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Abstract

Effective fractal dimension was defined by Lutz (2003) in order to
quantitatively analyze the structure of complexity classes. Interesting
connections of effective dimension with information theory were also
found, implying that constructive dimension as well as polynomial-
space dimension are closed under base-change while finite-state dimen-
sion is not.

We consider the intermediate case, polynomial-time dimension, and
prove that it is indeed closed under base-change by a nontrivial argu-
ment which is quite different from the Kolmogorov complexity ones
used in the other cases.

p-dimension can be characterized in terms of prediction-loss-rate,
entropy, and compression algorithms. Our result implies that in an
asymptotic way each of those concepts is invariant under base-change.

1 Introduction

The concept of randomness of a real number can be naturally defined from
the randomness of the binary infinite sequence that represents this num-
ber. The choice of base two representation here is an arbitrary one–base
three, base four, or any other base would work just as well–they all yield the
same randomness notions. Surprisingly, when looking at effective versions
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of randomness one choice of base may not be equivalent to other base rep-
resentations. For instance, in finite-state randomness and dimension [3] it is
known that both randomness and dimension 1 sequences coincide with the
normal sequences (consequence of [2, 14]), and therefore both finite-state
randomness and dimension are not invariant under base change, since the
existence of non-absolutely normal sequences is known [13]. On the other
hand, Martin-Löf randomness [4] and constructive dimension [11] can be
easily proven to be base-invariant by standard Kolmogorov complexity argu-
ments, and for the same reason pspace-randomness [9] and pspace-dimension
[10] are base invariant.

We study an intermediate case, polynomial-time resource-bounds, and
prove p-dimension is invariant under base change. The proof is nontrivial
since base change in not an honest function, in fact for infinitely many
cases it is arbitrarily length decreasing. Consider for instance the process of
changing the number 1/2 from base 3 to base 2. When given successively
longer prefixes of the base 3 representation 0.1111... , there are always
two possible candidates for finite prefixes of a base 2 representation. This
makes any (time-bounded) randomness argument more complicated, while
the Kolmogorov complexity of both candidates is very close.

Effective fractal dimension was defined by Lutz [10] in order to quan-
titatively analyze the structure of complexity classes, and later generalized
to other resource-bounds such as constructive [11] or finite-state [3] com-
putability. Important applications in computational complexity have been
found including circuit-size complexity, polynomial-time degrees, the size of
NP, zero-one laws, and oracle classes. See [12, 6, 4] for a summary of the
main results.

p-dimension can be characterized in terms of prediction-loss-rate [5],
entropy [7], and compression algorithms [8]. Our result implies that in an
asymptotic way each of those concepts is invariant under base-change.

Another consequence of our main result is that p-dimension 1 numbers
are absolutely normal, thus providing an interesting source of absolute nor-
mality.

Strong-p-dimension [1], a concept dual to p-dimension that corresponds
to the effectivization of packing dimension from fractal geometry is also
base-invariant, which can be proven with an argument similar to that used
in the proof of our main theorem.
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2 Preliminaries

2.1 p-dimension

For any natural number k ≥ 2, we let Σk = {0, . . . , k − 1} be a k-symbol
alphabet. If w ∈ Σ∗k and x ∈ Σ∗k ∪Σ∞k , w v x means that w is a prefix of x.

For 0 ≤ i ≤ j, we write x[i . . . j] for the string consisting of the i-th
through the j-th symbols of x. We use λ for the empty string.
Definition. Let s ∈ [0,∞).

1. An s-gale on Σk is a function d : Σ∗k → [0,∞) satisfying

d(w) = |Σk|−s
∑
a∈Σk

d(wa)

for all w ∈ Σ∗k.

2. A martingale is a 1-gale, that is, a function d : Σ∗k → [0,∞) satisfying

d(w) =

∑
a∈Σk

d(wa)

|Σk|
for all w ∈ Σ∗k.

Definition. Let s ∈ [0,∞) and d be an s-gale. We say that d succeeds on
a sequence S ∈ Σ∞k if

lim sup
n→∞

d(S[0 . . . n]) =∞.

The success set of d is

S∞[d] = {S ∈ Σ∞k | d succeeds onS}.

Definition. We say that a function d : Σ∗k → [0,∞) is p-computable if

there is a function d̂ : Σ∗k × N→ Q such that d̂(w, r) is computable in time

polynomial in |w|+ r and |d̂(w, r)− d(w)| ≤ 2−r holds for all w and r.
We say that a function d : Σ∗k → [0,∞) ∩ Q is exactly p-computable if

d(w) is computable in time polynomial in |w|.
Definition. Let X ⊆ Σ∞k , The p-dimension of X is

dimp(X) = inf

{
s ∈ [0,∞)

∣∣∣∣ there is a p-computable s-gale d s.t.
X ⊆ S∞[d]

}
By the exact computation lemma in [10] p-computable and exactly p-

computable gales are interchangeable in the definition above.
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Theorem 2.1 Let X ⊆ Σ∞k ,

dimp(X) = inf

{
s ∈ [0,∞)

∣∣∣∣ there is an exactly p-computable s-gale d s.t.
X ⊆ S∞[d]

}
.

We will use dim
(k)
p (X) to refer to the p-dimension of X ⊆ Σ∞k when we

want to stress that the underlying sequence space is Σ∞k .
We will briefly refer to nr-dimension which corresponds to the use of

gales computable in time nr where n is the length of the input.
For a complete introduction and motivation of effective dimension see

[12].

2.2 Representations of Reals

We will use infinite sequences over Σk to represent real numbers in [0,1).
For this, we associate each string w ∈ Σ∗k with the half-open interval [w]k
defined by

[w]k =

 |w|∑
i=1

w[i− 1]k−i, k−|w| +

|w|∑
i=1

w[i− 1]k−i

 .

Each real number α ∈ [0, 1) is then represented by the unique sequence
Sk(α) ∈ Σ∞k satisfying

w v Sk(α) ⇐⇒ α ∈ [w]k

for all w ∈ Σ∗k. We have

α =

∞∑
i=1

Sk(α)[i− 1]k−i

and the mapping α 7→ Sk(α) is a bijection from [0, 1) to Σ∞k (notice that [w]k
being half-open prevents double representations). If x ∈ Σ∞k then realk(x) =
α such that x = Sk(α). Therefore we always have that realk(Sk(α)) = α
and Sk(realk(x)) = x. A set of real numbers A ⊆ [0, 1) is represented by
the set

Xk(A) = {Sk(α) | α ∈ A}

of sequences. If X ⊆ Σ∞k then

realk(X) = {realk(x) | x ∈ X}.
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The question addressed in this paper is the following. Is the feasible
dimension of a set A ⊆ [0, 1) invariant with respect to the base used for

representation? That is, is the definition dimp(A) = dim
(k)
p (Xk(A)) robust

when k changes?

3 Main Theorem

Theorem 3.1 Let k, l ≥ 2. For any exactly p-computable s-gale d on Σl

and rational s′ > s, there is a p-computable s′-gale d′ on Σk such that
reall(S

∞[d])) ⊆ realk(S∞[d′]).

Proof.
Let d be an exactly p-computable s-gale on Σl, without loss of generality

we assume that d(λ) = 1. For any n ∈ N, we define a function Dn : Σ∗k →
[0,∞) as follows. Let m = bn logk lc. For any y ∈ Σ∗k, we define

Dn(y) =


ks
′|y|


∑
x∈Σn

l
[x]l⊆[y]k

d(x) +
∑
x∈Σn

l
[x]l 6⊆[y]k

[x]l∩[y]k 6=∅

1

2
d(x)

 if |y| ≤ m

k(s′−1)∗(|y|−m)Dn(y[0..m− 1]) otherwise.

The desired s′-gale d′ on Σk is then defined by

d′(y) =
∞∑
n=0

l−s
′nDn(y).

The intuition in the definition of Dn and d′ is that d′(y) takes the full
value of d(x) for those x for which y is (the beginning of) the base k rep-
resentation of x, while it only takes 1/2d(x) for those x for which we still
don’t know if (an extension of) y will be the base k representation of (an
extension of) x.

Claim 1 d′ is an s′-gale on Σk.
Let y ∈ Σ<m

k . For any x ∈ Σn
l , we have

[x]l ⊆ [y]k ⇐⇒ (∃a ∈ Σk) [x]l ⊆ [ya]k

or (∃a ∈ Σk − {(k − 1)}) [x]l ⊆ [ya]k ∪ [y(a+ 1)]k
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because [x]l can intersect at most two of the intervals [ya]k for a ∈ Σk. (This
is because |[ya]k| = k−|ya| ≥ k−m ≥ k−n logk l = l−n = |[x]l|.) For the same
reason, we also have

[x]l 6⊆ [y]k and [x]l ∩ [y]k 6= ∅ ⇐⇒ ([x]l ∩ [y0]k 6= ∅ and [x]l ∩ [y1]k = ∅)
or ([x]l ∩ [y(k − 1)]k 6= ∅ and [x]l ∩ [y(k − 2)]k = ∅)

for any x ∈ Σn
l . By these relationships, we have∑

x∈Σn
l

[x]l⊆[y]k

d(x) =
∑
a∈Σk

∑
x∈Σn

l
[x]l⊆[ya]k

d(x) +
∑

a∈Σk−{(k−1)}

∑
x∈Σn

l
[x]l⊆[ya]k∪[y(a+1)]k

[x]l 6⊆[ya]k
[x]l 6⊆[y(a+1)]k

d(x)

=
∑
a∈Σk

∑
x∈Σn

l
[x]l⊆[ya]k

d(x) +
∑
x∈Σn

l
[x]l∩[y0]k 6=∅
[x]l∩[y1]k 6=∅

1

2
d(x)

+
∑

a∈Σk−{0,(k−1)}

∑
x∈Σn

l
[x]l 6⊆[ya]k

[x]l∩[ya]k 6=∅

1

2
d(x) +

∑
x∈Σn

l
[x]l∩[y(k−1)]k 6=∅
[x]l∩[y(k−2)]k 6=∅

1

2
d(x)

and ∑
x∈Σn

l
[x]l 6⊆[y]k

[x]l∩[y]k 6=∅

1

2
d(x) =

∑
x∈Σn

l
[x]l 6⊆[y0]k

[x]l∩[y0]k 6=∅
[x]l∩[y1]k=∅

1

2
d(x) +

∑
x∈Σn

l
[x]l 6⊆[y(k−1)]k

[x]l∩[y(k−1)]k 6=∅
[x]l∩[y(k−2)]k=∅

1

2
d(x).

Combining these two sums establishes that Dn is an s′-gale on Σk.
Claim 2 d′ is p-computable.
We first show how to efficiently compute Dn(y). For this, we iteratively

define a sequence of sets Bn
i (y) for i = 0, . . . , n by

Bn
i (y) =

x ∈ Σi
l

∣∣∣∣∣∣[x]l ⊆ [y]k and x has no prefix in
i−1⋃
j=0

Bn
j (y)

 .

That is, Bn
i (y) is the strings x of length i that represent maximal intervals

included in [y]k. We can now represent Dn(y) for y ∈ Σ≤mk in the following
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form.

Dn(y) = ks
′|y|


n∑

i=0

∑
x∈Bn

i (y)

ls(n−i)d(x) +
∑
x∈Σn

l
[x]l 6⊆[y]k

[x]l∩[y]k 6=∅

1

2
d(x)


This is equivalent to the original definition of Dn because d is an s-gale. Each
Bn

i (y) will have at most 2(l − 1) strings, and these are easily computable.
There are two strings to consider for the second sum.

For the p-computation of d′, let b be such that for every r,
∑∞

n=br+1 l
−n(s′−s)/2 ≤

2−r. Let c be such that ks
′
< l(s

′−s)c/2. Let f(y, r) =
∑br+c|y|

n=0 l−s
′nDn(y).

Then f is clearly computable in polynomial time on |y| and r and we have
that

|d′(y)− f(y, r)| =
∞∑

n=br+c|y|+1

l−s
′nDn(y)

≤
∞∑

n=br+c|y|+1

l−s
′nks

′|y|Dn(λ)

=
∞∑

n=br+c|y|+1

l−s
′nlsnd(λ)ks

′|y|

≤
∞∑

n=br+c|y|+1

l−(s′−s)nl|y|(s
′−s)c/2

≤
∞∑

n=br+c|y|+1

l−(s′−s)nln(s′−s)/2

=
∞∑

n=br+c|y|+1

l−(s′−s)n/2

≤ 2−r.

The first three inequalities come form the fact that both d and Dn are
gales, and d(λ) = 1. The remaining inequalities come from the choice of
constants b and c.

Claim 3 reall(S
∞[d])) ⊆ realk(S∞[d′]).

Let α ∈ [0, 1). Letting xn = Sl(α)[0..n− 1] and yn = Sk(α)[0..m− 1], we
have [yn]k ∩ [xn]l 6= ∅ and by definition Dn(yn) ≥ ks′|yn| 12d(xn).
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Therefore if α ∈ reall(S∞[d])) then Sl(α) ∈ S∞[d] and since for every n,

d′(yn) ≥ l−s′nDn(yn) ≥ l−s′nks′|yn| 1
2
d(xn) ≥ 1

2
d(xn),

we have that Sk(α) ∈ S∞[d′]. �
We now have our main theorem.

Theorem 3.2 For any A ⊆ [0, 1) and k, l ≥ 2, dim
(k)
p (Xk(A)) = dim

(l)
p (Xl(A)).

Proof. Let s > dim
(l)
p (Xl(A)). Then there is an s-gale d on Σl such that

Xl(A) ⊆ S∞[d] thus A ⊆ reall(S
∞[d]). For each s′ > s the previous

theorem gives a p-computable s′-gale d′ on Σk such that reall(S
∞[d])) ⊆

realk(S∞[d′]). Therefore Xk(A) ⊆ S∞[d′], and dim
(k)
p (Xk(A)) ≤ s′. As s >

dim
(l)
p (Xl(A)) and s′ > s were arbitrary, this establishes dim

(k)
p (Xk(A)) ≤

dim
(l)
p (Xl(A)). The converse inequality follows by a symmetric argument.

�
This contrasts with the fact that Finite-State dimension [3] is not closed

under base change (consequence of [2, 14]). For instance Finite-State dimen-
sion 1 coincides with normality [2, 14], and normality is not closed under
base change. Thus we prove that any real number for which polynomial-time
dimension is 1 in a certain base is absolutely normal.

Corollary 3.3 For any x ∈ [0, 1) and k ≥ 2, if dim
(k)
p ({Xk(x)}) = 1 then

x is absolutely normal.

Proof. It is simple to see that p-dimension 1 implies Finite State dimension

1, therefore if dim
(k)
p ({Xk(x)}) = 1 then Xk(x) has Finite State dimension 1

and therefore x is normal in base k. By our main theorem dim
(l)
p ({Xl(x)}) =

1 holds for every l ≥ 2 and x is normal in every base l. �
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