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Abstract

Reflection Principles are commonly thought to produce only strong axioms of
infinity consistent with V = L. It would be desirable to have some notion of strong
reflection to remedy this, and we have proposed Global Reflection Principles based
on a somewhat Cantorian view of the universe. It is the main contention of this
paper that such a reflection principle when taken as an integral part of the point of
view of our universe of sets enables important, or even necessary, principles needed
for current set theory, and indeed the modern view of that universe. Such princi-
ples justify the kind of cardinals needed for, inter alia , Woodin’s Ω-Logic and
definable determinacy.1

1 Reflection Principles in Set Theory

Historically reflection principles are associated with attempts to say that no one notion,
idea, or statement can capture our whole view of the universe of sets V =

⋃
α∈On Vα

where On is the class of all ordinals. That no one idea, expressed usually in some formal
fashion, can pin down the universe of all sets has firm historical roots (see the quotation
from Cantor later or the following):

The Universe of sets cannot be uniquely characterized (i.e. distinguished
from all its initial segments) by any internal structural property of the
membership relation in it, which is expressible in any logic of finite or
transfinite type, including infinitary logics of any cardinal number .

Gödel (attrib.), in Wang [19]

Indeed once set theory was formalized by the (first order version of) the axioms and
schemata of Zermelo with the additions of Skolem and Fraenkel, it was seen that reflec-
tion of first order formulae ϕ(v0, � , vn) in the language of set theory L∈̇ could actually
be proven:

(Montague-Levy: First order Reflection)

(R0) : For any ϕ(v0,� , vn)∈L∈̇

ZF⊢∀α∃β > α∀xK ∈Vβ[ϕ(xK )↔ ϕ(xK )Vβ].

1. With deep thanks to Leon Horsten for conversations on the matters herein. This paper was delivered as a
lecture in the Exploring the Frontiers of the Infinite series in Harvard, Feb. 2012, whilst the author was a Fellow
of the Isaac Newton Institute in Cambridge to which he offers gratitude for their support.
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This is a scheme involving as it does one theorem for each ϕ. (Here ϕ(xK )Vβ is the rela-
tivization of ϕ to Vβ obtained by restricting all quantifiers in ϕ to Vβ.) However far
from being an epiphenomenon of the ZF axiomatisation, one may interpret the fact that
the axioms of infinity and the axiom scheme of replacement are provable from the
remaining axioms by means of (R0) as indicating that such reflection is an integral part
of our view of the universe of sets, at least as far as we view that universe with only our
ZF-spectacles on. It is the main contention of this paper that a global reflection prin-
ciple when taken as an integral part of the point of view of our universe of sets enables
important, or even necessary, principles needed for current set theory, and indeed the
modern view of that universe.

Indeed by formalising a Σn-Satisfaction predicate for an appropriate class of Σn-for-
mulae, call it FmlΣn

, we have (still within ZF):

For each n∈ω:
ZF⊢∃Cn[Cn ⊆On and is a closed and unbounded class, so that for any ϕ∈FmlΣn

:

∀β ∈Cn∀xK ∈Vβ[ϕ(xK )↔ ϕ(xK )Vβ]].

For the existence claim of the first quantifier, one shows that such a proper class Cn is
definable by a formula of L∈̇. However, as is well known, there is no formula that works
uniformly for all n. Informally we may however write ∀β ∈Cn: (Vα,∈ )≺Σn

(V ,∈ ).

The story of how one arrives at the series of cardinals inaccessible, Mahlo, indescrib-
able by reflecting on normal functions F :On→On as having regular fixed points, (in the
work of Levy and Bernays) and thence to indescribability properties expressed as sen-
tences in higher order languages is well known and we do not re-tell that here (see
Bernays [2].) However the Global Reflection Property (GRP) we had proposed (whilst we
had thought originally of something coming from weakening the third order notion of
sub-compact cardinal) was actually much closer in consistency strength in the final anal-
ysis to the notion of ‘1-extendible’ cardinal introduced by Reinhardt. Indeed it has been
said that the motivation of GRP is “just the same” as Reinhardt’s 1-extendible. We
briefly survey some of Reinhardt’s ideas to argue that in fact the justification of our
GRP is rather different. A thread uniting his work on set theoretical foundations is that
he was often dealing with, or proposing, differing conceptions of set from the standard
Zermelo-Fraenkel one; on those occasions when he was considering classes of sets, or in
particular “the class of all sets” ,V , he was usually thinking of V as some flexible con-
cept, either as undetermined (in his discussion of Ackermann’s set theory - the latter
seems to have been particularly influential on his later conceptions) or else as being
some initial part of some “virtual realm” of sets somehow “beyond” the usual V , thus
with V as somehow an “initial rank” VOn of this realm. We enter in to this discussion
partly to contrast this view (or these views) with the reflection property here proposed:
we do not think of V in either of these fashions: just as it is determinate as to whether a
given set together with an ordering is an ordinal, without the whole class On having a
length fixed by some expression, so it is with V . The world of our V is that of the ZF-
set theorists, or arguably leaning towards that of Cantor. We seek to distance ourselves
thus from the Reinhardtian viewpoint(s).2

2. It is interesting to see where this viewpoint ended up. In [17], Reinhardt’s final published paper in this
area (Intro.): Extendability is briefly motivated by asserting that there is ‘resemblance’ between different ranks
Vα, Vβ within the V hierarchy. However in Sect 5, extendible cardinals are motivated by reflecting upon a trans-
finite theory of types over and above the universe V . “With the natural reflection down into the world of sets we
have the concept of an extendible cardinal. (As Reinhardt [15] points out, however this sort of internalisation
within V rather begs the question if we want to discuss fundamental issues about the nature of V and Ω.)”
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We were spurred to think about these questions by reading a preprint of Peter
Koellner’s [8], where he considered the general problem of reflection, and the particular
suggestions of Tait [18] for strengthened higher order languages which admitted limited
forms of higher order parameters. These limitations were known since Reinhardt’s inves-
tigations, as the latter provided a simple counterexample to third order reflection with
straightforward third order parameters. Tait questioned whether any of his own princi-
ples would yield a cardinal beyond L (which we call here extra-constructible), but
Koellner showed that the principles divide along a line of either being weaker than the
existence of an ω-Erdős cardinal and so consistent with V = L (which we may call intra-
constructible rather than the more usual, but somewhat oxymoronic, “small large car-
dinal”) or else inconsistent. Koellner argued for the conclusion that this was in fact a
threshold: general reflection principles were either weaker than the existence of κ(ω) -
the first such Erdos cardinal or else inconsistent.

However as is now well known, there are many questions (besides CH the continuum
hypothesis) which can be resolved if one assumes large cardinals, and indeed much of
Woodin’s work is predicated on the assumption of the existence of, e.g. a proper class of
Woodin cardinals, which far outstrip the consistency strength of V = L. Martin-Steel
showed that from infinitely many Woodin cardinals it follows outright that Projective
Determinacy (PD) holds. It therefore follows that if a proper class of such cardinals
exists then in no Boolean valued set-sized forcing extension of the universe can PD actu-
ally fail, as any set sized forcing notion can only destroy boundedly many Woodin cardi-
nals. An attractive and easily stated principle not involving (directly) determinacy is
that of Projective Uniformization (PU): every projectively definable relation may be
uniformised by a projectively defined function. Co-analytic uniformisation (even with
co-analytic functions) is a theorem of ZF, but by Gödel’s results on the constructible
universe, nothing further can be proven in ZFC alone. However PU becomes a theorem
if we add to ZFC the assumpion of the existence of infinitely many Woodin cardinals.

Why be concerned about PD? Because (Woodin again, [21]) PD is something of
a ‘complete theory’ of countable sets, much as PA is something of a ‘complete theory’ of
the finite natural numbers, in the sense that we have no examples of sentences σ about
HC (the hereditarily countable sets) that are not decided by ZFC− + PD + V = HC
other than Gödel-style diagonal sentences. (ZFC− is the theory of ZFC with the power
set axiom removed - usually with a scheme of collection substituting for replacement.)

An exactly similar consideration shows Woodin’s result that from infinitely many
Woodin cardinals, we deduce that the full Axiom of Determinacy holds in L(R), (the
least inner model built by closing the reals under the Gödel operations), written
as “ADL(R)”. This too cannot be falsified in set generic forcing models if there are a
proper class of such cardinals. Such absoluteness or fixity results are manifestations of
very general facts due again to Woodin:

1) (Woodin, cf [20]) Assume there is a proper class of Woodin cardinals. Then
Th(L(R)) is fixed: no set forcing notion can change Th(L(R)), and in particular the
truth value of any sentence about reals in the language of analysis, including such state-
ments as PU.

2) (Woodin, cf [20]) If, additionally, there is a proper class of measurable Woodin
cardinals, and CH holds in V, then we have (in the language of third order number

theory) Σ1
2-elementary equivalence between V and any set forcing extension in which CH

also holds.
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Furthermore the assumption of unboundedly many Woodin cardinals is a cornerstone
of many of the results on Woodin’s Ω-logic (which we do not discuss here).

Our GRP0 will demonstrate that there are unboundedly many measurable Woodin
cardinals, and hence proves PD, PU and the absoluteness results of Woodin just stated.
(We want to emphasise that there are absolutely no new mathematical or set-theoretical
results here: the derivation of the proper class of measurable Woodin cardinals from the
principle is an exercise that can be done by a reader of [7]. The point is that we wish to
obtain a reasonable, and proper class, principle in the form of a reflection.)

2 Reinhardt’s Aims

We first set the scene with the briefest of discussions of Ackermann’s set theory, which
Levy, Vaught and Reinhardt investigated. Reinhardt’s mathematical work on this
theory appeared in his thesis which was for the most part then published as [14].

Briefly: Ackermann’s set theory A provided for a universe with extensionally deter-
mined entities (classes) and a predicate V̇ for set-hood: “x ∈ V ”. Besides axioms for
extensionality, a class construction scheme, and set completeness (“all classes that are
subclasses of sets are sets”), it contained the following crucial principle:

• (Ackermann’s Main Principle) If X ⊆ V is definable using only set parameters, and

not using the predicate V̇, then X ∈ V . Thus if θ does not contain V:

x∈V ∧∀t(θ(x, t)� t∈V ) � ∃z ∈ V ∀t(t∈ z ↔ θ(x, t))

• (Levy, Vaught) [11] Let A∗ be A with the addition of Foundation. Then A∗ is con-
sistent relative to A, and proves the existence of the classes: {V },P(V ),PP(V )�

• Levy ([10]): A∗ is L∈̇- conservative over ZF: A∗⊢σV� ZF⊢σ

Levy considered models of A∗ of the form 〈Vα,∈ , Vβ〉.

Reinhardt in [14] proved the converse implication of this last result also; hence
putting these together the set-theoretical content of A∗ had always just been that of ZF.
It is thus somewhat remarkable that two rather different conceptualisations - the one
leading to the ZF formalisation, and Ackermann’s - have the same set-theoretical con-
tent. Whilst Ackermann interpreted Cantor’s “By a set we understand any collection of
definite distinct objects ... into a whole” as saying “we must require from already defined
sets that they are determined and well-differentiated, thus the [foregoing] conditions for
a collection [to be a set] only turn on that it must be sufficiently sharply delimited what
belongs to a collection and what does not belong to it. However now the concept of set
is thoroughly open.” (Ackermann [1] p.337)3, Indeed Reinhardt, whilst working from the
premise that Ackermann considered the concept of set itself as not sharply delimited

3. “... wir von den schon definierten Mengen verlangen müssen, dass sie bestimmt und wohlunterschieden
sind, so kann es sich bei der obigen Bedingung für eine Gesamtheit nur darum handeln, dass genügend scharf
abgegrenzt sein muss, was zu der Gesamtheit gehört und was nicht zu ihr gehört. Nun ist aber der Mengenbegriff
durchaus offen.”

4 Section 2



([14] p190-1), surmises that the intuition behind Ackermann’s Main Principle is that a
sharply defined collection of sets is a set, and that, given the set x, the property ‘t is a
set such that θ(x, t)’ is independent of the (extension of) the concept of set, but gives a
sufficient condition for a collection to be sharply delimited. The Ackermann quotation
continues (in paraphrase) that in the Cantorian definition it is intended that a collection
should be investigated only on a case by case basis as to whether it represents a set, and
it is not meant that it is determined in one fell swoop for all classes whether they are
sets or not. We therefore see that a collection is not sufficiently well-differentiatied if it
is defined through its relationship to the concept of set.

In his final Chap. 5 Reinhardt expands on this, and says that if that is so, then the
collection of all sets V is not sharply defined, and that there could be other V ′ which
could also serve as the collection of all sets, but differ in extension from V . In the
closing sections he extends A∗ to an A+ which includes suitable schemes and an axiom
that with V ⊆ V ′ would together prove that V ∈ V ′. Referring back to systems of Acker-
mann (in particular A∞ from [1]) that entertained precisely this possibility of a hier-
archy of such Vn ∈ Vn+1 for n < ω, he considers the case of a triple V0 ∈ V1 ∈ V2. Rein-
hardt then introduces an operator G to act as a ‘re-interpretation functor’ for the con-
stants cx, cX he has introduced as a suitable language: when x ∈ V0 : Gcx will be inter-
preted as x, whilst for X ⊆ V0, GcX will be interpreted as some X̃ ⊆ V1. For restricted
set-examples taken from our everyday ranks then, he essentially sets up something such
as an elementary embedding of j: (Vα,∈ ,P(Vα))� (Vβ,∈ ,P(Vβ)). As Koellner dubs it
(in the final part of [8] but actually when discussing Reinhardt’s later paper [15]) there
is a problem: there are not enough intensional notions to go around; there is moreover a
problem of justifying the underlying modal conception of necessary mathematical truth
in ‘legitimate candidates’ for V ; finally there is the problem of what Koellner calls ‘the
extension to inconsistency’: Reinhardt talks of generalising the above by removing the
restriction that X be restricted to P(V0) and we know now where that will lead; how-
ever the point that Koellner makes is that the steps all seem as well justified as each
other, but one ends up with Kunen’s inconsistency result ([9]) of an elementary embed-
ding of the whole universe to itself. We agree with Koellner here, as elsewhere in his
analysis of Reinhardt, and rather than reiterating his points refer the reader to the final
part of his [8].

We turn to the later appearing papers [15] and [16]. In [15] Reinhardt again imagines
the possibility of “getting outside” of Cantor’s V = VOn and so thinks of “ordinals” such
as “On + 1” and further “sets” such as VOn+On etc. He thinks of this as akin to “virtual
displacements” in physics, and as a not inconsistent imaginative foray. He thus considers
a realm of “projected objects” (hence the use of the scare quotes around ‘sets’ and ‘On +
1’ above) and adopts Cantor’s theory of V = VOn to this extended realm. He takes the
axioms of ZF but in a language with the letters V , Ω added as syntactic constants for
the Cantorian universe and the class of ordinals On. Assuming that the theory of VOn is
applicable to this projected realm he arrives at the schema:

(S2) (∀x, y ∈V )(θV (x, y)↔ θ(x, y))

This schema is similar to Ackermann’s schema and asserts that any first order sen-
tence of the theory of VOn is true in the projected universe. The theory ZF+ (S2) + V =
VOn is then consistent relative to ZF.

Reinhardt’s Aims 5



After a discussion of Bernay’s second order reflection property he remarks on the
failure of this to carry up to third order (as we have alluded to above: the schema is
inconsistent if third order parameters are allowed). If we are to consider class-set theory
we have classes distinct from sets. However “ ‘if we are to conceive of them merely as col-
lections then this looks like a distinction without a difference.” He then remarks on the
view that once one allows further ranks of classes of classes etc. beyond “VOn+1” it looks
simply as if one has stopped too soon whilst collecting together all sets. “Moreover the
classes threaten the universality of set theory.” However he remarks that a counterfac-
tual difference between a set x and a class P is: were there to be more ordinals, then a
class P would contain more elements, whereas the extension of a mere set such as x

would be fixed. He imagines the extension of P in this projected universe to be some
jP . This brings him from (S2) to a projection schema:

(S4) (∀x, y ∈V )(∀P ⊆V )(θPV (x, y, P )↔ θ(x, y, jP )).

with the relativisation θPV indicating that all quantifiers are relativised to “x ⊆ V ”. In
(S2) the original universe V is a set; he introduces here classes and sets and (S4) asserts
that “the true sentences of the theory of sets, whilst allowing quantifiers over classes,
and both sets and classes as parameters, are precisely those true in the projected uni-
verse.” When he turns to consideration of interpretation of the formal scheme (S4) he
writes “... having now introduced proper classes of sets as distinct from sets (To be sure
the distinction is drawn only by considering “imaginary” sets and classes.)”. He thus now
considers, or imagines, classes of proper classes, and then classes of these etc., thus
building up some hierarchy of the form VOn ′ with On′ beyond On. These new classes are
the ‘Ω-classes’ (or we should say in this paper’s notation ‘On-classes’). He then considers
an axiom closest to extendability. If λ >On so that Vλ is now a collection of On-classes,
he wishes to consider a realm VOn ′ of imaginary sets and a corresponding realm Vλ′ of
imaginary On-classes, in which VOn is an imaginary set. In order to have this and in
addition a correspondence between classes of sets and imaginary classes of sets, and fur-
ther to have other On-classes x to correspond to other imaginary classes jx, he sets up
the relation E0(On, λ; On′, λ′) of, what we might now call “λ-extendability beyond On”,
namely:

(i) On< j On=On′< λ′.

(ii) ∀x∈VOn jx =x;

(iii) j: (Vλ,∈ )→e (Vλ′,∈ ).

This leads into a discussion of whether the On-classes are all the possible On-classes;
in that case we might want λ to equal λ′, and in turn this leads to a discussion of
Kunen’s theorem on the impossibility of a ‘Reinhardt cardinal.’

We thus see that the motivations for introduction of ‘extendability’ as laid out here,
are tied up with possible extensions of (V , ∈ ) into other imaginary realms. (In later
terms it is On that is the ‘extendable cardinal’ not On′; the emphasis is on the extend-
ability of the whole domain.) The difference between this treatment and that of [13] is
that the latter took the alternatives to the actual universe of sets to be in terms of rep-
resentations of V in which it was itself a set.
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In [16] he discussed a number of then current set theories due to Ackermann (that
we have just seen), again, and to Shoenfield and Powell.

Shoenfield’s intuitive system S gets a formalisation as S: not a dynamic vision of V

(bottom of p9) where the extension of V is variable, but growing with the number of
stages constructed - we might say an ‘actualist vision’. However he thinks this is sug-
gestive of regarding V as the least Vκ compatible with what can be truly expressed
about the Cantorian universe by means of a language L. Since the language L is not
fixed, but nevertheless at any one moment we are caught using a particular L “it seems
impossible to distinguish between Vκ and the Cantorian universe V = VOn by any abso-
lute means.” ([16] p9). (The consistency proof of Levy for Ackermann’s A yields a proof
of the consistency of S.)

Our interest here is that Reinhardt then introduces a strengthening to S+ by means
of an enriched notion of property: there is a predicate P with the interpretation that
P (x) is to mean that “x is an existing property of sets.” One may construct classes by
quantifiers relativised to the existing properties of sets, and there is a comprehension
principle stated in such a language; there is further a non-constructive class existence
principle. If On represents the class of ordinals of the theory then it can be deduced
that there is a non-principle On-complete normal measure on On, thus making On
a ‘measurable cardinal’ in a larger imaginary universe. This is because we may for each
X ⊆On inspect the property Q corresponding to X:

∀x∈V (x∈X� x∈ Q)

(such an X exists by a formalisation of a Shoenfieldian principle), and then put X into
the ultrafilter iff On ∈ Q. He concludes (p33) by saying that he regards the paper as a
justification for measurable cardinals and that “he knows no more natural way to intro-
duce [them] than via properties... .” Again there are two points to be made: the formal
property theory is building some considerable superstructure or hierarchy again beyond
On; secondly current thinking would introduce measurable cardinals as at the bottom of
a hierarchy of axioms of strong infinity based on elementary embedding properties of the
universe V to some inner model M , but that is a more modern perspective. (Although
of course it is precisely to an appeal of such embeddings’ existence that we do not want
to resort to in this paper.)

Gödel again:

“All the principles for setting up the axioms of set theory should be
reducible to Ackermann’s principle: The Absolute is unknowable. The
strength of this principle increases as we get stronger and stronger systems
of set theory. The other principles are only heuristic principles. Hence, the
central principle is the reflection principle, which presumably will be
understood better as our experience increases. Meanwhile, it helps to sepa-
rate out more specific principles which either give some additional informa-
tion or are not yet seen clearly to be derivable from the reflection principle
as we understand it now.” (Wang ibid.) .

Reinhardt’s Aims 7



The conclusion that we wish to draw from this section is that the differing views of
the universe of sets studies or proposed by Reinhard, are ones of a flexible notion of V ,
usually kitted-out with some extensions into a virtual or imaginary realm of further sets
or classes. On occasion he proceeds then to show that On is itself a large cardinal, such
as measurable, in that virtual realm. However on each of these viewpoints, (and they are
derived from some quite different set theories which we have only sketched in the above)
whether or not he would have agreed to the term ‘potentialist’ for these views of sets or
not, they are not about a fixed, or ‘actual’ realm or even a fixed concept of set.

3 Strengthening Reflection Principles

Having discussed some of Reinhardt’s formalisation of property theories, we come back
to the more usual style of reflection principle posited in the language of set theory or
using higher-order languages about V . As mentioned above Tait introduced in [18] some
sophisticated languages with positive occurrences of parameters to skirt around Rein-
hardt’s observation that third order parameters cannot be substituted consistently into
third order reflection principles.

Tait argues from an iterative conception of set, and as Koellner analyses in [8]4,
seems to argue that reflection principles based on this conception exhaust intrinsic justi-
fications . (We here refer to the well-known division of possible justifications for set theo-
retic axioms discussed by Gödel, into the intrinsic and the extrinsic where the latter are
ultimately justified by the richness, clarity and desirability of their consequences. The
former on the other hand are supposed to derive their justification from the conception
of set, or the universe of sets and classes considered as a whole.) Tait further appears to
rule out extrinsic justifications.

Koellner gave a careful investigation of the consistency, or otherwise of such princi-
ples. He thinks they give the best current candidates for axioms that admit such
intrinsic justifications based on the iterative conception of set ([8], p208).

Tait had speculated whether some of his principles might lead beyond the usual
kinds of inaccessible cardinals and their strengthenings in L and might lead to measur-
able cardinals. Koellner showed that in fact the principles were, when consistent, weaker
than the existence of κ(ω) (the first ω-Erdős cardinal). Indeed some of Tait’s candidates
in this regard turned out to be inconsistent. Koellner, and we agree, draws the conclu-
sion that these principles on first blush look little different from their consistent (but
weak brethren), and this should alone give us pause to reconsider these kinds of princi-
ples as being ‘intrinsically justified’ - how could they be when some of them turn out to
be inconsistent? Where we fooled into thinking them intrinsically justified because they
were similar to others? Koellner looks at the Relativised Cantorian Principles which
Tait used to justify various reflection principles. One difficulty is that of the burden of
identifying the ‘good’ existence conditions C and arguing each time for a condition C

that gives rise to a reflection principle, that the condition is justified on the basis of the
iterative conception. And Koellner identifies a broad class of such conditions that simply
yield up inconsistent principles.

4. Koellner states that he would rather use the phrase “conception of set” rather than “concept of set” as
nothing in his article turns on adopting a robust realism of the kind usually attributed to Gödel. We shall follow
his example, but leave it for the reader to judge to what extent our principles require such a realism. We take our
actualism to be an attitude differing from, and not dependent on, realism.
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The first ω-Erdős cardinal (if it exists) can exist in L and thus no extra-constructible
large cardinal could follow from the consistent reflection principles identified to date.
Again: all ZF-informed reflection principles based solely on the iterative conception, and
even those such stated in higher type logics, for example, seem to be consistent with
V = L.

Koellner (Sect. 4 op.cit.) posits κ = κ(ω) as a threshold cardinal in this respect: this
is a good choice. Firstly, the definition of the cardinal yields an ω-sequence of indis-
cernibles for 〈Vκ, ∈ , RK 〉 for any finitary relations RK on Vκ; each such indiscernible γ will
enforce that 〈Vγ , ∈ 〉 ≺ 〈Vκ, ∈ 〉 and will itself enjoy very extensive reflection properties
(because it is is indiscernible to a very great height, namely all the way up to Vκ). Sec-
ondly, from such a cardinal one can find a countable transitive model M of ZFC
(namely the transitivisation of the skolem hull of such an indiscernible set) and a non-
trivial j with j: M →e M . He then concludes that as regards consistency proofs, any
internal reflection principle which is provable from j: V →e V (now in choiceless ZF)
would then be provable from such a j: M →e M (my italics) and therefore will not break
the ‘κ(ω)-barrier’. Indeed as current reflection principles are usually motivated as reflec-
tion of formulae at the syntactic level of some possible partial but higher order logical
language it would be hard to argue against this. For Koellner “Since reflection would
appear to be an entirely internal matter, this is a reason for thinking any reflection prin-
ciple must have consistency strength below that of κ(ω)” (p212). Whether or not second
order reflection principles are taken as “internal matters” or not, which is perhaps debat-
able, one might go further and state that just as classical analysis takes place within the
Borel (or occasionally analytic) realm (why? because analysts have naturally developed
tools and methodologies of proof which they can work with; as such tools are definable
within ZF it is with hindsight clear that the field would evolve within the confines of, or
only expand into the volume or “proof-space” available, which comprises that which was
mathematically attainable: namely results on classes of sets simpler than ∆2

1 - a ZFC-
limitation imposed by Gödel’s results), so also the early researchers in foundations of set
theory would have been led to posit reflection principles based on the notions or con-
cepts then available and seen to be internal in Koellner’s sense; it thus might be seen as
inevitable, in retrospect, that they would have not grounded any principles using those
means, that would would turn out to be extra-constructible.

Whilst this may indeed be convincing for such languages or for internally justified
principles, (‘internally’ taken here to include those derived from the iterative conception
or otherwise), these arguments show we must look beyond such strictly internal and
logico-syntactic principles. The GRP we propose is not an internal-to-V principle or a
formula-by-formula reflection principle for formulae in a higher-order language. It does
not rest on the iterative conception alone.

Koellner sets the terms of the debate concerning extrinsic justifications as being
about a “reduction in incompleteness.” This goes roughly as follows: ZFC alone does not
decide many important questions, the regularity properties of the projective sets, PU, or
CH. We therefore should look for axioms, hypotheses, postulates that yield a rich pic-
ture of, say the real continuum, with features or properties desirable to analysts or set
theorists. Whilst it is hard to give a metric on the quantity of incompleteness removed
by assuming a particular strong axiom of infinity, we may agree, or at least agree to go
along with, the motivating principle. Of course, Gödel again advocated stronger princi-
ples, these strengthenings are to obtained through linguistic or logical means.

Strengthening Reflection Principles 9



We hold then that the moral of the foregoing is the following: We need stronger
Reflection Principles: those that generalise Montague-Levy are not up to the task, they
remain intra-constructible, and if we agree with Koellner, they will always be destined to
be weaker than the existence of κ(ω).

We shall therefore define such a Global Reflection principle (GRP). In doing so we
are mindful of the Gödel quotation above: we wish to adopt as central a new reflection
principle, which is suggested by a Cantorian viewpoint, but one viewed in the light of
principles and the wealth of “additional information” about the universe of sets, V ,
developed since those earlier times.

4 A Global Reflection Principle

Das Absolute kann nur anerkannt, aber nie erkannt, auch nicht annähernd
erkannt werden.
(Cantor: Über unendliche, lineare Punktmannigfaltigkeiten. Mathema-
tische Annalen 1883, Anmerk. 2, [3] p.587.)

Instead of ‘formally projecting V ’ à la Reinhardt , let us turn the whole argument all
around and generalise to obtain a stronger reflection principle. Let us take at first a
somewhat naïve Cantorian (and non-Zermelian) stance.

We have seen that the apparatus of linguistic reflection falters at the third order
level once one allows parameters into the formulae. Parameter-less reflection principles
on the other hand are unproblematic, but again lead only to notions of Πn

1-indescriba-
bility and the like. Such again are weaker than the existence of κ(ω) and so will not
enlarge our conception of V beyond L. We should still be intra-constructible. Attempts
to strengthen the content of the languages which can consistently reflect, such as those
of Tait already mentioned also, by Koellner’s arguments, cannot produce ω-Erdos cardi-
nals. We adopt an actualist stance that views the totality of sets, V , as an actual (as
opposed to a potential) totality. We do not wish to consider interpretations of V as
temporarily some Vα, or as some ‘intended’ or ‘suitable’ domain of all sets. Nor do we
wish to project V into some imaginary realm. We abandon hope of a strong internally
defined reflection principle, meaning one defined using formula-by-formula reflection in
some higher-type language using the iterative conception of set alone. We seek a more
global principle of reflection that is not purely motivated by logical or syntactic consid-
erations, but by a more holistic view of the nature of set and class-theoretic activity.
The view exposited does not contradict the iterative-conception: it can be seen to extend
it.

We take the viewpoint that the mathematical objects of our discourse are all sets:
thus V and On, or the class Card of cardinals, as they are not sets, so they are not
mathematical objects: they are the absolute infinities or inconsistent multiplicities of
Cantor (depending on when he was writing (see [6]). We swallow the Cantorian pill that
there are two types of objects: the mathematical-discourse or set objects, and the abso-
lute infinities.
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Let us imagine that C is the collection of all such absolute infinities. The nature of
C is admittedly somewhat ineffable, but we can agree that as absolute and final knowl-
edge cannot be obtained about the realm of mathematical discourse V alone neither can
we find such for (V , ∈ , C). Initially at least we presuppose very little about C and its
members.

We may, if we wish, tell a mereological story about the whole mathematical universe
(which is told in more detail in [5]). As above we think of sets as the sole mathematical
objects. However sets together with the absolute infinities are parts of the whole realm
of mathematical discourse V (V itself is, again, not a mathematical object, nor, in gen-
eral, are its parts.) We denote by C the collection of all possible parts of V ; it thus con-
tains the collection of all absolute infinities (or proper classes in more traditional terms).

We then consider the whole of this constellation or global realm (V , ∈ , C) using
membership symbol∈ in the usual sense: “ x ∈ y” for x, y in V , but also “x ∈ Y ” for any
Y in C. (That is, we do not distinguish membership in classes in the Bernaysian termi-
nology of “xη Y ” and we try to reserve upper case letters X, Y , Z for parts of V , and
loosely use ∈ again without danger of confusion in “X ∈ C” etc.) This then is the realm
of Cantorian discourse that properly encompassed V (again: the realm of mathematical
object discourse and the collection of its absolute infinities C).

In the preformalised stage of the evolution of set theory, or say its Cantorian period,
C would have some ‘potentialist’ flavour: the examples of absolute infinities in C to hand
would have been restricted to those definable as extensions of predicates that were prov-
ably not sets, as Cantor had realised, or Burali-Forti demonstrated. Initially we do not
have to assume that C is closed under first-order manipulations, which it would if we
were to assume (V , ∈ , C) to be a model of NBG from the outset. If we consider the
finite axiomatisation of NBG by Bernays, and in particular the finite collection of opera-
tions on classes which it embodies, then these operations seem unproblematically to lead
from absolute infinities to absolute infinities, thus from elements of C to elements of C.
To summarise, initially we assume that we have some notion of ‘absolute infinity’
and ‘part’ of an actually given V , and C is comprised of them. We do not have to
assume that every element of C is the extension of some predicate (in some yet unspeci-
fied formal language) or some linguistically specified property. (V , ∈ , C) is our informal
embodiment of that notion.

4.1 GRP

We then assert a first Global Reflection Principle (GRP0) that reflects the whole
realm (V , ∈ , C) down to some initial piece: some Vα, together with the collection of all
its parts which we may identify with classes over Vα - and as thus collectively forming
Vα+1. (In Koellner, an isomorphic copy of the classes (here called parts) of Vα is used to
avoid confusion between when an x is considered a set element of Vα, and when a class
of Vα but still of course a set of V . We don’t seem to need this subtlety at this point so
we ignore it.) The elements of Vα+1 are of course mathematical objects from the point of
view of V - but play the role of parts, or classes for Vα.

(GRP0): There is κ∈On, there is j � id, crit(j) =κ,

j: (Vκ,∈ , Vκ+1)� e (V ,∈ , C)
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Here the subscript e denotes elementarity with respect to the usual first order language
L∈̇ but augmented with second order free variable symbols Ȧ , Ḃ� , (let us call it L∈̇,Ȧ,
and in order to explicitly distinguish languages, we shall write, for example, ‘Σn

0 ’ for for-
mulae at that level of complexity in L∈̇,Ȧ) with the interpretation of the second order
variables to range over the collection C of parts. That crit(j) = κ ensures that j(β) = β

for any β < κ but that κ (as a member of Vκ+1) is sent to On (as a member of C):
j(κ) =On. More generally that j ↾ Vκ = id ↾ Vκ and the assumed elementarity will require
that j must preserve as follows for ϕ in L∈̇,Ȧ, x∈Vκ, X ⊆Vκ:

ϕ(x,X)(Vκ,∈,Vκ+1)↔ ϕ(j(x), j(X))(V ,∈,C) (1)

but j(x) =x so: ↔ ϕ(x, j(X))(V ,∈,C).

On a first pass, we say no more than this: we do not yet require that (V , ∈ , C) be
closed under predicative comprehension, i.e., is not yet closed under all instances of ele-
mentary comprehension with the formulae in the Zermelo scheme from L∈̇,Ȧ. (Let us
call this comprehension scheme ECA.) Later we shall say that it is reasonable for (V ,∈ ,

C) to be so closed and thus an NBG model. Although we have required j to be fully ele-
mentary in the language L∈̇,Ȧ we shall see later that we could simply have asked that it
be Σ1

0-elementary.

At this stage a number of points emerge. This says a lot more than Vκ is an initial
segment of V that satisfies the same first order sentences (this would be just to say (Vκ,

∈ ) ≺ (V , ∈ ) ). The (GRP0) asserts that the whole universe is so rich in its connections
to its initial segments that there is a κ with a ‘reflecting connection’ j satisfying (1).
The map j then is between the parts Vκ and those of V in C. It does not move sets, and
we may think of it as derived from a reflection scheme on those parts.

(A) κ is a regular cardinal, indeed strongly inaccessible. We may either assume this
directly as an extra requirement on j, or else as follows: it is natural to assume that any
instances of replacement with functions from C hold true: our conception that the whole
of V with its parts reflects down to some (Vκ, ∈ , Vκ+1) rules out the existence of some
absolutely infinite function class with a set domain in V and range unbounded in V .
However any counterexample to the regularity of κ lying in Vκ+1, G: α → κ say, would
be carried up to a j(G) with domain j(α) = α negating this. (B) Moreover if we allow
the axiom of choice, then there is some F ⊆ κ × Vκ which is a bijection between κ and
the universe of Vκ. Hence we should conclude (again an easy exercise in the elementarity
requirements of (1) above) that some proper class F̃ = j(F ) is such a bijection of On
with V . We thus have that (Vκ, ∈ , Vκ+1) can be considered even as a Zermelian ‘normal
domain’ with its classes. It is a ‘typical’ such domain since nothing that we may assert
about it in the given language, differentiates it from the whole realm meaning V

together with its parts.

Thus in particular we have the consequence that if (GRP0) holds for any j, κ, then
for any X ∈ Vκ+1 if j(X) = X̃ , X must equal j(X) ∩ κ. (It could not be that j(X) is
some Ỹ ∈ C differing from X below κ, as we should have the absurdity that for some z ∈

Vκ we’d have z ∈X△Ỹ = j(X).)

By asserting (GRP0) we thus are also asserting the property that anything satisfied
in (Vκ,∈ , Vκ+1) by a set x∈ Vκ and one of its parts X ⊂Vκ say, is the reflection of some-
thing satisfied in the realm (V , ∈ , C) by x and by one of the parts, or classes, of the
whole realm, X̃ say, as j(X). And that part should be a part of the whole (V ) that
extends X, i.e. X̃ ∩Vκ should be the same as X.
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As an alternative thought experiment (which the author does not particularly like)
one may imagine (V ,∈ , C) and for varying κ performing the truncations of X ∈ C to Vκ,
until one finds a κ where this process allows one to see that every element of Vκ+1 is
such a truncate, and moreover that there are sufficient witnesses to Σ1-statements in Vκ

itself, that we may obtain the relationship of Σ1
0-elementarity as at (1) above for some

associating map j which chooses images for the parts X ∈ Vκ+1. The richness of the
structure (V , ∈ , C) inherent in the principle (GRP) below, then asserts that this will
reveal unboundedly many such κ in On where this will be successful.

In summary:

• (A) Assuming AC for sets, (V ,∈ , C) will be a model of global choice.
• (B) (Vκ, ∈ ) ≺e (V , ∈ ) (here meaning elementary in the usual language of first

order set theory, L∈̇.
• (C) Sufficient elementarity (indeed Σ1

0-elementarity), rather than the full elemen-
tarity of j in the language L∈̇,Ȧ, is all that will be required to derive desirable large car-
dinal consequences here. Initially we are not bound to require of (V , ∈ , C) that it be a
model of ECA.

• (D) We can equally as well ask that there be unboundedly many such κ in On for
which there is such a j:

(GRP): For any α, there is κ∈On, α < κ, and there is j � id, crit(j) = κ,

j: (Vκ,∈ , Vκ+1)� e (V ,∈ , C)

The principle (GRP) then asserts that for any set x ∈ V there is the possibility of
reflecting the whole realm to some normal domain containing x as an element.

4.2 Origins

As an aside we remark on the original motivations for these principles; in fact these
came not from extendibility at all, but from a (literally) completely different direction:
weak subcompactness.

Definition 1. A cardinal λ is subcompact if for any A ⊆ H(λ+) there is a µ < λ, a set
B ⊆H(µ+), and an elementary embedding (in L∈̇,Ȧ)

j: (H(µ+),∈ , B)� e (H(λ+),∈ , A).

Call κ weakly subcompact if the above is true but requiring only A⊆H(λ).

Notice the obvious point here that λ is the large cardinal and it determines the range
structure: it is not the ‘large cardinal’ of the side of the domain structure which is to be
projected (as for extendability). Since H(λ+) is nothing other than the transitivisation
of the extensional wellfounded relations in Vλ+1 we may identify these two structures.

Now subcompactness is straightforwardly a third order property over Vλ. Moreover
taking A = H(λ) = Vλ it is easy to see (by throwing in some arbitrarily large ordinal δ

into the predicate A for Vλ, eg by substituting Vλ × {δ}, - which has the effect of forcing
the critical point of the embedding j to be above δ) that the various embeddings jδ wit-
nessing the weak subcompactness of (Vλ+1, ∈ , Vλ × {δ}) (so with A as the various Vλ ×
{δ}) yields the strong (GRP). Thus the existence of a weakly subcompact cardinal
establishes the existence of a transitive set model of (GRP) (and hence its consistency).
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4.3 Consequences of GRP0

Suppose GRP0 holds as witnessed by a j with critical point κ. Define a field of classes U

on P(κ) by

X ∈U ↔κ∈ j(X)

As P(κ)⊆Vκ+1⊆dom(j) by Σ1
0 -elementarity, this is an ultrafilter.

• The strong inaccessibility of κ yields the δ-additivity of U for any δ < κ, and non-
principality of U trivially follows from j ↾ κ = id ↾ κ. Thus U establishes κ is a ‘measur-
able cardinal’ (and thus we have a strongly extra-constructible principle). However then:

For any α < κ: “∃κ > α(κ a measurable cardinal” 〈V ,∈〉 �� “∀α∃λ >α(λ a measurable cardinal)” 〈Vκ,∈〉 �� “There is a proper class of measurable cardinals”〈V ,∈〉

(We have purposefully dropped the predicate of parts/classes here since the elemen-
tarity needed is just Σ3-preserving in the language L∈̇.) More pertinently (but similarly;
cf. [7] for a definition of Woodin cardinal):

Lemma 2. (∀α∃λ >α(λ a measurable Woodin cardinal))(V ,∈)

Proof: We first recall the definition of “κ is Woodin”: this holds iff for any f ∈ κκ,
there is an α < κ with f “α ⊆ α, and there is a j: V →e N with crit(j) = α and Vj(f)(α) ⊆
N .

So let f ∈ κκ ⊆ Vκ+1, be arbitrary and consider j(f). Then j(f): On � On;
j(f)“κ ⊆ κ. Take λ > κ a sufficiently large inaccessible, so that j(f)(κ) < λ, and con-
sider the “λ-strong” extender derived from j:

For a∈ [λ]<ω: Ea =df {z ∈P([κ]|a|) : a∈ j(z)}.

This has the following properties:

(1) E = 〈Ea: a ∈ [λ]<ω〉 is a (κ, λ)-extender with j(f)(κ) = jE(f)(κ) < λ, and such that
Ult((V , ∈ ), E) is wellfounded, and if k: V � N @ Ult((V , ∈ ), E), is the unique transi-

tivisation collapse map, then Vλ =(Vλ)
N.

This may be formalised as a first order property and we abbreviate it as Φ(κ, λ,

j(f), E) about the displayed objects. Then:

(∃α[∃λ∃E(j(f)“α⊆α∧Φ(α, λ, j(f), E)](V ,∈, C)

We may further abbreviate this as

∃αϕ(j(f), α)(V ,∈, C)
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and this is a first order statement about j(f). By GRP0:

∃αϕ(f , α)(Vκ,∈,Vκ+1).

Thus α witnesses the Woodiness property of κ at least as regards the case of f . Now let
f vary over κκ and we see that κ is indeed Woodin.

Hence:

“κ is Woodin (and measurable)”(V ,∈)

and thus as for measurables, such measurable Woodin cardinals are unbounded in both
κ and On. Q.E.D.(Lemma 2)

We finally remark here, that the strength of this theory, when formalised as below, is
weaker than any embedding property of V into a universe M where, if the critical point
of that embedding, k say, is κ, then k“κ+ is bounded k(κ). This may seem merely a
technical observation, but such embeddings k where k(κ+) > sup k“κ+ typify supercom-
pactness embedding and similar such and play a decisive, and novel, role, in e.g. forcing
argument proofs from such cardinal assumptions. Hence our embedding j is in consis-
tency strength below strong axioms of infinity positing such cardinals: we cannot deduce
that our critical point κ is a cardinal of that kind, or that such exist in V from (GRP)
alone.

4.4 Formalisation of GRP0.

If we wish to discuss this viewpoint within a formal theory we may proceed as fol-
lows. The assertion that there exists such a j is prima facie a third order statement;
however such a j (as a function) may be coded by a class J = {〈x, y〉 : y ∈ j(x)}⊆Vκ+1×
V and then j(x) is just J (x) =df {y J 〈x, y〉 ∈ J }. (Note then, for example, that the mea-
sure U above is then {X J 〈X, κ〉 ∈ J }.) We then have the possibility of asserting the
existence of a second order class J with our desired properties.

The elementarity of j may be expressed in several different versions according to
taste. One may simply express it as a scheme involving L∈̇,Ȧ formulae. Another option

is to consider elementarity to be that in (a fragment of) the second order language L∈̇
2

with second order quantifiers.

Under the first option we shall see that if we are only aiming at getting large cardi-
nals, it would be sufficient to have a j that is Σ1

0-preserving in the L∈̇,Ȧ language (we
emphasise again that this means Σ1 with class parameters). Under this viewpoint we are
only obliged to reflect Σ1

0 existential assertions about parts of V in the range of j down
to Vκ with its parts. There is no need to quantify over parts, or require them to be
closed under certain operations etc.

It is not difficult to see that this level of preservation implies Σn-preserving in the
first order language L∈̇ for any n (and this delivers the large cardinal consequences we
might be seeking).
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[Sketch: Firstly, note that the function FV : On� V defined by FV (α) = Vα is Π1
ZF-

definable in L∈̇, and thus for α < κ (Vα)Vκ = FV
Vκ(α) = j(FV

Vκ)(α) = FV (α) = Vα. Secondly
formalising our semantics in a standard manner, thereby defining a relation of Σn-ele-
mentary substructurehood (and using FV ) and writing this as “Vα ≺Σn

Vβ”, we let Cn ⊆ κ

be the class of α with Vα ≺Σn
Vκ. Then Cn ∈ ∆n+1

ZF definable over Vκ (and is closed and
unbounded in κ), and thus is in Vκ+1.

∀α < β < γ[(α, β ∈Cn))
(Vκ,∈,Vκ+1)� (Vα≺Σn

Vβ)
Vγ].

The consequent here is ∆1(Vγ , α, β); thus this Π1
0 sentence about Cn carries up to

(V ,∈ , C) about j(Cn) using Σ1
0-elementarity. (Again by this elementarity, j(Cn) is not a

set and is c.u.b. in On.) Thus V is the union of the Σn-elementary tower of Vα ≺Σn
V ,

for α ∈ j(Cn). So if now ϕ(xK ) is some Σn formula of L∈̇ and γ < κ sufficiently large in
Cn, with xK ∈ Vγ then:

ϕ(xK )Vκ↔ ϕ(xK )Vγ↔ (∃γ ∈Cn(Vγ � ϕ(xK ))(Vκ,∈,Vκ+1)↔

↔ (∃γ ∈ j(Cn)[ Vγ � ϕ(xK )])(V ,∈,C)↔ ϕ(xK ) ].

This restriction to Σ1-in-class-variables, then gives a satisfactory formalisation of
GRP0. Another point to also stress is that the full formulation GRP is preserved by set
forcing extensions.

We discuss now the second option. In this case it would be natural to consider (V , ∈
, C) as a potential NBG model. (We might in any case be well inclined to assume the
latter, since the finitely many Bernays operations on classes with which NBG can be
finitely axiomatised (two of which are given below), lead indubitably from absolute
infinities to absolute infinities, and contain [ ∈ ] = {(x, y)|x ∈ y, x, y ∈ V } and [id] = {(x,

x)|x ∈ V }. This suffices.) Then to infer that (V , ∈ , C) is an NBG model, it suffices to
only require that j be Σ2

1-preserving in L∈̇
2 .

To see this note first that (Vκ, ∈ , Vκ+1) is a natural model of NBG (even of Kelley-
Morse) with Global Choice as we have seen. The standard methods to finitely axioma-
tise NBG involve a series of simple axioms following on Extensionality for classes, as a
finite set of axioms that can be expressed as Π2

1 assertions of the form ∀X, Y ∃Zϕ(X, Y ,

Z). These all have a matrix ϕ in L∈̇,Ȧ defining some simple operation on the classes X,

Y which yields the class Z. Here are two typical such:

For classes A, B there is a class C =A×B;

For any class R there is a class S = {((a, b), c) J (a, (b, c))∈R}.

These Π2
1 assertions claim that the model is closed under the Bernays operations

mentioned above. Hence if j preserves these Π2
1 assertions then (V ,∈ , C) will necessarily

be an NBG model.

That done, we may then define Sat∈ for the first order (i.e. the L∈̇) part of the lan-
guage within NBG (see e.g., [12]); this may be extended to formulae in L∈̇,Ȧ and obtain
for any n, m < ω a Σn

0 formula Satn
1(zo, z1, z2, Y ) so that for any Σn

0 formula ϕ(v0, � ,

vk−1, Y1,� , Ym) with the displayed free variables:

∀h∈ ωV ∀X1,�∀Xm[Satn
1(pϕq, k,m, 〈h0,� , hk−1〉, 〈X1,� , Xm〉)↔ ϕ(h,K X1,� ,Xm)].
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(We have used m − 1-fold iterations of a suitable pairing function to render the list
X1,� ,Xm as 〈X1,� ,Xm〉.)

Given Global Choice we may even define Skolem functions and obtain the above for
fully second order Σn

1 formulae (see, e.g. , [4]). We may thus for any n ∈ ω define a Σn
1

formula Satn
2(v0, v1,� , vk, Y1,� , Ym) so that, provably in NBG +Global Choice

∀h∈ ωV ∀X1,�∀Xm[Satn
2(pϕq, k,m, 〈h0,� , hk−1〉, 〈X1,� ,Xm〉)↔ ϕ(h,K X1,� , Xm)]

for any Σn
1 formula ϕ(v1,� , vk, Y1,� , Ym).

We may then schematically require that j be a fully Σω
1 -elementary preserving

embedding by demanding it be Σn
1-preserving for each n.

Alternatively, we may wish to add to the language L∈̇
2 a quinary primitive relation

symbol Sat2 with the requirements that

(Sat2(pΘq, k,m, 〈hK 〉, 〈XK 〉)↔Θ(hK , XK ))(V ,∈,C) for hK ∈ kV , XK ∈ mC , Θ∈L∈̇
2 .

We could achieve the same effect by naturally requiring that J satisfy:

(Sat2(pΘq, k, m, 〈hK 〉, 〈XK 〉))(Vκ,∈,Vκ+1) ⇔ (Sat2(pΘq, k, m, 〈hK 〉, J (〈XK 〉)))(V ,∈,C). (2)

This then gives a stronger principle, GRP0
+ say. We note that in both these cases

more can now be determined about 〈V , ∈ , C〉: since (Vκ, ∈ , Vκ+1) is a natural model of
Kelley-Morse with the satisfaction predicate, the second order comprehension principle
carries up to (V , ∈ , C). We should then conclude that (V , ∈ , C) also satisfied the KM-
axioms. In this case we arguably have an even better agreement, or replication, of (V , ∈

, C) with (Vκ,∈ , Vκ+1). If j is Σω
1 -elementary more can be said about the range of j: for

example Σ1
1-elementarity shows that the class of measurable Woodin cardinals is sta-

tionary.

However there seems little in our Cantorian conception prima facie, that allows us to
argue that (V , ∈ , C) should be even an NBG model: the ineffability of the structure (V ,

∈ , C) would seem to gives us little to say about it mathematically. We have no guar-
antee that the parts of V are extensions of predicates in any particular language and we
are not requiring such. We might, as remarked above, be inclined to allow nevertheless
that reasoning about absolute infinities, or parts, of C may imply that it be closed under
the kind of elementary operations required by Bernays’s axiomatisation of NBG: the
Bernays operations are indeed simple in form, and lead from absolute infinities to the
same. Thus: even if we wish to consider V as our domain of mathematical objects and
structures, and whilst the totality that is V , or in general its proper parts, are not,
strictly speaking, to be regarded as mathematical objects, that should not imply they
are hors de combat for any application of reasoning at all, and such reasoning as above
may result in our conclusion that NBG is the right theory for (V ,∈ , C).

In [5] we seek to give possible different interpretations to the members of C: either a
mereological one as alluded to above, or else one involving a plural interpretation of
second order quantification to render the classes as plurals. (In that paper (GRP) is
defined as requiring the stronger full second order elementarity.) We do not go into these
matters here.
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5 Conclusion: is GRP0 a reflection principle?

Clearly the principle is not a reflection principle in the strict sense of a principle
stating that any single sentence of a language (of any particular order or logical kind)
does not pin down V : we have stated a principle that implies that a whole language may
be simultaneously reflected to an initial segment of the V -hierarchy. The first order
Montague-Levy Reflection theorem of ZF neither commits one to an actualist stance nor
a potentialist one. We adopt the view that a universal second order, or so here, a uni-
versal quantifier (hence of the form ‘all parts’ or ‘all classes’) does tend towards an actu-
alist viewpoint. We have an aversion, on grounds of coherence, to principles that require
higher types over (V , ∈ ). However it would seem also that to formalise (V , ∈ , C) as a
KM model, and hence to be enriched with an impredicative comprehension schemes,
does require a robust actualist viewpoint for the comprehension principle to work, and
which would be difficult to formalise over moving potential domains. On the other hand,
although we don’t here see GRP0, or GRP, at least initially, as endorsing KM for (V ,∈ ,

C), or even its closure under, say comprehension expressed for L∈̇,Ȧ-formulae, it would
seem that the viewpoint behind it is an actualist one: as we have said, we take the whole
of the (actual) universe with its parts and reflect upon it.

Nor is it an internally justified scheme in the sense above (meaning that it is derived
from the iterative concept of set alone): the scheme is consistent with the iterative con-
ception, but it has to go beyond it to endorse the richness of the reflection asserted by
GRP0 or GRP.

The structure (Vκ, ∈ , Vκ+1) must reflect all possible truths expressible in (V , ∈ , C)
(or at least the simplest existential Σ1

0-truths about sets with parts as parameters under
the first option sketched). Moreover any formula ϕ(x, X) with any x ∈ Vκ, X ∈ Vκ+1

which is true in (Vκ, ∈ , V κ+1) must be a reflection of a truth about x and the extension
j(X); and this lastly demands that the domain of j contain all parts of Vκ. This latter
condition requires that our picture of this reflection is a full one when considering the
parts of the normal domain of Vκ. It is not the weaker demand that (Vκ, ∈ ) be an ele-
mentary submodel of (V , ∈ ) nor is it that a particular NBG model M be elementary in
some (V , ∈ , C ′); we demand the whole of Vκ with all its parts be elementary in (V , ∈ ,

C); thus (Vκ,∈ , V κ+1) reflects the whole picture or conception of (V ,∈ , C). This fullness
is what gives the principle its large cardinal strength. We have to require it whether
considering any of the formalisations. We leave open the nature of C: we have seen that
different formalisations may require C to have differing properties. (Our own predelic-
tions are for the simplest possible, with minimal extra requirements on C.) An objector
may rightly say that their conception of “richness” of (V , ∈ , C), does not lead them to
posit a reflection of the kind described to some initial segment. However these objec-
tions could be turned against those willing to follow Bernays and admit second or third
order reflection or higher to justify indescribables: such principles require one to reflect
on a structure with 2, 3,� , n more higher types of classes, classes of classes ... etc. over
V . We may have in mind Gödel’s dictum quoted in the first section about higher logics;
but such are a disguised form of a typed class theory beyond On and as such are, we
feel, also problematic. Getting an understanding of a ‘rich’ n’th order logic over V which
is coherent seems no less problem-ridden than understanding and positing a reflection of
this rich kind. By requiring only that we have reflection on (V , ∈ , C), that is the uni-
verse of sets with its parts, then we may express this as a single Σ1

1 existential second
order statement.
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We have avoided Reinhardt’s difficulties about delineating the modal notion of legiti-
mate domains which are perhaps to “model V ”, and we seek to avoid the difficulties
(again pointed out by Koellner) of tracking the intensional aspect of classes over a
domain Vα considered by Reinhardt perhaps as a legitimate domain, to some other
extended realm Vβ. We do not have to claim any kind of access, intensional or other-
wise, to each and all the parts of Vκ or of V . The principle is thus one that asserts that
the global realm (V , ∈ , C) is so rich both in its set-objects and its parts, and its initial
segments with their parts, that there can be such an association between the parts of
some Vκ (or unboundedly many such) and those in C, the parts of V . The association(s)
j is (or are) such that first order existential sentential truths that we can formulate
about the realm V with all of its parts (in the given language) reflect via j to truths
about Vκ with all of its parts. More formally summarised: the relation that j embodies
is that the junior realm (Vκ,∈ , Vκ+1) is simply an initial segment of the full realm (V ,∈
, C), and in such a way that any part X ⊆Vκ can be associated with an extension of it in
C, and in a sufficiently elementary, namely Σ1

0, fashion. The role j plays is of exempli-
fying that association, both individually for each X ∈ Vκ+1 and, via elementarity, collec-
tively for (V , ∈ , C). Whilst conventionally the assertion of j’s existence is a parameter-
less third-order one, as indicated we may if we wish think of (and reason about, and jus-
tify) j initially as a plurality, that of the parts X̃ in the range of j. Later we may for-
malise these ideas and the map j, as sketched above.

Gödel again:

Generally I believe that, in the last analysis, every axiom of infinity
should be derivable from the (extremely plausible) principle that V is
indefinable, where definability is taken in more and more generalised and
idealized sense. ([19], p285)

Clearly the (GRP) principles are taking that generalised or idealized sense liberally,
when judged in the light of a strict iterative conception of sets alone, but in the light of
the Cantorian inspired gesamte Auffassung we have sketched above, they are not unnat-
ural and deliver a satisfyingly rich universe.
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