
Gδσ-gamesP.D.WelchSchool ofMathematics, UniversityofBristol,IsaacNewton Institute, Cambridge.July 3 2012AbstractWe elucidate the complexity of strategies for Σ3
0 (also called Gδσ) gamesplayed on polish spaces of the form ωX . From previous work ([9]) it hadbeen known that strong comprehension principles of the form Π3

1 were suffi-cient, but Π2
1 were not, to establish these amounts of determinacy. We charac-terise the first ordinal β0 where such strategies are to be found in the con-structible hierarchy for trees T ⊆ <ωX for X = 2 or N (thus for Cantor orBaire space) in Lβ0

as the first ordinal where Lγ admits certain kinds of endextensions. Secondly we give a conjecture for it to be characterised as a cer-tain closure ordinal for a class of monotone inductive operators.11 IntroductionThe work in the paper [9] was motivated by trying to see how the Σ3
0-theory ofarithmetical quasi-inductive definitions fits in with other subsystems of secondorder number theory. What had been left open was a more precise discussion ofthe location of strategies for Σ3

0-games. We continue that discussion here.To give this research a context we mention the results previously known in thisarea. The attempt to prove the determinacy of two person perfect inormationgames (and the consequences of the existence of such winning strategies) has along and fruitful history, starting with work of Banach and Mazur and continuingto the present.In the next section we extract from [9] a criterion for where exactly the strate-gies appear in the constructible Lα hierarchy. Whilst we had this result for somewhile, the characterisation is somewhat unusual in that it is expressed in terms ofthe potential for such Lα to have ill-founded elelmentary end extensions, and is notso perspicaceous. Whilst waiting to discover something more standard we studiedthe work of Martin on non-monotone inductive definitions [5]. In that paper heconcentrated on the inductive operators that were strictly in the complement of aSpector pointclass (these are defined in [7]). NowSpector pointclasses (such as Σ1
0,and within the hierarchy of projective sets: Π1

1, Σ2
1 - and assuming ProjectiveDeterminacy, Σ2n

1 and Π2n+1
1 etc.) are very well behaved, comparatively well-understood and enjoy many amenable properties that pointclasses in the comple-1 . W e should like to w arm ly thank the Isaac N ew ton In stitu te fo r a V isiting Research F ellow ship during the2012 Syntax and Sem an tics W orkshop w h ich partia lly supported the w riting of th is paper.1



mentary class do not. The theory of Γ-monotone inductive definitions is thussmooth for Γ a Spector pointclass. Martin's paper is remarkable for documentingproperties of these co-Spector class operators. His work there is then applied to thepresent scenario where here we have the relevant pointclasses as aΣ3
0 as theSpector pointclass, and its complimentary, or dual, class is (using the fact that Σ3

0-games are determined) is the non-Spector pointclass aΠ3
0. The characterisationfrom Section 2 together with Martin's theorems allow us to conclude that theordinal β0 is in fact precisely the closure ordinal of aΠ3

0-non-monotone inductivedefinitions. (This sounds almost as if it could be trivially defining something interms of itself, but it is not.)We assume the reader has familiarity both with the constructible hierarchy ofGodelÈ - for which see Devlin [3]. For the basic notions of descriptive set theoryincluding the elementary theory of Gale-Stewart games, see Moschovakis [7]. Ournotation is standard. Some of the results here relate to sub-systems of second ordernumber, or analysis, and the basic theory of this is exposited in Simpson's mono-graph [8]. For models of admissible set theory, also called ``Kripke-Platek settheory'' see Barwise [1].
2 We first extract from our earlier paper a criterion for the constructible rank of
Π3

0 games' strategies. (Note that we take our games as defined in L and using con-structible game trees; the existence of a winning strategy for a particular Σ3
0(indeed arithemtic or Borel) game is a Σ2

1 assertion about the countable tree T andthe payoff set. As T ∈ L the truth of such an assertion has the same truth value inthe universe of sets or in L. We thus expect to find such strategies in L (sinceDavis in [2] proved such strategies exist in the universe V of sets). But where arethey?Definition 1. Let an m-depth Σ2-nesting of an ordinal α be a sequence (ζn, σn)with (i) For n<m: ζn≤ ζn+1<α<σn+1<σn ; (ii) Lζn≺Σ2
Lσn.We shall want to consider non-standard admissible models (M,E) ofKPtogether with some other properties. We letWFP(M) be the wellfounded partof the model. By the so-called `Truncation Lemma' it is well known that this wellfounded part must also be an admissible set. Usually the model will also be acountable one of ``V = L''. Let M be such and let α = On ∩WFP(M). By theabove α is thus an `admissible ordinal' and Lα will also be a KP model. An `ω-depth' nesting cannot exist be the wellfoundedness of the ordinals. However an illfounded model M when viewed from the outside may have infinite descendingchains of `M -ordinals' in its ill founded part. These considerations motivate thefollowing definition.
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Theorem1.Definition 2. An infinite depth Σ2-nesting of α based onM is a sequence (ζn, sn)with, for n<ω :(i) ζn≤ ζn+1<α⊂ sn+1⊂ sn ; (ii) sn∈OnM; (iii) (Lζn≺Σ2
Lsn)

M.Thus the sn form an infinite descending E-chain through the illfounded part ofthe modelM . In [9] we devised a game whereby one player produced an ω-modelof a theory and the other player tried to find such infinite descending chainsthrough M 's ordinals. In this paper we shall switch the roles of the players, andhave Player II produce the model and Player I attempt to find the chain. The gameis then Σ3
0. We shall assume the reader has a copy of this paper to hand and shallrefer to it throughout for definitions and notation.In order for there to exist a non-standard model with an infinite depth nesting(of the ordinal of its wellfounded part) then the wellfounded part will already be arelatively long countable initial segment of L (it is easy to see that if ζ = supn ζnthen already Lζ �Σ1-Separation).Example 1. (i) Let δ be least so that Lδ � Σ2-Separation, and let (M, E) be anadmissible non-wellfounded end extension of Lδ with Lδ as its wellfounded part.Then there is an infinite depth nesting of δ based onM .(ii) By refining considerations of the last example, let γ0 be least such that thereis γ1> γ0 with Lγ0 ≺Σ2

Lγ1 � KP. Then again there is an infinite depth nesting of
γ1 based on some illfounded end extensionM of Lγ1.Both of the above can be established by standard Barwise Compactness argu-ments. However both these δ and γ0 we shall see are greater than the ordinal β0defined from this notion of nesting as follows.Definition 3. Let β0 be the least ordinal β so that Lβ has an admissible end-exten-sion (M,E) based on which which there exists an infinite depthΣ2-nesting of β.Definition 4. Let γ0 be the least ordinal so that for any game G(A, T ) with A ∈
Σ3

0, T ∈ Lγ0 a game tree, then there is a winning strategy for a player definableover Lγ0.Theorem 2. γ0 = β0. Moreover, any Σ3
0-game for a tree T, with a strategy forPlayer I, has such a strategy an element of Lβ0

. Any Π3
0-game for such a tree has astrategy which may not be an element of Lβ0

, but it is definable over Lβ0
.Remark: The proof reveals more about the strategies for Σ3

0-games: they in factappear within a bounded initial segment of β0.
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Proof: We look at the construction of the proof of Theorem 5 of [9] in partic-ular that of Lemma 3. There we used an assumption that there is a triple of ordinals
γ0< γ1< γ2 with (a) Lγ0 ≺Σ2

Lγ1 and (b) Lγ0 ≺Σ1
Lγ2 and (c) γ2 was the secondadmissible ordinal beyond γ1. One assumed that I did not have a winning strategyinG(A;T ). The Lemma 3 there ran as follows:Lemma 1. Let B ⊆A⊆⌈T ⌉ withB ∈Π2

0. If (G(A; T ) is not a win for I)Lγ0, thenthere is a quasi-strategy T ∗∈Lγ0 for II with the following properties:(i) ⌈T ∗⌉ ∩B= ∅ ;(ii) (G(A;T ∗) is not a win for I )Lγ0.The format of the lemma's proof involved showing that the Σ2
Lγ0 notionof `goodness' embodied in (i) and (ii) held for ∅. To do this involved defininggoodness in general. We first define T ′ as II's nonlosing quasi-strategy for (G(A;

T ); this is Σ1 definable over Lγ0 as the latter is a model KPI; in particular if we usethe notationDefinition 5. Sγ1 =df {δ < γ J Lδ≺Σ1
Lγ}then T ′∈Π1

Lζ0 , where ζ0 =dfminSγ0
1 \ρL(T ). More generally we define:

p ∈ T ′ good if there is a quasi-strategy T ∗ for II in Tp′ so that the followinghold:(i) ⌈T ∗⌉ ∩B= ∅;(ii)G(A;T ∗) is not a win for I.Here Tp′ is the subtree of T ′ below the node p. The point of requiring that thepair (γ0, γ1) have the Σ2 reflecting property of (a) above, is that the class H ofgood p's of Lγ1 is the same as that of Lγ0 and so is a set in Lγ1 as it is thus defin-able over Lγ0. The overall argument is a proof by contradiction, where we assumethat ∅ is in fact not good, and proceeds to construct a strategy σ for Player I in thegame G(A; T ′), which is definable over Lγ1, and is apparently winning in Lγ2.(The requirement (c) that γ2 be a couple of admissibles beyond γ1 was only toallow for the strategy σ to be seen to be truly winning by going to the next admis-sible set, and verifying that there are no winning runs of play for II.) The contradic-tion arises since T ′ - which was defined as the subtree of T of II's non-losingpositions - is concluded still to be the same subtree of non-losing positions in Lγ2.Being a non-losing position, p say, for II is a Π1 property of p. This carries upfrom Lγ0 to Lγ2 as Lγ0 ≺Σ1
Lγ2, and this is the reason for the requirement (b).There is then no winning strategy for I in G(A; T ′) definable over Lγ1, contra-dicting the reasoning that σ is such.This proves the Lemma: Lγ1 sees there is T ∗ a subtree of T ′ witnessing that ∅is good. The existence of such a subtree is a Σ2-sentence, and then again thisreflects down to Lγ0. We thus have such a T ∗ in Lγ0.
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The Theorem is proven by repeated applications of the Lemma, by using theargument for eachΠ2
0 set Bn in turn whereA=

⋃
n
Bn and refining the trees usingthis procession from a tree to a subtree T ∗. We thus repeat the argument with T ∗replacing T . Because T ∗ ∈ Lγ0 we have the same constellation of this triple ofordinals γi above the constructible rank of T ∗, and can do this.However we can get away with less. The definition of the subtree of non-losingpositions of II now this time in the new T ∗ can be considered as taking place Π1over Lδ0 where δ0 is the least element of Sγ01 with T ∗ ∈ Lδ0. To get our contradic-tion we actually use that Lδ0 ≺Σ1

Lγ2 ; we do not need that Lγ0 ≺Σ1
Lγ2. Noticethat our argument that T ∗ exists is non-constructive: we simply say that theΣ2-sen-tence of its existence reflects to Lγ0: we do not have any control over its con-structible rank below γ0. Moreover any sufficiently large γ ′ greater than γ1 woulddo for the upper ordinal, as long as it is a couple of admissibles larger than γ1.Thus we could apply the Lemma repeatedly for different Bn if we have a guaranteethat whenever a Tn∗-like subtree is defined there exists a ζn ∈ Sγ0

1 and a suitableupper ordinal γn > γ1 with Tn∗ ∈ Lζn ≺Σ1
Lγn . Of course if there are arbitrarilylarge ζn below γ0 with this extendability property, then this is tantamount to

Lγ0 ≺Σ1
Lγ ′ for some suitable γ ′, and this shows why our original constellation of

γi provides a sufficient condition.Actually as the final paragraph of the Theorem 5 there shows, we are doingslightly more than this: we are, each time, applying the Lemma infinitely often toeach possible subtree of of T ∗ below some node p2 of it which is of length 2, todefine our strategy τ applied to moves of length 4. We then move on to the next
Π2

0 set. Although we are applying the Lemma infinitely many times to each such
p2, and thus infinitely many newΣ2-sentences, or trees, have to be instantiated, wehad that Lγ0 is a Σ2-admissible set, and as the class of such p2 is just a set of Lγ0,
Σ2-admissibility works for us to find a bound for the ranks of the witnessing trees,as some δ < γ0. We thus can claim that our final τ is an element of Lγ0 even after
ω-many iterations of this process.

(β0 ≥ γ0) We argue for this. Let (M, E) be a non-standard model of KP withan infinite nesting (ζn, sn) about β0 as described. Note that Sβ0

1 must be unboundedin β0 (so that Lβ0
� Σ1-Separation), and each ζn is a limit point of Sβ0

1 . We do notassume that β0 is Σ2-admissible (which in fact it is not as the proof shows). Let
T ∈ Lβ0

be a game tree. By omitting finitely much of the outer nesting we assume
T ∈Lζ0. We assume that Player I has no winning strategy forG(A; T ) in Lβ0

(forotherwise we are done). Note that in M we have that Ls0 also has no winningstrategy for this game (otherwise the existence of such would reflect intoLβ0
. Weshow that II has a winning strategy definable over Lβ0

. Let A=
⋃
Bn with each

Bn ∈ Π2
0. For n= 0 we apply the argument of the Lemma using the pair (ζ1, s1) inthe role of (γ0, γ1) from before, with (ζ0, s0) in the role of (δ0, γ2) describedabove, i.e. we use only that T ∈Lζ0 and that Lζ0≺Σ1

Ls0.
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The Lemma then asserts the existence of a quasi-strategy for II definable usingthe pair (ζ1, s1): T ∗(∅). By Σ2-reflection the L-least such lies in Lζ1, and we shallassume that T ∗(∅) refers to it.Claim: For any pair (ζn, sn) for n ≥ 1 the same tree T ∗(∅) would haveresulted using this pair.Proof: Note that we can define such a tree like T ∗(∅) using such pairs, sincefor all of them we have that (ζ0, s0) ⊃ (ζ1, s1) ⊃ (ζm, sm) form> 1. As T ∗(∅) ∈

Lζ1 and satisfies a Σ2 defining condition there, and since we also have ζ1 ∈ Sζm1 , itthus satisfies the sameΣ2 condition inLζm. Q.E.D. ClaimFor any position p1 ∈ T with lh(p1) = 1, let τ (p1) be some arbitrary but fixedmove in T ′(∅), this now II's non-losing quasi-strategy for the game G(A, T ∗(∅))as defined in Lζ2. The relation ``p ∈ T ′(∅)'' is Π1
Lζ1({T ∗(∅)}) or equivalently

Π1
Lζ2({T ∗(∅)}), or indeed Π1

Lδ({T ∗(∅)}) where δ is least in Sζ1
1 above

ρL(T ∗(∅)). Hence ``y = T ′(∅)'' ∈ ∆2
Lδ({T ∗(∅)}) and thus T ′(∅) also lies in

Lζ1. For definiteness we let τ(p1) be the numerically least move.For any play, p2 say, of length 2 consistent with the above definition of τ sofar, we apply the lemma again with B =A1 replacing B =A0 and with (T ∗(∅))p2replacing T . We use the nested pair (ζ2, s2) to define quasi-strategies for II, callthem T ∗(p2), one for each of the countably many p2. These are each definable in a
Σ2 way over Lζ2, in the parameter (T ∗(∅))p2. This argument uses that (T ∗(∅))p2∈

Lζ1 ≺Σ1
Ls1. Let T ′(p2) ∈ Lζ2 be II's non-losing quasi-strategy for G(A, T ∗(p2)),this time with ``y=T ′(p2)''∈∆2

Lζ2({T ∗(p2)}). (Again these will satisfy the samedefinitions as over Lζm for any m ≥ 2.) Note that we may assume that the count-ably many trees T ′(p2) appear boundedly below ζ2 (using the Σ2-admissibility of
ζ2). Again for p3 ∈ T

∗(p2) any position of length 3, let τ (p3) be some arbitrary butfixed move in T ′(p2). Now we consider appropriate moves p4 of length 4, andreapply the lemma with B =A2 and (T ∗(p2))p4. Continuing in this way we obtaina strategy τ for II, so that τ ↾ [1,2k+2) ω, for k < ω, is defined by a length k-recur-sion that is Σ2
Lζk({T }).As the argument continues more and more of the strategy τ is defined usingsuccessive (ζm, sm) to justify the existence of the relevant trees in Lζm. Knowingthat the trees are there for the asking, we see that τ can actually be defined by aΣ2-recursion over Lβ0

in the parameter T in precisely the manner given above.If x is any play consistent with τ , then for every n, by the defining propertiesof T ∗(p2n) given by the relevant application of the lemma, x ∈ ⌈T ∗(x ↾ 2n)⌉ ⊆ ¬
An. Hence x � A, and τ is a winning strategy for II as required. Thus β0 ≥ γ0 isdemonstrated.
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For β0 ≤ γ0: suppose then β0 > γ0. Then the existence of such a γ0 would bepart of the Σ1-Theory of Lβ0
, and thus γ0< ᾱ where ᾱ is least with Tᾱ1 = Tβ0

1 (andthus Lᾱ≺Σ1
Lβ0

). Wemay now run the argument of Theorem 4with Player II con-structing an ω-model of T + ``There is no transitive set model of T '' where T isthe theory: KP+ V = L+ ψ where ψ says: ``γ0 exists''. This defines a Σ3
0-game,which I must win. For if the model that II constructs is illfounded below β0, I,who is trying to find a descending chain, will be able to detect one, because theargument of Theorem 4's proof depended precisely on there being no infinitenested sequence based on the wellfounded part of II's model. But the wellfoundedpart of the model II is building cannot be larger than αψ. Contradiction. Hence

β0≤ γ0. Q.E.D.Let Tδn denote the Σn theory of Lδ. Recall that a set X ⊆N (NN) is said to bein aΓ for some adequate pointclass Γ if there is a set Y ⊆N×NN (NN ×NN) sothatX = {x J Player I has a winning strategy inG(Yx,
<N
N)} where Yx= {y J 〈x,

y〉 ∈Y }.Theorem3. Let ᾱ be least with Tᾱ1 =Tβ0

1 .(i) Tᾱ1 is a complete aΣ3
0 set of integers.(ii) Hence for any α≤ ᾱ, Tα1 is a aΣ3

0 set of integers and the reals of Lᾱ are all
aΣ3

0 set of integers.Proof of Theorem 3. The argument is really close to that of the Corollary 2 of[9]. Indeed there we showed that the Tαψ1 were aΣ3
0 sets. Some details of this arerepeated. First remark that we need only show that Tᾱ1 is aΣ3

0 since the other Tα1 for
α< ᾱ are all recursive in Tᾱ1 and aΣ3

0, being a Spector class, is closed under recur-sive substitution. For the same reason each real a∈Lᾱ is aΣ3
0 as a set of integers.We define a gameG∗.Rules for II.In this game II's moves in x must be a set of GodelÈ numbers for the complete Σ1-theory of an ω-model of KP+V =L+Det(aΣ3

0) +¬ϕ.Everything else remains the same mutatis mutandis: I's Rules remain the sameand his task is to find an infinite descending chain through the ordinals of II'smodel. Note that if ϕ ∈ Tᾱ
1, I now has a winning strategy: for if II obeys her rules,and x codes an ω-model M of this theory, then M is not wellfounded, and hasWFP(M) ∩ On < ρ(ϕ) where ρ(ϕ) is defined as the least ρ such that ϕ ∈ Tρ+1

1 .However I playing (just as II did in the main Theorem 4) can find a descendingchain and win. For we have WFP(M) ∩ On < β0 and so the argument goesthrough, as there are no infinite depth nestings there. On the other hand if ϕ � Tαψ1 ,II may just play a code for the true wellfounded Lβ0
+ with β0

+ the least admissibleabove β0 +1, and so win. This shows that Tᾱ1 is a complete aΣ3
0 set of integers.
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Now suppose a∈aΣ3
0. Then we have some Σ3

0 set A⊆ω × ωω with n∈ a�
I has a winning strategy to play into Aa = {y ∈ ωω J (a, y) ∈ A}. Then a is Σ1

Lᾱ,and thus is recursive in Tᾱ1. Hence Tᾱ1 is a complete aΣ3
0 set of integers. Q.E.D.In conclusion: we saw above that ᾱ was the least α with Tα1 = Tβ0

1 . Phrased inother terms, by elementary constructible hierarchy considerations, this is sayingthat ᾱ is the minimum of Sβ0

1 . Hence Lᾱ ≺Σ1
Lβ0

but for no smaller δ is
Lδ≺Σ1

Lβ0
. Since the statement ``There is a winning strategy for Player I inG(A,

T )'' is equivalent in KPI to a Σ1-assertion, if true in Lβ0
it is true in Lᾱ. In shortfor thoseΣ3

0-games that are wins for I on trees T ∈Lᾱ, there are strategies for suchalso within Lᾱ itself. For those that are wins for Player II these may be definedover Lβ0
at the end of the interval [ᾱ , β0) or else may be found also in Lᾱ. Thissomewhat asymmetrical picture reflects the earlier theorems cited above. The the-orems of the next section harmonise perfectly with this.Remark: (i) Since aΣ3

0 is a Spector class, one will have a aΣ3
0-prewellorder-ings of Tᾱ1 as a aΣ3

0 set of integers, of maximal length, here ᾱ.We write down one on T = Tᾱ
1. Abbreviate Γ = aΣ3

0 and Γ̌ = aΠ3
0. We need toprovide relations ≤Γ and ≤Γ̌ in Γ and Γ̌ respectively, so that the following hold:

T (y)� ∀x{[T (x)∧ ρ(x)≤ ρ(y)]� x≤Γ y� x≤Γ̌ y}.For the relation x≤Γ y, we define the game where II produces a modelM II of
T (y) ∧ (¬T (x) ∨ ρ(x)≤ρ(y)) and I tries to demonstrate that it is wellfounded.Assume then T (y). If T (x) ∧ ρ(x) ≤ ρ(y) then either (¬T (x))M

II and thusM IIis illfounded withWFP(M II) ∩On< ρ(x) and hence I can win as in this regionthere are no ω-nested sequences. Or: (ρ(x)≤ρ(y))M
II. Thus (ρ(x) > ρ(y))M

IIand again this impliesWFP(M II)∩On< ρ(x) with I winning.Conversely suppose x≤Γ y. Since T (y) is assumed, if ¬T (x), then II can playa wellfounded model with (y ∧ ¬x)M
II and win. If ρ(x) > ρ(y) then again thesame can be done. This proves the first equivalence above. The second is similar,with now I producing a model M I of T (x) ∧ ρ(x) ≤ ρ(y) and II findingdescending chains. We leave the details to the reader.(ii) One may also write out directly the theories Tα1 for α < ᾱ in a aΠ3

0 form.This should not be surprising: a aΣ3
0 norm as above should have `good' ∆(aΣ3

0)initial segments.
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3Anon-monotoneinductiveclosureordinalWe consider here a very different possible characterisation of β0. Let Φ:P(ω)�
P(ω) be any map. We think of Φ as an inductive definition by means of the fol-lowing: we `iterate' Φ and define Φα⊆ω as follows: assumeΦβ is defined for β <
α, then Φ<α =

⋃
β<α

Φβ. Now set Φα = Φ<α ∪ Φ(Φ<α). Then Φ iterated in thisway is a progressive operator and for some countable ordinal γ we shall have afixed point Φγ = Φ<γ. We shall write this γ as o(Φ). We shall further write Φ∞forΦo(Φ).Definition 6. Φ ismonotone if:A⊆B� Φ(A)⊆Φ(B).Then for monotone Φ the Φ∞ defined above is the smallest fixed point of Φ,i.e. the smallest setX withΦ(X) =X.Definition 7. If Γ is a pointclass of relations onP(ω)×P(ω) then
o(Φ-mon) =df sup {o(Φ) J Φ∈Γ, Φ monotone}.Definition 8. For Γ ⊆ PP(ω) we define the pointclass dual to Γ as the pointclass

{P(ω)\X J X ∈Γ} and is denoted Γ̌.Thus Σ̌1
1 = Π1

1; Σ̌2
1 = Π2

1 etc. In the latter case it is Σ2
1 that is an example of aSpector pointclass. The latter is defined in [7]; we shall not need to go into thedefintions or properties of Spector classes that much, but note that a Spector classof pointsets is closed under union, intersection, number quantification, contains Σ1

0,is ω-parametrized (which implies that it has a universal set), and importantly hasthe prewellordering property.Martin points out that it is not always the case that inductive definitions leadfrom simple sets via iteration of an operator in a particular pointclass to a compli-cated set: he shows that the fixed point Φ∞ of a monotone Π2
1 operator, in fact isstill aΠ2

1 set. It is a one line argument: supposeΦ is such, then the following is also
Π2

1:
n∈Φ∞↔∀X(Φ(X)⊆X� n∈X) ↔ ∀X(∃m(m∈Φ(X)∨n∈X).He wishes to study o(Γ̌-mon) for Γ a Spector pointclass, and he takes Π2

1 as thetypical example of such. For this paper however the Spector pointclass of iterest is
aΣ3

0 and we are interested in o(aΣ3
0-mon). As remarked above by Det(Σ3

0),
aΣ3

0 = aΣ3
0 = aΠ3

0. The relevant ordinal for us will then be π0 =df o(aΠ3
0-mon).He shows:Theorem4. (TheoremD [5]) Let Γ be a Spector pointclass. Suppose that for every

X ⊆ ω, and every Γ̌(X) monotone Φ, that Φ∞ ∈ Γ̌(X), then o(Γ̌-mon) is non-projectible, that is S
o(Γ̌-mon)
1 is unbounded in o(Γ̌-mon).

A non-monotone inductive closure ordinal 9



It is remarked that it is unknown in general if o(Γ̌-mon) is admissible, but ofthose of the kind in the theorem not only is Lo(Γ̌-mon) admissible, it is a model of
Σ1-Separation (which is another way of saying that it is non-projectible). Weshould like to apply the theorem for Γ = aΣ3

0, and then we might conclude that π0is non-projectible. The required supposition stated in the last theorem needed toapply this, we obtain from the following of Martin's theorems:Theorem 5. (Theorem E [5]) Suppose Γ is closed under union, intersection,recursive pre-images and existential number quantification and contains Σ3
0. Sup-pose Det(Γ) holds, and that aΓ has the prewellordering property. If Φ is then aΓ̌monotone, thenΦ∞∈ aΓ̌.In fact we apply the theorem with Γ = Σ3

0 itself. All the assumptions are met(aΣ3
0 is a Spector class and thus has the prewellordering property). The theoremthen relativizes uniformly in anyX ⊆ω, to conclude that suchΦ∞∈aΠ3

0.Corollary 1. π0 = o(aΠ3
0-mon) is non-projectible.Theorem6. π0 = β0.Clearly ᾱ < π0 ≤ β0. By the last clause of Theorem 4, Sπ0

1 is unbounded in π0;and thus ᾱ=minSπ0
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