
A Hierarchy of Ramified Theories below

PRA

Elliott J. Spoors and Stanley S. Wainer
(University of Leeds, UK)

For Helmut Schwichtenberg on his retirement, with friendship and
respect.

Abstract

A two-sorted arithmetic EA(I;O) of elementary recursive strength,
based on the Bellantoni-Cook variable separation, is first enriched by addi-
tion of quantifiers over “input” or “normal” variables, and then extended
in two different ways to a hierarchy of theories whose provably computable
functions coincide with the levels of the Grzegorczyk hierarchy.

1 Introduction

The theory EA(I;O) of Ostrin–Wainer [5],[6] (see also [9]) is a stripped-down
version of the ramified intrinsic theories of Leivant [4], designed to incorporate
the “normal/safe” variable discipline of Bellantoni–Cook [2] in a two-sorted
analogue of Peano arithmetic, but with a weaker, “pointwise” or “predicative”
induction scheme:

A(0) ∧ ∀a(A(a)→ A(a+ 1)) → A(x)

where a is a safe variable and x is normal. We prefer to call them “output”
variables and “input” variables respectively; hence the I;O notation. Input vari-
ables are not (at this stage) quantified, so they act as uninterpreted constants.
The usual proof theoretic methods apply just as for PA (e.g. embedding and
cut elimination in an infinitary arithmetic with ω-rule). But now, because the
inductions are only “up to x”, the natural bounding functions are supplied by
the “slow growing” hierarchy rather than the “fast growing” one. Since the slow
growing functions below ε0 are the exponential polynomials, and those below ωω

are just polynomials, it follows (as Leivant had already previously shown, but by
different methods) that the provably computable functions of EA(I;O) are the
elementary functions (Grzegorczyk’s E3) and those provably computable in its
Σ1-inductive fragment are the sub-elementary E2 functions, i.e. those Turing–
machine computable in linear space. (By shifting to a binary, rather than our

1

unary, representation of numbers, one sees that the Σ1-inductive fragment then
characterizes polytime.)

Though quite simple in its formulation, EA(I;O) is not very “user friendly”,
as it does not permit quantification over inputs x, y, z, and therefore one cannot
even show straightforwardly that the provably computable functions – as func-
tions on inputs – are closed under composition. Of course it is true, and Wirz
[10] supplies a variety of delicate proof theoretic analyses enabling the derivation
of such results, but they also serve to highlight the awkwardness of the logic of
EA(I;O). Here, we rectify this by extending the theory conservatively to a new
theory EA(I;O)+ which allows quantification over inputs and incorporates also
a certain “Σ1 Reflection Rule”. The induction however, continues to apply only
to formulas of the base theory EA(I;O). One then sees that EA(I;O)+ forms just
the first level of a ramified hierarchy of input/output theories, whose provably
computable functions coincide, level-by-level, with the Grzegorczyk hierarchy.
A different approach to extending EA(I;O) was taken by the first author in
his thesis [8], where the reflection rule and the quantifier rules on inputs were
replaced by an “internalized” version of the ω–rule restricted to Σ1 formulas.
This “Σ1 Closure Rule” allows one to derive ∀aA(a) from a proof of A(x), and
is a perfectly natural device given that in EA(I;O) inputs x act as uninterpreted
constants. Thus EA(I;O)+Σ1-Closure has the same computational strength as
IΣ1. This too is described in the final section.

2 Input-Output Arithmetic EA(I;O)

EA(I;O) has the language of arithmetic, with quantified “output” (or “safe”)
variables a, b, c, . . . and unquantified “input” (or “normal”) variables x, y, z,
For convenience other terms and defining axioms are added, for a pairing func-
tion π(a, b) (:= 1/2(a + b)(a + b + 1) + a + 1) with inverses π0, π1, from which
sequence numbers can be constructed using π(s, a) to append a to s, and de-
constructed by functions (s)i extracting the i-th component. All of these initial
functions are quadratically bounded. The induction axioms are:

A(0) ∧ ∀a(A(a)→ A(a+ 1)) → A(t)

where t = t(~x) is a term on inputs only, controlling induction-length. Note that
if A(a) is progressive then so is ∀b ≤ a.A(b) ≡ ∀b(b ≤ a→ A(b)), and so a more
revealing instance of induction is

A(0) ∧ ∀a(A(a)→ A(a+ 1)) → ∀b ≤ t.A(b) .

In other words, EA(I;O) is, in a sense, a theory of bounded induction, the
(implicit) bounds being terms t(~x) dependent on inputs ~x which cannot be
universally quantified and then later re-instantiated, as they can be in PA. Call
this “input” or “predicative” induction. Note however that there is no restriction
on the formula A.

Definition 2.1 A numerical function f : Nk → N is “provably computable” or
“provably recursive” in EA(I;O) if there is a Σ1 formula Cf (~x, a) (i.e. a bounded
formula prefixed by unbounded existential quantifiers) such that f(~n) = m if
and only if Cf (~n,m) is true, and EA(I;O) ` ∃!aCf (~x, a), i.e. f is provably
total on inputs. We shall occasionally use the shorthand f(~x) ↓ for the formula
∃aCf (~x, a).

Theorem 2.2 [Leivant, Ostrin-Wainer] The provably computable functions of
EA(I;O) are exactly the Csillag-Kalmar elementary functions.

By carefully restricting the witnessing terms in the existential introduction
rule and in induction, to the so-called “basic” ones (i.e. those built out of
unary term constructors only: successor, predecessor, πi) one may also char-
acterize the sub-elementary functions as those provably computable in the Σ1

inductive fragment. Then increasing induction complexity in EA(I;O) charac-
terizes the successive levels of the Ritchie-Schwichtenberg hierarchy between
sub-elementary and elementary. See [6].

3 Enriching EA(I;O) to EA(I;O)+

One sees immediately the deficiencies in the logic of EA(I;O) if one tries to
show, simply and directly, that the provably computable functions are closed
under composition. For suppose one has proved that f(x) ↓ and g(x) ↓, i.e.
∃aCg(x, a). Then one needs first to reflect the value a of g(x) as an input –
the guiding principle here, is that values a computable from inputs only may
themselves be used as inputs. Thus one obtains ∃yCg(x, y) and by generalizing
over inputs, ∀y(f(y) ↓). By logic,

∃yCg(x, y), ∀y(f(y) ↓) ` ∃a, b(Cg(x, b) ∧ Cf (b, a))

so by two cuts one immediately derives ∃a, b(Cg(x, b) ∧ Cf (b, a)) which is the
desired ∃aCf◦g(x, a).

We therefore now extend EA(I;O) to the new theory EA(I;O)+ by adding
Input-quantifier rules (in Tait style):

Γ, A(t)

Γ, ∃xA(x)

Γ, A(y)

Γ, ∀xA(x)

(provided t contains only input variables and y is not free in Γ) and also the Σ1

Reflection rule:
Γ(~x), ∃~aA(~x,~a)

Γ(~x), ∃~yA(~x, ~y)

where Γ(~x), ∃~aA(~x,~a) is a set of Σ1 formulas all of whose free variables are
inputs.

The induction in EA(I;O)+ is the same as that of EA(I;O), it only applies
to formulas without input quantifiers.

Our first task is to show that this extension of EA(I;O) is conservative, in
that no new provably recursive functions are produced.

Note 3.1 An alternative, simpler way of directly proving closure under com-
position is provided by the “Closure Rule”: from f(x) ↓ derive ∀b(f(b) ↓). The
proof of ∃a, b(Cg(x, b) ∧ Cf (b, a)) from ∃bCg(x, b) then follows in the same way
as above, but without any further apparatus needed. As we shall later show,
adding the Σ1 Closure rule to EA(I;O) produces a version of primitive recursive
arithmetic.

4 The Infinitary System EA(I;O)+
∞

Upper bounds on provable recursiveness in EA(I;O)+ are obtained by the usual
proof theoretic process – embedding into a suitable infinitary system which
admits cut elimination.

The infinitary system EA(I;O)+
∞ derives Tait-style sequents

n:I;m:O `α Γ

where Γ is a finite set of closed formulas, n bounds the input parameters, m
declares a bound on any initial output values and the ordinal heights α are,
for our purposes here, in fact “tree ordinals” (with assigned fundamental se-
quences) generated from 0 and ω = supi(i+ 1) by addition, multiplication and
exponentiation. Thus, as set-theoretic ordinals, they all lie below ε0, and have
standard fundamental sequences. For shorthand we write simply n;m `α Γ or
n; `α Γ when m = 0.

Most of the rules are unsurprising and we don’t list the ∨,∧ rules explicitly.
The axioms are n;m `α Γ where the set Γ contains a true atom.
The Cut rule, with cut formula C, is

n;m `β0 Γ,¬C n;m `β1 Γ, C

n;m `α Γ
.

There are two ∃-rules, one for ∃a and one for ∃x, each with two premises:

n;m β0 m′ n;m `β1 A(m′),Γ

n;m `α ∃aA(a),Γ

n; β0 m′ n;m `β1 A(m′),Γ

n;m `α ∃xA(x),Γ
.

Here the left-hand premise “computes” witness m′ from m which we denote with
a different proof gate (not the forcing notation). We define such computations
according to the following simple rules – The computational axiom is n;m α m′

provided m′ ≤ q(m), where q is a suitable quadratic function which bounds all
the term-constructors. The computation rule (call-by-value) is:

n;m β0 m′′ n;m′′ β1 m′

n;m α m′

and this is also allowed to interact with the logic in the form:

n;m β0 m′′ n;m′′ `β1 Γ

n;m `α Γ
.

The universal quantifiers ∀a and ∀x are introduced by versions of the ω-rule:

{n; max(m, i) `β A(i),Γ}i∈N
n;m `α ∀aA(a),Γ

{max(n, i);m `β A(i),Γ}i∈N
n;m `α ∀xA(x),Γ

.

Note that here, the ordinal bound β on the premises does not vary with i. This
is what keeps the theory “weak”.

4.1 The ordinal assignment

In all of the above rules the declared input n controls the ordinal assignment
in the following way: if n;m′ `β Γ′ is any premise of a rule with conclusion
n;m `α Γ then the requirement is that β ∈ α[n] where α[n] = ∅ if α = 0, or
β[n] ∪ {β} if α = β + 1, or αn[n] if α = supi αi is a limit. Thus, while input
n is fixed, derivations not containing the ∀x rule are in fact of finite height
because n;m `α Γ implies n;m `Gα(n) Γ where Gα(n) = |α[n]| is the “slow
growing” hierarchy. It is not difficult to check that for each fixed n, the map
α 7→ Gα(n) preserves the arithmetic operations such as addition, multiplication
and exponentiation. Thus by choosing ω = sup(i+1) one sees thatGω(n) = n+1
and for each α, Gα(n) is the exponential polynomial which results by replacing
ω by n+1 throughout. The following Bounding Lemma is easy by inductions on
α; recall that q is a fixed quadratic chosen to bound all the term-constructors,
and qk denotes its k-times iterate. (Note the Bellantoni-Cook-style variable
separation.)

Lemma 4.1 n;m α m′ if and only if m′ ≤ qk(m) where k = 2Gα(n).

4.2 Cut elimination in EA(I;O)+∞

The standard methods apply here, just as for PA∞.

Theorem 4.2 (i) If n;m `γ Γ,¬C and n;m `α Γ, C are both derivable with
cut formulas of “size” ≤ r, where C is a formula of size r + 1 with shape ∨,∃a
or a true atom and α[n] ⊆ γ[n], then n;m `γ+α Γ is also derivable with cuts of
size ≤ r.

(ii) If n;m `α Γ is derivable with cut formulas of size at most r + 1 with
shape ∨ or ∃a, then n;m `2α Γ is derivable with cut formulas of size at most r.

Repeated application of (ii) eliminates cuts on formulas beginning ∨ or ∃a,
at the expense of an iterated exponential increase in the ordinal bound. (It does
not eliminate cuts on formulas beginning with an input quantifier, but these can
anyway be kept down to the Σ1 level, as we shall see below.)

This gives an immediate glimpse of why the provably computable functions
of EA(I;O) are elementary. For if an EA(I;O) proof of f(x) ↓≡ ∃aCf (x, a) is
embedded in the infinitary system, a cut-free derivation is obtained with ordinal
bound |α| < ε0. Then for each x := n a witness m may be read off such that
Cf (n,m) holds and n; α m. Therefore, by the bounding principle above, the
elementary function qk(0), where k = 2Gα(n), bounds the quantifiers in the Σ1

defining formula of f , so f is an elementary function.

4.3 Embedding EA(I;O)+ in EA(I;O)+∞

Definition 4.3 By a “Σ(I) formula” (dually Π(I)) is meant a Σ1 (resp. Π1)
formula beginning with at least one unbounded input quantifier ∃x (∀x). Write
n;m `αΣ(I) Γ to signify that there is a derivation of n;m `α Γ in which all cut

formulas are Σ(I) (dually Π(I)).

Theorem 4.4 If EA(I;O)+ ` Γ(~x;~a) then there is an α with |α| < ε0 such that
for all ~x := ~n = n1, . . . , nr ≤ n and all ~a := ~m = m1, . . . ,m` ≤ m,

n;m `αΣ(I) Γ(~n; ~m) .

Proof. First, as preparation, note that in EA(I;O)+ we can directly eliminate all
“free” cuts in which the cut formula C contains unbounded input quantifiers and
is of greater logical complexity than Σ(I) or Π(I). Very roughly, the procedure
goes as follows: if the premises of the cut are Γ,¬C and Γ, C where C begins,
say, with an existential quantifier, then it cannot be the result of an induction
or a reflection rule (since it’s neither an EA(I;O) formula nor Σ(I)), and so
could only arise by an ∃ rule from a Γ, D(t) where C ≡ ∃aD(a) or C ≡ ∃xD(x).
Then by inverting the other premise to Γ,¬D(t) one sees that the original
cut on C may now be replaced by a cut on its subformula D. (Similarly if
C ≡ D1∨D2.) Repeating this process successively eliminates all such cuts from
EA(I;O)+ proofs, and we shall henceforth assume this to have been done.

The theorem is now proved by induction over the height of this (revised)
proof of Γ(~x;~a) in EA(I;O)+, with cases according to the last rule applied. The
cut elimination of the last subsection ensures that cuts on EA(I;O) formulas
may continually be eliminated without increasing the ordinal bounds above the
superexponential level. Thus only Σ(I) cuts will remain.

The non-inductive axioms, the ∨,∧ -rules and the cuts on Σ(I) formulas all
carry over easily to the infinitary setting, as do the ∀a and ∀x rules.

If Γ,∃aA(a) comes about by an ∃-rule from the premise Γ,∃aA(a), A(t(~x;~a))
then we may inductively assume there is a β such that for all ~n ≤ n, ~m ≤ m,
n;m `βΣ(I) Γ,∃aA(a), A(t(~n; ~m)). Now the value m′ of t(~n; ~m) is polynomially

bounded, and certainly m′ ≤ qk(m) where k = 2Gω+d(n) for some suitable d.
Therefore n;m ω+d m′ and, by weakening the ordinal bound β and replacing
t(~n; ~m) by its value, n;m `ω+d+β

Σ(I) Γ,∃aA(a), A(m′). An application of the ∃a
rule then gives n;m `αΣ(I) Γ,∃aA(a) as required, with α = ω + d + β + 1. The
∃x rule is handled similarly but with m = 0.

An induction axiom, in Tait style, is Γ,¬A(0),∃a(A(a) ∧ ¬A(a + 1)), A(t)
with A an EA(I;O) formula and t a term on input variables only. We suppress
the other free variables ~x,~a from Γ, A. As above, let m′ be the value of t(~n) and
choose γ = ω+d so that n;m γ m′. Next, note that for some fixed k depending
on the size of the formula A, simple logic gives a cut-free derivation of n;m′ `k
Γ,¬A(0),∃a(A(a) ∧ ¬A(a+ 1)),¬A(i), A(i) for any i. Therefore if one assumes
n;m′ `k+2(i−1) Γ,¬A(0),∃a(A(a)∧¬A(a+1)), A(i−1) with i ≤ m′, then by the
∧-rule followed by the ∃a rule (noting n;m′ 0 i− 1) one immediately obtains

n;m′ `k+2i Γ,¬A(0),∃a(A(a)∧¬A(a+1)), A(i) . Hence by induction on i up to
m′ we have n;m′ `k+2m′

Γ,¬A(0),∃a(A(a)∧¬A(a+1)), A(m′). But an easy tree
ordinal computation shows (k+ 2ω)[m′] = {0, . . . , k, k+ 1, . . . , k+ 2m′+ 1} and
so n;m′ `k+2ω Γ,¬A(0),∃a(A(a)∧¬A(a+1)), A(m′). A computation rule with
n;m γ m′ gives n;m `γ+k+2ω+1 Γ,¬A(0),∃a(A(a)∧¬A(a+ 1)), A(m′). Since
m′ is the value of the term t, ¬A(m′), A(t) is derivable with height k and then an
eliminable cut on A(m′) yields n;m `αΣ(I) Γ,¬A(0),∃a(A(a) ∧ ¬A(a+ 1)), A(t)
as required.

Finally we must show that the Σ1 reflection rule: from Γ(~x), ∃~aA(~x,~a) derive
Γ(~x), ∃~yA(~x, ~y), embeds into EA(I;O)+

∞, where Γ,∃~aA(~a) is a set of Σ1 formulas
with only the input variables ~x free. Assume then, as induction hypothesis, that
there is a β such that for all ~n ≤ n, n; `βΣ(I) Γ(~n),∃~aA(~n,~a). We need to prove,

for a suitable α, n; `αΣ(I) Γ(~n),∃~xA(~n, ~x). This follows immediately from the
following lemma with m = 0.

As a preliminary, note that only finitely many terms t(~x;~a) will be involved
in the embedding of any EA(I;O)+ proof, and each one is polynomially bounded.
So there will be a γ = ω + d for some fixed d, such that for all ~n ≤ n, ~m ≤ m
and every such term, n;m γ val(t(~n; ~m)) or equivalently val(t(~n; ~m)) ≤ qk(m)
where k = 2Gγ(n). We then say that the derivation is “term controlled” by γ.

�

Lemma 4.5 Suppose n;m `βΣ(I) Γ(~n; ~m) where Γ is a set of Σ1 formulas. Sup-

pose also that the derivation is term controlled by γ, and that m is such that

n; γ m. Then for some fixed k we have n; `γ+kβ

Σ(I) Γ′ where Γ′ results from Γ

by replacing some (possibly all) unbounded output quantifiers ∃a by input quan-
tifiers ∃x.

Proof. We proceed by induction on β with cases according to the last rule
applied. The choice of k will become clear, and it is easy to show that if δ ∈ β[n]
then kδ ∈ kβ [n] so a derivation with ordinal bound β may be “weakened” to
one with ordinal bound kβ .

If Γ is an axiom (i.e. contains a true atom) then so will be n;m `γ Γ′, and

the computation rule with n; γ m gives n; `γ+kβ Γ′ since γ ∈ (γ + kβ)[n].
The ∨ and ∧ rules are handled easily, by applying the induction hypothesis

to each premise and then re-applying the rule.
If n;m `β Γ comes about by a computation rule with premises n;m β0 m′

and n;m′ `β1 Γ then, first, set δ = max(β0, β1) ∈ β[n]. We have n; γ+kδ·2 m′

by the computation rule, and so by the induction hypothesis, with γ replaced

by γ + kδ · 2, we obtain n; `γ+kδ·3 Γ′. Since δ ∈ β[n], if one chooses k ≥ 3 then

either γ + kδ · 3 = γ + kβ or γ + kδ · 3 ∈ (γ + kβ)[n], so n; `γ+kβ Γ′ as required,
and still with only Σ(I) cuts.

Suppose n;m `β Γ arises from premises n;m β0 m′ and n;m `β1 Γ, A(m′)
by an ∃a or ∃x rule where (respectively) ∃aA(a) or ∃xA(x) belongs to Γ. Then,
again with δ = max(β0, β1) ∈ β[n], the computation rule and the induction

hypothesis yield n; γ+kδ m′ and n; `γ+kδ Γ′, A′(m′). Since kδ ∈ kβ [n] the

appropriate ∃a or ∃x rule may then be applied to give n; `γ+kβ

Σ(I) Γ′.

If the last rule applied is a ∀-rule then it can only occur in a bounded
context since the formulas are all Σ1. The premises will then have the form
{n; max(m, i) `δ Γ, i 6≤ t ∨ B(i)}i∈N where δ ∈ β[n] and ∀a ≤ tB(a) belongs
to Γ. Since the derivation is term controlled by γ we have n;m γ val(t), so

n; γ+kδ max(m, i) for each i ≤ val(t). For i > val(t) the atom i 6≤ t is true
and derivable with any side formulas and any ordinal height. Therefore by the
induction hypothesis, with γ replaced by γ + kδ and m replaced by max(m, i),

we obtain n; i `γ+kδ·2 Γ′, i 6≤ t ∨ B(i) for all i. Then (assuming k ≥ 3 again) a

final re-application of the ∀-rule gives n; `γ+kβ

Σ(I) Γ′.

Finally, suppose the last rule applied is a cut on a Σ(I) formula, say ∃~cB(~c)
where B contains only bounded quantifiers and the variables ~c are either in-
puts or outputs. Then the premises are n;m `β0

Σ(I) Γ,∀~c¬B(~c) and n;m `β1

Σ(I)

Γ,∃~cB(~c). (Any “dummy” variables not in ~n, ~m are assumed to have been set to
0.) Again let δ = max(β0, β1) ∈ β[n]. Applying the induction hypothesis to the

second premise yields n; `γ+kδ

Σ(I) Γ′,∃~yB(~y) with new input variables ~y. By invert-

ing the ∀~c in the first premise, max(n,~i); max(m,~i) `δ Γ,¬B(~i) for all ~i. Now
the induction hypothesis can be applied to this, since max(n,~i); γ max(m,~i).

Thus max(n,~i); `γ+kδ Γ′,¬B(~i), and then by applying the ∀y rule as many

times as necessary, n; `γ+kδ+r
Σ(I) Γ′,∀~y¬B(~y). We may now do a cut on ∃~yB(~y)

to obtain n; `γ+kδ+r+1
Σ(I) Γ′ and the ordinal bound may be increased to γ+ kβ as

required, provided we choose k > the length r of any quantifier-prefix occurring
in the embedded EA(I;O)+ proof.

This completes the lemma and the proof of the theorem. �

4.4 Extracting elementary bounds for EA(I;O)+

The embedding of EA(I;O)+ in EA(I;O)+
∞ preserves the Σ(I) cuts, and since

these are not allowed as induction formulas, it means that there must be a finite
upper bound on the “depth of nesting” of such Σ(I) cuts in any embedded
EA(I;O)+

∞ derivation. We call this the “cut height” of the derivation and denote
it h.

Definition 4.6 For α in the additive, multiplicative, exponential closure of
{0, ω}, let Bα(n,m) be the elementary function qk(m) where k = 2Gα(n), so

n;m α m′ if and only if m′ ≤ Bα(n,m). Then define B
(0)
α = Bα and, for any

fixed positive h,

B(h)
α (n,m) := B(h−1)

α (B(h−1)
α (n,m), B(h−1)

α (n,m)) .

Since B
(h)
α is a finite compositional term built up from Bα, it too is elementary.

Note 4.7 If β ∈ α[n] then Gβ(n) < Gα(n) and so Bβ(n,Bβ(n,m)) ≤ Bα(n,m)

and similarly, B
(h)
β (n,Bβ(n,m)) ≤ B(h)

α (n,m).

Definition 4.8 A closed Σ1 formula ∃~cA(~c), with A a bounded formula and
~c a mixture of input or output variables, is said to be “true at b” if there are
witnesses ~m ≤ b such that A(~m) is true (in standard arithmetic). If there are
no unbounded existential quantifiers then the bounded formula A is true at b if
it is true. A set of Σ1 formulas is true at b if at least one of them is.

Lemma 4.9 Let Γ be a set of Σ1 formulas such that n;m `αΣ(I) Γ with finite
cut height ≤ h. Assume that the derivation is term controlled by γ. Then Γ is

true at B
(h)
α′ (n,m) where α′ = γ + α.

Proof. We use induction on h with sub-induction on α. To save having to
decorate each ordinal with a “dash”, we may as well assume, by weakening,
that γ has already been “added in” to each ordinal bound in the derivation.
Then if n;m `β Γ each closed term in Γ has value ≤ Bβ(n,m). Let (*) denote
the given derivation of n;m `αΣ(I) Γ.

If (*) is an axiom then Γ contains a true atom and is true at any b.
If (*) comes about by the ∨ or ∧ rule then the premise(s) are of the form

n;m `βΣ(I) Γ′, D and n;m `βΣ(I) Γ′, D′ where D,D′ are bounded formulas and

of course, β ∈ α[n]. By the induction hypothesis, either Γ′ is true at B
(h)
β (n,m)

or, if not, D,D′ are true. In this case Γ = Γ′, D ∨D′ or = Γ′, D ∧D′ is true at

B
(h)
β (n,m) and hence at B

(h)
α (n,m).

If (*) arises by the ∀ rule then it can only occur in a bounded context, so
the premises are {n; max(m, i) `β Γ′, i 6≤ t∨B(i)}i∈N where Γ = Γ′,∀i ≤ tB(i).
Either ∀i ≤ tB(i) is true (and hence the result) or else there is an i ≤ val(t)

such that Γ′ is true at B
(h)
β (n,max(m, i)). But by term control, i ≤ Bβ(n,m)

and so B
(h)
β (n,max(m, i)) ≤ B(h)

β (n,Bβ(n,m)) ≤ B(h)
α (n,m). Therefore Γ′ and

hence Γ is true at B
(h)
α (n,m).

If (*) arises by an ∃ rule then there are two premises: n;m `β Γ, A(m′) and
either n;m β m′ in case it’s a ∃a rule, or n; β m′ if it’s a ∃x rule. Here Γ
contains ∃cA(c) with the variable c being either an a or an x. By the induction

hypothesis, either some formula in Γ is already true at B
(h)
β (n,m) or else A(m′)

is true at B
(h)
β (n,m) and hence ∃cA(c) is also true at B

(h)
β (n,m) because the

new witness m′ is ≤ Bβ(n,m) ≤ B(h)
β (n,m). Either way, Γ is true at B

(h)
β (n,m)

and hence at B
(h)
α (n,m).

If (*) comes about by a computation rule with premises n;m′ `β Γ and

n;m β m′ then by the induction hypothesis Γ is true at B
(h)
β (n,m′), and also

we have m′ ≤ Bβ(n,m). Therefore Γ is true at B
(h)
β (n,Bβ(n,m)) ≤ B(h)

α (n,m)
as required.

Finally suppose (*) arises by a cut from the premises n;m `β Γ,∃~cA(~c) and
n;m `β Γ,∀~c¬A(~c) with A(~c) a bounded formula and where ~c is a sequence
of input or output variables. Since Γ is derived with cut height ≤ h, both
of the premises must be derived with cut height ≤ h − 1. By the induction

hypothesis applied to the first premise, and letting k = B
(h−1)
β (n,m), either

Γ is true at k or else there are ~i ≤ k such that A(~i) is true. Now inverting
the ∀~c in the second premise, k; k `β Γ,¬A(~i). The set Γ,¬A consists solely
of Σ1 formulas, so the induction hypothesis may be applied again, yielding

Γ,¬A(~i) true at B
(h−1)
β (k, k). Since ¬A(~i) is false, we therefore have Γ true at

B
(h−1)
β (k, k) = B

(h)
β (n,m) ≤ B(h)

α (n,m) and this completes the proof. �

Theorem 4.10 The provably computable functions of EA(I;O)+ are exactly the
elementary functions.

Proof. Every elementary function is provably computable in EA(I;O), and
therefore in EA(I;O)+. For the converse suppose f(~x) has the defining formula
∃aCf (~x, a) provable in EA(I;O)+. Then by the embedding, n; `αΣ(I) ∃aCf (~n, a)

with fixed cut height h, where n = max(~n), and we may assume that this
derivation is term controlled by some γ. Therefore by the Lemma, there are true
witnesses for the existentially quantified variables prefixing ∃aCf (~n, a) and they

are all bounded by the elementary function B
(h)
γ+α(n, 0). This holds uniformly

for all inputs ~n. Thus the graph of f is elementarily decidable and its value is
elementarily bounded, so it is an elementary function. �

5 A Hierarchy of Theories above EA(I;O)+

We now introduce a new level of input variables, and a new tier of inductions over
EA(I;O)+ formulas. Henceforth denote I by I1, and call x, y, z the I1 variables.
Then the I2 variables are new variables, denoted u, v, w. Add to EA(I;O)+ these
new I2 variables and the new induction principle:

A(0) ∧ ∀x(A(x)→ A(x+ 1))→ A(t)

where A is an EA(I;O)+-formula, possibly with free I2 parameters, and t = t(~u)
is a term containing only I2 variables. This theory is denoted EA(I2; I1; O). Its
extension EA(I2; I1; O)+ is obtained by further adding I2-quantifier rules and
a Σ1 reflection rule at level 2:

Γ(~u), ∃~xA(~u, ~x)

Γ(~u), ∃~vA(~u,~v)

where Γ(~u), ∃~xA(~u, ~x) is a set of Σ1 formulas all of whose free variables are I2

inputs.

Definition 5.1 A function f is provably computable in EA(I2; I1; O)+ if, on
level-2 inputs ~u, its defining formula f(~u)↓ ≡ ∃aCf (~u, a) is provable.

Note 5.2 Every function provably computable in EA(I;O)+ is provably com-
putable in EA(I2; I1; O), for by trivial applications of the level-2 induction
principle above, if ∃aCf (~x, a) is provable in EA(I;O)+ then ∃aCf (~u, a) is prov-
able in EA(I2; I1; O).

Lemma 5.3 The functions of Grzegorczyk’s E4 are all provably computable in
EA(I2; I1; O)+.

Proof. It is only necessary to show that every function register-machine com-
putable in a number of steps bounded by some finite iterate of the superexpo-
nential 2u(u) is provably computable in EA(I2; I1; O)+. Here, 2u(v) is defined
by 20(v) = v and 2u+1(v) = 22u(v).

First note that 2u(u) ↓ is provable in EA(I2; I1; O)+. This is because
2x ↓ is already provable in EA(I;O) and so ∃y(2x = y) and ∀x∃y(2x = y) are
provable in EA(I;O)+ by the level-1 reflection rule and the ∀-rule. Therefore
∃y(20(z) = y) and ∃y(2x(z) = y) → ∃y(2x+1(z) = y) are provable. Now the
level-2 induction comes into play, yielding ∃y(2u(z) = y) and hence 2u(u) ↓.
Arbitrary finite compositions of this are then provable in EA(I2; I1; O)+ by the
level-2 reflection and quantification rules, as done earlier at level-1.

Letting f(u) be any such finite iteration of 2u(u), suppose g(~v) is register-
machine computable in a number of steps bounded by f(max~v). Associate
with the register machine program a bounded formula Cg(s,~v, i, r1, . . . , rk) rep-
resenting the well-definedness of all successive internal configurations of the
machine up to step s. Thus i stores the sequence of next-to-be-obeyed program-
instructions starting at step 0, and each rj is a sequence-number recording the
numerical content of the j-th working register at each step up to s. The basic
instructions either update a register by a successor or predecessor, or jump to
another instruction according to the value in one register being zero or nonzero.
The initial configuration on input ~v is (1, 0, . . . , 0). It is therefore easy to prove,
in EA(I2; I1; O),

∃i∃~rCg(0, ~v, i, ~r) ∧ ∀s(∃i∃~rCg(s,~v, i, ~r)→ ∃i∃~rCg(s+ 1, ~v, i, ~r)) .

Hence ∃i∃~rCg(u,~v, i, ~r) is provable in EA(I2; I1; O) and ∀u∃i∃~rCg(u,~v, i, ~r) is
provable in EA(I2; I1; O)+. Therefore so is ∃i∃~rCg(f(max~v), ~v, i, ~r), using level-
2 reflection and quantification. But this is the termination condition for g, so g
is provably computable in EA(I2; I1; O)+. �

5.1 The infinitary system EA(I2; I1; O)+∞

As before, upper bounds on provable recursiveness in EA(I2; I1; O)+ are ob-
tained by embedding into a suitable infinitary system which admits cut elimi-
nation.

The infinitary system EA(I2; I1; O)+
∞ derives Tait-style sequents

n2:I2 ;n1:I1 ;m:O `α,γ Γ

where Γ is a finite set of closed formulas, n2, n1 bound level-2 and level-1 in-
puts respectively, and m declares a bound on the output values. The tree-
ordinals α, γ are still exponential forms to the base ω, i.e. generated by addition,
multiplication and exponentiation from 0, ω. As before, we use the shorthand
n2;n1;m `α,γ Γ.

Only the α and n2 control the derivations in the sense that if β, γ are the
bounds on a premise with conclusion n2;n1;m `α,γ Γ then β ∈ α[n2]. The γ
remains fixed throughout, and only plays a role in the following axiom which
layers the new system on top of the old one EA(I;O)+

∞:

n2;n1;m `α,γ Γ if n1;m `γ Γ′ where Γ′ ⊆ Γ

with α and n2 arbitrary.
The rules of EA(I2; I1; O)+

∞ are those of EA(I;O)+
∞ appropriately redecorated

with n2 and α, together with new level-2 rules:
The ∃u-rule is

n2; 0; 0 β0,γ m′ n2;n1;m `β1,γ A(m′),Γ

n2;n1;m `α,γ ∃uA(u),Γ
.

and the ∀u-rule is

{max(n2, i);n1;m `β,γ A(i),Γ}i∈N
n2;n1;m `α,γ ∀uA(u),Γ

.

The new computation axiom is:

n2;n1;m α,γ m′ if n1;m γ m′ in EA(I;O)
+
∞ .

The new computation rule is:

n2;n1; 0 β0,γ n′1 n2;n′1;m β1,γ m′

n2;n1;m α,γ m′

and this can interact with the logic in the form:

n2;n1; 0 β0,γ n′1 n2;n′1;m `β1,γ Γ

n2;n1;m `α,γ Γ
.

Definition 5.4 (Bounding Functions)

Bα,γ(n2, n1,m) =

Bγ(n1,m) if α = 0,
Bα−1,γ(n2, Bα−1,γ(n2, n1, 0),m) if α is a successor,
Bαn2 ,γ

(n2, n1,m) if α is a limit.

Lemma 5.5 For each fixed pair α, γ, the function Bα,γ lies in E4.

Proof. This is because, by an easy induction on α,

Bα,γ(n2, n1,m) = Bγ(fk(n1),m) where f(n) = Bγ(n, 0) and k = 2Gα(n2) − 1 .

Since the binary Bγ is elementary, f is elementary, and so its iterate function
fk(n) lies in E4, because one iteration jumps up to the next level of the Grzegor-
czyk hierarchy. But k is also an elementary function of n2. Therefore Bα,γ ∈ E4.

�

Lemma 5.6 (Bounding Lemma)

n2;n1;m α,γ m′ if and only if m′ ≤ Bα,γ(n2, n1,m)

provided (in the “only if” part) that γ is at least ω.

Proof. For the “if”’ suppose m′ ≤ Bα,γ(n2, n1,m) and proceed by induction on
α. If α = 0 then m′ ≤ Bγ(n1,m), so n1;m γ m′ and hence n2;n1;m α,γ m′

by the computation axiom. If α is a successor thenm′ ≤ Bα−1,γ(n2, n
′,m) where

n′ = Bα−1,γ(n2, n1, 0). Therefore by the induction hypothesis, n2;n1; 0 α−1,γ

n′ and n2;n′;m α−1,γ m′. One application of the computation rule then yields
n2;n1;m α,γ m′. If α = supi αi is a limit the result follows immediately from
the induction hypothesis at αn2

.
For the “only if” assume n2;n1;m α,γ m′ and call this sequent (*). If

it comes about by a computation axiom then n1;m γ m′ and hence m′ ≤
Bγ(n1,m) = B0,γ(n2;n1;m) ≤ Bα,γ(n2, n1,m). If (*) arises from the level-
2 computation rule the premises are n2;n1; 0 β0,γ n′ and n2;n′;m β1,γ

m′. Inductively, we may therefore assume m′ ≤ Bβ1,γ(n2, n
′,m) where n′ ≤

Bβ0,γ(n2, n1, 0). Since β0, β1 ∈ α[n2] it then follows from the definition of
Bα,γ that m′ ≤ Bα,γ(n2, n1,m). Finally suppose (*) arises from an applica-
tion of the level-1 computation rule, with premises n2;n1;m′′ β1,γ m′ and
n2;n1;m β0,γ m′′. Then m′ ≤ Bβ1,γ(n2, n1,m

′′) where m′′ ≤ Bβ0,γ(n2, n1,m).
Letting β = max(β0, β1) ∈ α[n2], the desired result will follow immediately from

Bβ,γ(n2, n1, Bβ,γ(n2, n1,m)) ≤ Bβ,γ(n2, Bβ,γ(n2, n1, 0),m)

since the latter is ≤ Bα,γ(n2, n1,m). But this is checked by a careful induction
on β. If β = 0 the left hand side of the inequality is Bγ+1(n1,m) = qk(m)

where k = 2Gγ(n1)+1. The right hand side is qk
′
(m) with k′ = 2Gγ(Bγ(n1,0)).

Then k ≤ k′ provided γ is at least ω. If β is a limit the result is immediate by
applying the induction hypothesis on βn2 . Now suppose β is a successor. Then,
unravelling the left hand side, one obtains

Bβ−1,γ(n2, Bβ−1,γ(n2, n1, 0), Bβ−1,γ(n2, Bβ−1,γ(n2, n1, 0),m))

and, by the induction hypothesis, one sees that this is less than or equal to

Bβ−1,γ(n2, Bβ−1,γ(n2, Bβ−1,γ(n2, n1, 0), 0),m) = Bβ−1,γ(n2, Bβ,γ(n2, n1, 0),m)

which is ≤ Bβ,γ(n2, Bβ,γ(n2, n1, 0),m) as required. �

5.2 E4 bounds for provable Σ1 formulas in EA(I2; I1; O)+

The procedure for extracting numerical bounds now runs along the same lines
as before for EA(I;O)+. Suppose EA(I2; I1; O)+ ` ∃~aC(~u,~a) with C a bounded
formula. First, remove all cuts on formulas of complexity greater than Σ1 or Π1

containing at least one unbounded level-2 quantifier (recall that these cannot
be induction formulas, nor the results of reflection rules, so they are “free cuts”

which can be eliminated straightforwardly within EA(I2; I1; O)+). Next, by
the same methods as in Theorem 4.4, embed this proof into EA(I2; I1; O)+

∞,
simultaneously eliminating all cuts on EA(I2; I1; O) formulas (cut elimination
works for the new extended infinitary system just as it did for the old one, and
the ordinal bounds remain exponential forms to the base ω). The result is a
derivation of

k ; 0; 0 `α,γΣ(I) ∃~aC(~k,~a)

for some fixed α, γ and all ~k = k1, . . . , kr ≤ k. The subscript Σ(I) now indicates
that the only cuts remaining are on Σ1 (dually Π1) formulas which contain a
level-2 quantifier. A bounding result similar to that of Lemma 4.9 then shows
that ∃~aC(~k,~a) is true at f(max~k) where f is some finite iterate of Bα,γ .

Theorem 5.7 The provably computable functions of EA(I2; I1; O)+ are exactly
the E4 functions.

5.3 Extending the hierarchy upwards

The theory EA(Ij ; . . . ; I2; I1; O)+ is formed from EA(Ij−1; . . . ; I2; I1; O)+ at
each stage j, by adding new level-j variables, inductions “up to” level-j terms
on EA(Ij−1; . . . ; I2; I1; O)+ formulas, and then adding level-j quantifiers and a
level-j reflection rule. It is then embedded into an infinitary system:

nj ;nj−1; . . . ;n2;n1;m `α,~γ Γ

whose computation rules determine bounding functions Bα,~γ defined by one
further iteration from B~γ . Since this latter is in Ej+1 the new bounding functions
Bα,~γ , and their finite compositions, will therefore lie in Ej+2. The methods, at
each stage, are essentially those already described.

Theorem 5.8 The provably computable functions of EA(Ij; . . . ; I2; I1; O)+

are exactly the Ej+2 functions.

6 Extending EA(I;O) with a Closure Rule

The theory EA(I;O)∗ extends EA(I;O) with the Σ1 Closure rule:

∆(~x;~b)

Γ, ∆(~a,~b)

where ∆ is a set of Σ1 formulas, Γ is an arbitrary set of formulas and the
variables ~a are free for ~x in ∆.

The rule replaces the uninterpreted (arbitrary) input constants ~x in the
premise by fresh output variables which may then be universally quantified
(note how the semi-colon in ∆ is dropped from premise to conclusion). Thus
it resembles a formalized ω-rule for Σ1 formulas in EA(I;O)∗. This causes a

collapse of the variable separation and thus strengthens EA(I;O) considerably.
For a given EA(I;O)∗ derivation of a Σ1 formula A(~x) (such as that defining
a provably computable function) we may now deduce ∀~aA(~a). The universal
quantifiers ∀~a could be regarded as quantifiers with computational content in
the sense of Schwichtenberg [7] (also Berger [3]).

Definition 6.1 In EA(I;O)∗, provably computable functions are now defined
on output variables. That is, f : Nk → N is “provably computable” if there is
a Σ1 formula Cf (~a, b) such that f(~n) = m if and only if Cf (~n,m) is true, and
EA(I;O)∗ ` ∀~a∃!bCf (~a, b).

Theorem 6.2 The primitive recursive functions are provably computable in
EA(I;O)∗.

Proof. Clearly if a function is provably computable in EA(I;O) it is also prov-
ably computable in EA(I;O)∗ using the closure rule and universal quantifica-
tion. Furthermore, closure under composition comes immediately from the logic.
Hence we need only show that the provably computable functions of EA(I;O)∗

are closed under primitive recursion.
Without loss of generality assume that the function f is defined by the

primitive recursion f(0, b) = g(b), f(a + 1, b) = h(f(a, b)) where g and h are
already provably computable. Then we have derivations of ∀b∃dCg(b, d) and
∀c∃dCh(c, d). It is straightforward to define a computational formula Cf (a, b, d)
for f such that we may prove ∃dCf (0, b, d) and ∃dCf (a, b, d)→ ∃dCf (a+1, b, d).
Applying predicative induction yields ∃dCf (x; b, d) from which the closure rule
and universal quantifications leave ∀a, b∃dCf (a, b, d). Thus f is provably com-
putable in EA(I;O)∗. �

6.1 Refinements of EA(I;O)∗

We may refine the previous result by defining a hierarchy of theories below
EA(I;O)∗ which carefully control the applications of the closure and predicative
induction rules.

Definition 6.3 Let EA(I;O) be denoted EA0(I;O). Then for any natural num-
ber k > 0 the theories EAk and EAk(I;O) are generated inductively. EAk is a
theory with just one type of variable, outputs, and the usual rules of inference
and axioms. EAk has no induction rule but we do add one non-logical axiom
schema: the Σ1 closure axiom

EAk ` Γ,∆(~a,~b) if EAk−1(I;O) ` ∆(~x;~b)

where ∆ is a set of Σ1 formulas, Γ is an arbitrary set of formulas and the
variables ~a are free for ~x in ∆.

EAk(I;O) is then defined as a two sorted extension of EAk. We add an
infinite supply of input constants x, y, x0, x1, . . . as symbols of the language
along with the predicative induction rule

Γ, A(0) Γ,¬A(a), A(a+ 1)

Γ, A(x)

where Γ is an arbitrary set of formulas and a is not free in Γ, A(0).
Note that if a function is provably computable in EA(I;O)∗ and the deriva-

tion contains at most k nested applications of the closure rule then this deriva-
tion may be replicated in EAk(I;O).

Theorem 6.4 For each natural number k > 0, the functions in Grzegorczyk’s
class Ek+2 are provably computable in EAk

Proof. We use induction over k. The basis of the induction follows immediately
since the elementary functions are provably computable in EA(I;O) and thus
also EA1. Now assume the result holds for k. By a result of Axt [1], for
i ≥ 3, the Grzegorczyk class E i+1 may be characterized as the smallest class of
functions containing E i which is closed under composition and closed under a
single primitive recursion. Thus if f ∈ Ek+3 we need only consider three cases
for its definition and we use a sub-induction according to these cases.

i. If f ∈ Ek+2 then by the induction hypothesis for k we know f is provably
computable in EAk and hence also in EAk+1.

ii. If f is definable by composition where the auxiliary functions gi are in
Ek+3 then by the sub-induction hypothesis gi is provably computable EAk+1.
As in theorem 6.2, closure under composition of provably computable functions
in EAk+1 is straightforward from the logic without any appeal to predicative
induction. Hence, f is provably computable in EAk+1.

iii. Finally it may be the case that f ∈ Ek+3 is defined by a primitive recur-
sion using auxiliary functions gi ∈ Ek+2. Using the main induction hypothesis
for k we have gi provably computable in EAk. Following the proof of closure un-
der primitive recursion in 6.2 we may, with a single use of predicative induction,
show f is provably computable in EAk(I;O) and thus also provably computable
in EAk+1. �

6.2 The Infinitary System EA(I;O)∗∞

We now show that the provably recursive functions of EA(I;O)∗ are at most
the primitive recursive functions using the infinitary system EA(I;O)∗∞. Its
Tait-style sequents take the form

n;m `α,
#»γ Γ

where Γ is a finite set of closed formulas, n declares a bound on input parameters
and m declares a bound on output values. The tree ordinals α, #»γ are again
exponential forms to the base ω. Here #»γ represents a finite (possibly empty)
sequence γk, . . . , γ1.

With one key exception, the rules of EA(I;O)∗∞ are controlled by α and n
with #»γ remaining fixed. That is to say from premise(s) with ordinal bounds
β, #»γ the conclusion takes the bound α, #»γ where β ∈ α[n]. We have an axiom
rule in which α, #»γ are arbitrary and the usual conjunction, disjunction and cut
rules. Quantification rules only apply to outputs, hence there is one ∃-rule

n;m β0,
#»γ m′ n;m `β1,

#»γ Γ, A(m′)

n;m `α, #»γ Γ,∃aA(a)

and one ∀-rule
{n; max(m, i) `β, #»γ Γ, A(i)}i∈N

n;m `α, #»γ Γ,∀aA(a)

where again β does not vary with i. The exception arises in the addition of the
closure rule

n′;m′ ` #»γ ∆

n; max(n′,m′) `α, #»γ Γ

where ∆ is Σ1, ∆ ⊆ Γ, α and n are arbitrary and #»γ is non-empty. In this rule
a new ordinal α is prefixed to the existing sequence #»γ such that subsequent
applications of the other rules are now controlled by this new α and n.

We have three rules governing computations. The computational axiom is
n;m α,

#»γ l where l ≤ q(m) for some suitable quadratic function which bounds
all the term-constructors. The computational cut rule is

n;m β0,
#»γ m′ n;m′ β1,

#»γ l

n;m α,
#»γ l

which interacts with the logic in the form

n;m β0,
#»γ m′ n;m′ `β1,

#»γ Γ

n;m `α, #»γ Γ
.

Finally we have a computational closure rule

n′;m′
#»γ l

n; max(n′,m′) α,
#»γ l

where α and n are arbitrary and #»γ is non-empty.

Remark 6.5 The closure rule is analogous to the closure rule in EA(I;O)∗ in
that input declarations in the premise become output declarations in the conclu-
sion. Again note that the semi-colon in ∆ is dropped from premise to conclusion
signifying the change. As the declarations have now shifted we also require a
corresponding computational closure rule. Thus the infinitary theory here is
similar to one for EA(Ij ; . . . ; I2; I1; O)+ in which multiple levels of declarations
nj ;nj−1; . . . ;n1;m are reduced to just two: nj and max(nj−1; . . . ;n1;m).

We now broadly follow the usual methods for extracting numerical bounds
on derivations of Σ1 sets beginning by defining a suitable bounding function.

Definition 6.6 (Bounding Functions)

Bα, #»γ (n;m) =

q(m) if α, #»γ = 0,
B #»γ (m;m) if α = 0,
Bα−1, #»γ (n;Bα−1, #»γ (n;m)) if α is a successor,
Bαn, #»γ (n;m) if α is a limit.

Lemma 6.7 For each fixed α, #»γ and for a fixed d ∈ N, Bd, #»γ lies in Ek+2 and
Bα, #»γ lies in Ek+3.

Proof. We use induction over the length of the sequence #»γ . When the sequence
is empty k = 0 and Bd(n;m) is bounded by a polynomial. Thus it is contained
in E2. Bα lies in E3 since Bα(n;m) = qd(m) where q := 2Gα(n) and Gα(n)
is elementary. Now assume the result holds for #»γ := α′, γk−1, . . . , γ1. Then
B #»γ ∈ Ek+2. For a fixed d ∈ N, Bd, #»γ ∈ Ek+2 since it is defined by composition
from B #»γ . An easy induction of α shows Bα, #»γ (n;m) is equal to Bd, #»γ (n;m)
where d := Gα(n). Hence we may define Bα, #»γ by a primitive recursion whose
auxiliary functions lie in Ek+2 and we conclude Bα, #»γ ∈ Ek+3. �

Lemma 6.8 (Bounding Lemma)

n;m α,
#»γ l if and only if l ≤ Bα, #»γ (n;m).

Proof. Tackling the “if” part first we use induction on the length of α, #»γ
with a sub-induction on α. Assume that #»γ is empty. Then if α = 0 we have
l ≤ B0(n;m) = q(m) and the result follows immediately by the computational
axiom. If α is a successor β + 1 then l ≤ Bβ+1(n;m) = Bβ(n;m′) where
m′ = Bβ(n;m). Using the induction hypothesis for α we have the derivations
n;m β m′ and n;m′ β l and the result follows by a computational cut rule.
Now assume α is a limit supn(λn) so l ≤ Bλ(n;m) = Bλn(n;m). Then for
every n we may apply the induction hypothesis for α to give n;m λn l. We
must use a sub-induction on this derivation to change the proof height from
λn to λ. The axiom case is self-evident. Now assume an application of a
computational cut was the last rule of inference from premises of heights βi.
Then since βi ∈ λn[n] = λ[n] we may have in each case taken the new height to
be λ. Hence n;m λ l.

Now, assuming the result for #»γ , if α = 0 then l ≤ B0, #»γ (n;m) = B #»γ (m;m)
and the main induction hypothesis gives m;m

#»γ l. Applying the computa-
tional closure rule we get n;m 0, #»γ l as required. The cases where α is a
successor or a limit follow just as above.

For the “only if” we use induction over the derivation of n;m α,
#»γ l

with a case distinction according to the final rule of inference applied. We
rely heavily upon certain majorization properties of the functions Bα, #»γ (n;m),
namely that they are increasing in n,m and α, #»γ . These properties follow
by simple inductions on α, #»γ . If the derivation is a computational axiom
then l ≤ q(m) ≤ Bα, #»γ (n;m). If the last rule of inference were a computa-
tional cut from premises n;m β0,

#»γ m′ and n;m′ β1,
#»γ l then inductively

m′ ≤ Bβ0,
#»γ (n;m) and l ≤ Bβ1 ,

#»γ (n;m′). Taking β to be the maximum of
β0, β1, since β ∈ α[n] we find

l ≤ Bβ, #»γ (n;Bβ, #»γ (n;m)) = Bβ+1, #»γ (n;m) ≤ Bα, #»γ (n;m).

The only other possibility is that the derivation results from the computational
closure rule. Using the induction hypothesis we have l ≤ B #»γ (n′;m′) for some
n′,m′ ≤ m. Hence l ≤ B #»γ (m;m) ≤ Bα, #»γ (n;m). �

6.3 Extracting bounds for EA(I;O)∗

The standard methods of cut-elimination apply in EA(I;O)∗∞ except that the
cut-rank reduction becomes stuck in the presence of the closure rule. However,
since this rule only applies where the formulas in the premise are at worse
Σ1, we are able to reduce cuts to the Σ1 level. It is straightforward to show
that EA(I;O)∗∞ admits weakening, conjunction inversion and universal quantifier
inversion as well as the following:

Theorem 6.9 (i) If n;m `α, #»γ Γ,¬C and n;m `α′, #»γ Γ, C are both derivable
with cut formulas of size ≤ r, where C is a formula of size r+ 1 which is either
a true atom, or has shape ∨ or ∃a but is not Σ1, then n;m `α+α′, #»γ Γ is also
derivable with cuts of size ≤ r provided α′[n] ⊆ α[n].

(ii) Let
»
2γ := 2γk , . . . , 2γ1 . If n;m `α, #»γ Γ is derivable with cut formulas of

size at most r + 1 then n;m `2α,
#»

2γ Γ is derivable with cut formulas either of
size at most r or Σ1.

Repeated applications of (ii) will therefore eliminate cuts down to the Σ1

level at the cost of iterated exponential increases in each of the ordinals α, #»γ .

Theorem 6.10 (Embedding) If EA(I;O)∗ ` Γ(~x;~a) then this derivation de-
termines some d ∈ N such that for all ~x := ~n = n1, . . . , nr ≤ n and all
~a := ~m = m1, . . . ,m` ≤ m, EA∗∞ derives

n;m `α,
#»γ Γ(~n; ~m)

where each of α, #»γ is of the form ω · di for some di ≤ d.

Proof. We proceed by induction on the height of the proof of Γ(~x;~a) in
EA(I;O)∗ with a case distinction according to the final rule applied. The axioms,
rules for ∨, ∧ and ∀a as well as cuts all carry over easily using the corresponding
infinitary rules. The cases for ∃a and predicative induction follow the reason-
ing in the proof of 4.4 except that we need not eliminate cuts as we go thus
restricting the heights to ordinals of the form ω · d.

The only case remaining is Σ1 Closure. Assume Γ(~x;~a) came about via such
a rule and without loss of generality, for clarity, let ~a := a, b, c and ~x = x so that
Γ(~x;~a) :≡ Γ′(x; c),∆(a, b) where ∆ is a Σ1 set of formulas. Then the premise
is of the form ∆(y; b) where y is an input which changes to the output a in the
conclusion. Appealing to the induction hypothesis we obtain

i,m′ `α
′,

#»

γ′
∆(i;m′).

The result follows immediately since the closure rule of EA∗∞ and weakening
yield

n; max(i,m′,m) `ω·0,
#»γ Γ′(n;m),∆(i,m′)

where i has become an output declaration and an additional ordinal ω · 0 has

been introduced in front of #»γ := α′,
#»

γ′. �

Lemma 6.11 Let Γ be a set of Σ1 formulas such that n;m `α, #»γ Γ using only
Σ1 cuts and assume that the derivation is term controlled by δ. Then Γ is true
at B

α′,
#»

γ′(n,m) where α′ = δ + α and each γ′i = δ + γi.

Proof. We use induction over the derivation of n;m `α, #»γ Γ with a case dis-
tinction according to the last rule applied. We follow closely the proof of 4.9
but simplified in this context – we do not have a ∀x rule so there are no sub-
stitutions on inputs in the cut case. We shall only expand on the cases for the
cut and closure rules where, as before, we dispense with the use of “dashes” on
ordinals by assuming each ordinal bound in the derivation has been weakened
to “add in” δ. Hence n;m `β, #»γ Γ implies that any closed term in Γ is bounded
by Bβ, #»γ (n;m). We also assume that ordinal bounds in premises have been
matched by weakening.

Assume that the derivation comes from a Σ1 cut with premises of the form
n;m `β, #»γ Γ,∃~cA(~c) and n;m `β, #»γ Γ,∀~c¬A(~c) where A is a bounded formula.
Let k = Bβ, #»γ (n;m). The induction hypothesis applies to the first premise to
reveal Γ,∃~cA(~c) is true at k. Either Γ is true at k and we are done since k ≤
Bα, #»γ (n;m), or else there are~i ≤ k such that A(~i) is true. Inverting the universal

quantifiers ∀~c in the second premise gives n; max(m, k) `β Γ,¬A(~i). This allows
an application of the induction hypothesis so that Γ,¬A(~i) is true at Bβ, #»γ (n; k).

Therefore, as ¬A(~i) is false, Γ is true at Bβ, #»γ (n; k) = Bβ, #»γ (n;Bβ, #»γ (n;m)) ≤
Bα, #»γ (n;m).

Now assume we have an application of closure from the premise n′;m′ ` #»γ Γ′

where n′,m′ ≤ m. By the induction hypothesis Γ′, and hence Γ, is true at
B #»γ (n′;m′) ≤ B #»γ (m;m) ≤ Bα, #»γ (n;m). �

Theorem 6.12 (i) The provably computable functions of EA(I;O)∗ are exactly
the primitive recursive functions.

(ii) The provably computable functions of EAk, for each k > 0, are exactly
Grzegorczyk’s class Ek+2.

Proof. (i) We have shown that the primitive recursive functions are provably
computable in EA(I;O)∗ in theorem 6.2. For the converse, if f(~a) is provably
computable in EA(I;O)∗ then we must have a derivation of ∀~a∃bCf (~a, b) where
Cf is a defining formula for f . Successively applying the embedding theorem,
universal inversion of ∀~a and then cut-reduction we find that EA(I;O)∗∞ will
prove 0;m `α, #»γ ∃bCf (~m, b) with only Σ1 cuts where m := max(~m) and α, #»γ
is some finite sequence of tree-ordinals with |α|, |γi| < ε0 for each i. We may
assume the derivation is term controlled using weakening so that the witnessing
result above tell us ∃bCf (~m, b) is true with existential witnesses bounded by
Bα, #»γ (0;m) (a primitive recursive function by lemma 6.7). Hence the graph of
f is decidable using primitive recursive functions and its value is bounded by a
primitive recursive function, so f is itself a primitive recursive function.

(ii) Theorem 6.4 shows that any Ek+2 function is provably computable in
EAk. For the converse we begin by proving the following:

(*) For k > 0, EAk embeds into EA(I;O)∗∞ with ordinal bound d, γk, . . . , γ1

where d ∈ N and each |γi| < ε0 whilst EAk(I;O) embeds into EA(I;O)∗∞ with
ordinal bound γk+1, . . . , γ1.

Proof of (*): We use induction on k. First we note that EA0(I;O) is just
EA(I;O) and, following the proof of 6.10, it will embed into the infinitary theory
with only one ordinal γ1 since the closure rule never applies. Now assume k = 1.
EA1 contains no induction rule but it does have the closure axiom which reads:
EA1 ` Γ,∆(~a,~b) if EA0(I;O) ` ∆(~x;~b). When embedding EA1 into EA(I;O)∗∞
we deal with this axiom by appealing to the previously mentioned embedding of
EA0(I;O) with ordinal height γ1 from which the closure rule will give a derivation
of height d, γ1 for any d. All the other rules of EA1 are just logic and will embed
with a finite measure d in front of the (now fixed) γ1. Furthermore, without
any inputs present in EA1, the input declaration n may be set to 0.

EA1(I;O) is formed from EA1 by the addition of the predicative induction
rule up to input constants x. We must therefore extend the embedding of EA1

to include this case. The γ1 will remain fixed whilst embedding inductions will
force the finite measure d to become infinite. Hence embedding EA1(I;O) into
EA(I;O)∗∞ yields ordinal bounds γ2, γ1.

The induction step is straightforward using the same argument as the base
case. Assume the result holds for k so that EAk(I;O) embeds with ordinals
γk+1, . . . , γ1. Then using this result to embed any use of the closure axiom
in EAk+1 we obtain ordinal bounds d, γk+1, . . . , γ1 for d ∈ N. From here, an
embedding of EAk+1(I;O) will require the finite d to become an infinite γk+2.
This completes the proof of (*).

The result now follows by the usual argument. Let #»γ denote γk, . . . , γ1. For
a provably computable function f , we embed the EAk proof of ∀~a∃bCf (~a, b) into
EA(I;O)∗∞ which by (*), inversions and cut reduction gives 0;m `d, #»γ ∃bCf (~m, b)
for some |γi| < ε0. This derivation may be term controlled by weakening the d
to some d′ ∈ N and each γi to some δ + γi. The witnessing result now shows
that ∃bCf (~m, b) is true at Bd, #»γ (0;m) which by lemma 6.7 is a function in Ek+2.
Hence f itself is in Ek+2. �

References

[1] P. Axt, Iteration of primitive recursion. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 11, 1965, 253–255.

[2] S. Bellantoni and S. Cook, A new recursion-theoretic characterization of the
polytime functions, Computational Complexity. 2 (1992), no. 2, 97–110.

[3] U. Berger, Program extraction from normalization proofs, Typed Lambda
Calculi and Applications (M. Bezem and J.F. Groote, eds.), LNCS, vol.
664, Springer-Verlag, 1993, pp. 91–106.

[4] D. Leivant, Intrinsic theories and computational complexity, in D. Leivant
(Ed) Logic and Computational Complexity, Springer Lecture Notes in Com-
puter Science, vol. 960, Springer-Verlag, Berlin, 1995, pp. 177–194.

[5] G.E. Ostrin and S.S. Wainer, Proof theoretic complexity, in H. Schwicht-
enberg, R. Steinbrüggen (Eds) Proof and System Reliability, Kluwer Aca-
demic, (2002), pp. 369–397.

[6] G.E. Ostrin and S.S. Wainer, Elementary arithmetic, Annals of Pure and
Applied Logic. 133 (2005), 275–292.

[7] H. Schwichtenberg, Content in proofs of list reversal, Formal Logical Meth-
ods for System Security and Correctness (T. Nipkow O. Grumberg and
C. Pfaller, eds.), Sub-series D: Information and Communication Security,
vol. 14, IOS Press, 2008, pp. 267–285.

[8] E.J. Spoors, A hierarchy of ramified theories below primitive recursive arith-
metic, Ph.D. thesis, University of Leeds (2010).

[9] S.S. Wainer, Computing bounds from arithmetical proofs, in R. Schindler
(Ed) Ways of Proof Theory, Ontos Mathematical Logic Vol. 2, Ontos Verlag
(2010), 469-486.

[10] M. Wirz, Wellordering two sorts: a slow-growing proof theory for variable
separation, Ph.D. thesis, Institut für Informatik und angewandte Mathe-
matik, Universität Bern (2005).

