen identical
computations on all the elements of Xe using oracles along
the new current path Anew. The auxiliary diagonalization
node Te(σ) for Pe is chosen so that its length is greater than
the use for any [e] computation on an element in Xe.

the current path running through Te,t(σ ∗ 0), Re thinks that [e]A will not be
total until it actually sees computations involving all the numbers in Xe.

If Re sees a computation at stage u > t on some element of Xe using
an oracle on the current path which differs from the computation using the
oracle above Te,t(α∗0), then it unfreezes the cone above Te,u(α∗0) (which is
the same as Te,t(α∗0) since Re does not change Te while it is low challenged)
and it uses this computation to put Te,u(α) in the high state. In this case,
we initialize the Pe strategy and let it work with a new large witness x at
the same node Te,u(α). (In the full construction, we will actually have a
separate Pe strategy guessing that the final Re state is high.) Since this
node now has the high state, we know that we will win Pe with this new
witness x (either because x never enters We or because x does enter We and
we can immediately diagonalize since Te,u(α) is now in the high state).

If Re sees computations at stage u > t using oracles along the current path
for all the numbers in Xe and they agree with the computations using oracles
above Te,t(α∗0), then it is safe to forbid the cone above Te,u(α∗0) because we
have identical computations in a nonforbidden part of the tree. That is, any
future high splitting which might want to use a node above Te,u(α ∗ 0) can
use a node above Te,u(α ∗ 1) instead which gives the same computation. To
perform the diagonalization in this case, we use the auxiliary split Te,u(σ).
We move the current path from Te,u(σ ∗ 0) to Te,u(σ ∗ 1), declare the cones
above Te,u(α ∗ 0) and Te,u(σ ∗ 0) to be forbidden, put x into B, and declare

ΓTe,u(σ∗1)(x) = 1. The forbidding action is allowed for Te,u(α∗0) because we
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have identical computations for all numbers in Xe above Te,u(α∗1) and it is
allowed for Te,u(σ∗0) because the length of this node was chosen large. That
is, when we chose Te,t(σ), we had not looked at any computations above this
node and because Te,t(σ) has length greater than the [e] use for any number
in Xe, we never need to look at computations above this node when verifying
the lowness. Therefore, we are not committed to any computations above
Te,u(σ ∗ 0) at the time it is forbidden.

Finally, we might never see convergence on some number in Xe using any
node above Te,t(α ∗ 1) (and below Te,t(σ)) on the current path. In this case,
Re remains in the nontotal state forever and is won trivially because [e]A is
not total. Furthermore, we can start a different version of the Pe strategy
which guesses that Re never meets the low challenge and which picks its
own node above Te,t(σ ∗0) at which to diagonalize and its own large witness
with which to diagonalize. It gets to diagonalize immediately if it ever sees
its witness enter We. Immediate forbidding is allowed for this strategy since
the Re strategy has not looked at any computations above Te,t(σ ∗ 0).

This completes the informal description of the interaction between a single
R strategy and a single P strategy. The interaction is significantly more
complicated when multiple R strategies are involved. Before illustrating
this interaction, we describe the tree of strategies used to control the full
construction. An Re strategy η has three possible outcomes: H, L, and N .
We use the H (high) outcome whenever η finds a new high split along the
current path. All strategies extending this outcome believe that the final
[e]-state along A will be high. Each strategy µ with η∗H ⊆ µ defines a large
number pµ and does not begin to act until the tree Tη,s being built by η has
the high state along the current path up to level pµ. We use the N (nontotal)
outcome whenever η has been challenged to verify its lowness and has not
yet seen computations on all numbers in the set Xη it has been challenged
to verify. All strategies extending this outcome believe that [e]A will not be
total and hence they ignore the strategy Re when making calculations about
which action to take. We use the L (low) outcome whenever neither of the
other two applies. Strategies extending this outcome think that [e]A may
be total, but that the final [e]-state along A will be the low state. These
outcomes are ordered in terms of priority with H the highest priority and
N the lowest priority. (That is, η ∗H is to the left of η ∗ L which is to the
left of η ∗N .)

A Pe strategy η has two possible outcomes, S and W . The S outcome
is used when Pe has already been satisfied by a diagonalization. Otherwise,
we use the W outcome. The S outcome has higher priority than the W
outcome. (That is, η ∗S is to the left of η ∗W .) The action of a Pe strategy
is finitary, while the action of an Re strategy is infinitary.

Formally, the tree of strategies is defined by induction, with the empty
string λ being the only R0 strategy. If η is an Re strategy, then η ∗H, η ∗L
and η ∗N are Pe strategies. If η is a Pe strategy, then η ∗W and η ∗ S are
Re+1 strategies. To make the notation more uniform, we use [η] and Wη to
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denote [e] and We if η is an Re or Pe strategy. We let Tη,s denote the tree
build at stage s by an R strategy η. Furthermore, we use the term true path
to refer to the eventual true path through the tree of strategies. We use the
term current path to denote the current approximation As to the set A.

To illustrate the remaining features of the construction, we consider four
R strategies µi, 0 ≤ i ≤ 3 and one P strategy η. Assume that the priorities
are µ0 < µ1 < µ2 < µ3 < η, and that µ1 = µ0 ∗L, µ2 = µ1 ∗H, µ3 = µ2 ∗L,
and η = µ3∗H. We consider the action of η. During this example, we assume
that we never move to the left of these strategies in the tree of strategies
and thus these strategies are never initialized. In particular, neither µ0 nor
µ2 finds a new high split during our discussion.

Since η thinks the final state along A will be 〈L,H,L,H〉, there is no
reason for η to pick a node at which to diagonalize that does not have this
state. When η is first eligible to act, it picks a large number pη. During each
later stage at which η is eligible to act, η checks if the node Tµ3,s(α) along
the current path with |α| = pη has state 〈L,H,L,H〉. Until this occurs,
η does not pick a node at which to diagonalize or a witness with which to
diagonalize.

If η is on the true path, then eventually there will be such a node Tµ3,s(α).
At this stage, η sets αη = α and picks a large witness xη with which to
diagonalize. η begins to wait for xη to enter Wη (while keeping xη out of B)

and η defines ΓTµ3,s(αη∗0)(xη) = 0. If xη eventually enters Wη, then η begins
a verification procedure to put xη into B.

Assume xη enters Wη at stage s. η moves the current path from Tµ3,s(αη ∗
0) to Tµ3,s(αη∗1) and freezes the cone above Tµ3,s(αη∗0). η would like to put

xη into B, define ΓTµ3,s(αη∗1)(xη) = 1 and forbid the cone above Tµ3,s(αη ∗
0). There are two issues that need to be addressed before forbidding this
cone. First, because we have moved the current path, we need to perform
stretching for the sake of the strategies µ1 and µ3 which are in the high state
in order to ensure that the set A has minimal wtt-degree. This issue is easy
to address and does not stop us from immediately forbidding this cone. The
second issue is more serious. The action of forbidding this cone is fine for
µ1 and µ3 since Tµ3,s(αη) is in the high µ1 and µ3 states. However, since
Tµ3,s(αη) is in the low µ0 and µ2 states, we cannot do this forbidding before
finding identical computations (to the computations they have already seen)
for these strategies along the new current path.

We begin with the issue of redefining the trees Tµi,s by stretching. First,
we let βµ0,L and βµ2,L denote the strings such that the current path just
moved from Tµi,s(βµi,L ∗ 0) to Tµi,s(βµi,L ∗ 1) (for i = 0, 2). Second, we let
βµ1,H be the shortest string such that Tµ1,H(βµ1,H) is on the new current
path and Tµ1,s(βµ1,H) is in the low µ1 state. Hence, Tµ1,s(β

′
µ1,H

) is the

longest node on the new current path which has state 〈L,H〉. Similarly, we
define βµ3,H to be the shortest string such that Tµ3,s(βµ3,H) is on the new
current path and has state 〈L,H,L, L〉. In other words, Tµ3,s(β

′
µ3,H

) is the
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Anew

δ ∗ 1 δ ∗ 0

δ

T old
µ1 (βµ1,H) frozen

T old
µ3 (βµ3,H) Aold

Tµ3(αη ∗ 1) Tµ3(αη ∗ 0)

Tµ3(αη)

Figure 4. When we move the current path from Tµ3(αη ∗0)
to Tµ3(αη ∗ 1) for the sake of the P strategy η, we freeze the
cone above Tµ3(αη∗0) and stretch the trees Tµi , 0 ≤ i ≤ 3. In
this figure, δ is equal to T new

µ1 (βµ1,H), T new
µ2 (β), T new

µ3 (βµ3,H)
and Tµ0(σ1).

longest node on the new current path with state 〈L,H,L,H〉. Notice that
Tµ3,s(βµ3,H) ( Tµ1,s(βµ1,H). Finally, let δ be a string with long length (that
is, longer length than any number or string considered in the construction
so far) such that δ is on all of these trees and is on the new current path.

We redefine these trees by stretching. (See Figure 4. The node Tµ0(σ1) is
introduced after the definition for stretching.) For µ0, let Tµ0,s remain the

same. For µ1, let T̂µ1 = Tµ1,s and we redefine Tµ1,s. For any node α such

that α ( βµ1,H or α is incomparable with βµ1,H , let Tµ1,s(α) = T̂ (α) (and
this node retains its previous state). Redefine Tµ1,s(βµ1,s) = δ and extend
this definition trivially above here. That is, if βµ1,H ⊆ α and Tµ1,s(α) has
been defined, then set Tµ1,s(α ∗ i) = Tµ1,s(α) ∗ i (and has all low states).
Notice that the new definition of Tµ1,s(βµ1,H) extends the old definition
(since both the old value of Tµ1,s(βµ1,H) and δ are on the new current path),
so Tµ1,s(β

′
µ1,s) is still in the high µ1 state.

For µ2, let β denote the string such that Tµ2,s(β) is equal to the value of

Tµ1,s(βµ1,H) before it was redefined by stretching. We set T̂µ2 = Tµ2,s and
redefine Tµ2,s as follows. For α ( β or α incomparable with β, set Tµ1,s(α) =

T̂µ2 (that is, leave these nodes unchanged). Redefine Tµ2,s(β) = δ and extend
the definition of Tµ2,s trivially above here. For µ3, we follow essentially

the same procedure as for µ1. Set T̂µ3 = Tµ3,s. For α ( βµ3,H and α

incomparable with βµ3,H , define Tµ3,s(α) = T̂µ3(α). Redefine Tµ3,s(βµ3,H) =
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δ and extend the definition trivially above here. Notice that the new value
of Tµ3,s(βµ3,H) extends the old value of this node, so Tµ3,s(β

′
µ3,H

) still has

state 〈L,H,L,H〉.
This completes the redefinition of these trees by stretching. The impor-

tant properties to note are that each tree (except Tµ0,s) has a unique node
along the new current path that is stretched, these nodes are all stretched
to the same value (that is Tµ1,s(βµ1,H) = Tµ2,s(β) = Tµ3,s(βµ3,H) = δ) and
the longest nonstretched node on each tree retains its old state.

We turn to the issue of verifying lowness for µ0 and µ2. As with the case of
a single P strategy, we must calculate the sets Xµ0 and Xµ2 on which these
strategies need to verify computations. The set Xµ0 is calculated as before:
it contains all numbers y such that µ0 has seen [µ0] converge on y with
an oracle extending Tµ0,s(βµ0,L ∗ 0) but not with Tµ0,s(βµ0,L) as an oracle.
(Recall that βµ0,L marks the place on Tµ0,s above which the current path
just moved.) The set Xµ2 has to be calculated slightly differently by taking
into account the states of the nodes extending Tµ2,s(βµ2,L ∗ 0). Let γ be the
string such that Tµ2,s(γ) = Tµ3,s(αη). Because µ2 sees the state of Tµ2,s(γ)
as 〈L,H,L〉, when µ2 looks for a high splitting for this node, it only looks
at extensions of Tµ2,s(γ) which have high µ1 state. Therefore, we define Xµ2

to be all y such that µ2 has seen a computation on y using an oracle above
Tµ2,s(βµ2,L ∗ 0) which has high µ1 state and has not seen a computation on
y using Tµ2,s(βµ2,L) as the oracle. (Notice that the node Tµ2,s(βµ2,s) and
the tree above Tµ2,s(βµ2,L ∗ 0) are not effected by the stretching procedure.)
These are the numbers for which µ2 has to verify its lowness.

If both Xµ0 = ∅ and Xµ2 = ∅, then η has permission from all of the
R strategies µi for i = 0, 1, 2, 3 to immediately put xη into B and forbid
Tµ3,s(αη ∗ 0). (It has permission from µ1 and µ3 because Tµ3,s(αη) is high
µ1 and µ3 splitting and it has permission from µ0 and µ2 because there are
no numbers on which these strategies need to verify their lowness.) Assume
this is not the case so that some verification of lowness for either µ0 or µ2
(or both) is required. We split into the cases when Xµ2 = ∅ and when
Xµ2 6= ∅. Handling these cases requires the introduction of links into our
tree of strategies.

First, assume that Xµ2 = ∅ and Xµ0 6= ∅. In this case, η has permission
from µ1, µ2 and µ3 to forbid the cone above Tµ3,s(αη ∗ 0) and only has to
wait for µ0 to verify the computations on numbers in Xµ0 . η defines σ1 to be
the string such that Tµ0(σ1) = δ (where δ is the string used in the stretching

process as shown in Figure 4) and defines ΓTµ0,s(σ1∗0)(xη) = 0. (We need
this Γ computation to be defined since we have not yet placed xη into B
and we do not know ahead of time whether µ0 will eventually verify the
computations on numbers in Xµ0 .) η places a link from µ0 to η, challenges
µ0 to verify its lowness and passes the set Xµ0 and the string βµ0,L to µ0.
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At future stages, µ0 checks whether there are computations with oracles
above Tµ0,s(βµ0,L ∗ 1) for all the numbers in Xµ0 which agree with the com-
putations with oracles above Tµ0,s(βµ0,L∗0). Because [µ0] is a wtt procedure
and because δ was chosen to have long length, µ0 never has to look at strings
longer than Tµ0,s(σ1) = δ for these computations. If µ0 ever finds a disagree-
ing computation, it can put up a new high split, take outcome µ0 ∗H and
initialize the attempted diagonalization by η. (By our assumption for this
informal description, this situation does not occur.) If µ0 eventually finds
identical computations for all the numbers in Xµ0 , then instead of taking
outcome µ0 ∗ L, it travels the link to η. Until such a stage arrives, µ0 takes
outcome µ0 ∗N and strategies extending µ0 ∗N define their trees higher up
on Tµ0,s so that they do not interfere with any of the nodes mentioned so
far. Also, if µ0 takes outcome N at every future stage, then [µ0]

A is not
total because it diverges on at least one of the numbers in Xµ0 . Therefore,
assume that we eventually travel the link from µ0 to η.

When we travel the link from µ0 to η at stage t > s, η acts as follows. It
moves the current path from Tµ0,t(σ1 ∗ 0) to Tµ0,t(σ1 ∗ 1) (these nodes are
the same as they were at the end of stage s since all the action of strategies
extending µ0 ∗ N takes place with longer nodes), it forbids the cone above
Tµ0,s(αη ∗ 0) (since η has µ0 permission to forbid this cone and it previously
had permission from µi for 1 ≤ i ≤ 3), it forbids the cone above Tµ0,t(σ1 ∗0)
(which is allowed by µ0 since µ0 did not need to look in this cone to verify
its computations on numbers in Xµ0 and is allowed by µi for 1 ≤ i ≤ 3 since
Tµ0,s(σ1) = δ was defined to have long length and only strategies extending
µ0 ∗ N have been eligible to act between stages s and t, so none of the
strategies µi for 0 ≤ i ≤ 3 have looked at any computations in this cone)
and it puts xη into B. Because the only computations of the form Γγ(xη) = 0
are γ = Tµ3,t(αη ∗ 0) = Tµ3,s(αη ∗ 0) and γ = Tµ0,t(σ1 ∗ 0) = Tµ0,s(σ1 ∗ 0), we
have forbidden all strings which define a Γ computation on xη to be = 0. η
picks a large number k (larger than any number or length of string used in
the construction so far) and defines Γγ(xη) = 1 for all strings γ of length k
which do not extend Tµ3,s(αη ∗ 0) or Tµ0,s(σ0 ∗ 0). Therefore, ΓA(xη) = 1
and η has won its requirement.

Next, we consider the case when Xµ2 6= ∅. In this case, at stage s, η
defines σ1 to be the string such that Tµ2,s(σ1) = δ (where δ is the string
used in the stretching process at stage s as shown in Figure 4) and defines

ΓTµ2,s(σ1∗0)(xη) = 0. η places the link from µ2 to η. We challenge µ0 and
µ2 to verify their lowness (and pass them the strings βµ0,L and βµ2,L and
the sets Xµ0 and Xµ2 respectively). We challenge µ1 to verify its highness
and define xµ1 = xη. The meaning and purpose of this high challenge is
explained below. Since µ1 is an R strategy, it does not keep a value xµ1 for
the purposes of diagonalization. However, as we shall see, µ1 may need to
take over the Γ definition of xη temporarily and hence it needs to retain this
value as a parameter.
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Consider how the construction proceeds after stage s. Until µ0 verifies its
lowness, it takes outcome µ0 ∗N and the strategies extending µ0 ∗N work
higher on the trees and do not effect the nodes defined above. Assume that
µ0 eventually meets its low challenge at stage s0 > s.

At s0, µ0 takes outcome µ0 ∗L and µ1 becomes eligible to act for the first
time since stage s. µ1 needs to verify that Tµ1,s0(βµ1,H) should be in the
high [µ1] state. (Because strategies containing µ0 ∗ N work higher on the
trees, we have Tµ1,s0(βµ1,H) = Tµ1,s(βµ1,H), Tµ1,s0(βµ1,H ∗i) = Tµ1,s(βµ1,H ∗i)
for i = 0, 1 and the current path still goes through Tµ1,s0(βµ1,H ∗ 0). For
the rest of this informal explanation, we take it for granted that strategies
to the right of the µi or η strategies do not cause any of the named nodes
defined by these strategies to change and do not cause the current path to
move below any of these nodes.)

The point of verifying that Tµ1,s0(βµ1,H) is in the high µ1 state is that µ2
eventually needs to verify that it is in the low state by finding computations
for each number in Xµ2 using oracles along the current path which are in
the high µ1 state. The length of Tµ1,s0(βµ1,H) was stretched at stage s, so
it has length longer that the [µ2] use of any number in Xµ2 . But, we need
this node to be in the high µ1 state in order to use it as a potential oracle
for these [µ2] computations on Xµ2 .
µ1 begins to look for a high splitting for Tµ1,s0(βµ1,H). Because

Tµ1,s0(β′µ0,H) is already high µ1 splitting, Tµ1,s0(βµ1,H) is the first node on
the current path which is not high µ1 splitting. Until µ1 finds a potential
high split for this node, it takes outcome µ1 ∗ L.

Suppose µ1 eventually finds a pair of strings τ0 and τ1 which could give
a high splitting for Tµ1,s0(βµ1,H) with either τ0 or τ1 on the current path.
(Recall that we only look for new splittings for which half of the splitting
lies on the current path. If τ0 and τ1 have this property, then either one
or both satisfy Tµ1,s0(βµ1,H ∗ 0) ⊆ τi since this node remains on the current
path.) Consider the action that η eventually wants to take if this entire
verification procedure stated by η comes to a conclusion. η wants to move
the current path from the node Tµ2,s(σ1 ∗ 0) = Tµ1,s0(βµ1,H ∗ 0) to the node
Tµ2,s(σ1 ∗1) = Tµ1,s0(βµ1,H ∗1) and forbid the cone above Tµ2,s(σ1 ∗0) before

enumerating xη into B (because we are committed to ΓTµ2,s(σ1∗0)(xη) = 0).
Therefore, if we define a new high splitting for Tµ1,s0(βµ1,H) at stage s1 > s0,
we want the values of Tµ1,s1(βµ1,H ∗ i) to satisfy the condition

Tµ1,s0(βµ1,H ∗ i) ⊆ Tµ1,s1(βµ1,H ∗ i)

for i = 0, 1. If the potential splitting pair τ0 and τ1 satisfies this condition,
then we use them to make Tµ1,s1(βµ1,H) high splitting and take outcome
µ1 ∗H. In this case, we say that µ1 has met its high challenge.

However, it may not be the case that τ0 and τ1 satisfy this condition. It
is possible that when we find these nodes τ0 and τ1 at stage s1 > s0, both
nodes extend Tµ1,s0(βµ1,H ∗ 0). In this case, we want to press µ1 to find
an appropriate half for the high splitting which extends Tµ1,s1(βµ1,H ∗ 1) =
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Figure 5. This figure represents our actions at stage s1
when µ1 finds a potential high split using nodes τ0 and τ1
extending Tµ1(βµ1,H ∗ 0). For ease of notation, we have used
β in place of βµ1,H .

Tµ1,s0(βµ1,H ∗1) = Tµ2,s(σ1∗1). Because we have two different computations
using oracles extending Tµ1,s1(βµ1,H ∗ 0) = Tµ1,s0(βµ1,H ∗ 0), this pressing
amounts to forcing µ1 to find any oracle extending Tµ1,s1(βµ1,H ∗ 1) which
gives a convergent computation with the splitting witness wµ1 for the µ1
splitting strings τ0 and τ1. (The splitting witness wµ1 is the number on
which the [µ1] computations using oracles τ0 and τ1 differ.) If µ1 finds such
a computation using a node extending Tµ1,s0(βµ1,H ∗ 1), then it can use this
node together with one of τ0 or τ1 to get a high splitting for Tµ1,s1(βµ1,H)
which has the required property above.

To accomplish this goal, µ1 moves the current path from Tµ1,s1(βµ1,H ∗ 0)
to Tµ1,s1(βµ1,H ∗ 1) and freezes the cone above Tµ1,s1(βµ1,H ∗ 0). (See Figure
5.) Because µ1 has moved the current path, it redefines the trees Tµ0,s1
and Tµ1,s1 by stretching. As before, we set βµ0,L to be the string such
that the current path just moved from Tµ0,s1(βµ0,L ∗ 0) to Tµ0,s1(βµ0,L ∗ 1).
Because µ0 ∗ L ⊆ µ1, the tree Tµ0,s1 remains the same. To redefine Tµ1,s1 ,

set T̂µ1 = Tµ1,s. For α such that α ( βµ1,H ∗ 1 or α is incomparable with

βµ1,H ∗ 1, define Tµ1,s1(α) = T̂µ1(α) (that is, leave these nodes unchanged).
Redefine Tµ1,s(βµ1,H ∗1) to have long length and lie on the new current path
(and hence the new definition of Tµ1,s1(βµ1,H ∗1) extends the old definition).
Extend the definition of Tµ1,s1 trivially above this node.
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Between the time µ0 met its original low challenge at stage s0 and the
stage s1 at which µ1 finds the potential high split, µ0 may have looked at
computations involving oracles above Tµ1,s1(βµ1,H ∗ 0). Because we may or
may not ever unfreeze the cone above this node, µ0 needs to verify these
computations along the new current path. Therefore, µ1 issues a low chal-
lenge to µ0 to verify the computations it has seen in this frozen cone.
µ1 defines the set Xµ0 of numbers on which µ0 has seen computations

using oracles extending Tµ0,s1(βµ0,L ∗ 0) but not using Tµ0,s1(βµ0,L) as an
oracle. It passes this set Xµ0 and the string βµ0,L to µ0 and challenges µ0 to
verify its lowness on these numbers. Furthermore, because µ1 has moved the
current path away from the node Tµ1,s1(βµ1,H ∗ 0) = Tµ2,s(σ1 ∗ 0) which was
used by η in the Γ definition on xη, µ1 needs to take over the Γ definition
of xη. When µ1 was challenged to verify its highness, we set xµ1 = xη, so

µ1 defines ΓTµ1,s1 (βµ1,H∗1∗0)(xµ1) = 0. Once it makes this definition, µ1 ends
the stage. However, we do not want to allow µ1 to initialize η, so µ1 only
initializes the strategies of lower priority than µ1 ∗ L, including µ1 ∗ L.

Consider how the construction proceeds from here. Assume that µ0 even-
tually meets the low challenge issued by µ1 and takes outcome µ0 ∗ L so
that µ1 is later eligible to act again. Because the length of Tµ1,s1(βµ1,H ∗ 1)
was stretched when µ1 redefined the trees at stage s1, it has length longer
than the use of the wtt computation [µ1] on the splitting witness wµ1 for
τ0 and τ1. Therefore, once µ1 is eligible to act again, it checks if the [µ1]
computation on wµ1 with oracle Tµ1,s1(βµ1,H ∗ 1) converges. Until it sees
this convergence, it takes outcome µ1 ∗N .

If this computation never converges, then [µ1]
A will not be total. There-

fore, assume that this computation does eventually converge at stage s2 >
s1. In this case, µ1 wants to use the node Tµ1,s2(βµ1,H ∗ 1) and either τ0 or
τ1 to make Tµ1,s2(βµ1,H) high µ1 splitting. To do this, it needs to unfreeze
the cone above Tµ1,s1(βµ1,H ∗0) that was frozen at stage s1 and it will let the
current path return to passing through Tµ1,s1(βµ1,H ∗ 0). However, when we
perform this action, we don’t want to leave the extra xµ1 = xη computation

ΓTµ1,s2 (βµ1,H∗1∗0)(xµ1) = 0 unforbidden because it could cause us problems
if η eventually enumerates xη into B. Therefore, before moving the current
path back to Tµ1,s1(βµ1,H ∗ 0), µ1 begins a verification procedure to forbid
the cone above Tµ1,s2(βµ1,H ∗ 1 ∗ 0).
µ1 acts as though it were a P strategy with only one low R strategy of

higher priority. (See Figure 6.) That is, it moves the current path from
Tµ1,s2(βµ1,H ∗ 1 ∗ 0) to Tµ1,s2(βµ1,H ∗ 1 ∗ 1). µ1 redefines Tµ0,s2 and Tµ1,s2
by stretching essentially as before: it defines βµ0,L and Xµ0 , leaves Tµ0,s2
the same and stretches Tµ1,s2(βµ1,H ∗ 1 ∗ 1) to have long length. µ1 cal-
culates the set Xµ0 of numbers which µ0 has seen converge with an ora-
cle above Tµ0,s2(βµ0,L ∗ 0) but not with Tµ0,s2(βµ0,L) as oracle. It defines

ΓTµ1,s2 (βµ1,H∗1∗1∗0)(xµ1) = 0 and issues a low challenge to µ0 with βµ0,L and
Xµ0 . Because Tµ1,s2(βµ1,H ∗ 1 ∗ 1) is redefined to have long length, µ0 does
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Figure 6. This figure represents our action at stage s2 when
µ1 begins the process to forbid the cone above Tµ1(βµ1,H∗1∗0)
to eliminate the Γ definition using this node as the oracle. For
ease of notation, we have used β in place of βµ1,H .

not need to look above this node for any computations on the numbers in
Xµ0 . Therefore, if this low challenge is met at s3 > s2, µ1 forbids the cone
above Tµ1,s2(βµ1,H ∗ 1 ∗ 0) (since µ0 has verified the computations that used
oracles above this node), forbids the cone above Tµ1,s2(βµ1,H ∗1∗1∗0) (since
µ0 did not look at any computations above this cone), unfreezes the cone
above Tµ1,s3(βµ1,H ∗0) and uses Tµ1,s3(βµ1,H ∗1) together with either τ0 or τ1
to make Tµ1,s3(βµ1,H) have high µ1 state. The current path As3 also returns
to passing through Tµ1,s3(βµ1,H ∗ 0) now that this node is unfrozen. (See
Figure 7.) µ1 has met its high challenge and takes outcome µ1 ∗H.

It might seem that there are too many µ0 low challenges by µ1. However,
the first µ0 low challenge issued by µ1 at stage s1 is because we cannot know
whether µ1 will ever see [µ1] converge on wµ1 with oracle Tµ1,s2(βµ1,H ∗ 1).
If this computation never converges, then the cone above Tµ1,s2(βµ1,H ∗0) in
never unfrozen and so is essentially forbidden despite never being officially
forbidden. Therefore, the first µ0 low challenge by µ1 at stage s1 is to
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Figure 7. This figure represents the situation at stage s3
when µ1 returns the current path to Tµ1(βµ1,H ∗0) and meets
its high challenge by putting Tµ1(βµ1,H) into the high µ1
state. For ease of notation, we have used β in place of βµ1,H .

account for this possibility. The second µ0 low challenge issued by µ1 at s2
is to allow the cone above Tµ1,s2(βµ1,H ∗ 1 ∗ 0) to be forbidden to remove the
potentially damaging Γ computation on xµ1 using this oracle.

Summing up the action for µ1 which is challenged high, µ1 meets its high
challenge (in one of the two ways described above) by eventually finding a
high splitting for Tµ1,s0(βµ1,H) = Tµ1,s1(βµ1,H) at some stage s3 ≥ s1 such
that Tµ1,s0(βµ1,H ∗ i) ⊆ Tµ1,s3(βµ1,H ∗ i) for i = 0, 1. If it fails to find such
a splitting, then it is either because µ0 failed to meet some low challenge
(in which case either we win the µ0 requirement because [µ0]

A is not total
or else µ0 finds a high split, takes outsome µ0 ∗ H and initializes µ1) or
because µ1 failed to find an appropriate “second half” to a potential high
split (in which case we win µ1 because [µ1]

A is not total). Furthermore,
the current path at stage s3 goes through Tµ1,s3(βµ1,H ∗ 0) and the compu-

tations ΓTµ3,s(αη∗0)(xη) = 0 (defined by η when it originally chose xη) and
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ΓTµ1,s(βµ1,H∗0)(xη) = ΓTµ2,s(σ1∗0)(xη) = 0 (defined by η at stage s when it
started the verification procedure to put xη into B) are the only Γ com-
putations on xη which are not forbidden at stage s3. Finally, the node
Tµ1,s3(βµ1,H) = Tµ1,s(βµ1,H) has not changed since being stretched by η at
stage s when η began its diagonalization process and is now in the high µ1
state.

At stage s3, µ2 is eligible to act for the first time since stage s. µ2 begins
to verify its lowness as challenged by η at stage s. The current path still runs
through Tµ3,s(αη ∗ 1) (where it was moved at stage s) through Tµ1,s3(βµ1,H)
and Tµ1,s3(βµ1,H ∗ 0). (Of course, µ3 has not been eligible to act since
stage s.) We now have permission from µ0, µ1 and µ3 to forbid the cone
above Tµ3,s(αη ∗ 0) and only need to obtain µ2 permission by verifying its
computations on the numbers in Xµ2 along the current path using oracles
in the high µ1 state (since Tµ3,s(αη) was already in the high µ1 state at
stage s). Because the length of Tµ1,s(βµ1,H) = Tµ1,s3(βµ1,H) was stretched
at stage s when Xµ2 was defined by η and because this node is now in the
high µ1 state, µ2 does not need to look at any computations using oracles
which extend this node. Furthermore, at stage s, η defined σ1 so that
Tµ2,s(σ1) = Tµ1,s(βµ1,H). Therefore Tµ2,s3(σ1) = Tµ2,s(σ1) and µ2 does not
need to look at any computations using oracles above Tµ2,s3(σ1).

Until µ2 sees the correct computations on these numbers using an oracle
along the current path, it takes outcome µ2 ∗ N . If there is a number in
Xµ2 for which µ2 never sees a correct computation, then [µ2]

A is not total
and we win requirement µ2. If there is a number in Xµ2 for which µ2 sees
a computation which does not agree with the computation along the old
current path that ran through Tµ3,s(αη∗0), then µ2 can use this computation
to define a new µ2 high splitting, take outcome µ2 ∗ H and initialize η.
Therefore, assume that µ2 eventually verifies these computations at a stage
s4 > s3.

In this case, µ2 follows the link to η. η now has permission from µi,
0 ≤ i ≤ 3 to forbid the cone above Tµ3,s(αη ∗ 0). However, before placing xη
in B, η also needs to worry about the computation ΓTµ2,s(σ1∗0)(xη) = 0 that
it defined at stage s after moving the current path. Therefore, µ2 moves
the current path from Tµ2,s4(σ1 ∗ 0) = Tµ1,s4(βµ1,H ∗ 0) to Tµ2,s4(σ1 ∗ 1) =
Tµ1,s4(βµ1,H ∗ 1), redefines Tµi,s4 for 0 ≤ i ≤ 2 by stretching and freezes the
cone above Tµ2,s4(σ1 ∗ 0).

Because Tµ1,s4(βµ1,H) is already in the high [µ1] state, η has permission
from µ1 to forbid the cone above Tµ2,s4(σ1 ∗0). Because we have not consid-
ered µ3 since stage s when η originally began its diagonalization procedure,
µ3 has not seen any computations in this cone and hence η has permission
from µ3 to forbid this cone. Because Tµ2,s4(σ1) = Tµ2,s3(σ1) = Tµ2,s(σ1), µ2
did not look at any computations in the cone above Tµ,s4(σ1 ∗ 0) when it
verified its computations on Xµ2 and hence has seen no computations in this
cone. Therefore, η has permission from µ2 to forbid this cone. However, µ0
may have seen computations using oracles in the cone above Tµ2,s4(σ1 ∗ 0)
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between stage s0 when µ0 verified its lowness and stage s4. Therefore, η still
needs µ0 permission to forbid this cone.

To obtain this permission, η defines βµ0,L to be the string such that the
current path moves from Tµ0,s4(βµ0,L ∗0) to Tµ0,s4(βµ0,L ∗1) and defines Xµ0

to be the set of all numbers y such that µ0 has seen a computation on y
using an oracle extending Tµ0,s4(βµ0,L ∗0) but not using oracle Tµ0,s4(βµ0,L).
η issues a low challenge to µ0 with Xµ0 . The action proceeds just as in the
case when Xµ0 6= ∅ and Xµ2 = ∅. That is, η sets up another Γ definition on
xη using a long string on Tµ0,s4 , places a link from µ0 to η and waits for µ0
to verify its lowness. When this occurs, η has the last remaining permission
to forbid the cone above Tµ2,s4(σ1 ∗ 0) and it has the permission to forbid
the new Γ computation on xη since µ0 does not need to look above this large
node to verify its computations and none of µi for 1 ≤ i ≤ 3 is eligible to
act and to look at any computations in this cone while µ0 is verifying its
lowness. Therefore, when µ0 verifies its lowness, η can safely place xη into
B, forbid the remaining Γ computations on xη (including Tµ3,s(αη ∗0)), pick
a large number k and define Γγ(xη) = 1 for all strings γ of length k which
are not forbidden. After performing this action, η has won its requirement.

5. Formal construction for Theorem 1.1

Before giving the formal construction, we list some notational conventions.
We use the letters η, ν and µ to refer to R and P strategies and we use α, β,
γ, δ, σ and τ to denote finite binary strings. λ denotes the empty string and
for any nonempty string α, α′ denotes the string formed by removing the
last element of α. For uniformity of presentation, we regard λ′′ as a special
symbol distinct from λ and set Tλ′′,s to be an identity tree for all s.

In the tree of strategies, an Re strategy η has successors η ∗H, η ∗L and
η ∗ N ordered left to right by η ∗ H <L η ∗ L <L η ∗ N . A Pe strategy µ
has successors µ ∗ S and µ ∗W ordered left to right by µ ∗ S <L µ ∗W . If
µ is a Pe strategy, then µ′ is an Re−1 strategy and µ will attempt to do its
diagonalization on the tree Tµ′,s built by µ′. If η is an Re strategy, then η′′

is an Re−1 strategy and η will attempt to build its tree Tη,s as a subtree of
the tree Tη′′,s built by η′′. Because we use the extra symbol λ′′ and assume
that Tλ′′,s is the identity tree for all s, we can treat the highest priority R
strategy λ as any other strategy.

The current path Aη,s at stage s is defined by induction on the sequence
of strategies η which are eligible to act at stage s. When η begins its action
at stage s, it uses the current path Aη′,s and it may move this path during its
action. Aη,s denotes the current path at the end of η’s action. (Typically,
the current path is the rightmost path through Tη,s which does not pass
through any frozen or forbidden nodes.)

Each Re requirement η keeps several pieces of information. Gη ∈
{H,L,N}e represents η’s fixed guess at the final (e − 1) state along A in
Tη,s. For each i < e there is a unique Ri strategy µ ⊆ η. Gη(i) ∈ {H,L,N}
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is defined such that µ ∗ Gη(i) ⊆ η. Typically, if η is eligible to act at
stage s, η defines a tree Tη,s. Each node Tη,s(α) is assigned an e-state
U(Tη,s(α)) ∈ {H,L}e+1 (called the η state of Tη,s(α)) which is defined by
induction as in a standard full approximation argument. The η′′ state of a
node Tη,s(α) is defined to be the (e − 1) state of Tη′′,s(γ) where γ is such
that Tη′′,s(γ) = Tη,s(α). We make some technical comments below on com-
paring e-states of the form U(Tη,s(α)) (which cannot contain the letter N)
and e-states of the form Gν (which can contain the letter N).

We will abuse terminology by using the phrase “the η state of Tη,s(α)”
to refer to the η state as defined above (for example when comparing the η
state to Gµ for some µ extending η) and to refer to whether or not Tη,s(α)
is η high splitting (for example when saying that Tη,s(α) has the high or low
η state). It will be clear from context which of these meanings is intended.
pη ∈ N is the level on the η′′ tree at which we start building Tη. That is,

we wait for a string α such that |α| = pη, U(Tη′′,s(α)) = Gη (ignoring for
the moment the fact that Gη may contain the letter N), and Tη′′,s(α) is on
the current path. When we find such a string, we set αη = α and begin to
define Tη,s by setting Tη,s(λ) = Tη′′,s(αη).

If η is challenged low, then it is given a finite set Xη of numbers on which
it is waiting for convergence and a string βη,L such that it is looking for
convergence above either Tη,s(βη,L ∗ 0) or Tη,s(βη,L ∗ 1) depending on which
strategy challenged η to verify its lowness.

If η is challenged high, then η is given a string βη,H and a number xη. The
string βη,H determines the node Tη,s(βη,H) which η needs to verify is high
splitting and the number xη is the number on which η may need to define
Γ computations higher on the tree if it has to move the current path while
verifying its highness. In addition, η may define a number wη on which the
[η] computations disagree for potential splitting strings τ0 and τ1 while it
attempts to find an appropriate string τ2 so that the two halves of the new
high split will extend Tη,s(βη,H ∗ 0) and Tη,s(βη,H ∗ 1).

Each Pe requirement η also keeps several pieces of information. Gη is
η’s fixed guess at the final e-state and it is defined as in the Re case. η
defines a number pη and a string αη as in the Re case and attempts to do
its diagonalization at the node Tη′,s(αη). η also choses a large witness xη
with which it attempts to diagonalize.

During the construction, strategies may freeze or forbid certain nodes. We
use the term active to refer to a node which is neither frozen nor forbidden
and the term inactive to refer to a node that is either frozen or forbidden. We
adopt the following conventions concerning inactive nodes. If α is declared
frozen or forbidden, then so are all extensions of α. If α ∗ 0 and α ∗ 1 are
both inactive, then so is α. We never search for splits in the part of the tree
which is inactive. After the construction, we verify that the current path is
always infinite.

Before giving our methods for defining trees, we make one comment on
comparing e-state strings. If η is an Re strategy, then the e-state for a
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node Tη,s(α) is denoted U(Tη,s(α)) and is a string τ ∈ {H,L}e+1. If τ =
U(Tη,s(α)) and a lower priority strategy µ is comparing τ and Gµ, then
for all i such that Gµ(i) = N , µ treats τ as though τ(i) = N . That is,
µ is guessing that the Ri strategy of higher priority is not total and hence
has no interest in the i component of any e-state string. In other words,
when comparing e-state strings, µ ignores the entries for which µ is guessing
nontotality. Although we continue to use the standard notations =, <, and
> for comparing e-state strings, they always have this addition meaning in
the context of a strategy µ.

We also need to clarify the definition for a number to be large or a string
to be long. During this construction, each tree Tη,s which is defined is at
stage s is a total function from 2<ω to 2<ω. Therefore, in some sense we use
all the elements of ω at each stage s! However, when we define a number to
be large, we want to say that it is larger than any number we have looked
at in a meaningful way in the construction. One way to do this is say to
limit our trees Tη,s to being finite functions from strings of length ≤ s to
2<ω. However, it seems more natural to view the trees as total functions.
Therefore, we define a number n to be large to mean that n is larger than
any parameter defined so far in the construction and larger than any string
used as an oracle in any computation looked at so far in the construction.
We say that a string is long if its length is large.

We have three basic ways of defining the tree Tη,s from Tη′′,s. In all
cases, η will already have defined its parameters pη and αη. First, we define
Tη,s trivially from Tη′′,s as follows. Let Tη,s(λ) = Tη′′,s(αη) and continue
by induction. Assume that Tη,s(β) = Tη′′,s(γ) has been defined. If there
is a most recent stage t < s at which η defined Tη,t and η has not been
initialized since t, then we attempt to keep Tη,s the same as it was at stage
t. If Tη,s(β) = Tη,t(β) and for i ∈ {0, 1}, Tη,t(β ∗ i) is still on Tη′′,s, then
set Tη,s(β ∗ i) = Tη,t(β ∗ i) and U(Tη,s(β)) = U(Tη,t(β)). If any of those
conditions fails or there is not such stage t, then set Tη,s(β ∗ i) = Tη′′,s(γ ∗ i)
and U(Tη,s(β)) = U(Tη′′,s(γ)) ∗ L.

We sometimes define a subtree of Tη,s trivially by following the same
algorithm above an already defined node. If Tη,s(β) has already been defined,
then defining Tη,s trivially above Tη,s(β) means to use the above algorithm
to define Tη,s(δ) for all β ⊂ δ.

Second, we may define Tη,s by searching for active splittings on Tη′′,s.
Set Tη,s(λ) = Tη′′,s(αη) and proceed by induction. Assume that Tη,s(β) =
Tη′′,s(γ) has been defined.

If Tη,s(β) ⊆ Aη′,s and has η′′ state Gη, then we look for an appropriate
splitting extension with half of the split lying on Aη′,s. Check for active
nodes τ0 and τ1 on Tη′′,s such that

(1) |τ0|, |τ1| ≤ s with τ0 to the right of τ1,
(2) Tη′′,s(γ) ⊆ τ0, τ1,
(3) either τ0 ⊆ Aη′,s or τ1 ⊆ Aη′,s,
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(4) U(τ0) = U(τ1) = Gη, and
(5) there is an x ≤ s such that [η]τ0s (x) ↓6= [η]τ1s (x) ↓.

If there exist such sequences, then take the first such pair found, set Tη,s(β ∗
i) = τi and set U(Tη,s(β)) = Gη ∗ H. (We assume that once η has chosen
such a pair, it continues to chose the same pair at future stages as long as the
pair remains on Tη′′ .) In all other cases, define Tη,s trivially above Tη,s(β).

Third, a strategy η may redefine trees Tµ,s for R strategies µ ( η by
stretching. η could be an R or a P strategy, but in either case, η will have
just moved the current path. Let δ be a string of long length such that
Tλ′′,s(δ) is on the new current path. (Recall that Tλ′′,s is the identity tree,
so Tλ′′,s(δ) = δ.) In particular, because δ is chosen large, this node is on all
of the trees Tν,s for R strategies ν ⊆ η and this node is in the low ν state for
all such ν. Furthermore, the current path goes through Tλ′′,s(δ ∗ 0) = δ ∗ 0.

For each R strategy µ such that µ ∗ L ⊆ η or µ ∗N ⊆ η, let βµ,L be the
string such that η moved the current path from Tµ,s(βµ,L∗0) to Tµ,s(βµ,L∗1)
or from Tµ,t(βµ,L ∗ 1) to Tµ,t(βµ,L ∗ 0). The procedure for redefining trees by
stretching splits into two cases.

The first case is when there are no R strategies µ such that µ ∗H ⊆ η. In
this case, each tree Tµ,s remains the same and the stretching procedure has
no effect. (The point in that since there are no high splitting nodes, we do
not need the stretching procedure to help us define a wtt computation of the
form A ≤wtt [µ]A for any of these strategies µ at the end of the construction.
Therefore, the stretching will not be necessary in this case.)

The second case is when there is at least one R strategy µ such that
µ ∗ H ⊆ η. Let µ0 ⊆ µ1 ⊆ · · · ⊆ µk ⊆ η be the R strategies such that
µj ∗ H ⊆ η. Let βµj ,H be the longest string such that Tµj ,s(βµj ,H) is on
the new current path and U(Tµj ,s(β

′
µj ,H

)) = Gµj ∗ H. That is, Tµj (βµj ,H)

is the first node on the new current path with state Gµj ∗ L. Because
U(Tµj ,s(βµj ,H)) = Gµj ∗ L, we have

Tµk,s(βµk,H) ⊆ Tµk−1,s(βµk−1,H) ⊆ · · · ⊆ Tµ0,s(βµ0,H) ⊆ δ.

We want to redefine the trees Tν,s for R strategies ν ( η such that the node
Tµj ,s(βµj ,H) is stretched to have value Tλ′′,s(δ). The redefinition of Tν,s splits
into three subcases.

First, if ν ( µ0, then Tν,s remains the same. Second, if ν = µj , the let

T̂µj = Tµj ,s and we redefine Tµj ,s as follows. For all α such that α ( βµj ,H or

α is incomparable with βµj ,H , set Tµj ,s(α) = T̂µj (α) and let U(Tµj ,s(α)) =

U(T̂µj (α)). Define Tµj ,s(βµj ,H) = Tλ′′,s(δ) and U(Tµj ,s(βµj ,H)) = all low

states. Continue the definition of Tµj ,s trivially from T̂µj above Tµj ,s(βµj , H).
Notice that Tµj ,s(βµj ,H ∗ 0) = δ ∗ 0 and so the current path runs through
this node.

The third subcase is quite similar to the second subcase with a slight
change in notation. If none of the first two subcases applies, let j ≤ k be the
greatest number such that µj ⊆ ν. Set T̂ν = Tν,s and let β be the string such
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that T̂ν(β) = the value of Tµj ,s(βµj ,H) before it was redefined by stretching.

For all α such that α ( β or α is incomparable with β, set Tν,s(α) = T̂ν(α)

and U(Tν,s(α)) = U(T̂ν(α)). Define Tν,s(β) = Tλ′′,s(δ) and U(Tν,s(β)) =

all low states. Continue the of Tν,s trivially from T̂ν above this node. This
completes the definition of redefining trees by stretching.

The construction proceeds in stages with the action at each stage s di-
rected by the tree of strategies. At stage 0, we begin with the current path
A0 = Aλ′,0 = ∅ and let λ be eligible to act. At the beginning of stage s > 0,
we define the current path As and Aλ′,s so that As = Aλ′,s = Aν,s−1 where
ν is the last strategy which was eligible to act at stage s − 1. We let λ be
eligible to act to start stage s. When a strategy η acts at stage s, it may
move the current path by explicitly defining Aη,s from Aη′,s. If it does not
explicitly define a new current path, then Aη,s = Aη′,s. (That is, the current
path does not change.) Similarly, any parameters not explicitly redefined or
canceled by initialization are assumed to retain their previous values. We
proceed according to the action of the strategies until a strategy explicitly
ends the stage. When a strategy η ends a stage, it will either initialize all
lower priority strategies or it will initialize all strategies of lower priority
than η ∗L (including η ∗L). When a strategy is initialized, all of its param-
eters are canceled and become undefined. If the strategy η is eligible to act
at stage s, then s is called an η stage.

We need to clarify the definition of the functional Γ. We make new
definitions for Γ at the end of each stage s after we have initialized the
appropriate strategies. For each x ≤ s such that x is not currently equal to
xη for some P strategy η and such that x 6∈ Bs, set Γ∅(x) = 0. If x = xη for
for some P strategy η, then the construction takes care of the definition of
Γ on x.
Action for a P strategy η:

Case 1. η has not acted before or has been initialized since last action.
Define pη large, end the stage and initialize all lower priority strategies.

Case 2. pη is defined but αη is not defined. Let α be the unique string
such that |α| = pη and Tη′,s(α) ⊆ Aη′,s. Check if U(Tη′,s(α)) = Gη. If not,
then end the stage now and initialize the lower priority strategies. If so,

define αη = α, define xη to be large and set ΓTη′,s(αη∗0)(xη) = 0. End the
stage now and initialize all lower priority strategies. (After the construction
we verify that Tη′,s(αη ∗0) ⊆ Aη′,s = Aη,s and that this node remains on the
current path at future η stages unless η is initialized or η moves the current
path in the verification procedure called in Case 3 below.)

Case 3. αη and xη are defined. Check if xη ∈ Wη. If not, then let η ∗W
be eligible to act. If so, begin a verification procedure with σ0 = αη. (The
verification procedure is described after the description of the action for an
R strategy.) At each subsequent η stage until the verification procedure
concludes, the verification procedure will end the stage and initialize the
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lower priority strategies. (If η is on the true path, then the action of the
verification procedure will be finitary.)

Case 4. The verification procedure called in Case 3 ends at this stage.
Forbid all cones that were η frozen by the verification procedure. Put xη
into B. Let n be a large number. For all strings γ of length n which are not
η forbidden, define Γγ(xη) = 1. Declare η satisfied and take outcome η ∗ S.
At future η stages, take outcome η ∗ S.

Action for an R strategy η:
Case 1. η has not acted before or has been initialized since the last time it

acted. In this case, define pη large, end the stage and initialize all strategies
of lower priority.

Case 2. η has defined pη but not αη. Let α be the unique string such
that |α| = pη and Tη′′,s(α) ⊆ Aη′,s. If U(Tη′′,s(α)) = Gη then define αη = α.
Otherwise, leave αη undefined. In either case, end the stage and initialize
all lower priority strategies.

Case 3. αη is defined and η is not challenged. Define Tη,s by setting
Tη,s(λ) = Tη′′,s(αη) and searching for active splittings. If η finds a new high
splitting along the current path, then let η ∗H act. Else, let η ∗ L act.

Case 4. η was challenged high at stage t < s. At stage t, η was
given a number xη and a string βη,H such that U(Tη,t(β

′
η,H)) = Gη ∗ H

and Tη,t(βη,H) was stretched at the end of stage t (and hence has all low
states at the end of stage t). Let γ denote the string such that at stage
t we had Tη,t(βη,H) = Tη′′,t(γ). After the construction, we verify the fol-
lowing properties. Tη′′,s(γ) = Tη′′,t(γ) = Tη,t(βη,H), U(Tη′′,s(γ)) = Gη and
Tη′′,s(γ ∗ 0) ⊆ Aη′,s. At each η stage u such that t < u < s, Tη,u was defined
trivially from Tη′′,u. If u < v are η stages such that t < u < v < s, then
Tη,t(βη,H) = Tη,u(βη,H) = Tη,v(βη,H) and for i ∈ {0, 1}, Tη,t(βη,H ∗ i) ⊆
Tη,u(βη,H ∗ i) = Tη,v(βη,H ∗ i). Because η was defined trivially at any such
stage u, we also have that Tη,u(βη,H ∗ i) = Tη′′,u(γ ∗ i). Finally, when η was

challenged high, the challenging strategy defined ΓTη,t(βη,H∗0)(xη) = 0.
This case splits into the two subcases below. It is possible that η has also

been challenged low at some stage after t and before the current stage. If
this has occured, then η must be in Subcase A.

Subcase A: η has not yet found a potential high splitting for Tη,t(βη,H).
Check if there are active strings τ0 and τ1 on Tη′′,s (with τ0 to the right
of τ1) such that Tη,s(γ) = Tη,t(βη,H) ⊆ τ0, τ1, U(τ0) = U(τ1) = Gη,
∃wη([η]τ0s (wη) ↓6= [η]τ1s (wη) ↓) and either τ0 ⊆ Aη′,s or τ1 ⊆ Aη′,s. If not
and η is also low challenged, proceed to Case 5 below. If not and η is not
low challenged, then define Tη,s trivially from Tη′′,s and take outcome η ∗L.
η remains high challenged. If there are such strings τ0 and τ1, then fix τ0,
τ1 and wη, and consider the following two subcases of Subcase A. (Because
the current path goes through Tη′′,s(γ ∗ 0) and Tη,t(βη,H ∗ 0) ⊆ Tη′′,s(γ ∗ 0),
we have that either Tη,t(βη,H ∗ i) ⊆ τi for i = 0, 1 or Tη,t(βη,H ∗ 0) ⊆ τ0, τ1.
Therefore, the two cases below suffice.)
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Subcase A(i): τ0 and τ1 satisfy Tη,t(βη,H ∗ i) ⊆ τi. Define Tη,s from Tη′′,s
by searching for splittings, using τ0 and τ1 as the successors of Tη,s(βη,H).
η is no longer challenged high and η ∗H is the next strategy eligible to act.
Notice that we have Tη,t(βη,H ∗ i) ⊆ Tη,s(βη,H ∗ i).

Subcase A(ii): Tη,t(βη,H ∗ 0) ⊆ τ0, τ1. Define Tη,s trivially from Tη′′,s.
Freeze the cone above Tη,t(βη,H ∗ 0) and move the current path to be the
rightmost active path through Tη,s(βη,H ∗ 1).

Redefine the trees Tµ,s for µ ( η by stretching. Furthermore, stretch
Tη,s(βη,H ∗ 1) to have the same long length as the other stretched nodes.

(That is, set T̂ = Tη,s and redefine Tη,s as follows. For all α such that

α ( βη,H ∗ 1 or α is incomparable to βη,H ∗ 1, set Tη,s(α) = T̂ (α) and

U(Tη,s(α)) = U(T̂ (α)). Define Tη,s(βη,H ∗ 1) = Tλ′′,s(δ) (where δ is as
in the stretching process just completed) and U(Tη,s(βη,H ∗ 1)) = all low

states. Extend the definition of Tη,s trivially from T̂ above this node.)

Define ΓTη,s(βη,H∗1∗0)(xη) = 0.
For each R strategy µ such that µ ∗ L ⊆ η, define Xµ to be the finite set

of all x for which µ has seen [µ]τ (x) converge for some τ on Tµ,s such that

U(τ) = Gµ and Tµ,s(βµ,L∗0) ⊆ τ but µ has not seen [µ]
Tµ,s(βµ,L)
s (x) converge.

(βµ,L is defined by the stretching process in the previous paragraph.) For all
µ with µ ∗L ⊆ η, pass Xµ and βµ,L to µ and challenge µ low. For all µ such
that µ ∗H ⊆ η, challenge µ high, pass βµ,H to µ and set xµ = xη. (βµ,H is
defined by the stretching process in the previous paragraph.) End the stage
and initialize all strategies of lower priority than η∗L including η∗L. At the
next η stage (unless η has been initialized), η will act in Subcase B below.

Subcase B. At the previous η stage, η acted in Subcase A(ii) or η acted
in this subcase and did not call a verification procedure. Let u < s denote
the stage at which η acted in Subcase A(ii). Define Tη,s trivially from Tη′′,s.
After the construction, we verify that Tη,s(βη,H ∗1) = Tη,u(βη,H ∗1) and this
string has state Gη ∗ L. Furthermore, Tη,u(βη,H ∗ 1 ∗ i) ⊆ Tη,s(βη,H ∗ 1 ∗ i)
and the current path goes through Tη,s(βη,H ∗ 1 ∗ 0). Because Tη,u(βη,H ∗ 1)
was stretched at stage u, Tη,s(βη,H ∗ 1) has length longer than the [η] use
on wη (which is the splitting witness for τ0 and τ1 from Subcase A). Check

if [η]
Tη,s(βη,H∗1)
s (wη) converges. If not, let η ∗N act. If so, call a verification

procedure with σ0 = βη,H ∗ 1. At subsequent η stages until the verification
procedure finishes, it will end the stage and initialize strategies of lower
priority than η ∗ L including η ∗ L.

When the verification procedure finishes (abusing notation, at stage s),
unfreeze the cone above Tη,t(βη,H ∗ 0) (which was frozen in Subcase A(ii)).
This action unfreezes the strings τ0 and τ1 from Subcase A(ii). Set τ̂ to be
either τ0 or τ1, depending on which gives the computation that differs from
the computation given by Tη,u(βη,H ∗1) on wη. Move the current path to be
the rightmost active path through τ̂ . Forbid all remaining η frozen cones.
Define Tη,s by searching for splitting, taking Tη,s(βη,H ∗ 1) = Tη,u(βη,H ∗ 1)
and Tη,s(βη,H∗0) = τ̂ to make Tη,s(βη,H) high splitting. When this definition



ON MINIMAL WTT-DEGREES AND C.E. DEGREES 45

is complete, redefine the trees Tµ,s for µ ( η ∗H by stretching. (Notice that
we stretch Tη,s as part of this stretching process.) Let η ∗H act and η is no
longer challenged high.

Case 5. η was challenged low at stage t < s and passed the set Xη and
a string βη,L. If Xη = ∅, then take outcome η ∗ L and η is no longer low
challenged. If Xη 6= ∅, then proceed as follows.
η was challenged low either by a verification procedure or by an R strategy

acting in Subcase A(ii) of its high challenge. In either case, βη,L is such that
the current path was moved from Tη,t(βµ,L ∗ 0) to Tµ,t(βµ,L ∗ 1) and the
cone above Tη,t(βη,L ∗ 0) was frozen at stage t by the challenging strategy.
After the construction, we verify the following properties. If γ is such that
Tη′′,t(γ) = Tη,t(βη,L), then Tη′′,s(γ) = Tη′′,t(γ). If u is an η stage such that
t < u < s, then Tη,t(βη,L) = Tη,u(βη,L) and Tη,t(βη,L ∗ i) = Tη,u(βη,L ∗ i) for
i ∈ {0, 1}. (To be precise, when η was challenged low at stage t, it is possible
that the challenging strategy stretched the node Tη,t(βη,L ∗ 1). Therefore,
the reference to this node is to the stretched version, if such stretching took
place.) Finally, the current path continues to run through Tη,u(βη,L ∗ 1).

By the definition of Xη, for each x ∈ Xη, there is a corresponding string
γx on Tη,t such that Tη,t(βη,L ∗ 0) ⊆ γx and [η]γxt (x) converges. Consider all
nodes δ such that Tη′′,s(δ) is on the current path, Tη,t(βη,L ∗ 1) ⊆ Tη′,s(δ),
|Tη′′,s(δ)| is greater than any of the [η] uses for x ∈ Xη and U(Tη′′,s(δ)) = Gη.
If there is no such δ, then define Tη,s trivially from Tη′′,s and take outcome
η ∗N . Otherwise, let δη denote the shortest length such δ.

Consider each x ∈ Xη in sequential order and check whether [η]
Tη′′,s(δη)
s (x)

converges. If not, then define Tη,s trivially from Tη′′,s and take outcome η∗N .
If this computation does converge, then check whether it equals [η]γx(x). If
so, then consider the next value in Xη. If not, then unfreeze all cones frozen
by the challenging strategy, so in particular γx is unfrozen. Define Tη,s from
Tη′′,s by searching for splittings. γx and Tη′′,s(δη) will give a new high split on
Tη,s so take outcome η∗H. (In this case, since the strategy which challenged
η extends η ∗ L, it will be initialized at the end of the stage.) If all of the
elements of Xη have convergent computations which agree with their γx
computations, then define Tη,s trivially from Tη′′,s, declare the low challenge
met and take outcome η ∗ L unless the challenging strategy established a
link from η in which case follow the link.

Verification Procedure.
A verification procedure can be called either by a P strategy η or by an

R strategy η acting in Subcase B of the high challenge. In either case, when
η first calls the verification procedure, it has just defined a string σ0 and it
has a witness xη. (The string σ0 should contain a subscript indicating that
it is part of a verification procedure called by η, but we omit this extra piece
of notation.)

The verification procedure acts in cycles, beginning with the 0th cycle.
When the nth cycles starts, we will have defined the string σn. If n ≥ 1,
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then we will have followed a link from the strategy µn−1 to η such that
µn−1 ∗L ⊆ η and µn−1 is the lowest priority strategy challenged low by η at
the (n−1)st cycle. (When the verification procedure is first called, we begin
with σ0 and have not followed any link. To make the notation uniform, we
set µ−1 = η and treat the 0th cycle like any other cycle.) The following is
the action for the nth cycle of this verification procedure.

At the start of the nth cycle, the current path goes through Tµn−1,s(σn∗0)
and the node Tµn−1,s(σn∗1) is active. (If n = 0 and the verification procedure
was called by a P strategy µ−1, then we need to replace Tµ−1,s by Tµ′−1,s

.

Similar comments apply throughout the rest of this procedure. If n ≥ 1, then
µn−1 is an R strategy, so no such replacement is necessary.) Furthermore,
if n ≥ 1 and t < s is the stage at which the (n − 1)st cycle started, then
Tµn−1,s(σn) = Tµn−1,t(σn) and Tµn−1,t(σn ∗ i) ⊆ Tµn−1,s(σn ∗ i) for i = 0, 1.

During the (n − 1)st cycle, we defined ΓTµn−1,t(σn∗0)(xη) = 0. If n = 0,

then we have already defined ΓTµ−1,s(σ0∗0)(xη) = 0. (We verify all of these
properties after the construction.)

Move the current path from Tµn−1,s(σn ∗ 0) to be the rightmost active
path through Tµn−1,s(σn ∗ 1). If n = 0, then declare Tµ−1,s(σ0 ∗ 0) to be η
frozen and if n ≥ 1, then declare Tµn−1,t(σn ∗ 0) to be η frozen. (That is,
we freeze the string that was used in the Γ definition on xη.) For strategies
µ ( µn−1, redefine the trees by stretching. For each R strategy µ such
that µ ∗ L ⊆ µn−1, define Xµ to be the finite set of numbers x such that µ
has seen [µ]γ(x) converge for some γ on Tµ,s such that Tµ,s(βµ,L ∗ 0) ⊆ γ,

U(γ) = Gµ ∗ L and µ has not seen [µ]Tµ,s(βµ,L)(x) converge. (βµ,L is defined
by the stretching process.) If all the Xµ sets are empty, then the verification
procedure is complete and we return to the action of the strategy that called
the verification procedure.

If some Xµ 6= ∅, then set µn to be the lowest priority strategy such
that Xµ 6= ∅. (After the construction, we verify that µn ( µn−1.) Let
σn+1 denote the node such that Tµn,s(σn+1) was redefined to be equal to
Tλ′′,s(δ) by the stretching procedure in the previous paragraph. (That is,
Tµn,s(σn+1) is the least node along the new current path in Tµn,s which was
stretched.) Because of the stretching, the length of Tη,s(σn+1) is large, the
current path goes through Tµn,s(σn+1∗0) and Tµn,s(σn+1∗1) is active. Define

ΓTµn,s(σn+1∗0)(xη) = 0.
Place a link from µn to η. For all ν such that ν ∗L ⊆ µn ∗L, challenge ν

low and pass βν,L and Xν to ν. For all ν such that ν ∗H ⊆ µn, challenge ν
high, pass βν,H to ν and set the witness xν = xη. (βν,H was defined by the
stretching process above.) If η is an R strategy, initialize all strategies of
lower priority than η ∗L including η ∗L. If η is a P strategy, then initialize
all lower priority strategies. End the stage. When η is next eligible to act,
we begin the (n + 1)st cycle of the verification procedure and check if the
verification procedure is now complete or if we need to go through the whole
(n+ 1)st cycle.
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This completes the description of the construction. Before we begin the
sequence of lemmas to prove the construction succeeds, we point out several
features of the construction which the reader can check by observation. First,
the places where we may find new high splittings are Case 3, Cases 4A(i)
and 4B, and Case 5 of an R strategy. In Cases 3, 4A(i) and 5, one half of
the new high split is already on the current path. In Case 4B, we explicitly
move the current path so that one half of the new high split (namely τ̂) lies
on the new current path. Therefore, the only time the current path moves is
when we explicitly move it. (That is, we are not in the typical situation of a
full approximation argument in which the current approximation to the set
being constructed is defined to be the rightmost path through the tree. In
that setting, the current approximation is implicitly changed by the addition
of new high splits.)

Second, the movement of the current path is only caused by a verification
procedure or by a high challenged R strategy acting in Subcase A(ii) or B.
Whenever we explicitly move the current path in one of these cases, we also
stretch nodes along the new current path. Furthermore, these are the only
times when we stretch nodes.

Third, if a node becomes frozen at a stage s, then some strategy must
have moved the current path below this node. This property follows because
the only time nodes are frozen is in Subcase A(ii) of a high challenge and in
a verification procedure.

Fourth, links are only established by a verification procedure and these
procedures are only called by P strategies acting in Case 3 of the P action
and by high challenged R strategies acting in Subcase B of a high challenge.

Finally, the only time new challenges are issued is by a verification proce-
dure or by a high challenged R strategy acting in Subcase A(ii). In either of
these cases, the strategy issuing the new challenges ends the current stage.
This fact implies that at any given stage, at most one strategy can issue new
challenges.

We say that the current path moves below a node Tη,s(α) if there is a string
β ⊆ α such that either Tη,s(β) ⊆ Aη,s but Tη,s(β) 6⊆ Aµ,t, or Tη,s(β) 6⊆ Aη,s
but Tη,s(β) ⊆ Aµ,t for some strategy µ and stage t ≥ s (with η ⊆ µ if t = s).
We say that the current path moves below level l of Tη,s if the current path
moves below Tη,s(α) for some string α of length l.

We present the series of lemmas to prove that our construction succeeds.
We begin with some terminology and properties of the links. If there is a
link between strategies ν and ν̂ such that ν ( µ ( ν̂, we say that the link
jumps over µ. If µ ∗ L ⊆ ν̂, then we say the link lands above µ ∗ L. If
µ ∗ H ⊆ ν̂, then we say the link lands above µ ∗ H. The idea is that a
link which jumps over µ and lands above µ ∗ L (or µ ∗H) gives a way for a
strategy extending µ ∗ L (or µ ∗ H) to be eligible to act without µ acting.
The following lemma says that if µ is low challenged, then there cannot be
a link jumping over µ and landing above µ ∗ L.
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Lemma 5.1. The following situation cannot occur at any stage: µ has been
challenged low by µ̂ and there is a link from ν to ν̂ such that ν ( µ and
µ ∗ L ⊆ ν̂.

Proof. Because µ is challenged low by µ̂, we have µ ∗ L ⊆ µ̂. Because the
link between ν and ν̂ can only be established when ν̂ challenges ν low, we
have ν ∗ L ⊆ ν̂. Furthermore, ν ( µ ⊆ ν̂ and ν ∗ L ( ν̂ together imply that
ν ∗ L ⊆ µ and hence ν ∗ L ⊆ µ̂.

For a contradiction, assume that µ̂ challenges µ low at stage s and before
this low challenge is removed (either by being met or by µ̂ being initialized)
there is a link between ν and ν̂ (which may already be present at stage s).
Furthermore, we can assume without loss of generality that µ is such that
no strategy η ( µ is ever in the situation of being challenged low with a
link jumping over η and landing above η ∗ L. (If there were such an η, we
consider it instead of µ.) In particular, there is never a situation in which
ν is challenged low with a link jumping over ν and landing above ν ∗ L.
We will refer to this assumption as our wlog assumption about ν. (This
assumption is really about µ but we will only apply it in this special case
concerning ν ( µ.)

First, we show that this situation cannot occur if ν̂ 6= µ̂. Consider when
the link from ν to ν̂ is established. It cannot have been established at stage
s since at any given stage, at most one strategy issues new low challenges.
Since we assume µ̂ challenges µ at stage s and ν̂ 6= µ̂, we cannot also have
ν̂ issuing low challenges and establishing a link at stage s.

Assume that the link from ν to ν̂ is established at u < s and hence ν is
challenged low by ν̂ at stage u < s. In this case, consider how µ̂ comes to be
eligible to act at stage s. If s is a ν stage, then the only possible outcomes
for ν are ν ∗H and ν ∗N since ν cannot meet its low challenge at s without
following (and hence removing) the link. Because ν ∗ L ⊆ µ̂, there must be
a link jumping over ν and landing above ν ∗ L at stage s while ν remains
low challenged. However, this contradicts our wlog assumption about ν.

Assume that the link from ν to ν̂ is established at u > s and that u is
the first stage at which a link jumping over µ and landing above µ ∗ L is
established. Because u is a ν̂ stage and there is no link already jumping
over µ and landing above µ ∗ L, u must also be a µ stage. However, this is
impossible since the only possible outcomes for µ are µ∗H and µ∗N unless
µ meets the low challenge issued by µ̂ to µ at stage s. This completes the
proof that we cannot have ν̂ 6= η̂.

Second, we show that we cannot have µ̂ = ν̂. Assume µ̂ = ν̂. Then µ̂
must issue the low challenges to both ν and µ. Consider when µ̂ issues the
low challenge to ν and establishes the link from ν to ν̂ = µ̂.

Assume the link from ν to µ̂ is established before stage s. In this case,
by our wlog assumption about ν, there cannot be a link jumping over ν and
landing above ν ∗L at stage s. Therefore, since s is a µ̂ stage and ν ∗L ⊆ µ̂,
s must also be a ν stage. At stage s, ν either takes outcome ν ∗H or ν ∗N
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(in which case µ̂ cannot act at stage s) or ν follows the link to µ̂ (in which
case the link is removed before µ̂ challenges µ low). All cases lead to a
contradiction.

Assume the link from ν to µ̂ is established at stage s. Then ν must
be the lowest priority strategy such that µ̂ calculates Xν 6= ∅. Then µ̂ only
challenges a strategy γ low at stage s if γ∗L ⊆ µ̂ and γ ⊆ ν. This contradicts
the fact that µ̂ challenges µ low at stage s since ν ( µ.

Assume the link from ν to µ̂ is established at stage t > s and t is the first
stage after s at which such a link is established. t must be a µ̂ stage. If t is
a µ stage, then either we take outcome µ∗H or µ∗N (which contradicts the
fact that t is a µ̂ stage) or we follow the link from µ to µ̂ and remove the low
challenge to µ (which contradicts the fact that µ is still low challenged when
the link from ν to ν̂ is established). Therefore, t cannot be a µ stage and
so there must be a link jumping over µ and landing above µ ∗L established
before stage t by some strategy other than µ̂. In the first case, we showed
that this situation is impossible. �

A case analysis similar to the one for Lemma 5.1 proves the following
lemma.

Lemma 5.2. If µ is challenged high, then there cannot be a link jumping
over µ and landing above µ ∗H.

Lemma 5.3. If η is challenged low, then no strategy µ with η ∗ L ⊆ µ
is eligible to act until the low challenge has been met or is cancelled by
initialization.

Proof. Assume that η is challenged low by η̂ at stage s (and hence η∗L ⊆ η̂).
At every η stage until the low challenge is met, η takes either outcome η ∗H
(which causes η̂ to be initialized and the low challenge to be removed) or
outcome η ∗N . Therefore, the only way for a strategy µ with η ∗ L ⊆ µ to
be eligible to act while η remains low challenged is to have a link jumping
over η and landing above η ∗ L. Such a link contradicts Lemma 5.1. �

Lemma 5.4. A strategy µ can be challenged low by at most one strategy at
a time.

Proof. Assume that µ is challenged low by µ̂ at stage s. The only strategies
ν̂ which can challenge µ low satisfy µ ∗ L ⊆ ν̂. By Lemma 5.3, no such
strategy is eligible to act after stage s and before the low challenge issued
by µ̂ is met or cancelled by initialization. Therefore µ can only be challenged
low by one strategy at a time. �

Essentially the same proofs as for Lemmas 5.3 and 5.4 establish the fol-
lowing two lemmas.

Lemma 5.5. If η is challenged high by η̂, then no strategy µ with η ∗H ⊆ µ
is eligible to act until the high challenge has been met or is cancelled by
initialization.
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Lemma 5.6. A strategy µ can be challenged high by at most one strategy
at a time.

It is possible for a strategy η to be challenged both high and low at the
same time. However, if η is challenged high at stage s0 by η̂, then η ∗H ⊆ η̂
so any low challenges to η issued before stage s0 are removed by initialization
at stage s0. (Also, there is no link jumping over η and landing above η ∗ L
at the end of stage s0.) As long as η acts in Subcase A of the high challenge
and fails to find a potential split, it takes outcome η ∗L. A strategy µ with
η ∗L ⊆ µ could challenge η low. Suppose this happens at stage s1 > s0. At
s1, η must still be acting in Subcase A of the high challenge and not finding
a potential high split. If η ever finds such a potential high split, then it acts
either in Subcase A(i) or A(ii). In either of these cases, µ (which issued the
low challenge to η) will be initialized. Furthermore, if η continues to act in
Subcase B of the high challenge, then it does not take outcome η ∗ L and
hence cannot be challenged low again until it is either initialized or meets
its high challenge. The conclusion of this observation is that η can only be
both high and low challenged if the high challenge comes first and the low
challenge comes while η is still acting in Subcase A of the high challenge
and has not yet found a potential high split. Therefore, in our construction,
we give all the necessary instructions for handling a strategy which is both
high and low challenged.

Lemma 5.7. If η calls a verification procedure, no strategy µ with η ( µ
is eligible to act until the verification procedure is met or is cancelled by
initialization.

Proof. Assume that η calls a verification procedure at stage s. η will end
every stage after s at which it is eligible to act until it is either initialized or
the verification procedure is met. Therefore, it suffices to show that there
are no links jumping over η at the end of stage s. If η is a P strategy, then
η initializes all lower priority requirements at stage s and hence there are
no jumping links over η at the end of stage s.

If η is an R strategy, then η must be acting in Subcase B of a high
challenge and the verification procedure called by η initializes all strategies
below η ∗L at s. Therefore it suffices to show that there is no link at stage s
between strategies ν and ν̂ where ν ∗L ⊆ η and η ∗H ⊆ ν̂. Suppose there is
such a link. Since η ends stage s and does not take outcome η ∗H until after
the verification procedure for the high challenge is met, the link must have
been established before stage s. This means that ν is low challenged by ν̂
before stage s. Consider how η is eligible to act at stage s. There cannot be
a link jumping over ν and landing above ν ∗L at stage s by Lemma 5.1, so s
must be a ν stage. ν either takes outcome ν ∗H or ν ∗N (contradicting the
fact that s is an η stage) or η meets the low challenge and follows the link
which jumps over η (again contradiction the fact that s is an η stage). �
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Lemma 5.8. If η is challenged high, then this high challenge is part of a
series of high challenges started by some P strategy η̂. Furthermore, if η
moves the current path from Tη,s(γ ∗ 0) to Tη,s(γ ∗ 1) or from Tη,s(γ ∗ 1) to
Tη,s(γ ∗ 0) during this series of challenges as part of either Subcase A(ii) or
Subcase B (including any verification procedures called by this subcase) of
the high challenge, then |γ| > pη̂.

Proof. Suppose that η is challenged high by η0 at s0, so η∗H ⊆ η0. If η0 is a
P strategy, then η̂ = η0. Otherwise, η0 is an R strategy which is challenging
η high as part of its own high challenge. Therefore, η0 must have been high
challenged by some η1 at s1 < s0, so η0 ∗ H ⊆ η1 and hence η ∗ H ⊆ η1.
If η1 is a P strategy, then η̂ = η1. Otherwise, we repeat the argument just
given. It is clear that tracing this sequence of high challenges back in time
must yield a P strategy η̂ = ηn such that η ∗H ⊆ η̂ and η̂ issued its original
challenges at stage sn.

When η̂ issues its challenges at stage sn, it moves the current path from
Tη̂′,sn(αη̂∗0) to Tη̂′,sn(αη̂∗1). The string αη̂ has length pη̂. Therefore, for any
R strategy µ ⊆ η̂, if γµ is such that Tµ,sn(γµ) = Tη̂′,sn(αη̂), then |γη| > pη̂.
Also, if µ (with µ ∗H ⊆ η̂) is high challenged during the sequence of high
challenges initiated by the action of η̂ and µ moves the current path at stage
s > sn due to its action in Subcase A(ii) or Subcase B of the high challenge,
then this movement occurs above the place where η̂ originally moved the
path. The statement of the lemma follows. �

Lemma 5.9. Let η be a strategy such that η defines pη at stage t. Unless
η is initialized, the current path cannot move below level pη + 1 of the tree
defined by η′ (if η is a P strategy) or by η′′ (if η is an R strategy) before η
defines αη.

Proof. The analysis is the same regardless of whether η is a P or R strategy,
with only a change in notation between whether η works on the tree built
by η′ or η′′. Rather than repeating the argument twice, we give the proof
in the case when η is a P strategy.

Assume that no strategy initializes η after stage t and before η defines αη.
Since no strategy to the left of η in the tree of strategies can act without
initializing η, we can assume no such strategy moves the current path before
η defines αη. At stage t, η initializes all strategies of lower priority, hence
these strategies work at or above level pη + 1 in the tree defined by η′ and
cannot move the current path below level pη + 1 of the tree defined by
η′. Furthermore, by Lemma 5.8, no R strategy ν ⊆ η can move the path
below this level because of a series of challenges started by a P strategy of
lower priority than η. We are left to consider the other possible actions of
strategies ν such that ν ⊆ η at the stages before η defines αη.

We split the proof into two cases based on the ways that the current path
can be moved after t and before η defines αη. First, the current path could
be moved by a P strategy ν ⊆ η which calls a verification procedure in
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Case 3 of the P action. In this case, ν initializes all lower priority strategies
including η contrary to our assumption.

Second, the current path could be moved by a high challenged R strat-
egy ν ⊆ η acting in Subcase A(ii) or B of the high challenge (including the
verification procedure called by Subcase B). Let ν̂ denote the P strategy
which called the verification procedure starting the sequence of high chal-
lenges that led to this high challenge to ν. As mentioned above, ν̂ must have
higher priority than η, so either ν̂ ⊆ η or ν̂ <L η. If ν̂ starts this sequence
of challenges at a stage ≥ t, then η is initialized when ν̂ acts contrary to our
assumption.

If ν̂ starts the sequence of challenges at a stage < t, the since ν̂ has not
completed its verification procedure, we must have ν̂ <L η by Lemma 5.7.
Because a high challenged strategy in this sequence of high challenges only
moves the current path when it issues new high challenges in Subcase A(ii)
or B of the high challenge, we can assume that ν is already high challenged at
stage t. (Otherwise, tracing backwards in time from the stage at which ν is
high challenged after t, we can find an R strategy which is high challenged at
stage t in this sequence of high challenges and which later moves the current
path to issue new high challenges to continue this sequence leading to the
high challenge of ν. We work with this strategy instead.) We must have
either ν ∗H ⊆ η or ν ∗H <L η. If ν ∗H ⊆ η, then by Lemma 5.5, η is not
eligible to act until the high challenge is met or removed by initialization, so
η is not eligible to act at stage t contrary to our assumption. If ν ∗H <L η,
then η has lower priority than ν∗L and hence is initialized when ν moves the
current path by acting in Subcase A(ii) or B of the high challenge contrary
to our assumption. �

Lemma 5.10. Assume a P strategy η defines αη at stage s. Then Tη′,s(αη),
Tη′,s(αη ∗ 0) and Tη′,s(αη ∗ 1) are all active at stage s and the current path
runs through Tη′,s(αη ∗ 0). If η is an R strategy that defines αη at stage s,
then the same statement is true when η′′ is substituted for η′.

Proof. As in the proof of Lemma 5.9, we give the proof in the case when η
is a P strategy. Let t < s be the stage such that η defined pη at t and η is
not initialized between defining pη at t and defining αη at s. Let α be the
string such that |α| = pη and Tη,t(α) ⊆ Aη′,t. Because pη is defined large
and Tη′,t(α) is active (as it is on the current path), Tη,t(α ∗ 0) ⊆ Aη′,t and
both Tη,t(αη ∗ 0) and Tη,t(αη ∗ 1) are active. By Lemma 5.9, the current
path does not change below level pη + 1 in the tree defined by η′ between
stages t and s. Therefore, when η defines αη, we still have Tη,s(α) ⊆ Aη′,s
and hence αη = α. Furthermore, Tη′,s(α ∗ 0) = Tη′,s(αη ∗ 0) is still on the
current path (and hence is still active) and Tη′,s(α ∗ 1) = Tη′,s(αη ∗ 1) is
still active (because nodes can only become inactive when the current path
moves below them). �

The analysis given in Lemma 5.9 can be applied in a more general context.
We say that a node Tη,s(α) effects initialization if any number defined to
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be large after Tη,s(α) is defined has to be larger than the length of Tη,s(α).
That is, either Tη,s(α) (or any longer node) has been used as an oracle for
any computation viewed in the construction or some parameter has been
defined which is larger than Tη,s(α). We will only apply Lemmas 5.11 and
5.12 in situations in which α is equal to some parameter in the construction
such as αη or βη,H .

Lemma 5.11. Let η be an R strategy, s be an η stage and α as string
such that Tη,s(α) is defined and effects initialization. For each ν such that
ν ∗H ⊆ η, let γν be such that Tν,s(γν) = Tη,s(α). Assume that for all γ ( γν ,
Tν,s(γ) is high ν splitting. Then, for all η stages u ≥ s, Tη,u(α) = Tη,s(α)
unless η is initialized, η finds a new high split below Tη,s(α) or some strategy
µ such that η ⊆ µ moves the current path below Tη,s(α) at a stage t such
that s ≤ t < u. Furthermore, if Tη,s(α) ⊆ Aη,s, then Tη,s(α) remains on the
current path unless η is initialized or some strategy µ such that η ⊆ µ moves
the current path below Tη,s(α) at a stage t such that s ≤ t.

Proof. Unless η is initialized, the value of Tη,s(α) can only change if some
R strategy µ ⊆ η finds a new high split below Tη,s(α) at a future stage
or if Tη,s(α) changes values due to stretching. Because the hypotheses, no
strategy ν ( η can find a new high split below this node without moving the
path in the tree of strategies to the left of η and initializing η. Therefore,
only η can change the value of this node by finding a new high split. The
value of the node can only be changed by stretching if the current path
moves below this node. Hence, we can finish the proof by giving an analysis
of which strategies µ can move the current path below this node without
initializing η. This analysis is similar to the one given in the proof of Lemma
5.9.

First, if µ <L η, then µ cannot act without initializing η, so we can assume
no such strategy moves the current path below Tη,s(α). Second, if η <L µ,
then µ is initialized at stage s, so it works higher on the trees than Tη,s(α)
at future stages. Therefore, no such strategy can cause the path to move
below Tη,s(α) and by Lemma 5.8, no R strategy ν ( η can cause the current
path to move below Tη,s(α) because of a series of high challenges initiated
by µ such that η <L µ.

Third, suppose µ ( η moves the current path below Tη,s(α) at a stage
t > s. Let µ̂ denote the P strategy which initiates the series of challenges
leading to µ moving the current path. (As noted at the end of the previous
paragraph, we know that µ̂ is not to the right of η in the tree of strategies.) If
µ̂ ⊆ η, then because s is an η stage, Lemma 5.7 implies that µ̂ must initiate
this series of challenges after stage s. However, in this case, µ̂ initializes η
when it calls its verification procedure to initiate the series of challenges. If
µ̂ <L η, then µ̂ must initiate its series of challenges before stage s and as in
the proof of Lemma 5.9, we can assume that µ is challenged high at stage
s. We split into the cases when µ ∗ H ⊆ η and when µ ∗ H <L η. In the
first case, Lemma 5.5 contradicts the fact that s is an η stage. In the second
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case, η has lower priority than µ ∗ L and hence is initialized when µ moves
the current path in either Subcase A(ii) or B of the high challenge.

We now know that we cannot have η <L µ̂, µ̂ ⊆ η or µ̂ <L η. It remains
to consider the case when η ( µ̂. If µ̂ issues its challenges after stage s, then
µ̂ moves the current path after stage s when it issues these challenges (and
before µ moves the current path). Therefore, we have met the conditions
of the lemma in this case. Otherwise, µ̂ calls its verification procedure
and issues its first challenges before stage s. In this case, since µ is high
challenged in the series of challenges started by µ̂, we have µ ∗ H ( µ̂.
Together with the case assumption that µ ( η ⊆ µ̂, we have µ ∗ H ⊆ η.
Since s is an η stage, µ cannot be high challenged at stage s by Lemma
5.5. We can assume that µ is the first strategy such that µ ( η to move
the current path below Tη,s(αη) after stage s. There must be a ν such that
ν is high challenged at s (in the series started by µ̂) and such that ν issues
high challenges after stage s which lead to the high challenge of µ. By the
comments above, we know that η ⊆ ν. Therefore, when ν issues its high
challenges after stage s (and before µ moves the current path), ν moves the
current path below Tη,s(αη). Therefore, the conditions of the lemma are
true in this case as well. �

Lemma 5.12. Let η be an R strategy, s be an η stage and α be a string
such that Tη,s(α) is defined, effects initialization, has η′′ state Gη and may
or may not be η high splitting. For all η stages u ≥ s, Tη,u(α) = Tη,s(α)
unless η is initialized, η finds a new high split below Tη,s(α) or some strategy
µ such that η ⊆ µ moves the current path below Tη,s(α) at a stage t such
that s ≤ t < u. Furthermore, if Tη,s(α) ⊆ Aη,s, then Tη,s(α) remains on the
current path unless η is initialized or some strategy µ such that η ⊆ µ moves
the current path below Tη,s(α) at a stage t such that s ≤ t.

Proof. This lemma follows immediately from Lemma 5.11. �

Lemma 5.13. Assume that an R strategy η defines αη at stage t. Unless η
is initialized, Tη′′,u(αη) = Tη′′,t(αη) ⊆ Aη′′,u for all η stages u > t.

Proof. When η defines αη at stage t, we have U(Tη′′,t(αη)) = Gη. We apply
Lemma 5.12 to this node to show that it cannot change after stage t unless
η is initialized. By Lemma 5.12, the only R strategy which could change
the value of this node by finding a new high splitting is η′′. However, if
η′′ ∗ H ⊆ η, then this node is already η′′ high splitting as are the nodes
below it on Tη′′,t. If η′′ ∗H <L η, then η is initialized when η′′ finds a new
high split below this node. Therefore, unless η is initialized, the value of
Tη′′,t(αη) does not change due to finding a new high splitting.

Next, we consider how Tη′′,t(αη) could change values after t because of
stretching. If this nodes changes values because of stretching, then the
current path must move below it. Therefore, we can finish the proof by
showing that the current path cannot be moved below Tη′′,t(αη) without
initializing η.
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By Lemma 5.12, unless η′′ (and hence η) is initialized or a strategy µ with
η′′ ⊆ µ moves the current path below Tη′′,t(αη), Tη′′,t(αη) remains on the
current path. At stage t, η initializes all lower priority strategies, so each
strategy µ such that η ( µ works with strings which are too long to move
the current path below Tη′′,t(αη). If η moves the current path, then it does
so above Tη′′,t(αη) (since η defines Tη,t(λ) = Tη′′,s(αη) and η only moves
the current path on its own tree) and not below Tη′′,s(αη). If η′ moves the
current path, then because η′ is a P strategy, it initializes η.

It remains to consider the case when η′′ moves the current path below
Tη′′,t(αη) after stage t. Suppose η′′ moves the current path after stage t
because it is high challenged in a series of challenges started by some P
strategy µ̂ with η′′ ∗H ⊆ µ̂. If the high challenge issued to η′′ occurs before
stage t, then η′′ ∗H <L η by Lemma 5.5 and the fact that t is an η stage.
Therefore, η is initialized when η′′ moves the current path as part of its high
challenge. If the high challenge is issued after stage t, then we break into
cases depending on whether η ( µ̂ or µ̂ = η′. (Since µ̂ is a P strategy and
η′′ ⊆ µ̂, these are the only possibilities.) In the former case, the path is
moved above Tη′′,t(αη) and in the later case, η is initialized when µ̂ initiates
the series of challenges by calling a verification procedure. �

Lemma 5.14. Assume that a P strategy η defines αη at stage t.

(1) Unless η is initialized, Tη′,u(αη) = Tη′,t(αη) ⊆ Aη,u for all η stages
u ≥ t.

(2) Unless η is initialized or calls a verification procedure, Tη′,u(αη ∗ i) =
Tη′,t(αη ∗ i) for i = 0, 1 and these nodes remain active at all η′ stages
u ≥ t and Tη,u(αη ∗ 0) ⊆ Aη,u.

Proof. We first establish Property 1. Because U(Tη′,t(αη)) = Gη, we can
apply Lemma 5.12 to Tη′,t(αη). The value of this node can only change if η′

is initialized, if η′ finds a new high split below this node, or if some strategy
µ such that η′ ⊆ µ moves the current path below this node. We consider
each of these cases separately.

First, if η′ is initialized, then so is η. Second, assume that η′ finds a
new high split below Tη′,t(αη) after stage t. Tη′,t(αη) must not be η′ high
splitting at stage t, so because U(Tη′,t(αη)) = Gη, we must have η′∗L ⊆ η or
η′∗N ⊆ η. Therefore, η is initialized when η′ finds the new high split. Third,
assume that some µ with η′ ⊆ µ moves the current path below Tη′,t(αη).
Because η initializes all lower priority strategies at stage t, µ must be equal
to either η or η′. (If µ is to the left of η, then η would be initialized when µ
acts to move the current path.) Suppose µ = η. In this case, µ only moves
the current path above Tη′,t(αη). Suppose µ = η′. In this case, since η′ is an
R strategy, it only moves the current path during a high challenge. Suppose
η̂ issues the high challenge to η′, so η′ ∗H ⊆ η̂. If η′ ∗H is to the left of η,
then η is initialized when η′ moves the current path. If η′ ∗H = η, then η
initialized η̂ at stage t and hence any movement in the current path caused
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by a series of challenges initialized by η̂ is above Tη′,t(αη). This completes
the proof of Property 1.

To establish Property 2, we cannot necessarily apply Lemma 5.12 since
we don’t know what the states of Tη′,t(αη ∗ i) are. However, we claim that
we can use Lemma 5.11. To see this fact, we split into two cases. If there
is no strategy ν such that ν ∗H ⊆ η, then we can apply Lemma 5.11 (since
Gη contains all low states) and the argument is just as before. Otherwise,
fix ν to be the lowest priority strategy such that ν ∗ H ⊆ η and let γν be
such that Tν,t(γν) = Tη′,t(αη). Since Tν,t(γν) is high ν splitting and none of
the strategies between ν and η are in the high state, we have Tη′,t(αη ∗ i) =
Tν,t(γν ∗i). Since the ν state of Tν,t(γν) is Gν ∗H, we have the hypotheses for
Lemma 5.11. The rest of the proof of Property 2 is a similar case analysis to
the analysis in the proof of Property 1, except we use Lemma 5.11 in place
of Lemma 5.12. �

We now consider the action of strategies which are high challenged or
which call a verification procedure. Let η be a strategy and s be a stage
such that η is either challenged high at s or η begins a verification procedure
at stage s. Assume that η is not initialized before the challenge or verification
is met (if it is ever met) and that every strategy ν ∗ L ⊆ η (or ν ∗H ⊆ η)
which is low (respectively high) challenged eventually meets its challenge.
Furthermore, assume that η is eligible to act infinitely often after stage s
(or at least until the challenge is met or the verification is complete). We
prove the following two lemmas simultaneously by induction on the length
of η under these conditions.

Lemma 5.15. Let η be a strategy that calls a verification procedure at stage
s under these conditions. Let t0 be the stage at which η calls its verification
procedure with σ0 and let tn denote the stage at which we return to the
verification procedure for the nth time (and start the nth cycle). In the
following two properties, we work with the notation σn and µn as in the
description of a verification procedure, we set µ−1 = η and we work with
the notation as though η is an R strategy. (If η is a P strategy, we need to
replace Tµ−1 by Tµ′−1

and Gµ−1 ∗ L by Gµ−1.)

(1) When the verification procedure is called at stage t0, we have

Tµ−1,t0(σ0∗0) ⊆ Aµ−1,t0, Tµ−1,t0(σ0∗1) is active, ΓTµ−1,t0 (σ0∗0)(xη) =
0 and U(Tµ−1,t0(σ0)) = Gµ−1 ∗ L.

(2) For n ≥ 1, when we follow the link from µn−1 to η at stage tn and be-
gin the nth cycle, we have the following properties: Tµn−1,tn−1(σn) =
Tµn−1,tn(σn), U(Tµn−1,tn(σn)) = Gµn−1 ∗ L, Tµn−1,tn−1(σn ∗ i) ⊆
Tµn−1,tn(σn ∗ i) for i = 0, 1, Tµn−1,tn(σn ∗ 0) ⊆ Aµn−1,tn and
Tµn−1,tn(σn ∗ 1) is active.

Furthermore, there are only finitely many cycles before the verification proce-
dure is complete. When the verification procedure is complete, all the strings
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γ such that the verification procedure defined Γγ(xη) = 0 are currently η
frozen.

Lemma 5.16. Assume that η is high challenged at stage s under the con-
ditions given above.

(1) Unless η is initialized or meets its challenge, Tη,s(βη,H) remains the
same and on the current path at future η stages.

(2) At the first η stage s0 > s, U(Tη,s0(βη,H)) = Gη ∗ L and Tη,s(βη,H ∗
i) ⊆ Tη,s0(βη,H ∗ i) for i = 0, 1. The nodes remain the same and
active with Tη,s0(βη,H ∗ 0) on the current path at future η stages
unless η acts to change them.

(3) One of the following must occur.
(a) At all future η stages, η acts in Subcase A without finding a

potential high splitting. In this case, at every future η stage, η
either takes outcome η ∗L or acts as in a low challenged case if
it is later challenged low.

(b) η eventually acts in Subcase A(i) and wins the high challenge.
(c) There is an η stage s1 > s0 at which η acts in Subcase A(ii).

At the next η stage s2 > s1, U(Tη,s2(βη,H ∗ 1)) = Gη ∗ L and
this node remains unchanged and on the current path at future
η stages unless η acts to change this. Furthermore, Tη,s1(βη,H ∗
1∗ i) ⊆ Tη,s2(βη,H ∗1∗ i) for i = 0, 1 and both of these nodes are
active. These nodes also remain the same with Tη,s2(βη,H ∗1∗0)
on the current path at future η stages unless η acts to change
this. Either η takes outcome η ∗ N at all future η stages or η
eventually meets its high challenge.

(4) If η meets the high challenge at s3 > s, then Tη,s(βη,H) = Tη,s3(βη,H),
U(Tη,s3(βη,H)) = Gη ∗ H and Tη,s(βη,H ∗ i) ⊆ Tη,s3(βη,H ∗ i) for
i = 0, 1. Furthermore, all strings γ such that η defined Γγ(xη) = 0
in Subcase A(ii) or in a verification procedure called in Subcase B
are forbidden.

We prove Lemmas 5.15 and 5.16 simultaneously by induction on the
length of η. We begin with Lemma 5.16. Let η̂ be the strategy which
challenges η high at stage s. When η̂ issues the challenge, it moves the
current path and stretches Tη,s(βη,H) to have large length and to have all
low states. Furthermore, Tη,s(βη,H) and Tη,s(βη,H ∗ 0) are on the current
path and Tη,s(βη,H ∗ 1) is active. η̂ also challenges each strategy ν such that
ν ∗H ⊆ η high (and by induction Lemma 5.16 applies to these strategies).
For each such strategy ν, Tν,s(βν,H) is stretched and is equal to Tη,s(βη,H).

Consider Property 1 in Lemma 5.16 and consider the value of Tη,s(βη,H)
after it is stretched. For each ν such that ν ∗H ⊆ η, Tν,s(βν,H) = Tη,s(βη,H).
Furthermore, Tν,s(β

′
ν,H) is high ν splitting. Therefore, we can apply Lemma

5.11 to Tη,s(βη,H). Tη,s(βη,H) can only change if η is initialized, η finds a
new high split below Tη,s(βη,H) or some µ with η ⊆ µ moves the current
path below Tη,s(βη,H). Because Tη,s(β

′
η,H) is already high η splitting, η
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does not find new high splits below Tη,s(βη). Because all strategies to the
right of η ∗H are initialized at stage s when η is high challenged, the only
µ 6= η with η ⊆ µ which can move the current path below Tη,s(βη,H) satisfy
η ∗H ⊆ µ. However, none of these strategies are eligible to act until η meets
the high challenge or is initialized. Finally, η only moves the current path
above Tη,s(βη,H) during the high challenge. Therefore, we have established
Property 1.

Consider Property 2 in Lemma 5.16. By the next η stage s0 > s each
strategy ν with ν ∗ H ⊆ η has met its high challenge. By Property 4 of
Lemma 5.16, we have Tν,s(βν,H ∗ i) ⊆ Tν,s0(βν,H ∗ i) and U(Tν,s0(βν,H)) =
Gν ∗ H. Also, if ν is such that ν ∗ L ⊆ η or ν ∗ N ⊆ η, then ν cannot
have found a new high split along the current path without initializing η,
so ν does not change the values of nodes along the current path. Therefore,
U(Tη,s0(βη,H)) = Gη ∗ L and Tη,s(βη,H ∗ i) ⊆ Tη,s0(βη,H ∗ i).

We also have the hypotheses for Lemma 5.11 for Tη,s0(βη,H ∗ i) since for
any ν ∗H ⊆ η we have Tν,s0(βν,H) is high ν splitting. Therefore, no strategy
ν ( η can change the values of Tη,s0(βη,H ∗ i) for i = 0, 1 or move the
current path from Tη,s0(βη,H ∗ 0) at any η stage after s0 without initializing
η. Furthermore, until η meets its high challenge, it takes either outcome η∗L
or η ∗ N . Since all of the strategies of lower priority than η ∗ L (including
η ∗ L) were initialized at stage s, they all work higher on the trees than
these nodes and hence cannot move the current path below any of these
nodes. Therefore, unless η moves the current path, both Tη,s0(βη,H ∗ 0) and
Tη,s0(βη,H ∗ 1) remain active with Tη,s0(βeta,H ∗ 0) on the current path at
future η stages. Hence, we have established Property 2.

Once we begin Subcase A of the high challenge, one of three things must
happen. Either we never find a potential high split or we eventually find a
potential high split and act in either Subcase A(i) or A(ii). If we never find
a potential high split, then at every future η stage, we either take outcome
η ∗ L (if η is not also low challenged) or we act as in the low challenge case
(if η is also low challenged). This establishes Property 3(a). If we ever act
in Subcase A(i), then the high challenge is met and we clearly meet the
conditions of Property 4 of Lemma 5.16. This establishes Property 3(b).

Consider what happens if η acts in Subcase A(ii) at some stage s1 > s0.
In this case, η moves the current path from Tη,s1(βη,H ∗ 0) to Tη,s1(βη,H ∗ 1)

and stretches Tη,s1(βη,H ∗ 1). η defines ΓTη,s1 (βη,H∗1∗0)(xη) = 0 and performs
the various calculations to issue its challenges. We can apply the same
arguments used to establish Properties 1 and 2 in Lemma 5.16 to Tη,s1(βη,H ∗
1) to get the following properties: Tη,s1(βη,H ∗ 1) doesn’t change after this
stage; at the next η stage s2 > s1, U(Tη,s2(βη,H ∗ 1)) = Gη ∗ L, Tη,s1(βη,H ∗
1 ∗ i) ⊆ Tη,s2(βη,H ∗ 1 ∗ i), these nodes remain active and these nodes will
not change unless η later changes them in Subcase B. Also, the current path
runs through Tη,s2(βη,H ∗1∗0) and it will continue to run through this node
unless η changes this in Subcase B.
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η acts in Subcase B at the next η stage s2 and begins to wait for
[η]Tη,s2 (βη,H∗1)(wη) to converge. (Because Tη,s1(βη,H ∗ 1) was stretched, the
length of Tη,s2(βη,H ∗1) is longer than the use of [η] on wη.) If this computa-
tion never converges, then at all future η stages, η takes outcome η∗N . If this
does eventually converge at stage t0 ≥ s2, then η calls a verification proce-
dure with σ0 = βη,H ∗1. Notice that we have ΓTη,t0 (σ0∗0)(xη) = 0, the current
path runs through Tη,t0(σ0∗0), Tη,t0(σ0∗1) is active and U(Tη,t0(σ0)) = Gη∗L
when the verification procedure is called. (These facts verify Property 1 in
Lemma 5.15 in the case when η is a high challenged R strategy calling a
verification procedure.) Technically, in our induction, we now need to show
that Lemma 5.15 holds. We do this below without assuming anything ex-
cept the properties just listed. Given that Lemma 5.15 holds for η, we know
that it terminates after finitely many stages. When it terminates at stage
s3, η declares the high challenge won and takes outcome η ∗H.

We need to see that the conditions in Property 4 hold in this case. The
cone above Tη,s1(βη,H ∗ 0) (which has remained frozen since stage s1) is
unfrozen and η uses Tη,s3(βη,H ∗ 1) = Tη,s2(βη,H ∗ 1) and either τ1 or τ0 (in
the notation from the construction case for a high challenged strategy) to
make Tη,s3(βη,H) high splitting. By Property 1, Tη,s(βη,H) = Tη,s3(βη,H).
By Property 2 and the fact that η just found a high split for Tη,s3(βη,H),
we have U(Tη,s3(βη,H)) = Gη ∗H. Since Tη,s(βη,H ∗ 1) ⊆ Tη,s1(βη,H ∗ 1) =
Tη,s3(βη,H ∗1) and Tη,s2(βη ∗0) ⊆ τ0, τ1 (and the cone above Tη,s2(βη ∗0) has
not changed since it was frozen at stage s2), Tη,s(βη,H ∗ i) ⊆ Tη,s3(βη,H ∗ i)
for i = 0, 1.

Finally, all definitions of the form Γγ(xη) = 0 made by η are either made
by the verification procedure (in which case they are currently η frozen by
Lemma 5.15) or made by the action of η in Subcase A(ii). The only definition
made in Subcase A(ii) is for γ = Tη,s1(βη ∗ 1 ∗ 0). Since this node was frozen
when the verification procedure was called with σ0 = βη ∗1, the oracle string
used in each Γ definition made for xη by η in meeting its high challenge is
frozen when the verification procedure ends. Therefore, all of these oracle
strings are forbidden by η in Subcase B when the verification procedure
ends. The conditions of Property 4 are met and we have completed the
proof of Lemma 5.16.

Consider Lemma 5.15. To see that Property 1 holds at stage t0, we need
to consider separately the cases when the verification procedure is called by
an R strategy in Subcase B of a high challenge and when the verification
procedure is called by a P strategy. If η is an R strategy acting in Subcase
B, then we have verified these properties above. If η is a P strategy acting
in Case 3, then σ0 = αη and µ′−1 = η′. By Lemma 5.14, Tη′,t0(αη ∗ 0) =
Tη′,t0(σ0 ∗ 0) is on the current path and Tη′,t0(αη ∗ 1) = Tη′,t0(σ0 ∗ 1) is
active when the verification procedure is called. When αη was chosen at
u < t0, U(Tη′,u(αη)) = Gη. If any higher priority strategy found a new
high split to raise the state of some string below this node after u, then η
would have been initialized and αη would have been redefined. Therefore,



60 ROD DOWNEY, KENG MENG NG, AND REED SOLOMON

U(Tη′,t0(αη)) = Gη. Finally, when αη was defined at stage u < t0, η picked

xη and defined ΓTη′,u(αη∗0)(xη) = 0. Because Tη′,u(αη ∗ 0) = Tη′,t0(αη ∗ 0),
we have all the required properties of σ0 = αη at stage t0.

At stage t0, the verification procedure moves the current path from
Tµ−1,t0(σ0 ∗ 0) to Tµ−1,t0(σ0 ∗ 1) and freezes the cone above Tµ−1,t0(σ0 ∗ 0).
It redefines Tν,t0 for ν ⊆ µ−1 by stretching and defines Xν for ν ∗ L ⊆ µ−1.
Assume that not all of the Xν are empty. (That is, the verification pro-
cedure does not end at this stage.) We define µ0 to be the least priority
strategy such that Xµ0 6= ∅ and define σ1 so that Tµ0,t0(σ1) is the least node
along the current path on Tµ0,t0 which was stretched. Because the length
of Tµ0,t0(σ1) is long and Tµ0,t0(σ1) is active, the current path runs through
Tµ0,t0(σ1 ∗0) and Tµ0,t0(σ1 ∗1) is active. We place a link from µ0 to η, define

ΓTµ0,t0 (σ1∗0)(xη) = 0 and issue the appropriate challenges. The stage ends
and either all lower priority strategies are initialized (if η is a P strategy) or
all strategies of lower priority than η∗L are initialized (if η is an R strategy).

Consider the action of the R strategies ν ⊆ µ0 between stages t0 and t1.
If ν ∗ H ⊆ µ0, then ν is challenged high at stage t0 and βν,H is such that
Tν,t0(βν,H) = Tµ0,t0(σ1) (since σ1 is the stretched node of Tµ0,t0). By our
assumption, ν meets its high challenge at some stage u > t0. By Lemma
5.16, U(Tν,u(βν,H)) = Gν ∗H and Tν,t0(βν,H ∗ i) ⊆ Tν,u(βν,H ∗ i).

If ν ∗ L ⊆ η and ν ⊆ µ0, then by our assumption, ν eventually meets its
low challenge. At each ν stage u at which ν is still low challenged, it defines
Tν,u trivially from Tν′′,u. Furthermore, at stages u after ν has met its high
challenge, it defines Tν,u by searching for high splittings and failing to find
them. Therefore, it does not change any values on Tν,u.

If ν ∗N ⊆ η, then ν must have been high or low challenged before stage
t0 by a strategy to the left of η in the tree of strategies. ν cannot meet this
challenge without initializing η, and therefore ν must take outcome ν ∗N at
every ν stage between t0 and t1. Hence, it defines Tν,u trivially from Tν′′,u
at each ν stage u between t0 and t1.

When µ0 meets its low challenge and follows the link back to η, we have the
following properties. Tµ0,t1(σ1) = Tµ0,t0(σ1) since the current path has not
moved below here and no R strategy has found a high split below here. Each
ν such that ν ∗H ⊆ µ0 has found a ν high split for Tν,t0(βν) = Tµ0,t0(σ1) and
no ν such that ν ∗L ⊆ µ0 or ν ∗N ⊆ µ0 has found a new high split below this
node or changed the values of its nodes below here. Hence, U(Tµ0,t1(σ1)) =
Gµ0 ∗ L. Furthermore, since the high splits found by strategies such that
ν ∗H ⊆ µ0 have the property that Tν,t0(βν,H ∗ i) ⊆ Tν,u(βν,H ∗ i) when they
are found at stage u and since the current path does not move below these
nodes before stage t1 (by a case analysis as in the proof of Lemma 5.11), we
have that Tµ0,t0(σ1 ∗ i) ⊆ Tµ0,t1(σ1 ∗ i), that these nodes are still active and
that Tµ0,t1(σ1∗0) is still on the current path. Therefore, we have established
Property 2 of Lemma 5.15 in the case when n = 1. Applying this reasoning
inductively gives the full version of Property 2.



ON MINIMAL WTT-DEGREES AND C.E. DEGREES 61

It remains to see that the verification procedure only acts finitely often
before ending. For n ≥ 1, consider the definition of µn at stage tn. Because
we follow a link from µn−1 to η at stage tn and because this link is established
at stage tn−1, none of the strategies ν such that µn−1 ( ν and ν ∗ L ⊆ η is
eligible to act between stages tn−1 and tn. Therefore, none of these strategies
has seen any new computations and Xν = ∅ for all of these strategies.

Furthermore, we claim that Xµn−1 = ∅ at stage tn. To see this fact,
we need to distinguish Xµn−1 as defined during the (n − 1)st cycle, which

we denote X ′µn−1
, and Xµn−1 as defined during this nth cycle, which we

denote Xµn−1 . Tµn−1,tn−1(σn) was stretched at stage tn−1 so it has length
longer than the [µn−1] use of any number x ∈ X ′µn−1

. Therefore, µn−1
never looks above this node for computations on elements of X ′µn−1

between
stages tn−1 and tn. βµn−1,L is defined at stage tn to be such that when
the verification procedure moves the current path from Tµn−1,tn(σn ∗ 0) to
Tµn−1,tn(σn ∗ 1), it moves from Tµn−1,tn(βµn−1,L ∗ 0) to Tµn−1,tn(βµn−1,L ∗
1). Therefore, βµn−1,L is defined at stage tn to be equal to σn. Because
Tµn−1,tn−1(σn) = Tµn−1,tn(σn) = Tµn−1,tn(βµn−1,L), µn−1 has never looked at
computations using oracles above Tµn−1,tn(βµn−1,L). It follows that Xµn−1

is defined to be ∅ at stage tn and hence µn ( µn−1. Therefore, we can only
return to the verification procedure finitely often before it discovers that all
Xµ = ∅ and ends.

Finally, we need to check that all Γ definitions made by the verification
procedure are frozen when the procedure terminates. In the nth cycle, η
defines ΓTµn,tn (σn+1∗0)(xη) = 0. In the (n + 1)st cycle, η moves the current
path from Tµn,tn+1(σn+1 ∗ 0) to Tµn,tn+1(σn+1 ∗ 1). Since Tµn,tn+1(σn+1) =
Tµn,tn(σn+1) and Tµn,tn(σn+1 ∗ i) ⊆ Tµn,tn+1(σn+1 ∗ i) for i = 0, 1, the node
Tµn,tn(σn+1 ∗ 0) is frozen by η. Therefore, at the start of the (n+ 1)st cycle,

the Γ definition made by the verification procedure in the nth cycle is frozen.
This completes the proof of Lemma 5.15.

Having gained some understanding of strategies which are challenged
high, we turn to strategies η which are challenged low. Assume η is chal-
lenged low by η̂. This could happen either because η̂ calls a verification
procedure or because η̂ is challenged high and acting in Subcase A(ii). We
begin with the case when η̂ calls a verification procedure. Assume that η
is challenged low by η̂ at stage s as part of the nth cycle of a verification
procedure. By setting µ−1 = η̂ and imagining a “trivial link” from µ−1 to
η̂, we can treat the 0th cycle with the same notation as the nth cycle. In
this situation, we have just followed a link from µn−1 to η̂ and η̂ moves the
current path from Tµn−1,s(σn ∗ 0) to Tµn−1,s(σn ∗ 1). By the proof of Lemma
5.15, we know U(Tµn−1,s(σn)) = Gµn−1 ∗L. (Technically, if η̂ is a P strategy
and n = 0, then we have U(Tµ′−1,s

(σ0)) = Gµ−1 instead. This minor change

in notation is the only difference between η̂ being a P or R strategy and it
does not effect the argument below.) Because η̂ challenges η low during this
cycle, we know η ⊆ µn and η ∗ L ⊆ η̂. βη,L is defined such that the current
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path just moved from Tη,s(βη,L ∗0) to Tη,s(βη,L ∗1). η̂ also redefines the tree
Tη,s by stretching. In the argument below, we consider the trees before they
are stretched by η̂ and we make comments at the end of the proof to take
into account the effect of stretching.

Lemma 5.17. Under these circumstances, U(Tη,s(βη,L)) = Gη ∗ L, even
after η̂ performs its stretching.

Proof. We split into two cases: when there is an R strategy ν such that
ν ∗H ⊆ µn−1 and when there is no such strategy. If there is no R strategy
ν with ν ∗H ⊆ µn−1, then Gη contains only low states, so U(Tη,s(βη,L)) =
Gη ∗ L.

Assume there is a strategy ν such that ν ∗ H ⊆ µn−1. In this case, we
first need a better understanding of where exactly the current path moves.
Let ν be the lowest priority R strategy such that ν ∗H ⊆ µn−1. Consider
an R strategy ν̂ such that ν ∗ H ⊆ ν̂ ⊆ µn−1 and how ν̂ defines its trees
at ν̂ stages before µn−1 follows its link at stage s. Because ν is the lowest
priority strategy with ν ∗H ⊆ µn−1, we know that either ν̂ ∗N ⊆ µn−1 or
ν̂ ∗ L ⊆ µn−1. If ν̂ ∗N ⊆ η̂, then Tν̂,s is defined trivially from Tν̂′′,s because
trees are always defined trivially when a strategy takes the N outcome. If
ν̂ ∗ L ⊆ η̂, then ν̂ cannot have found a new high splitting along the current
path, so ν̂ searches for new high splits and defines Tν̂,s trivially when it
doesn’t find any. Therefore, all trees Tν̂,s for ν ∗H ⊆ ν̂ ⊆ µn−1 are defined
trivially.

Let γ be such that Tν,s(γ) = Tµn−1,s(σn). Because all the trees between
ν ∗ H and µn−1 are defined trivially, Tµn−1,s(σn ∗ i) = Tν,s(γ ∗ i). Because
U(Tµn−1,s(σn)) = Gµn−1 ∗ L and ν ∗H ⊆ µn−1, we know that U(Tν,s(γ)) =
Gν ∗H. Let t ≤ s be the ν stage at which Tν,t(γ) becomes ν high splitting.
Because we chose high splitting extensions for Tν,t(γ) at stage t, the ν ′′ state
of each Tν,t(γ ∗ i) is Gν . A case analysis using Lemma 5.11 shows that the
values of Tν,t(γ), Tν,t(γ ∗ 0) and Tν,t(γ ∗ 1) do not change and the current
path does not move below these nodes after ν’s action at stage t and before
we follow the link from µn−1 to η̂ at stage s. Therefore, when we follow the
link from µn−1 to η̂ at stage s, we have that the ν ′′ state of each Tν,s(γ ∗ i)
is Gν (and they may or may not be ν high splitting).

At stage s, η̂ moves the current path from Tµn−1,s(σn∗0) to Tµn−1,s(σn∗1)
and hence from Tν,s(γ ∗0) to Tν,s(γ ∗1). βη,L is defined such that the current
path just moved from Tη,s(βη,L ∗ 0) to Tη,s(βη,L ∗ 1).

We break into cases depending on whether ν ∗H ⊆ η or η ( ν. (Notice
that η 6= ν since ν ∗H ⊆ η̂ and η ∗ L ⊆ η̂.) If ν ∗H ⊆ η, then since all the
trees between ν ∗ H and µn−1 are defined trivially at stage s, βη,L is such
that Tν,s(γ) = Tη,s(βη,L) and Tν,s(γ ∗ i) = Tη,s(βη,L ∗ i). Because there are
no high states between ν and η (since ν was lowest priority strategy with
ν ∗H ⊆ µn−1), U(Tη,s(βη,L)) = Gη ∗ L as required.

If η ( ν, then we may have Tν,s(γ) ( Tη,s(βη,L) because Tν,s(γ) is ν high
splitting. However, we do have that Tη,s(βη,L ∗ i) ⊆ Tν,s(γ ∗ i) since γ and
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βη,L are such that the current path just moved from Tν,s(γ ∗ 0) to Tν,s(γ ∗ 1)
and from Tη,s(βη,L ∗0) to Tη,s(βη,L ∗1). Because U(Tν,s(γ)) = Gν ∗H, the ν ′′

states of Tν,s(γ ∗ i) are Gν and η ( ν, it follows that U(Tη,s(βη,L)) = Gη ∗L
as required.

Finally, when η̂ redefines the trees by stretching in the verification proce-
dure, it may be that Tη,s(βη,L ∗ 1) is stretched. However, if it is stretched,
then it is the least node on Tη,s which is stretched, so the stretched value
of this node extends the prestretched value. Hence the state of Tη,s(βη,L)
remains the same. (It is important that we considered the state of Tν,s(γ ∗1)
before it is potentially stretched. Tν,s(γ ∗ 1) may be the least node of Tν,s
which is changed by stretching, in which case, U(Tν,s(γ ∗ 1)) has all low
states after it is redefined.) �

A similar argument proves the same statement in the case when η is
challenged low by a strategy η̂ which is acting in Subcase A(ii) of a high
challenge.

Lemma 5.18. Assume η is challenged low at stage s by a strategy η̂ which
is acting in Subcase A(ii) of a high challenge. Then U(Tη,s(βη,L)) = Gη ∗L.

Lemma 5.19. Assume that η is low challenged by η̂ at stage s. Unless η is
initialized, we have the following properties.

(1) At least until η meets its low challenge, Tη,s(βη,L) remains unchanged
at future η stages. Tη,s(βη,L ∗1) may be stretched at stage s, but then
remains unchanged and on the current path at future η stages.

(2) Either η takes η ∗N at every future η stage or η eventually meets the
low challenge or η finds a new high split using a number from Xη.

Proof. Property 2 follows immediately by inspecting the action of a low
challenged strategy. We show Property 1. By Lemmas 5.17 and 5.18,
U(Tη,s(βη,L)) = Gη ∗ L. By the definition of βη,L, the current path just
moved to Tη,s(βη,L ∗ 1) and this node may have been stretched. Consider
which strategies could change Tη,s(βη,L ∗ 1) or move the current path below
this node without initializing η. Obviously nothing to the left of η can cause
these changes and because all strategies to the right of η are initialized by
η̂ when η is challenged, they work higher on the trees. The only strategies
ν with η ( ν which are eligible to act before η meets its challenge satisfy
η ∗ N ⊆ ν. Since η ∗ L ⊆ η̂, these strategies are initialized by η̂ at stage s
and work higher on the trees.

Consider a strategy ν ( η. If ν is a P strategy, then it initializes all lower
priority strategies including η when it moves the current path. If ν is an R
strategy and ν ∗ L ⊆ η or ν ∗ N ⊆ η, then ν cannot find high splits below
Tη,s(βη,L) or move the current path without initializing η. If ν ∗ H ⊆ η,
then Tη,s(βη,L) is already ν high splitting since U(Tη,s(βη,L)) = Gη ∗ L.
Therefore, any new high splits would be above this node. Furthermore, ν is
challenged high by η̂ at stage s so if it moves the current path, it does so from
Tν,s(βν,H ∗ 0) to Tν,s(βν,H ∗ 1). Because ν ∗H ⊆ η̂, Tν,s(βν,H) was stretched
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at stage s and so Tη,s(βη,L ∗ 1) ⊆ Tν,s(βν,H). Therefore, any movement of
the path caused by ν will not effect Tη,s(βη,L ∗ 1). This establishes Property
1. �

We define the true path in the tree of strategies as usual: an Re or Pe
strategy η is on the true path if and only if η is the leftmost strategy acting
for Re or Pe which is eligible to act infinitely often. We next show that
various properties hold of strategies on the true path and that the true path
is infinite.

Lemma 5.20. Assume that η is on the true path.

(1) η is initialized only finitely often.
(2) If η is never initialized after stage t, then for all µ ∗ L ⊆ η, µ meets

all low challenges issued after t and for all µ ∗ H ⊆ η, µ meets all
high challenges issued after t.

(3) pη and αη are eventually permanently defined. Furthermore, if they
are permanently defined at stage s, then Tη′′,s(αη) (if η is an R
strategy) or Tη′,s(αη) (if η is a P strategy) has reached a limit and is
on the current path at all future stages. Therefore, Tη,s(λ) reaches
its limit at stage s.

(4) η has a successor on the true path.

Proof. We proceed by induction on the length of η. Let s be an η stage such
that no strategy µ ( η is initialized after s, both pµ and αµ are permanently
defined before stage s and no strategy to the left of η in the tree of strategies
is eligible to act after s.

To prove Property 1, we examine how strategies ν ( η could end a stage
after s and initialize η. If ν ( η is a P strategy, then ν only ends a stage
and initializes lower priority strategies when it acts in Case 1 or Case 2 or
calls a verification procedure in Case 3. Since pν and αν are permanently
defined by stage s, ν does not act in either Case 1 or 2 after stage s. Since
s is an η stage, ν cannot be in the middle of a verification procedure at
stage s (by Lemma 5.7). Suppose η calls a verification procedure after stage
s. This means ν has not yet reached Case 4 of the P action at stage s, so
ν ∗W ⊆ η. Applying Property 2 of Lemma 5.20 inductively to ν and using
the fact that ν is not initialized after stage s, we conclude from Lemma 5.15
that this verification procedure eventually ends and ν acts in Case 4 of the
P action. After this stage, ν takes outcome ν ∗S contradicting the fact that
η is on the true path. Therefore, ν does not initialize η after stage s.

If ν ( η is an R strategy, then ν only ends a stage and initializes lower
priority strategies when it acts in Case 1 or Case 2 or Subcases A(ii) or
B of the high challenge R action. As above, ν does not act in Case 1 or
Case 2 after stage s. When ν acts in Subcase A(ii) (and later in Subcase
B) of a high challenge, it initializes all strategies of lower priority than ν ∗L
(including ν ∗ L). Therefore, if ν ∗ H ⊆ η, then η is not initialized by ν
after stage s. Otherwise, suppose ν ∗L ⊆ η or ν ∗N ⊆ η and consider what
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happens when ν acts in one of these subcases. Suppose ν acts in Subcase
A(ii) after stage s. ν initializes η and ends the stage. Applying Property 2
of Lemma 5.20 inductively to ν and using the fact that ν is not initialized
after s, we conclude from Lemma 5.16 that ν either takes outcome ν ∗ N
at all future stages (and hence does not initialize η again) or ν eventually
calls a (finitary) verification procedure in Subcase B and wins the high
challenge. However, in the latter case, ν takes outcome ν ∗H which moves
the path in the tree of strategies to the left of η after stage s contrary to
our assumption. Therefore, after stage s, ν initializes η at most once. This
completes the proof of Property 1.

We show Property 2 by induction on µ. Assume that µ ∗ L ⊆ η. We
inductively apply Property 2 in Lemma 5.20 together with Property 2 in
Lemma 5.19 to µ. If µ is challenged low after stage s, then either µ eventually
meets this challenge or at all future µ stages µ takes outcome µ∗N . Because
there cannot be a link jumping over µ∗L while µ is low challenged, the latter
situation contradicts the fact that η is on the true path.

Assume that µ ∗ H ⊆ η and µ is challenged high after stage s. We
inductively apply Property 2 of Lemma 5.20 together with Lemma 5.16 to
µ. If µ fails to meet the high challenge, then either µ never finds a potential
high split in Subcase A or it eventually acts in Subcase A(ii). If µ eventually
acts in Subcase A(ii) but does not meet the high challenge, then µ remains
high challenged forever and takes outcome µ ∗ N at every future µ stage.
Since there are no links jumping over µ ∗H while µ is high challenged, this
contradicts the fact that η is on the true path. If µ never finds a potential
high split in Subcase A, then at every future µ stage either µ takes outcome
µ ∗ L (if µ is not also low challenged) or µ acts as in the low challenge
case. If µ acts in the low challenge case, it cannot find a new high split
(since otherwise it would have found it when it looked in Subcase A in the
high challenge action) so it either takes outcome µ ∗ L or µ ∗N . Since it is
impossible for µ to take outcome µ ∗H in this situation and since there are
no links jumping over µ ∗H when µ is high challenged, this contradicts the
fact that η is on the true path. This completes the proof of Property 2.

To see Property 3, notice that pη is permanently defined at the first η
stage after which η is never initialized again. η now begins to look for a
node α of length pη such that Tη′′,s(α) (if η is an R strategy) or Tη′,s(α) (if
η is a P strategy) is on the current path and has state Gη. Because pη is
defined to be large, this node starts out with all low states. If Gη contains
all low states, we pick αη at the next η stage. Otherwise, Gη has at least one
high state, so η ends the stage and tries again at each subsequent η stage.
Each strategy ν such that ν ∗H ⊆ η finds a new high split along the current
path each time it takes outcome ν ∗H. Therefore, each time η is eligible to
act, the state of some node on the current path has increased. Since η is
eligible to act infinitely often and pη does not change, η must eventually see
a suitable node on the current path with state Gη and define αη. The rest
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of Property 3 follows by Lemmas 5.13 and 5.14. This completes the proof
of Property 3.

Finally, we verify Property 4. Assume s is an η stage such that η has
permanently defined pη and αη by stage s. If η is a P strategy, then η defines
xη permanently at the same stage as it defines αη. Either xη eventually
enters Wη after stage s or it does not. If xη never enters Wη, then η takes
outcome η ∗W at every future η stage, so η ∗W is on the true path. If
xη eventually enters Wη, then η calls a verification procedure at the next
η stage. By Lemma 5.15 and Property 2 of Lemma 5.20, this verification
procedure is finite. When it ends, η acts in Case 4 of the P strategy and
takes outcome η ∗S. At every future η stage, η takes outcome η ∗S, so η ∗S
is on the true path.

Assume that η is an R strategy. After stage s, η never acts in Cases 1 or
2 for an R strategy. Therefore, the only times that η ends a stage after s is
when η acts in Subcase A(ii) or in a verification procedure called by Subcase
B of a high challenge. We split into three cases depending on whether η is
challenged infinitely often or finitely often and whether it meets the last
high challenge (if it is challenged high only finitely often).

First, suppose that there is a stage t > s after which η is never challenged
high and that η has met its last high challenge by stage t. Because the only
times that η can end the stage are during a high challenge, η will take one
of its three outcomes at every η stage after t. Because η is eligible to act
infinitely often, at least one of its successors must be eligible to act infinitely
often. The leftmost such outcome is on the true path.

Second, suppose that η is challenged high infinitely often. Let t1 < t2 <
· · · denote the stages after s at which some strategy issues a high challenge
to η. Because η can be high challenged by at most one strategy at a time, η
must either meet the high challenge issued at ti before ti+1 or the challenge
issued at ti must be removed by initialization before stage ti+1. Let η̂ be the
strategy that issues the high challenge at stage ti. We know η ∗H ⊆ η̂ and
no strategy ν with η∗H ⊆ ν is eligible to act until η meets the challenge or it
is removed by initialization. Because of these facts and because η ∗H is the
left most outcome of η, the only strategies that could remove the challenge
by initialization are those of higher priority than η.

Suppose ν has higher priority than η and ν initializes η̂. If ν is to the left
of η or ν ( η is a P strategy, then ν also initializes η contrary to assumption.
If ν ⊆ η is an R strategy, then (since ν doesn’t act in Cases 1 or 2 after stage
s), ν acts in either Subcase A(ii) or B of a high challenge and initializes all
strategies of lower priority than ν ∗ L. Therefore, η̂ has lower priority than
ν ∗ L. Because ν ⊆ η ⊆ η̂, we must have either ν ∗ L ⊆ η̂ or ν ∗ N ⊆ η̂.
Putting together the facts that ν ⊆ η, η ∗ H ⊆ η̂ and either ν ∗ L ⊆ η̂ or
ν ∗ N ⊆ η̂ implies that either ν ∗ L ⊆ η or ν ∗ N ⊆ η. Therefore, when
ν initializes η̂, it also initializes η contrary to our assumption. Hence, the
challenge issued by η̂ cannot be removed by initialization after stage s, so η
must meet each of these high challenges. When η meets a high challenge,
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it takes outcome η ∗ H. Therefore, η ∗ H is eligible to act infinitely often.
Since η ∗H is the leftmost outcome of η, it must be on the true path.

Third, suppose that η is only challenged high finitely often after s but
it fails to meet the last high challenge. Let t > s be the stage at which
this last high challenge is issued. We split into cases depending on how η
acts while trying (and failing) to meet this high challenge. η either acts in
Subcase A at every future η stage (and fails to find a potential high split)
or η eventually acts in Subcase A(ii). (η cannot act in Subcase A(i) since
it would win the high challenge in that subcase.) If η ever acts in Subcase
A(ii), then by Lemma 5.16, η must either win the high challenge or take
outcome η ∗N at every future η stage. Since η does not win the challenge,
η ∗N is on the true path.

Suppose η never finds a potential high split in Subcase A of the high
challenge. At every η stage after t, η either takes outcome η ∗ L or acts as
a low challenged strategy (if η is also low challenged). The only possible
outcomes for a low challenged strategy are L and N . Therefore, at every
future η stage, η either takes outcome η ∗ L or η ∗N , so one of these must
be on the true path. �

Lemma 5.21. A = limsAs is a ∆0
2 set.

Proof. Let η0 ⊆ η1 ⊆ η2 ⊆ · · · be the sequence of R strategies on the true
path and let s0 < s1 < s2 < · · · be a sequence of stages such that for all k, sk
is an ηk stage by which αηk has been permanently defined. By Lemma 5.20,
Tηk,sk(λ) = Tη′′k ,sk(αηk) has reached its limit and is contained in the current

path at all future stages. Therefore, A is determined up to the length of this
node at stage sk. �

We know that for an R strategy η on the true path, Tη,s(λ) reaches a
limit. We need to show that various other nodes also approach limits.

Lemma 5.22. Let η be an R strategy with η ∗H on the true path. Let t be
a stage such that αη is defined permanently by stage t (and hence η is not
initialized after t). For any α and any s > t, if U(Tη,s(α)) = Gη ∗ H and
Tη,s(α) becomes high splitting at stage s, then Tη,s(α) has reached a limit.

Proof. By Lemma 5.12, Tη,s(α) can only change if it is stretched because
the current path is moved below Tη,s(α) by a strategy µ such that η ⊆ µ.
However, if any such strategy moves the current path below Tη,s(α) at stage
u ≥ s and redefines Tη,u by stretching, then the least stretched node on
Tη,u has state Gη ∗ L. Since Tη,s(α) already has state Gη ∗H, it cannot be
changed by stretching. �

Lemma 5.23. Let η be an R strategy on the true path. There is a sequence
of strings αj and η stages tj indexed by j ∈ ω such that α0 = λ, αj+1

is either αj ∗ 0 or αj ∗ 1, Tη,tj (αj) has reached its limit denoted by Tη(αj),
U(Tη,tj (αj)) is either Gη∗L or Gη∗H, Tη,tj (αj) ⊆ Aη,tj and the current path
never moves below Tη,tj (αj) after stage tj. (Hence Tη,tj (αj) = Tη(αj) ⊆ A.)
In addition, the following properties hold.
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(1) U(Tη,s(αj)) may change at a later stage s > tj, but it reaches a limit
denoted by U(Tη(αj)) which is either Gη ∗L or Gη ∗H. Furthermore
both successor nodes Tη,s(αj ∗ i) eventually reach limits.

(2) If η ∗H is on the true path, then U(Tη(αj)) = Gη ∗H.
(3) If η ∗L is on the true path, then there is an n such that U(Tη(αj)) =

Gη ∗ L for all j ≥ n.
(4) If η ∗N is on the true path, then there is a stage t such that Tη,s is

defined trivially from Tη′′,s at all η stages s > t.

Proof. The proof proceeds by induction on η and for each fixed η by induc-
tion on j. Let t0 be a stage such that αη is permanently defined by stage t0
and such that if η ∗L (or η ∗N) is on the true path, then η ∗H (respectively
η ∗ H and η ∗ L) is never eligible to act after stage t0. By Lemma 5.20,
Tη,t0(λ) = Tη′′,t0(αη) ⊆ Aη,t0 has reached its limit, U(Tη,t(λ)) = Gη (and
may or may not be high [η] splitting), and the current path never moves
below this node after stage t0. Therefore, the statement in the main body
of the lemma is true when j = 0. Assume by induction that Tη,tj (αj) sat-
isfies the conditions in the main body of the lemma. We need to show that
Properties 1–4 hold as well.

Before proving these properties, consider what changes can take place in
Tη,tj after stage tj . No R strategy of higher priority can find a new high
splitting at or below Tη,tj (αj). Therefore, these strategies do not cause a
change in Tη,tj (αj ∗ i) after stage tj . Consider how the current path could
move below Tη,tj (αj ∗ i) after stage tj (which must occur if these nodes
change value because of stretching). Let η̂ be a P strategy which initiates
a series of challenges (via a verification procedure) that cause the current
path to move below Tη,tj (αj ∗ i) after stage tj . We split into cases depending
on whether η̂ calls its verification procedure at a stage < tj or ≥ tj .

Assume η̂ calls its verification procedure before stage tj . We further split
into cases depending on the relative positions of η and η̂ in the tree of
strategies. If η <L η̂, then since tj is an η stage, η̂ is initialized at the end
of stage tj and its series of challenges is removed by initialization. If η̂ ( η,
then η is not eligible to act until the verification procedure is complete. In
this case, since tj is an η stage, the verification procedure must be complete
by stage tj and hence there are no challenges left to move the path. If η ⊆ η̂,
then all the challenges issued to strategies ν ( η in the series initiated by η̂
before tj have been met (again since tj is an η stage). Therefore, we only
need to consider the action of strategies ν such that η ⊆ ν ⊆ η̂ after stage
tj (which we handle in a separate case below).

Finally, assume that η̂ <L η. In this case, let ν be the highest priority
strategy currently challenged in the series of challenges initiated by η̂. In ν
is challenged low, then ν ∗ L ⊆ η̂. Since tj is an η stage, we cannot have
ν ∗ L ⊆ η. Therefore, η is to the right of ν ∗ L in the tree of strategies.
If ν ever meets its low challenge or finds a new high split using a number
from Xν , then ν will move the path in the tree of strategies to the left of
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η after stage tj , contrary to our assumption. Therefore, this low challenge
is never met or removed by initialization, so the series of challenges issued
by η̂ never moves the current path after tj . If ν is challenged high, then
ν ∗H ⊆ η̂. Again, because tj is an η stage, η must have lower priority than
ν ∗ L. Therefore, if ν ever moves the path in either Subcase A(ii) or B of
the high challenge, it initializes η after tj contrary to assumption.

We now have established that if η̂ starts a series of challenges before tj
that has not terminated by tj and this series of challenges causes the current
path to move below Tη,tj (αj ∗ i) after stage tj , then some strategy ν such
that η ⊆ ν must move the current path. On the other hand, if η̂ does not
start its series of challenges until after tj and this series of challenges moves
the current path below Tη,tj (αj ∗ i) after stage tj , then η̂ itself moves the
current path below Tη,tj (αj ∗ i) after tj . The key point is that in either case,
if the current path is moved below Tη,tj (αj ∗ i) at a future stage t ≥ tj ,
then the movement is caused by a strategy ν such that η ⊆ ν and hence
the current path is moved on the tree Tη,t at this future stage t. Because
the current path runs through Tη,tj (αj) permanently after stage tj , the only
places where this movement can take place are from Tη,t(αj ∗0) to Tη,t(αj ∗1)
or from Tη,t(αj ∗ 1) to Tη,t(αj ∗ 0). Because the value of Tη,tj (αj) does not
change after stage tj , the least nodes which could be stretched in either of
these cases are Tη,t(αj ∗ 1) (in the first case) and Tη,t(αj ∗ 0) (in the second
case). However, in either of these cases, the stretched value of Tη,t(αj ∗ i)
extends the prestretched value. Therefore, the state of Tη,tj (αj) cannot be
lowered because of stretching.

Consider Property 1. By the comments in the previous paragraph, the
state of Tη,tj (αj) cannot be lowered because of stretching. Therefore, if η
eventually finds a high split for Tη,tj (αj), then the final state of this node is
Gη ∗H and otherwise the final state is Gη ∗L. Furthermore, the current path
can only move between Tη,t(αj ∗ 0) and Tη,t(αj ∗ 1) finitely many times after
tj . (Roughly, it can move back and forth between these nodes at most once
for each strategy ν which is high challenged at t ≥ tj and has βν,H defined
so that Tη,t(αj) = Tν,t(βν,H).) Therefore, each of the nodes Tη,tj (αj ∗ i) can
be changed at most finitely often because of stretching and at most once by
η finding a new high splitting after stage tj . Hence, there is a stage s0 > tj
at which these nodes have reached their limits and the current path does
not move again below them. Set αj+1 = αj ∗ 0 or αj ∗ 1 depending on which
one the current path goes through permanently. Since Lemma 5.23 applies
inductively to the R strategies ( η, the state of Tη,s(αj+1) must eventually
reach Gη ∗L at some later stage and we set tj+1 equal to this stage. Notice
that the hypotheses for the main body of Lemma 5.23 are now satisfied for
j + 1.

Consider the case when η∗H is on the true path. Because η∗H is eligible
to act infinitely often and each time η ∗ H is eligible to act η finds a new
high splitting along the current path, η must eventually find a high splitting
for Tη,tj (αj). This establishes Property 2.
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Consider the case when η ∗ L is on the true path. By our assumption, η
never takes outcome η ∗ H after stage t0. Therefore, η never finds a new
high split along the current path after this stage. Therefore, the only high
splits which occur in the trees Tη,s for s ≥ t0 are the ones that are already
present at stage t0. This fact implies Property 3.

Consider the case when η ∗ N is on the true path. Because η ∗ N is the
rightmost outcome of η, we are never to the left of η ∗ N in the tree of
strategies after stage t0. Therefore, η must take outcome η ∗ N at every
future η stage. Property 4 follows from the fact that whenever η takes
outcome η ∗N , it defines Tη,s trivially from Tη′′,s. �

Lemma 5.24. For all x, ΓA(x) = 1 if and only if x = xη for some P
strategy x which reaches Case 4 of its action and hence x ∈ B.

Proof. The only place where computations of the form Γγ(x) = 1 are defined
is in Case 4 of the action of a P strategy. Therefore, if ΓA(x) = 1, then
x = xη for some P strategy η which acts in Case 4.

For the other direction, assume that η is a P strategy which acts in Case
4 with xη at stage s. To get to Case 4, η must have called a verification pro-
cedure at some stage t < s which finished at stage s. When the verification
procedure is called, the only Γ definition for xη is ΓTη,t(αη∗0)(xη) = 0. η sets
σ0 = αη when it calls the verification procedure, so this procedure freezes
Tη,t(αη ∗0). Because the verification procedure eventually finishes, all of the
challenges issued by this procedure must be met (and all the challenges they
issue must be met, etc.) so Lemma 5.15 applies. Therefore, at stage s, all
strings γ such that Γγ(xη) = 0 are frozen by the verification procedure. η
forbids all of these frozen strings, so the current path will never again pass
through any of these strings. Furthermore, it picks a large value n and de-
fines Γγ(xη) = 1 for all strings γ of length n which have not been forbidden
by η. Whatever A turns out to be, it must contain one of these strings and
therefore ΓA(xη) = 1 as required. �

Lemma 5.25. Let η be a P strategy which initiates a series of challenges
by calling a verification procedure. If ν is an R strategy which is challenged
high in this series of challenges at stage s and ν is passed xν and βν,H , then

xν = xη and ΓTν,s(βν,H∗0)(xν) = 0.

Proof. We proceed by induction on the depth in the series of challenges.
(That is, a strategy challenged high by η is challenged at depth 1. If ν̂ is
challenged high at depth n by η and ν is challenged high by ν̂, then ν is
challenged at depth n+ 1.)

The base case is when ν is challenged high by the nth cycle in the veri-
fication procedure called by η. In this case, (following the notation of the

verification procedure) η defines ΓTµn,tn (σn+1∗0)(xη) = 0 and passes xν = xη
and βν,H to ν. Because βν,H is the least node which is stretched on Tν,tn in
this cycle, we have Tν,tn(βν,H ∗ 0) = Tµn,tn(σn+1 ∗ 0). Hence the result holds
for this high challenge.
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For the induction case, assume that ν̂ has been high challenged in the
series of challenges (say at stage u) and ν̂ challenges ν high. By induction,

xν̂ = xη and ΓTν̂,u(βν̂,H∗0)(xν̂) = 0. Let s0 be the next ν̂ stage after it
is challenged high. By Lemma 5.16, Tν̂,u(βν̂,H ∗ 0) ⊆ Tν̂,s0(βν̂,H ∗ 0), so

ΓTν̂,s0 (βν̂,H∗0)(xν̂) = 0. In order to challenge ν high, ν̂ must act in Subcase
A(ii) at a stage s1 > s0. When ν̂ challenges ν high, it moves the current path

to Tν̂,s1(βν̂,H ∗ 1), stretches the trees and defines ΓTν̂,s1 (βν̂,H∗1∗0)(xν̂) = 0. It
sets xν = xν̂ = xη and passes βν,H to ν. Because βν,H is the least node on
Tν,s2 which is stretched, we have Tν,s2(βν,H ∗ 0) = Tν̂,s2(βν̂,H ∗ 1 ∗ 0). Hence
the result holds for this high challenge.

If all the challenges issued by ν̂ at s2 are met, then ν̂ begins to act in
Subcase B of the high challenge. Suppose ν̂ calls a verification procedure at
stage s3. A similar argument shows that the high challenges issued by each
of the cycles of the verification procedure have the required properties. Be-
cause a high challenged strategy ν̂ only issues more high challenges through
Subcase A(ii) and B, this step completes the proof. �

Lemma 5.26. For all x, if x 6∈ B, then ΓA(x) = 0.

Proof. Because Case 4 of the P action is the only place that elements are
enumerated into B, we have that x ∈ B if and only if x = xη for a P strategy
η which reaches Case 4 of the P action. Therefore, if x 6∈ B, either x is never
equal to xη for a P strategy η or x is equal to xη for some P strategy η but
η is initialized before reaching Case 4 or x is permanently equal to xη for a
P strategy η but η never reaches Case 4.

First, suppose that x is never equal to xη. At the end of stage x, we

define Γ∅(x) = 0. Second, suppose x = xη but η is initialized at stage s
after xη = x is defined. Without loss of generality, assume s ≥ x. At the
end of stage s, η is initialized so x is not longer of the form xη. Therefore,

we define Γ∅(x) = 0. It is clear that in either of these cases, ΓA(x) = 0.
Third, suppose that xη is defined to be x at stage s, η is never initialized

after stage s and η never reaches Case 4. In this case, αη is permanently

defined at stage s and we set ΓTη′,s(αη∗0)(x) = 0. By Lemma 5.10, Tη′,s(αη∗0)
is on the current path. We split into two subcases. For the first subcase,
suppose η never calls a verification procedure. By Lemma 5.14, Tη′,s(αη ∗ 0)

remains on the current path forever, so ΓA(x) = 0.
For the other subcase, suppose that η does call a verification procedure

with σ0 = αη in Case 3 of the P action. Because η does not reach Case 4,
this verification procedure does not finish but also does not end because of
initialization. Therefore, some challenge in the series of challenges initiated
by η is never met. We need to examine which strategies can move the
current path below Tη′,s(αη ∗ 0) and check that each time the current path
is moved by a strategy challenged in this series of challenges, the strategy
moving the current path makes new Γ definition for xη = x which remains
on the current path unless another strategy which is also challenged in the
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series of challenges initiated by η moves the current path later. The last
such strategy to move the current path will put up a Γ definition for xη = x
using an oracle string which remains on the current path forever and hence
is an initial segment of A.

When η calls the verification procedure in Step 3 of a P action at stage
t0 (to follow the notation of the verification procedure) with the witness
xη, no strategy to the left of η is ever eligible to act again since we assume
this verification procedure is not removed by initialization. By Lemma 5.7,
no strategy µ such that η ( µ is eligible to act after t0 since we assume
this procedure is never completed. Also, η initializes all strategies of lower
priority, so they work higher on the trees.

If µ ⊆ η is a P strategy, then µ cannot move the current path without
initializing η contrary to our assumption. An R strategy µ with µ with
µ ∗ L ⊆ η or µ ∗ N ⊆ η does not move the current path, so we are left to
consider R strategies µ with µ ∗H ⊆ η.

If µ ∗H ⊆ η, then µ could move the current path in Subcase A(ii) or B of
a high challenge issued in the series of challenges initiated by η. In this case,
when µ moves the current path, it initializes all strategies of lower priority
than µ ∗ L (including µ ∗ L). Therefore, these strategies are again forced
to work higher on the tree than the new Γ definitions set up by µ (which
we will examine below) and so they cannot move the path below the oracle
string used by µ in its new Γ definition. Finally, notice that by Lemma 5.25,
xµ = xη so the Γ definitions made by µ are for xη.

We split the remainder of the proof into two cases which correspond to
the two ways the current path can be moved below a string used as a Γ
definition on xη. Because one of the cycles in the verification procedure

called by η does not end, we assume it is the nth cycle. (We follow the
notation of the verification procedure and the notation used in Lemma 5.15.
In particular, we assume this nth cycle starts at stage tn by following a link
from µn−1 and that it defines µn and continues the verification procedure.)
The first case is when η moves the current path in the nth cycle but none of
the strategies it challenges high move the current path after stage tn. The
second case is when at least one of the high challenged strategies such that
ν ∗ H ⊆ µn does move the current path in Subcase A(ii) or B of the high
challenge.

First, suppose that in the nth cycle of the verification procedure called
by η, none of the R strategies challenged high move the current path. For
the nth cycle, η defines ΓTµn,tn (σn+1∗0)(xη) = 0 and initializes all lower pri-
ority strategies. We claim that the current path continues to go through
Tµn,tn(σn+1 ∗ 0) at all future stages (and hence ΓA(xη) = 0). The strategies
to the left of η are never able to act after stage tn (since they would initial-
ize η), the strategies ν such that ν ⊆ µn do not move the current path by
assumption and the strategies ν such that µn ∗N ⊆ ν or ν is to the right of
µn in the tree of strategies are initialized at stage tn by η and hence work
higher on the trees than Tµn,tn(σn+1∗0). Furthermore, because the nth cycle



ON MINIMAL WTT-DEGREES AND C.E. DEGREES 73

for η never ends, one of the strategies ν ⊆ µn never meets its low or high
challenge. Therefore, the only strategies eligible to act after stage tn are to
the right of µn, satisfy ν ⊆ µn or satisfy µn ∗N ⊆ ν (since if µn ever took
outcome µn ∗ L, it would follow the link back to η ending the nth cycle).
None of these strategies move the current path below Tµn,tn(σn+1 ∗ 0), so it
remains on the current path forever.

Second, suppose that some strategy ν which is high challenged in the
series of challenges initiated by η does move the current path. By Lemma
5.25, when ν is challenged high at stage t ≥ tn, then ΓTν,t(βν,H∗0)(xν) = 0 and
xν = xη. (Remember that ν is challenged high in the series of challenges
initiated by η, so it may not have been directly challenged high by η.)
Whenever ν acts to move the current path, it puts up a new Γ definition for
xν .

In particular, if ν acts in Subcase A(ii) at stage s1 > t, it defines

ΓTν,s1 (βν,H∗1∗0)(xη) = 0 and issues high challenges to µ such that µ ∗H ⊆ ν.
If one of these high challenged strategies µ moves the current path, it takes
over the Γ definition on xµ = xν = xη. If we return to ν at stage s2 > s1,
then by Lemma 5.16, Tν,s1(βν,H ∗1∗0) ⊆ Tν,s2(βν,s2 ∗1∗0), Tν,s2(βν,H ∗1∗0)
is on the current path and it remains on the current path unless ν calls a ver-
ification procedure in Subcase B of the high challenge. Therefore, if ν never
calls this verification procedure, the computation ΓTν,s2 (βν,H∗1∗0)(xν) = 0
implies that ΓA(xη) = 0 as required.

Suppose ν does call a verification procedure in Subcase B of its high chal-
lenge. This verification procedure takes over the Γ definitions on xν . Either
some cycle of this verification procedure doesn’t finish or the verification
procedure does finish. In the former case, suppose the nth cycle is started
but not finished. If none of the strategies challenged high by this cycle
move the current path, then the argument given above in the similar case
for η tells us that the Γ definition made by ν for xν in the nth cycle implies
ΓA(xν) = ΓA(xη) = 0 as required. If one of the strategies challenged high

by the nth cycle in ν’s verification procedure does move the current path,
then it takes over the Γ definition on xν (and we repeat this argument for
that strategy).

Finally, consider the latter case in the previous paragraph: the verification
procedure called by ν ends and ν meets its high challenge at stage s3 > s2.
In this case, the current path is moved to pass through Tν,s3(βν,H ∗ 0). By
Lemma 5.16, Tν,t(βν,H ∗ 0) ⊆ Tν,s3(βν,H ∗ 0) (recall that t was the stage at

which ν was challenged high), so we have ΓTν,s3 (βν,H∗0)(xν) = 0. The string
Tν,s3(βν,H ∗0) remains on the current path unless another strategy moves the
current path below this node. However, ν takes outcome ν ∗H at stage s3,
so it initializes all strategies to the right of ν ∗H and none of these strategies
can move the current path below this node. If ν is the last strategy which
is high challenged in the series of challenges initiated by η and which moves
the current path, then Tν,s3(βν,H ∗ 0) remains on the current path forever
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and we have ΓA(xν) = 0 as required. Otherwise, the next strategy which is
in this series and which moves the current path takes over the Γ definition
on xη. The last such strategy to move the current path leaves a Γ definition
on xη for which the oracle string remains on the current path forever. �

We get the following result as an immediate consequence of Lemmas 5.24
and 5.26.

Lemma 5.27. ΓA = B, so B ≤T A.

Lemma 5.28. All P requirements are met, so B is a noncomputable c.e. set.

Proof. Fix a P requirement and let η be the strategy on the true path for
this requirement. Let xη be the final witness for η and assume it is defined
by stage s. If xη 6∈Wη, then η takes outcome η ∗W at every η stage after s
and η never acts in Step 4 of the P action. Therefore, xη 6∈ B and P is won.

If xη ∈Wη, then there is an η stage after s at which η calls the verification
procedure in Step 3. This procedure ends after finitely many η stages so η
eventually reaches Step 4 and enumerates xη into B winning P . �

Lemma 5.29. If η ∗N is on the true path, then ΓA is not total.

Proof. Fix an η stage s such that η takes outcome η ∗ N at every η stage
after s. Because η takes outcome η ∗ N at stage s, either η is acting in
Subcase B of a high challenge or η is low challenged. We consider each of
these possibilities separately.

Assume that η has been high challenged by η̂ before stage s and that η
acts in Subcase B of the high challenge for the first time at stage s. At
the previous η stage t < s, η must have acted in Subcase A(ii) of the high
challenge and defined the parameter wη. As in the proof of Lemma 5.16,
Tη,s(βη,H ∗ 1 ∗ 0) ⊆ Aη,s and the length of this node is longer than the use
of [η] on wη. The current path is not moved below Tη,s(βη,H ∗ 1 ∗ 0) unless

η moves it because it sees [η]Tη,s(βη,H∗1∗0)(wη) converge. However, if η sees
this computation converge, it moves the current path and takes outcome
η ∗H, contrary to our assumption. Therefore, η never sees this computation
converge and the current path never moves below Tη,s(βη,H ∗1∗0). Because
the use of [η] on wη is less than the length of Tη,s(βη,H ∗ 1 ∗ 0) and this

node remains forever on the current path, we have that [η]A(wη) diverges
and hence [η]A is not total.

Assume that η is low challenged by η̂ at stage t < s and s is the first η
stage after t. By Lemma 5.19 (and because η never meets this low challenge),
Tη,s(βη,L∗1) remains on the current path forever. By Lemma 5.23, there is a
stage u > s and a string γ such that βη,L∗1 ⊆ γ, Tη,u(γ) has reached its limit,
U(Tη,u(γ)) = Gη ∗ L, Tη,u(γ) ⊆ A and the length of Tη,u(γ) is longer than

the [η] use of any number in Xη. If [η]Tη,u(γ)(x) converges for each x ∈ Xη,
then eventually η sees these computations and either meets its low challenge
(taking outcome η ∗ L) or finds a new high split (taking outcome η ∗ H).
Either option violates our assumptions and hence there must be at least one
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number x ∈ Xη for which [η]Tη,u(γ)(x) diverges. Because Tη,u(γ) ⊆ A and
the length of Tη,u(γ) is longer than the [η] use of each x ∈ Xη, there must
be at least one number x ∈ Xη for which [η]A(x) diverges. Therefore, [η]A

is not total. �

Lemma 5.30. Let η be an R strategy such that η ∗L is on the true path. If
[η]A is total, then [η]A is computable.

Proof. Let s be a stage such that αη is permanently defined by s and η never
takes outcome η ∗H after s. By Lemma 5.20 (since η ∗L is never initialized
after s), η meets all low challenges issued after stage s. Furthermore, if
µ ∗ L ⊆ η, then µ meets all low challenges after stage s and if µ ∗ H ⊆ η,
then µ meets all high challenges after s.

To calculate [η]A(x), let t0 > s be an η stage and let γ0 be a string such
that η takes outcome η ∗L at t0, Tη,t0(γ0) ⊆ Aη,t0 , U(Tη,t0(γ0)) = Gη ∗L and

[η]
Tη,t0 (γ0)
t0

(x) converges. (Such t0 and η0 must exist by Lemma 5.23 since

[η]A is total.) We claim that [η]A(x) = [η]
Tη,t0 (γ0)
t0

(x).
To prove the claim, we need to examine how the current path could be

moved below Tη,t0(γ0). Suppose µ moves the current path below this node
after stage t0. We cannot have µ <L η (since these do not act after stage s),
η <L µ or η ∗ N ⊆ µ (since these strategies are initialized at t0). Suppose
µ ( η. µ cannot be a P strategy, since it would initialize η when it moved
the path. If µ is an R strategy, then it can only move the current path when
it is high challenged. If µ∗L ⊆ η or µ∗N ⊆ η, then µ would initialize η when
it moved the current path. Therefore, assume µ∗H ⊆ η. By Lemma 5.2, µ is
not high challenged when η acts at stage t0. Therefore, it must become high
challenged later before moving the current path. However, if γµ is such that
Tµ,t0(γµ) = Tη,t0(γ0), then Tµ,t0(γµ) is already µ high splitting. Therefore,
any movement of the current path by µ in a high challenge would be above
this node. It follows that no strategy µ ( η moves the current path below
this node after stage t0.

We also cannot have µ = η since η can only be high challenged by strate-
gies extending η ∗ H and no such strategy is eligible to act after stage s.
Therefore, the only strategies µ which could move the current path below
Tη,t0(γ0) after stage t0 satisfy η ∗ L ⊆ µ.

Let µ be the first strategy which causes such a movement in the current
path below Tη,t0(γ0) after stage t0 and let u1 > t0 be the stage at which it
moves the current path. To be specific with our notation, we assume that
µ is a P strategy which is just calling a verification procedure. However,
similar arguments handle the cases when µ is an R strategy acting in Subcase
A(ii) or B of a high challenge and when µ is either a P or R strategy which
is returning to a previously called verification procedure.

In this situation, µ moves the current path from Tµ′,u1(αµ∗0) to Tµ′,u1(αµ∗
1) and defines βη,L to be the string such that the current path moved from
Tη,u1(βη,L ∗ 0) to Tη,u1(βη,L ∗ 1). Because this movement is below Tη,t0(γ0),
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we have Tη,u1(βη,L ∗ 0) ⊆ Tη,t0(γ0). If [η]Tη,u1 (βη,L)(x) converges, then we

must have [η]Tη,u1 (βη,L)(x) = [η]Tη,t0 (γ0)(x) and hence this movement of the
current path does not effect our computation procedure. Therefore, assume
that [η]Tη,u1 (βη,L)(x) diverges. In this case, x ∈ Xη, so µ challenges η low
and any link which is placed by µ is from a strategy ν such that η ⊆ ν.

By the comments in the first paragraph of this proof, the challenges issued
by µ to higher priority strategies than η are eventually met and η eventually
meets the low challenge. Let t1 > u1 be the stage at which η meets this
low challenge. At this stage, η has found a string γ1 such that Tη,t1(γ1) ⊆
Aη,t1 , U(Tη,t1(γ1)) = Gη ∗ L and [η]

Tη,t1 (γ1)
t1

(x) converges and is equal to

[η]
Tη,t0 (γ0)
t0

(x). We can now repeat this argument. Let µ2 be the first strategy
which moves the current path below Tη,t1(γ1) at some stage u2 ≥ t1. µ2 must
satisfy η ∗L ⊆ µ2. Just as above, there would be a stage t2 > t1 and a string
γ2 such that Tη,t2(γ2) is on the new current path Aη,t2 , U(Tη,t2(γ2)) = Gη ∗L
and [η]

Tη,t2 (γ2)
t2

(x) converges and is equal to [η]
Tη,t1 (γ1)
t1

(x) = [η]
Tη,t0 (γ0)
t0

(x).
Because [η] is a wtt procedure and because the current path settles down
on longer and longer initial segments, these path movements below the use
of [η] on x can only happen finitely often. Therefore, by induction we get

that [η]
Tη,t0 (γ0)
t0

(x) = [η]A(x). �

Lemma 5.31. Let η be an R strategy such that η ∗H is on the true path.
If [η]A is total, then A ≤wtt [η]A.

Proof. Fix η such that η ∗H is on the true path and [η]A is total. Let sλ be
a stage such that Tη,sλ(λ) has reached its final value (and hence η is never
initialized after sλ) and U(Tη,sλ(λ)) = Gη ∗ H. We have Tη,sλ(λ) ⊆ Aη,sλ .
We define a Turing procedure ∆X

η for any oracle X, show that if X = [η]A,

then ∆X
η = A, and finally show that ∆η has computably bounded use for

any oracle and hence is a wtt procedure.
Fix any oracle set X. We define ∆X

η by defining a (possibly finite) se-
quence of strings λ = σ0 ⊆ σ1 ⊆ · · · and stages sλ = t0 < t1 < · · · using
oracle questions answered by X. At each stage ti we will have the following
properties: Tη,ti(σi) ⊆ Aη,ti and U(Tη,ti(σi)) = Gη ∗H (and hence Tη,ti(σi)
has reached its final value by Lemma 5.22). The comments in the first para-
graph explain why these properties hold for σ0 and t0. Once σi and ti are
calculated, let li = the length of Tη,ti(σi) and set ∆X

η � li = Tη,ti(σi).
Assume we have used X to calculate σi and ti. Because U(Tη,ti(σi)) =

Gη ∗ H, there is a splitting witness xi such that [η]
Tη,ti (σi∗0)
ti

(xi) and

[η]
Tη,ti (σi∗1)
ti

(xi) converge and are unequal. Check which computation agrees

with X(xi) and set σi+1 = σi ∗ 0 or σi ∗ 1 so that [η]
Tη,ti (σi+1)
ti

(xi) = X(xi).
Wait for a stage ti+1 such that Tη,ti+1(σi+1) ⊆ Aη,ti+1 and U(Tη,ti+1(σi+1)) =

Gη ∗H. If we never see such a stage, then ∆X
η diverges on all inputs ≥ li.
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If we do see such a stage, then let li+1 = the length of Tη,ti+1(σi+1) and set

∆X
η � li+1 = Tη,ti+1(σi+1). This completes the description of ∆η.

Next, we check that if X = [η]A, then ∆X
η = A. To prove this fact, we

show by induction on i that σi exists and Tη,ti(σi) ⊆ A. When i = 0, this
is clear. Assume that σi is defined and Tη,ti(σi) ⊆ A. Let xi be a number

such that [η]Tη,ti (σi∗0)(xi) and [η]
Tη,ti (σi∗1)
ti

(xi) converge and are unequal. By
Lemma 5.22 and the proof of Lemma 5.23, we know that Tη,ti(σi) has reached
its final value. Furthermore, we know that the values of Tη,ti(σi ∗ 0) and
Tη,ti(σi∗1) can change at most finitely often after stage ti, that these changes
are due to stretching, and that the stretched values of these nodes always
extended their prestretched values. Therefore, one of the strings Tη,ti(σi ∗0)
or Tη,ti(σi ∗ 1) has to be an initial segment of A and hence σi+1 must be
defined such that Tη,ti(σi+1) ⊆ A. Eventually, the current path has to run
through Tη,ti(σi+1) (although this node may have been stretched by the time
it does) and because η∗H is on the true path, there must be a stage ti+1 > ti
such that Tη,ti(σi+1) ⊆ Tη,ti+1(σi+1) ⊆ Aη,ti+1 and U(Tη,ti+1(σi+1)) = Gη∗H.
Therefore, we eventually define ti+1 and have Tη,ti+1(σi+1) ⊆ A as required.

Finally, we show that the use of ∆η is computably bounded for all oracles
and hence it is a wtt procedure. To bound the use of this procedure on input
m, calculate as follows. Wait for a stage t ≥ sλ such that t > m and there
is a string σ such that Tη,t(σ) ⊆ Aη,t, U(Tη,t(σ)) = Gη ∗H, Tη,t(σ) becomes
high splitting at t and the length of Tη,t(σ) is greater than m. (Because
[η]A is total such a pair σ and t must exist.) Let k be the maximum of all
[η] high splitting witnesses seen by η during the course of the construction
up to stage t. We claim that the use of ∆η on input m for any oracle X is
bounded by k.

To prove our claim, let X be any oracle and let σi and ti be the last
pair defined by the procedure ∆X

η by the stage t indicated above for use
calculation on m. (Because σ0 and t0 are defined at stage sλ and t ≥ sλ,
i ≥ 0 is defined.) Let xi be the splitting witness for this pair of strings, let
σi+1 be either σi ∗ 0 or σi ∗ 1 depending on which gives the computation
that agrees with X(xi) and let li denote the length of Tη,ti(σi). Because
the string σi is defined by stage t, we know k ≥ xi. Furthermore, all the
splitting witnesses which have been used to determine σi are ≤ k. If m < li,
then ∆X

η has already converged on m and has use ≤ k since the splitting
witnesses (which are the only values of X which we consult) are all ≤ k.

Assume m ≥ li. First, we claim that at stage t, U(Tη,t(σi+1)) = Gη ∗ L.
This follows because we only look for high splits along the current path.
Therefore, if U(Tη,t(σi+1)) = Gη ∗H, then at some stage u between ti and
t, we had Tη,u(σi+1) ⊆ Aη,u and it became high splitting. However, in this
case, ti+1 = u ≤ t, contradicting the fact that ti+1 is not yet defined at stage
t.

Second, we claim that at stage t, Tη,t(σi+1) is not on the current path.
This follows because at stage t, we just found that a new node Tη,t(σ) on
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the current path which is high splitting. Furthermore, Tη,t(σ) has length
> m. Hence Tη,t(σ) is not equal to Tη,t(σi) (which has length ≤ m), so
t > ti. Thus, if Tη,t(σi+1) were along the current path as well, then it would
be high splitting and we would have defined ti+1 by stage t.

Therefore, we know that at stage t, Tη,t(σi+1) is not on the current path
and it has state Gη ∗L. There are now two possibilities. First, it is possible
that there is never a stage ti+1. In this case, ∆X

η never consults the oracle
again (and so has use bounded by k) and diverges on m. Second, it is
possible that there is a stage ti+1 > t. In this case, some P or R strategy
must move the current path so that it passes through Tη,t(σi+1) at a stage
u > t. Because t is an η stage at which η takes outcome η∗H, all strategies to
the right of η ∗H in the tree of strategies are initialized at t and work higher
on the trees. By Lemma 5.2, if ν ∗ H ⊆ η, then ν is not high challenged
at stage t. Therefore, the first strategy to move the current path so that it
passes through Tη,t(σi+1) must satisfy η∗H ⊆ µ. Let u > t be the stage when
µ moves the current path. Because η ∗ H ⊆ µ, U(Tη,u(σi)) = Gη ∗ H and
Tη,u(σi+1) = Gη ∗ L (before it is stretched), Tη,u(σi+1) is stretched to have
long length when µ moves the current path. In particular, Tη,u(σi+1) has
length longer than m. Therefore, when Tη,u(σi+1) later reaches state Gη ∗H
and ti+1 is defined, we set li+1 = the length of Tη,ti+1(σi+1), so li+1 > m and

∆X
η � li+1 = Tη,ti+1(σi+1). Furthermore, we know that Tη,ti+1(σi ∗0) extends

Tη,ti(σi ∗ 0) and Tη,ti+1(σi ∗ 1) extends Tη,ti(σi ∗ 1). Therefore, xi ≤ k is still
a splitting witness for these two nodes. Hence, we do not need any more of
the oracle X to calculate ∆X

η � li+1. This completes the proof that the use
is bounded by k. �
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