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Abstract. The main theorem of this article is that every countable model of set theory
〈M,∈M 〉, including every well-founded model, is isomorphic to a submodel of its own con-
structible universe 〈LM ,∈M 〉. In other words, there is an embedding j : M → LM that is
elementary for quantifier-free assertions. It follows from the proof that the countable models
of set theory are linearly pre-ordered by embeddability: for any two countable models of
set theory 〈M,∈M 〉 and 〈N,∈N 〉, either M is isomorphic to a submodel of N or conversely.
Indeed, they are pre-well-ordered by embeddability in order-type exactly ω1+1. Specifically,
the countable well-founded models are ordered under embeddability exactly in accordance
with the heights of their ordinals; every shorter model embeds into every taller model; ev-
ery model of set theory M is universal for all countable well-founded binary relations of
rank at most OrdM ; and every ill-founded model of set theory is universal for all countable
acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the same
proof method shows that if M is any nonstandard model of PA, then every countable model
of set theory—in particular, every model of ZFC plus large cardinals—is isomorphic to a
submodel of the hereditarily finite sets 〈HFM ,∈M 〉 of M . Indeed, 〈HFM ,∈M 〉 is universal
for all countable acyclic binary relations.

1. Introduction

In this article, I shall prove that every countable model of set theory 〈M,∈M〉, including
every well-founded model, is isomorphic to a submodel of its own constructible universe
〈LM ,∈M〉. Another way to say this is that there is an embedding

j : 〈M,∈M〉 → 〈LM ,∈M〉

that is elementary for quantifier-free assertions in the language of set theory.

Main Theorem 1. Every countable model of set theory 〈M,∈M〉 is isomorphic to a submodel
of its own constructible universe 〈LM ,∈M〉.

The proof uses universal digraph combinatorics, including an acyclic version of the count-
able random digraph, which I call the countable random Q-graded digraph, and higher ana-
logues arising as uncountable Fräıssé limits, leading eventually to what I call the hypnagogic
digraph, a set-homogeneous, class-universal, surreal-numbers-graded acyclic class digraph,
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which is closely connected with the surreal numbers. The proof shows that 〈LM ,∈M〉 con-
tains a submodel that is a universal acyclic digraph of rank OrdM , and so in fact this model
is universal for all countable acyclic binary relations of this rank. When M is ill-founded,
this includes all acyclic binary relations. The method of proof also establishes the following,
thereby answering a question posed by Ewan Delanoy [Del11].

Main Theorem 2. The countable models of set theory are linearly pre-ordered by embed-
dability: for any two countable models of set theory 〈M,∈M〉 and 〈N,∈N〉, either M is
isomorphic to a submodel of N or conversely. Indeed, the countable models of set theory are
pre-well-ordered by embeddability in order type exactly ω1 + 1.

The proof shows that the embeddability relation on the models of set theory conforms with
their ordinal heights, in that any two models with the same ordinals are bi-embeddable; any
shorter model embeds into any taller model; and the ill-founded models are all bi-embeddable
and universal.

The proof method arises most easily in finite set theory, showing that the nonstandard
hereditarily finite sets HFM coded in any nonstandard model M of PA or even of I∆0

are similarly universal for all acyclic binary relations. This strengthens a classical theorem
of Ressayre, while simplifying the proof, replacing a partial saturation and resplendency
argument with a soft appeal to graph universality.

Main Theorem 3. If M is any nonstandard model of PA, then every countable model of set
theory is isomorphic to a submodel of the hereditarily finite sets 〈HFM ,∈M〉 of M . Indeed,
〈HFM ,∈M〉 is universal for all countable acyclic binary relations.

In particular, every countable model of ZFC and even of ZFC plus large cardinals arises
as a submodel of 〈HFM ,∈M〉. Thus, inside any nonstandard model of finite set theory, we
may cast out some of the finite sets and thereby arrive at a copy of any desired model of
infinite set theory, having infinite sets, uncountable sets or even large cardinals of whatever
type we like.

A structure M is universal for a class ∆ of structures, if every structure in ∆ is isomorphic
to a substructure of M . In this article I use the term model of set theory to mean a first-order
structure 〈M,∈M〉 satisfying at least the Kripke-Platek KP axioms of set theory, a very weak
fragment of ZF. Although typically for the models of set theory I have in mind the models
of ZFC or even ZFC plus large cardinals, it turns out that the results of this article go
through for the much weaker theory KP, and indeed still weaker theories will suffice, but for
definiteness I shall officially use KP, leaving the determination of how weak we may go for
a later project.

The language of set theory has only the set-membership relation ∈, and so a submodel of
a model 〈M,∈M〉 of set theory is simply a subset N ⊆ M , where one restricts the relation
to form 〈N,∈M � N〉. An embedding of one model 〈M,∈M〉 into another 〈N,∈N〉 is an
isomorphism of M with a submodel of N , that is, a function j : M → N for which x ∈M y
if and only if j(x) ∈N j(y). Since a model of set theory is a set with a binary relation, it is
technically a certain special kind of directed graph, and many of the arguments of this article
will proceed from this graph-theoretic perspective. From this perspective, a submodel of a
model of set theory, viewed as a directed graph, is the same as an induced subgraph.

The three main theorems reappear in this article as theorems 29, 33 and 9, respectively.
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2. The countable random Q-graded digraph

The main theorems will be proved by finding copies of certain universal digraphs among
the submodels of the models of set theory under consideration. So let me begin by developing
a little of this universal digraph theory. A digraph, or directed graph, is a structure 〈G,⇀〉
where G is a set of vertices, or nodes, and ⇀ is a binary relation on G. A digraph is acyclic
if there is no finite directed path from a vertex to itself. That is, an acyclic digraph is one
with no directed cycles. Note that the undirected version of an acyclic digraph may be far
from a tree, since there can be undirected cycles.

Let Q be the endless dense linear order of the rational numbers. A digraph G is Q-graded
if every vertex a in G is assigned a rational value qa in such a way that qa < qb whenever
a ⇀ b. Such a graph must be acyclic, since the values increase along any directed path.
More generally, for any linear order ` we may consider the `-graded directed graphs, and
these also are acyclic.

Lemma 4. Every countable acyclic digraph can be Q-graded by a suitable value assignment.

Proof. Suppose that G is a countable acyclic digraph. Let C be the reachability relation on
G, the transitive closure of the edge relation of G. Because G is acyclic, it follows that C is
a partial order on the vertices. Since every partial order extends to a linear order, and every
countable linear order embeds into Q, it follows that we may assign the vertices of G to
rational numbers in such a way that aC b implies qa < qb. In particular, this is a Q-grading
of G. �

Although the value assignment arising in the proof of lemma 4 is one-to-one, in general
a Q-graded digraph may have many nodes with the same value, and the universal graded
digraphs appearing later in this article will have infinitely many nodes of each value. The
grading of a digraph is in effect a laying-out of its vertices on levels, in such a way that every
directed edge points from a lower-level node to a higher-level node.

An alternative grading concept would regard a graded digraph 〈G,⇀,≤〉 as a digraph
〈G,⇀〉 together with a linear pre-order ≤ on the vertices whose corresponding strict order
includes the edge relation, so that a ⇀ b implies a < b. This formalization founds the
graded digraph concept in a finite first-order language, but in effect allows embeddings and
isomorphisms to act also on the linear order, preserving merely the relative value rather
than the exact value; but I shall not need this, and so in this article I have opted for the
value-assignment concept of grading above and insist that graded digraph embeddings pre-
serve these values. A structure A is homogeneous if every isomorphism of finitely generated
substructures of A extends to an automorphism of A.

Theorem 5. There is a countable homogeneous Q-graded digraph Γ, which is universal for
all countable Q-graded digraphs. Furthermore,

(1) There is a unique such digraph up to isomorphism, even when restricting universality
to finite Q-graded digraphs.

(2) Every countable acyclic digraph arises as an isomorphic copy of an induced subgraph
of Γ.

(3) Γ admits a computable presentation.

We call this Γ the countable random Q-graded digraph.
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Proof. There are several independent constructions of this highly canonical object. Let me
begin with the abstract realization of Γ as a Fräıssé limit. Let Q be the collection of finite Q-
graded digraphs. Note that Q enjoys the hereditary property, that any induced subgraph of
a graph in Q is in Q, and also the joint embedding property, asserting that any two members
of Q embed into a third. Furthermore, Q has the amalgamation property, meaning that
whenever A, B and C are in Q, where A embeds into B and also into C, then there is a D
into which both B and C embed while agreeing on the image of A. These three properties
are sufficient that Q has a Fräıssé limit Γ, a countable, homogeneous, directed Q-graded
graph, whose finite induced subgraphs are up to isomorphism precisely the graphs in Q (see
[Hod93, thm 7.1.2]). The universal property of the Fräıssé limit ensures that Γ is universal
for all countable acyclic digraphs, because any such graph G is Q-graded by lemma 4 and
since G is the direct limit of its finite induced subgraphs, each of which is in Q, it follows
that one may amalgamate the limit construction of G as occurring inside Γ.

Consider alternatively the following construction of Γ via forcing, which amounts essen-
tially to the forcing construction of the Fräıssé limit. Let P be the partial order of all finite
Q-graded digraphs with nodes coming from a fixed countably infinite set, ordering the di-
graphs of P by the induced subgraph relation. If A ⊆ B and C are any such finite Q-graded
digraphs, with an embedding f : A→ C, then let DA,B,C,f be the set of graphs H ∈ P such
that if C ⊆ H, then f extends to an embedding g : B → H. This is a dense collection of con-
ditions H, since for any H0 ∈ P, if C ⊆ H0 then we can extend H to include a copy of B over
f(A), and thus extend f to g : B → H, as desired. Since there are only countably many such
dense sets, we may build a chain of graphs H0 ⊆ H1 ⊆ · · · such that Γ =

⋃
nHn meets every

such dense set. It follows that Γ is weakly homogeneous, which means that whenever A ⊆ B
and f : A→ Γ, then there is an extension to g : B → Γ. This implies that Γ is universal for
all countable Q-graded digraphs, since any such graph G is the union

⋃
nGn of finite graphs,

and weak homogeneity allows us to build up a chain of embeddings fn : Gn → Γ, which
realizes G as an induced subgraph of Γ. It also implies that Γ is fully homogeneous, by a
similar back-and-forth argument that systematically extends a finite partial isomorphism to
a full automorphism of Γ.

Let me now describe a more concrete construction, which will realize Γ as a computable
directed Q-graded graph. We build Γ as the union of a sequence of finite directed Q-graded
graphs Γn ∈ Q. Namely, let Γ0 be the empty graph, and at each stage n, we consider all
possible ways to extend Γn by the addition of one vertex with a value amongst the first
n rational numbers, and let Γn+1 realize all such possibilities. Since we can carry out this
process by a computational procedure, the limit Γ =

⋃
n∈ω Γn is a computable directed Q-

graded graph. This graph Γ is universal for all countable directed cycle-free graphs G, since
any such G can be Q-graded, and then we can build up the embedding of G into Γ in stages.
Namely, we enumerate the vertices of G as v0, v1, and so on, and at stage n we have a copy of
the first n vertices of G inside some Γkn . The next vertex vn has a certain value and exhibits
a certain pattern of connectivity to the prior vertices of G. At a stage in the construction
of Γ where the value qn of vn is allowed, we add a vertex exhibiting precisely that pattern
of connectivity over the copy of the prior vertices that we have built in Γ. Thus, we may
extend our embedding to include a copy of vn with the correct value. By continuing this
process, we end with an embedding of G into Γ, as desired.
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Finally, let me give a probabilistic account of Γ. Let Γ have infinitely many vertices of
every rational value, and for each pair of nodes a and b with a having lower value than b,
flip a coin to determine whether we place an edge between them. Thus, Γ is the random
Q-graded directed graph. With probability one, every finite Q-graded directed graph arises
as an induced subgraph, and furthermore, any particular finite subgraph A will find with
probability one an extension inside Γ realizing any particular pattern of connectivity for a
new vertex having a particular value (subject to the constraints on values). Thus, almost
surely the resulting graph Γ will exhibit the finite-pattern property that allows us to extend
any partial isomorphism via a back-and-forth argument to a full automorphism. �

The need to consider graded digraphs, rather than mere digraphs, arises from the fact
that there simply are no nontrivial homogeneous acyclic digraphs:

Observation 6. If an acyclic digraph G has a ⇀ b ⇀ c as an induced subgraph, then it is
not homogeneous as a digraph (without any grading structure).

Proof. Suppose G is an acyclic digraph with a ⇀ b ⇀ c as an induced subgraph, meaning
here that a and c share no edge. It follows that the subgraph {a, c} is discrete and therefore
has an automorphism swapping a and c. But this finite automorphism cannot extend to an
automorphism π of the whole graph, since this would cause a directed cycle: a ⇀ b ⇀ c =
π(a) ⇀ π(b) ⇀ π(c) = a, a contradiction. �

Essentially the same point is made by observing that the collection of acyclic digraphs does
not enjoy the amalgamation property, since the discrete graph with two vertices embeds into
a ⇀ b ⇀ c in two ways, but these cannot be amalgamated in any acyclic graph, since any
amalgamation would give rise to a directed cycle.

The purpose of using graded digraphs is to overcome the obstacle posed by observation
6 and enable the theory of universality and homogeneity in the context of acyclic digraphs.
The situation here is that the countable random Q-graded digraph is homogeneous as an
Q-graded digraph, where the automorphisms respect the edge relation and the values of the
Q-grading, but not as an unlabeled digraph, where the automorphism need only respect the
edge relation. Note that for a ⇀ b ⇀ c in the case of an Q-graded graph, the value of a must
be strictly smaller than the value of c, which exactly prevents us in swapping a and c when
we must preserve the values. Meanwhile, if one forgets both the values and the direction of
edges, then in fact the undirected graph underlying the countable random Q-graded digraph
is the same as the countable random graph.

Observation 7. The graph obtained by ignoring the values and direction of the edges in the
countable random Q-graded digraph is isomorphic to the countable random graph.

Proof. It suffices to show that the graph underlying the countable random Q-graded digraph
Γ exhibits the finite-pattern property characterizing the countable random graph, namely,
that for any two disjoint sets A and C, there is a node connected to every edge in A and to no
edge in C. Such a node exists in Γ by the universality and homogeneity of Γ: simply select
a rational value not used by any node in A and observe that there is a larger graded graph
realizing the desired pattern with respect to A and C and having that value; by universality
there is a copy of this digraph inside Γ; by homogeneity, we may translate this copy to align
with the given nodes of A and C. So the undirected ungraded digraph underlying Γ has
the finite-pattern property, and consequently is isomorphic to the countable random graph,
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since the countable random graph has this property and a simple back-and-forth argument
shows that any two countable graphs with this property are isomorphic. �

3. A strengthening of Ressayre’s theorem

Every model of arithmetic comes along with a model of finite set theory via the Ackerman
coding, obtained by defining the following relation on the natural numbers:

n E m ⇔ the nth binary bit of m is 1.

In the standard model N, this relation is well-founded and extensional, and it is an often-
assigned elementary exercise to prove that the Mostowski collapse of E is precisely the
hereditary finite sets.

〈N, E〉 ∼= 〈HF,∈〉

The relation E can be defined inside any model of arithmetic M , leading to the corresponding
model of finite set theory 〈HFM ,∈M〉, and conversely, the natural numbers of HFM are
isomorphic to M again. In this way, the models of arithmetic are in a natural one-to-one
correspondence with the models of finite set theory (properly understood), and the two
theories are bi-interpretable. Specifically, [KW07] shows that the models of PA give rise
to all the models of the finite set theory ZFC¬∞ = ZFC − Inf + ¬Inf + TC, where TC is
the assertion that every set has a transitive closure, and conversely the natural numbers
of any such model satisfies PA, in inverse fashion, making for a bi-interpretation of these
two theories. The curious anomaly here is that while the axiom TC is provable and may
be omitted if one replaces the usual foundation axiom in ZFC with the axiom scheme of ∈-
induction, nevertheless results in [ESV11] show, quite interestingly, that TC is not provable
if one uses only the usual foundation axiom.

The theme of this article begins in earnest with the following remarkable theorem of
Ressayre’s.

Theorem 8 (Ressayre [Res86]). If M is any nonstandard model of PA, with 〈HFM ,∈M〉 the
corresponding nonstandard hereditary finite sets of M , then for any consistent computably
axiomatized theory T extending ZF in the language of set theory, there is a submodel N ⊆
〈HFM ,∈M〉 such that N |= T .

In particular, we may find models of ZFC and even of ZFC + large cardinals as submodels
of HFM , a structure whose theory is all about the finite and which thinks every object is finite.
But nevertheless inside HFM there are submodels of the strongest infinitary theories we know!
Incredible! How can this be? Ressayre’s proof uses partial saturation and resplendency to
prove that one can find the submodel of the desired theory T .

Theorem 9 strengthens Ressayre’s theorem, while simplifying the proof, by replacing the
use of resplendency with a soft appeal to digraph universality. In particular, the role of
the theory T is omitted: we need not assume that T is computable, and we don’t just
get one model of T , but rather all countable models of T , for the theorem shows that the
nonstandard models of finite set theory are universal for all countable acyclic binary relations.
In particular, every model of set theory arises as a submodel of 〈HFM ,∈M〉.
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Theorem 9 (Main theorem 3). If M is any nonstandard model of PA or indeed merely of
IE1, then every countable model of set theory is isomorphic to a submodel of the hereditarily
finite sets 〈HFM ,∈M〉 of M . Indeed, 〈HFM ,∈M〉 is universal for all countable acyclic binary
relations.

One may equivalently cast the theorem entirely in terms of finite set theory: every non-
standard model 〈M,∈M〉 of finite set theory ZFC¬∞ is universal for all countable acyclic
binary relations. In particular, every model of set theory, of ZFC or whatever theory, is
isomorphic to a submodel of 〈M,∈M〉, even though this latter model believes that every set
is finite.

In order to prove theorem 9, we begin with a simple link between acyclic digraphs and
sets with the set-membership relation.

Lemma 10. Every finite acyclic digraph is isomorphic to a hereditarily finite set with the
set-membership relation ∈.

Proof. Suppose that G is a finite acyclic digraph with n vertices v1,. . . vn. We first extend G
to a larger finite extensional digraph G+ as follows. Let N be the transitive closure of the
digraph

0 ⇀ 1 ⇀ · · ·⇀ n,

which is the same as (n + 1,∈), if one uses the von Neumann ordinals as natural numbers,
and let G+ be the graph containing the disjoint union of G and N , together with edges
k ⇀ vk for k ≥ 1. Note that (i) any two nodes of G have different predecessors in N ; (ii)
different nodes of N have different predecessors in N ; and (iii) every node in N has 0 as a
predecessor, but no node in G has 0 as a predecessor. Thus, no two nodes of G+ have the
same predecessors and so G+ is extensional. Furthermore, since G and N are both acyclic
and we added only edges pointing from N to G, it follows that G+ is acyclic. In other
words, the edge relation of G+ is an extensional well-founded relation and therefore by the
Mostowski collapse π(v) = { π(w) | w ⇀ v } is isomorphic to a unique transitive set under
the set membership relation ∈.

w ⇀ v if and only if π(w) ∈ π(v).

This isomorphism associates each node in G+ with the set of sets associated with its children.
The isomorphism π carries the directed graph (G,⇀) to the hereditarily finite set (A,∈),
where A = { π(v) | v ∈ G }, as desired. �

Note that this lemma is provable in finite set theory ZFC¬∞. It will be generalized by
lemma 21, which handles the general case of well-founded digraphs.

Proof of theorem 9. Suppose that M is a nonstandard model of PA, and that 〈HFM ,∈M〉
is the corresponding nonstandard model of finite set theory ZFC¬∞ built via the Ackerman
coding in M . Consider the computable construction of the countable random Q-graded
digraph Γ, as carried out inside M . Let k be a nonstandard integer of M , and consider
the kth stage of this construction ΓMk . Since the standard stages of construction will be the
same inside M as externally, it follows that the standard part of ΓMk is the actual countable
random Q-graded digraph Γ itself. That is, Γ is an induced subgraph of ΓMk . Since M thinks
Γk is finite, we may apply lemma 10 inside M to find a set A ∈ HFM such that M thinks
〈Γk,⇀〉 ∼= 〈A,∈M〉. Since Γ is an induced subgraph of ΓMk , we may restrict this isomorphism
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(externally) to find 〈Γ,⇀〉 ∼= 〈B,∈M〉 for some B ⊆ { a ∈ HFM |M |= a ∈ A }. Thus, we
have realized the countable random Q-graded digraph as isomorphic to a collection of sets
in HFM . But since Γ is universal among all countable acyclic digraphs, it follows that every
countable set with an acyclic binary relation is isomorphic to an induced subgraph of Γ, and
hence to a subcollection of HFM under ∈M , as desired.

Lastly, let me discuss the issue of weakening the theory PA to I∆0, which allows induc-
tion only for ∆0 assertions, and even down to IE1, which has induction only for bounded
existential assertions. The reason is that every countable nonstandard model of IE1 has an
initial segment that is a model of PA, by a result of Paris [Par84], whose proof relies on the
earlier corresponding result for I∆0, proved by McAloon [McA82]. So if we begin with a
model M |= IE1, therefore, we may simply cut down to the PA initial segment M0 |= PA,
where we will find the universal structure by the argument of the previous paragraph. Thus,
every model of an acyclic binary relation embeds into 〈HFM0 ,∈M0〉, which is an initial seg-
ment of 〈HFM ,∈M〉, and so every model of an acyclic binary relation embeds into HFM , as
desired. �

Corollary 11. The countable models of set theory, up to isomorphism, have a universal
object under the submodel relation. Namely, if 〈M,∈M〉 is any ω-nonstandard model of set
theory, then every countable model of set theory is isomorphic to a submodel of 〈M,∈M〉.

Proof. Indeed, theorem 9 shows that every countable model 〈N,E〉 of any binary relation
embeds already into the hereditary finite sets 〈HFM ,∈M〉 of M . �

I will show later that in fact every countable nonstandard model of set theory is universal
in this way, even if the ill-foundedness appears only higher than ω.

4. `-graded digraphs and the finite-pattern property

It will be convenient to consider grading notions other than Q, aiming eventually at the
well-founded acylic digraphs, which are precisely the α-graded digraphs for some ordinal α,
or in the case of proper classes, the Ord-graded digraphs, as well as the No-graded digraphs,
using the surreal numbers No. To assist with this analysis, consider the general case of an
arbitrary linear order ` and the `-graded digraphs G, which have a value assignment v 7→ αv
of the nodes v ∈ G with elements αv ∈ ` in such a way that v ⇀ w in G implies αv < αw
in `. Any such graph is acyclic, since a directed cycle in G would give rise to a violation of
asymmetry in `.

Theorem 12. For any countable linear order `, there is a countable homogeneous `-graded
digraph that is universal for all countable `-graded digraphs. This digraph is unique up to
isomorphism (even when restricting universality to the finite `-graded digraphs), and has a
computable presentation if ` is computable.

Proof. The collection Q` of all finite `-graded directed graphs has the hereditary property,
the joint embedding property and the amalgamation property, and consequently admits
a Fräıssé limit, which is up to isomorphism the unique countable, homogeneous, `-graded
digraph of its age. This graph is universal for all countable `-graded directed graphs by the
same argument as in theorem 5.

Alternatively, it may be easier simply to view ` as a suborder of the rational order Q,
and then consider the restriction Γ � ` of the countable random Q-graded digraph Γ to the

8



vertices having a label in `. The subgraph Γ � ` is `-graded and inherits the homogeneity
property from Γ, since any finite partial automorphism of Γ � ` is also a finite partial
automorphism of Γ, which therefore extends to an automorphism of Γ, which respects the
labels and thus provides an automorphism of Γ � `. The digraph Γ � ` remains universal for
`-graded directed graphs, because any such graph embeds into Γ in a way that uses only the
labels in ` and hence embeds into Γ � `.

If ` is computable, then ` has a computable copy inside Q, and using the computable
presentation of Γ from theorem 5, we obtain a computable presentation Γ � `, as desired. �

Let us call this graph the countable random `-graded digraph. There is also a finite-pattern
property for these graphs analogous to the ω-categorical first-order characterization of the
countable random graph, mentioned in observation 7.

Definition 13. An `-graded digraph Γ satisfies the finite-pattern property, if for any disjoint
finite sets of vertices A, B and C and any α ∈ `, such that every vertex in A has value less
than α and every vertex in B has value greater than α, then there is a vertex v in Γ with
value exactly α such that a ⇀ v and v ⇀ b for every a ∈ A and b ∈ B, but v has no edges
with any vertex in C.

A

B

C•vα

•
•

•
•

•
•

Figure 1. The finite-pattern property

Equivalently, an `-graded digraph has the finite-pattern property just in case it is existen-
tially closed in the class of all `-graded digraphs.

Theorem 14. If Γ is a countable `-graded digraph for a countable linear order `, then the
following are equivalent:

(1) Γ has the finite-pattern property.
(2) Γ is isomorphic to the countable random `-graded digraph.

Proof. It is clear that the countable random `-graded digraph has the finite-pattern prop-
erty, since each instance with particular A, B and C is clearly realizable in a finite `-graded
digraph, which must therefore embed into the countable random `-graded digraph by uni-
versality, thereby providing a realizing node v by homogeneity.

Conversely, suppose that Γ is a countable `-graded digraph with the finite-pattern property.
It is clear by successive applications of this property that every `-graded directed graph
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occurs as an induced subgraph of Γ. Now, one simply applies a back-and-forth construction
to realize that Γ is isomorphic to the countable random `-graded digraph. At each stage, one
applies the finite-pattern property either in Γ or in the countable random `-graded digraph
to extend the isomorphism one more step. �

Although the random digraphs that we have constructed are homogenous as Q-graded
or as `-graded digraphs, as in observation 6 they are definitely not homogeneous merely as
digraphs, without the extra structure provided by the value assignment. Meanwhile, if one
should forget the values and the directionality of the edges, then the argument of observation
7 shows that the graph underlying the countable random `-graded digraph, for any infinite
linear order `, is isomorphic to the countable random graph.

5. Uncountable homogeneous graphs and structures

The main argument of subsequent sections will make use of uncountable homogeneous
graded digraphs, and it will be convenient to have a general theory of how to construct
such structures. So let us briefly review that theory here, beginning with the uncountable
analogue of the Fräıssé limit construction.

Although the Fräıssé limit construction is typically given for the countable case, where
one produces a countable homogeneous structure as a limit of finitely generated structures,
the idea generalizes naturally to uncountable structures, and I shall give a brief account here
of how this can be done.

For any first-order structure D, the age of D is the class of finitely generated structures
that embed into D, that is, which are isomorphic to a substructure of D, and for any cardinal
δ, the δ-age is the class of <δ-generated structures that embed into D. A structure D is δ-
homogeneous if every isomorphism of two <δ-generated substructures of D extends to an
automorphism of D.

Theorem 15. Suppose that K is a family of structures in a language L of size at most δ,
an infinite cardinal for which δ<δ = δ, such that K is closed under isomorphism, contains
at most δ many isomorphism types, and every member of K is finitely generated. Suppose
further that K exhibits the the following properties:

HP (hereditary property) Every submodel of a model in K is in K.
JEP (joint embedding property) If A,B ∈ K there is C ∈ K with A and B both embedding

into C.
AP (amalgamation property) For any A,B,C ∈ K, if e : A → B and f : A → C are

embeddings, then there is D ∈ K with embeddings g : B → D and h : C → D such
that ge = hf .

Then there is a δ-homogeneous structure A of size δ whose age is exactly K. This structure is
unique up to isomorphism and universal among all structures of size δ whose age is contained
in K.

Proof. See Hodges [Hod93, thm 7.1.2] for an account of the countable case δ = ω. Assume
the class K has HP, JEP and AP. Let K+ be the class of <δ-generated structures whose
age is contained in K. Every element of K+ is the direct limit of its finitely generated
submodels, and these are all in K. Thus, K+ is simply the closure of K under limits of
directed systems of size less than δ. Clearly, K+ retains the HP. In fact, K+ also enjoys
the JEP and the AP, which we prove jointly by induction on the number of generators for
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the structure involved. For the JEP, consider two structures A,B ∈ K+, where A is γ-
generated and B is ξ-generated, where ξ ≤ γ. The case of finite γ follows from the JEP
of K. Otherwise, assume γ is an infinite cardinal and express A as the union of a chain
A =

⋃
α<γ Aα of <γ-generated structures. By the AP induction hypothesis applied to Aα

and B, we may construct a chain C0 ⊆ · · · ⊆ Cα ⊆ · · · for α < γ, such that Aα and B
embed into Cα, and the embedding of Aα into Cα extends to the embedding of Aα′ into
Cα′ for α < α′. The union C =

⋃
αCα jointly embeds both A and B. A similar argument

establishes the AP for K+. In addition to HP, JEP and AP, the class K+ also enjoys the
<δ-limit property (<δ-LP), which asserts that if each Aα ∈ K+ and

A0 ⊆ A1 ⊆ · · · ⊆ Aα ⊆ · · ·

is a chain of length less than δ, then
⋃
αAα ∈ K+.

Now, in a forcing-style presentation, let P be the structures in K+ whose underlying set
is contained in δ. (In the case that the language has δ many constant symbols, then let us
also fix a bijection δ ∼= δ× δ and insist furthermore that the β-generated structures of P live
in the part of δ corresponding to β× δ; this will ensure that there is sufficient extra room to
expand the structure.) Every structure in K+ is isomorphic to an element in P. We order P
by the submodel relation, and consider it as a forcing notion, for which the larger models are
stronger. Note that P is closed under the unions of chains of size less than δ. The fact that
K+ has the JEP means that for any A ∈ K+ the collection of conditions B ∈ P such that A
embeds into B is dense in P. The fact that K+ has the AP means that for any A,B,C ∈ P
such that A ⊆ B and f : A→ C, the set of conditions D ∈ P such that C ⊆ D ⇒ f extends
to some g : B → D, is dense below C in P. Since δ<δ = δ, there are only δ many conditions
in P and thus only δ many dense sets of the type I have just mentioned in the previous
sentences. Since P is also closed under the unions of chains of length less than δ, we may by
build a length δ chain of structures

D0 ⊆ · · · ⊆ Dα ⊆ · · ·

from P in such a way so as to meet all these dense sets. It follows that the union D =
⋃
α<δDα

has size δ and contains isomorphic copies of every A ∈ K+. Further, the second family
of dense sets exactly ensure that the structure D is δ-weakly homogeneous, meaning that
whenever A ⊆ B and f : A → D is an embedding, where A,B ∈ K+, then f extends to
some g : B → D. It follows that D is universal for any structure B of size δ, whose age is
contained in K. To see this, first express B =

⋃
α<δ Bα as a union of structures Bα ∈ K+, and

then build a coherent system of embeddings fα : Bα → D, applying the δ-weak homogeneity
property of D to extend at successor stages. The result is an embedding of B into D, as
desired. A similar back-and-forth argument shows that D is δ-homogeneous, and uniqueness
follows from this. �

Note that the <δ-limit property may be equivalently formulated as the assertion that the
class is closed under direct limits of linear systems from K of length less than δ.

A class structure is set-homogeneous if every isomorphism between two set substructures
extends to a class automorphism of the whole structure. The global choice principle asserts
that there is a proper class choice function selecting an element from every set. This is
equivalent to the assertion that there is a proper class well-ordering of the universe in order
type Ord. The axiom is most naturally stated in the second-order Gödel-Bernays set theory,
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which allows for classes that may not be definable, and so the global choice axiom does not
necessarily imply V = HOD.

Theorem 16. Assume the global choice principle. Suppose that K is a proper class of finitely
generated models in language L, which may be a proper class, and that K is closed under
isomorphic copies and exhibits the HP, JEP and AP. Then there is an set-homogeneous class
model A, unique up to isomorphism, whose age is exactly K. Furthermore, every class model
whose age is contained in K is embeddable into A.

Proof. This is simply a proper class version of theorem 15. One sets up the class partial order
P consisting of all set-generated structures, built on the ordinals, whose age is contained in
K, and order them by induced submodel as before. The point is that this class forcing is set-
closed, just as the forcing notion in theorem 15 was <δ-closed, and so using the global choice
principle, one may construct an Ord-length sequence of structures that meet all the dense
classes corresponding to those in the proof of theorem 15. The result is a class structure
A that is set-homogeneous and universal for all class structures whose age is contained in
K. �

I would like now to construct canonical homogeneous `-graded digraphs for an arbitrary
linear order `, perhaps uncountable. Generalizing definition 13 to the uncountable, we say
for a cardinal δ that an `-graded digraph G exhibits the <δ-pattern property if for any disjoint
sets A, B and C of nodes, with cardinality less than δ, and any α ∈ ` for which every node
in A has value less than α and every node in B has value greater than α, there is a node
v ∈ Λ with value exactly α such that a ⇀ v and v ⇀ b for all a ∈ A and b ∈ B, while also
v ⊥ c for all c ∈ C.

As a first-order structure, we shall regard an `-graded digraph as a structure 〈G,⇀,Uα〉α∈`,
where 〈G,⇀〉 is the underlying digraph and Uα is a unary relation holding of the vertices
with value α.

Theorem 17. For any linear order ` and any cardinal δ ≥ |`| for which δ<δ = δ, there is a
δ-homogenous `-graded digraph of size δ, which is universal for `-graded digraphs of size at
most δ. This graph is unique up to isomorphism and satisfies <δ-pattern property.

Proof. Let Q be the collection of all finite `-graded digraphs. This collection has the hered-
itary property, the joint embedding property and the amalgamation property. Thus, by
theorem 15 it has a δ-Fräıssé limit Λ, which is a δ-homogenous `-graded digraph of size δ,
universal for the `-graded digraphs in Q, and unique up to isomorphism with these proper-
ties. Further, it is universal among all `-graded digraphs of size at most δ. From this and
δ-homogeneity, it follows that Λ has the <δ-pattern property. �

Theorem 18. If the global axiom of choice holds, then there is a set-homogeneous Ord-graded
class digraph, which is universal for all Ord-graded class digraphs.

Proof. Appeal to theorem 16. �

The remarks after theorem 20 show that this digraph admits a canonical construction in
the manner of the surreal numbers.
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6. The surreal numbers and the hypnagogic digraph

In theorem 18 we constructed a set-homogeneous Ord-graded class digraph that was uni-
versal for all Ord-graded digraphs. This digraph arises as the class Fräıssé limit of all
Ord-graded finite digraphs, and it is unique up to isomorphism. In this section, I would like
to describe how this graph also arises by a canonical construction intimately connected with
the construction of the surreal numbers and what I call the hypnagogic digraph.

Let us first recall the standard construction of the class of surreal numbers, denoted No.
Here, I am concerned with the surreal numbers only as a linear order; the ordered field
structure and other structure on the surreals will not be relevant here.1 To construct the
surreal number line, one begins with nothing and then proceeds relentlessly, transfinitely,
to fill all possible cuts in the order created so far. One defines the class No of all surreal
numbers and their order in a simultaneous recursion, for which a surreal number is born at
an ordinal stage if it is represented by a pair {A | B }, where A and B are sets of previously-
born surreal numbers, where every number in A is smaller than every number in B. The
idea is that {A | B } will be a surreal number filling the cut between A and B, so that it is
larger than every element of A and smaller than every element of B. The very first surreal
number to be created is 0 = { | }, meaning by this notation that we have the empty set on
each side, and then immediately afterwards the cut above 1 = { 0 | }, meaning the singleton
set on the left and the empty set on the right, and similarly the cut below −1 = { | 0 }.
Just as with the rational numbers, however, the left-set/right-set {A | B } representation of
the surreal numbers will not be unique, for different pairs of sets can determine the same
cut, and so we will quotient by an underlying equivalence relation. Specifically, for surreal
numbers x = {XL | XR } and y = {YL | YR }, we define x ≤ y if and only if no obvious
obstacle prevents it, namely, there is no xL ∈ XL with y ≤ xL and no yR ∈ YR with yR ≤ x.
Two numbers x and y are equivalent when x ≤ y ≤ x, and in this case we say that x and y
are equal as surreal numbers. It is easy to prove that a surreal number {A | B } is equivalent
to the first-born surreal number that is bigger than every element of A and smaller than
every element of B.

One sees immediately the similarity in the construction of the surreal numbers and the
construction of the proper class Fräıssé limit of theorem 16. And indeed, by those methods
one can see that the surreal numbers are simply the proper class Fräıssé limit of the class
of all finite linear orders. They are set-homogeneous and universal for all proper class linear
orders (provided global choice holds, but one can construct them and get universality for set
linear orders just in ZFC). In this sense, the surreal number line is for proper class linear
orders what the rational number line Q is for the countable linear orders. What I aim to do
in this section is to continue this analogy to find the corresponding proper class analogue of
the countable random Q-graded digraph. The answer is what I call the hypnagogic digraph,
denoted Hg. To explain the terminology, the hypnagogic state is the dream-like, sometimes
hallucinatory state at the boundary between wakefulness and sleep, and its usage here is
meant to evoke both the universal property of the graph as well as its homogeneity: peering

1Considerably pre-dating the surreal numbers, the study of what we now call the saturated linear orders
was undertaken first by Hausdorff [Hau02], who introduced the notation η for the countable dense linear
order and ηα for the saturated dense linear order of size ℵα, when ℵ<ℵαα = ℵα. In this notation, the surreal
number line is simply ηOrd.
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into the hypnagogic digraph, one may see all the various dancing visions of any given graded
digraph.

Theorem 19. There is surreal-numbers-graded class digraph Hg, the hypnagogic digraph,
such that:

(1) Hg is universal for all graded digraphs using any linear order, as a suborder of No.
(2) Hg is set-homogeneous, meaning that any isomorphism of two induced graded sub-

graphs extends to an automorphism of Hg.
(3) If global choice holds, then Hg is universal for all proper class graded digraphs, using

any class linear order as a suborder of No, and furthermore is uniquely determined
up to isomorphism by (1) and (2).

(4) Hg exhibits the set-pattern property.

Proof. Just as for the countable random Q-graded digraph in theorem 5, there are numerous
constructions of this highly canonical object. For example, the hypnagogic digraph is the
Fräıssé limit of the class of all finite No-graded digraphs, as described in theorem 16. It is
simply the Ord-saturated No-graded class digraph. But meanwhile, there is also a highly
canonical construction of the hypnagogic digraph, closely connected with the construction
of the surreal numbers, which I prefer to take as the official definition of the class Hg. The
idea is simply to use the left-set/right-set representation {A | B } of the surreal numbers,
but do not quotient by the equivalence relation! Rather, the hypnagogic digraph is the term
algebra of the terms representing surreal numbers. That is, the nodes in Hg are all the
various representations {A | B } of surreal numbers, counted as different nodes even if they
are equal as surreal numbers. For a given node v = {A | B }, we place edges a ⇀ v and v ⇀ b
for every a ∈ A and b ∈ B, and we define the value of v to be simply the surreal number that
it represents. Thus, the meaning of {A | B } as a node in Hg is that it is pointed at from
every a ∈ A; it points at every b ∈ B; and its value is {A | B } as a surreal number. Taking
a big-picture view of the construction, the hypnagogic digraph is the result of systematically
adding nodes with a specified edge connectivity with the already constructed nodes. Under
this description, it is clear that Hg satisfies the set-pattern property, which in turn implies the
universality property and thus the set-homogeneity by a class-length back and forth property.
(Note: one need not use the global choice principle for the set-homogeneity of Hg, since any
automorphism of the nodes up to a given birthday induces a canonical automorphism of the
cuts created at that birthday.) One gets universality for all class `-graded digraphs, using any
linear order `, simply because under the global choice principle every linear order embeds as
a suborder of No, and then one can systematically build an embedding of the given `-graded
digraph by mapping to a node representing the desired value and connectivity. Uniqueness
follows similarly by a class-length back-and-forth construction. �

One way to view the construction of the hypnagogic digraph is that when a surreal number
v = {A | B } is born, the meaning of this term is that v is definitely larger than every
element of A and smaller than every element of B. The hypnagogic digraph takes this
meaning seriously by adding digraph edges exactly to record this information. In this way,
the hypnagogic digraph seems fundamentally to underlie the surreal numbers, in a sense
existing just prior to the surreal numbers.

To further support the idea that the hypnagogic digraph Hg is the proper class analogue
of the countable random Q-graded digraph, observe that the hypnagogic digraph HgM as
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computed inside a countable model M |= ZFC is externally isomorphic to the countable
random Q-graded digraph. This is because the surreal numbers NoM as computed in M are
a countable dense linear order without endpoints, and thus isomorphic to the rational line Q,
and HgM is thus essentially a countable Q-graded digraph with the finite-pattern property,
which is isomorphic to the countable random Q-graded digraph by theorem 14.

The surreal number line No is universal for all class linear orders. For any such suborder
` ⊆ No, we may form the hypnagogic `-graded digraph Hg � `, simply by restricting the
hypnagogic digraph to the nodes with value in `.

Theorem 20. For any class linear order ` ⊆ No, the hypnagogic `-graded digraph Hg � `
is set-homogeneous and universal for all `-graded digraphs (including class digraphs if global
choice holds). Furthermore, it is uniquely determined by these properties.

Proof. Clearly Hg � ` is an `-graded digraph, and it inherits the set-homogeneity of Hg,
since any isomorphism of induced subgraphs of Hg � ` is also an isomorphism of induced
subgraphs of Hg, which therefore extends to an automorphism of all of Hg, which provides an
automorphism of Hg � ` since these automorphisms respect the values of nodes. Furthermore,
Hg � ` is universal for all `-graded digraphs, since Hg is, by embeddings that respect the
values of nodes. Uniqueness follows (assuming the global choice principle) by the usual
back-and-forth argument. �

In particular, since the ordinals are a suborder of the surreal numbers, Ord ⊆ No, we have
the hypnagogic Ord-graded digraph Hg � Ord, which by the uniqueness claim of theorem 20
is the same Ord-graded digraph constructed in theorem 18. One can view the hypnagogic
Ord-graded digraph as constructed in a grand recursion: at each stage, for any ordinal α up
to that stage and any sets A and B of previously constructed nodes, with those in A having
value less than α and those in B above, one forms a new node v with value α and creates
edges a ⇀ v and v ⇀ b for every a ∈ A and b ∈ B.

Note that if M is a countable transitive model of set theory, with height λ = OrdM ,
then the hypnagogic Ord-graded digraph (Hg � Ord)M as constructed in M is isomorphic by
theorem 14 to the countable random λ-graded digraph.

7. Realizing well-founded digraphs as sets

The following basic lemma, a modification of the Mostowski collapse construction, shows
how to realize well-founded acyclic digraphs as sets. Similar modified Mostowski collapse
maps have arisen for diverse purposes, such as in the non-well-founded set theory of Aczel
[Acz88] and in the finite set theory of Kirby [Kir10] and elsewhere.

Lemma 21. Every well-founded digraph (G,⇀) is isomorphic to a set (A,∈) under the
set-membership relation ∈. Furthermore,

(1) If G is finite, then there is a hereditarily finite such set A.
(2) If G is countable and λ-graded for some ordinal λ, then A can be found with A ⊆ Vω+λ.

In particular, if ω2 ≤ λ, then there is such A ⊆ Vλ.
(3) If G is λ-graded and |G| ≤ |Vβ|, then A can be found with A ⊆ Vβ+2+λ. In particular,

if β2 ≤ λ, then there is such A ⊆ Vλ.
(4) If G is countable and λ-graded, with λ infinite, then A can be found with A ⊆ Lλ+λ.
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Proof. Suppose that (G,⇀) is a well-founded digraph. Define

π(x) = { π(y) | y ⇀ x } ∪ { { ∅, x } },

and let A = { π(x) | x ∈ G }. This definition is well-defined by recursion on the well-founded
relation ⇀, since the value of π(x) is determined by the values of π(y) for earlier y ⇀
x. I claim that it is an isomorphism of (G,⇀) with (A,∈). It is essentially similar, of
course, to the Mostowski collapse, but modified by the inclusion of the extra element { ∅, x },
which is added in order to distinguish the nodes sufficiently. (In the case that the original
graph is extensional, then the nodes are already distinguished by their predecessors and this
modification is unnecessary, for the Mostowski collapse is already an isomorphism.) It is
clear from the definition that y ⇀ x implies π(y) ∈ π(x). For the converse direction, note
first that no π(x) is empty and since { ∅, x } is nonempty, it follows also that ∅ /∈ π(y) for
any y. In particular, π(y) 6= { ∅, x } for any x and y. Thus, if π(y) ∈ π(x), it must be that
π(y) = π(z) for some z ⇀ x. Since { ∅, y } ∈ π(y) and { ∅, z } ∈ π(z), but these sets are not
π(u) for any u, it follows that { ∅, y } = { ∅, z } and consequently y = z and thus actually
y ⇀ x. So I have established for all x, y ∈ G that

y ⇀ x if and only if π(y) ∈ π(x),

and this is precisely what it means for π to be an isomorphism of (G,⇀) with (A,∈). This
establishes the basic claim of the lemma.

I now consider the further claims by analyzing the nature of A. If G is finite, then we
may assume that the underlying nodes of G are natural numbers (or some other hereditary
finite sets), and in particular, the sets { ∅, x } arising in the definition of π are all hereditarily
finite. It follows inductively that every π(x) is hereditarily finite, and so A is a finite set
of hereditarily finite sets and thus hereditarily finite itself, establishing (1). Similarly, for
(2), if G is countable, then we may again assume that the nodes of G are natural numbers
and consider the isomorphism π as defined above. By induction on values in the grading, it
follows for any node x with value α that π(x) ∈ Vω+α, since { ∅, x } ∈ Vω and π(x) consists
otherwise of π(y), where y has some value β < α and hence by induction π(y) ∈ Vω+β. So
A ⊆ Vω+λ. If ω2 ≤ λ, then ω + λ = λ, and so in this case A ⊆ Vλ.

A similar argument works in the case of (3). Assume that G is λ-graded and the nodes of
G come from Vβ. In this case, { ∅, x } ∈ Vβ+1 at worst, and inductively π(x) ∈ Vβ+2+α when
x has value α. And so A ⊆ Vβ+2+λ. If β2 ≤ λ, then β + 2 + λ = λ, and so we have A ⊆ Vλ,
as desired.

Assertion (4) is subtle. As in theorem 20, let Λ = (Hg � λ)Lλ be the hypnagogic λ-
graded digraph as defined in Lλ. Since this graph is universal for all countable λ-graded
digraphs, the original digraph G embeds into Λ, and so it will suffice just to handle Λ. This
is a definable class in Lλ. Although the edge relation ⇀ of Λ is definable in Lλ, we will
not be able to carry out the modified Mostowski collapse of Λ inside Lλ, because Λ has
λ many nodes of each given value, and indeed, every node in Λ has λ many predecessors
there. Thus, the sets arising at every step of the modified Mostowski collapse will have
size λ, and consequently will not necessarily be elements of Lλ. Another way to say it is
that the edge relation ⇀ of Λ is not set-like in Lλ, and this is why if we want to use this
graph directly, we have to build sets on top of Lλ, stretching up to Lλ+λ. Specifically, let
π : Λ→ A be the modified Mostowski collapse as defined above. I claim that A ⊆ Lλ+λ, by
arguing that any node x ∈ Λ of value α has π(x) ∈ Lλ+1+α+1. This is true if x has value 0,
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since x ∈ Lλ and π(x) = { { ∅, x } } ∈ Lλ+2 at worst (although if λ is a limit ordinal, one
achieves Lλ here). More generally, if the claim is true for all values below α and x has value
α, then π(x) = { π(y) | y ⇀ x } ∪ { { ∅, x } }, where for y ⇀ x we have π(y) ∈ Lλ+1+β for
some β < α, and so π(x) is a subset of Lλ+1+α, which is definable from Λ, x ∈ Lλ, and so
π(x) ∈ Lλ+1+α+1. Thus, altogether, A ⊆ Lλ+λ. So we have found a set A ⊆ Lλ+λ such that
(A,∈) is the countable random λ-graded digraph. It now follows by the universality property
of this digraph identified in theorem 12 that any countable λ-graded digraph is isomorphic
to a subset of this particular A, establishing (4). �

It will follow as a consequence of the main theorem, theorem 29, that we may actually
improve statements (2) and (4) of lemma 21 to the following assertion:

(5) If G is countable and λ-graded with λ infinite, then 〈G,⇀〉 ∼= 〈A,∈〉 for some A ⊆ Lλ.

Indeed, this will be the key point of the proof of the main theorem. Meanwhile, let us record
in the following observation the reason we are interested in graded digraphs, as far as models
of set theory are concerned.

Observation 22. Every model of set theory 〈M,∈M〉 is an OrdM -graded digraph, using von
Neumann rank as values.

Proof. Surely OrdM is a linear order, and y ∈ x implies that y has lower rank than x. �

8. Warming up to the main theorems

In this section I explain how lemma 21 can be used to prove several approximations to
main theorem 1, which I give here as a warm-up, since the proof of main theorem 1 will
introduce several complications.

Proposition 23. If M is any countable transitive model of set theory and λ = OrdM , then
〈M,∈〉 is isomorphic to a submodel of 〈Lλ+λ,∈〉.

Proof. This proposition is a quick corollary to statement (4) of lemma 21, since if we view
〈M,∈M〉 as a λ-graded digraph as in observation 22, then lemma 21 statement (4) says that
it is isomorphic to a submodel of 〈Lλ+λ,∈〉, as desired. �

The need to go to Lλ+λ in proposition 23 and in lemma 21 statement (4) is directly
connected with the fact that the hypnagogic λ-graded digraph Λ as computed in Lλ is not
set-like in Lλ, since every node has λ many predecessors of each smaller value. Perhaps one
might hope to overcome this difficulty by finding a λ-graded digraph in Lλ that was both
set-like and had the finite-pattern property, for in this case, it would be universal for all
λ-graded binary relations and we would be able to perform the modified Mostowski collapse
of lemma 21 inside Lλ itself. This would prove that M is isomorphic to a submodel of
Lλ = LM , which is the main goal here. Unfortunately, however, the following result shows
that there is no such digraph in any model of ZF.

Observation 24. No model of ZF has an Ord-graded digraph class Γ with the finite-pattern
property, such that Γ is set-like.

Proof. Suppose that Γ is a set-like Ord-graded digraph class with the finite-pattern property.
Consider any fixed node p with nonzero value, and let Ap be the set of predecessors of p in
Γ, which is a set precisely because we assumed that Γ is set-like. Since Ap has only a set
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number of subsets, but there are a proper class of higher levels, it must be that there are
two distinct nodes q, r with value above p, but with the same pattern of predecessors on Ap.
That is, for v ∈ Ap, we have v ⇀ q if and only if v ⇀ r. This violates the finite-pattern
property, which would require the existence of a node v with v ⇀ p and v ⇀ q but v ⊥ r.
Such a vertex v would reveal that q and r have different predecessors below p, contrary to
assumption. �

The complications introduced into the proof of the main theorem, using the surrogate
parent concept, are aimed specifically at overcoming this difficulty. Meanwhile, we can also
overcome the difficulty by relaxing to a weaker but still commonly considered theory. Let
“V = Hκ+” be the theory asserting that κ is the largest cardinal and that every set has
hereditary size at most κ. For any cardinal κ, the collection Hκ+ is a model of ZFC− + V =
Hκ+ , and these structures and their elementary substructures are very commonly considered
in set theory.

Theorem 25. Suppose M is a countable transitive model of ZFC−+V = Hκ+, where κ<κ = κ
in M and λ = OrdM . Then there is a λ-graded digraph Λ ⊆ M , which is set-like in M and
which obeys the <κ-pattern property in M .

Proof. We modify the construction of the hypnagogic λ-graded digraph so that it will become
set-like, by restricting it to have κ many nodes of any given value. Specifically, for each β < λ
of size κ, consider the construction in M of the β-graded hypnagogic digraph as the Fräıssé
limit of the finite β-graded digraphs. This graph is an element of M and has the <κ-pattern
property in M . Furthermore, for any β < γ < λ and any copy of the β-graded hypnagogic
digraph Λβ, it may be extended to the hypnagogic γ-graded digraph Λγ as constructed in
M , and furthermore extended in such a way that Λβ is precisely Λγ � β. This is simply
because Λγ � β is κ-homogeneous and has the <κ-pattern property, and hence is isomorphic
to Λβ. Continuing the main argument, now, I select an increasing sequence 〈λn | n < ω〉
cofinal in λ and form the limit graph Λ =

⋃
n Λλn , where the Λn form a coherent sequence

of induced subgraphs, with Λλn = Λ � λn. The graph Λ is set-like in M , because every node
lives in some Λn, which is an element of M , and all its children are also in Λn. Furthermore,
Λ is λ-graded and has the finite-pattern property. Moreover, each Λn and consequently also
Λ has the <κ-pattern property with respect to M , since every subset of Λ that is in M is
contained in some Λn. �

Note that the final construction of Λ given in theorem 25 was external to M , using the
sequence 〈λn | n < ω〉, although the graph was built as the union of initial segments that
were elements of M and consequently Λ is at least amenable to M . But there seems little
reason to expect for this construction that 〈M,∈,Λ〉 satisfies ZFC−(Λ). Notice also that
since λ is countable, the digraph Λ of theorem 25 is exactly the countable random λ-graded
digraph. The important part of the theorem is that this digraph is set-like in M , which
allows us to perform the modified Mostowski collapse of lemma 21.

Corollary 26. If M is a countable transitive model of the theory ZFC−+V = Hκ+ and κ<κ =
κ in M and λ = OrdM , then there is a submodel A ⊆ M such that 〈A,∈〉 is the countable
random λ-graded digraph. Consequently, every countable λ-graded digraph is isomorphic to
a submodel of 〈A,∈〉. In particular, every countable transitive model of set theory of height
at most λ is isomorphic to a submodel of 〈M,∈M〉.
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Proof. By theorem 25, there is a set-like λ-graded digraph Λ with the finite-pattern property,
whose initial segments are sets in M . From this it follows that the modified Mostowski
collapse of Λ as defined in lemma 21 is an isomorphism of 〈Λ,⇀〉 ∼= 〈A,∈〉 for some A ⊆M .
Since Λ has the finite-pattern property, it and hence also 〈A,∈〉 are the countable random λ-
graded digraph, which is universal for all countable λ-graded digraphs. Thus, every countable
λ-graded digraph is isomorphic to a submodel of 〈A,∈〉 and hence of 〈M,∈〉. By observation
22, this includes all countable models of set theory of well-founded height at most λ. �

The key obstacle identified in the proof of observation 24 is the existence of more ordinals
than the size of any given power set. The following theorem shows that this obstacle is the
only obstacle, for if we are willing to give up the power set by adding many Cohen reals, we
can find the desired universal digraph.

Theorem 27. Assume V |= ZFC. If G ⊆ Add(ω,Ord) is V -generic for the forcing to add
Ord many Cohen reals, then V [G] |= ZFC− has a submodel A ⊆ V [G] such that 〈A,∈〉 is an
Ord-graded digraph with the finite-pattern property.

Proof. The idea is to build a set-like Ord-graded digraph Λ inside V [G]. The nodes of Λ will
be precisely the elements of Ord×ω, and (α, n) will have value α. What remains is to specify
the edges, which will be done generically. Let P be the class partial order consisting of a
finite digraph G, whose vertices are contained in Ord×ω, ordered by the (reverse) induced
subgraph relation G ≤ H ↔ H ⊆ G, so that as usual, stronger conditions are lower in the
partial order.

I claim that this partial order is isomorphic to the forcing Add(ω,Ord) to add Ord many
Cohen reals, which is the same as the forcing to add a generic class function g : Ord → 2
by finite conditions. One can see this simply by observing that the forcing P is deciding
generically and independently for each pair of nodes whether to place an edge (α, n) ⇀ (β, k),
where α < β, or not. Thus, P is adding, by finite support, a generic function that decides of
each possible edge, whether it is there or not. Thus, this forcing resonates with the random
characterization of the countable random digraphs we saw earlier, but using genericity in
place of randomness.

Suppose that Λ is the resulting V -generic Ord-grade digraph. It is clear that we will
achieve the finite-pattern property, since if A, B and C are finite subsets of the nodes and
α is an ordinal such that every node in A has value less than α and every node in B has
value larger than α, then it is a dense requirement that there is a node with value α that is
above all nodes in A, below all nodes in B and with no edges in C. The reason is that any
condition mentions only finitely many additional nodes, and there will be an unmentioned
node on level α that we may simply add in so as to satisfy the desired pattern.

Finally, the graph Λ is set-like in V [G], because the predecessors of (α, n) in Λ are amongst
α× ω, which is a set. It follows that we may perform the modified Mostowski collapse of Λ
as in lemma 21, and find A ⊆ L[G] such that 〈Λ,⇀〉 ∼= 〈A,∈〉. �

Corollary 28. If M is a countable transitive model of set theory of height λ, then M is
isomorphic to a submodel of 〈Lλ[G],∈〉, a forcing extension of Lλ obtained by adding λ
many Cohen reals.

Proof. By theorem 27, there is A ⊆ L[G] such that 〈A,∈〉 is λ-graded and has the finite-
pattern property. By theorem 14, it follows that 〈A,∈〉 is the countable random λ-graded
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digraph, which is universal for all countable λ-graded digraphs. Since 〈M,∈〉 is a λ-graded
digraph by observation 22, it follows that 〈M,∈〉 is isomorphic to a submodel of 〈A,∈〉 and
hence to a submodel of 〈L[G],∈〉. �

This corollary will be improved by the main theorem, but it is already surprising, because
the model M may have many large cardinals or other complex objects such as 0] that are
fundamentally incompatible with V = L or V = L[G]. Nevertheless, the main theorem will
omit the need for G and obtain the even more surprising result that M actually embeds as
a submodel of Lλ itself.

9. Proving the main theorems

Finally, I am ready to prove the main theorems 1 and 2.

Theorem 29 (Main Theorem 1). Every countable model of set theory 〈M,∈M〉 is isomor-
phic to a submodel of its own constructible universe 〈LM ,∈M〉. In other words, there is a
quantifier-free-elementary embedding

j : 〈M,∈M〉 → 〈LM ,∈M〉.
Proof. Suppose that M is a countable model of ZFC, not necessarily transitive or well-
founded. Let λn ∈ OrdM be an increasing cofinal sequence of limit ordinals from M . By the
reflection theorem, we may assume without loss of generality that V M

λn
≺Σn M , although the

argument will not really use much of this. Let Γn be the hypnagogic (λn+1)-graded digraph
as constructed in LMλn+1

, running the construction for λn+1 many birthdays. Thus, each value
level of Γn has λn+1 many elements, and Γn has a top layer consisting of the nodes with value
λn. Furthermore, each Γn has the finite-pattern property, each Γn is an induced subgraph of
Γn+1 and the union Γ =

⋃
n Γn of the chain is exactly the hypnagogic Ord-graded digraph of

LM . Although each Γn is a set in LM , the union digraph Γ is not set-like in LM , since every
node in Γn gains λn+2 many new children in Γn+1.

I shall presently use the graphs Γn in order to construct a somewhat more elaborate graph,
which I call the surrogate digraph, which will be set-like and which will exhibit a kind of
finite-pattern property that will be sufficient for universality. Define that 〈v0, . . . , vn〉 is a
surrogate sequence of its final node vn, if vn ∈ Γn, the value of vn is at least supk<n λk and
each vk for k < n is a node in Γk of value λk. For surrogate sequences v = 〈v0, . . . , vn〉 and

Γ0

Γ1

Γ2λ0

λ1

λ2

λ1 λ2 λ3

•

•

•
•

•

• •

• •

•

Figure 2. Surrogate sequences in the surrogate digraph

w = 〈w0, . . . , wm〉, define the surrogate edge relation w � v to hold if and only if m ≤ n
20



and wm ⇀ vm. The idea here is that we split the parent and child roles in Γ, so that only
the final node wm of a surrogate sequence 〈w0, . . . , wm〉 acts as a child, while the prior nodes
wk act as surrogate parents, as far as gaining new children below value λk is concerned. It
may be helpful to think of the relation that a set x has with its projections x ∩ Vα for α of
much smaller von Neumann rank than x, for we can tell if y ∈ x or not, when y has rank less
than α, merely by knowing whether or not y ∈ x ∩ Vα. In our final analysis, the surrogates
vk will be something like (but not exactly like) these projections, to capture the elements of
rank less than λk, and to do so without leaving Γk. This surrogate maneuver will allow us
to surmount the obstacle of observation 24.

Let Θn be the (λn + 1)-graded digraph consisting of all surrogate sequences of length at
most n, using� as the edge relation, and giving the surrogate sequence the value of its final
node in Γ. We will refer to the union digraph Θ =

⋃
n Θn as the OrdM -graded surrogate

digraph arising from 〈λn | n < ω〉. Because we can define the sequence 〈λn | n < ω〉 from
Θ, we cannot expect that it is a class in M . Nevertheless, each Θn is a set in M and an
induced subgraph of Θ, the restriction of Θ to surrogate sequences having value at most λn.
It follows that the full surrogate digraph Θ is an amenable class over M and indeed over LM .
In particular, Θ is set-like in LM , since any particular surrogate sequence ~w lies in some Θn,
which is a set in LM and is the (λn + 1)-initial segment of Θ.

Let’s define that two subsets of Θ are completely disjoint if they are disjoint and further-
more any two surrogate sequences from either of them have no nodes in common. That is,
not only are they disjoint as sets of sequences, but the individual nodes on those sequences
do not recur.

Lemma 29.1. The surrogate digraph Θ enjoys the surrogate finite-pattern property: if A, B
and C are completely disjoint finite subsets of Θ and α is an ordinal of M , such that every
element of A has value less than α and every element of B has value greater than α, then
there is v ∈ Θ with value α such that a � v and v � b for all a ∈ A and b ∈ B, and there
are no � relations between v and elements of C, and furthermore, such that no nodes of v
arise on any sequence from A, B or C.

Proof. Let n be least such that α ≤ λn. We shall first choose the terminal node vn of
the desired surrogate sequence v = 〈v0, . . . , vn〉. Let Bn consist of the nodes arising in the
sequences of B with value in the interval (α, λn]. These nodes arise either as the terminal
nodes of sequences in B that terminate with a node of value at most λn, or else they arise
as the surrogate nodes at level λn of a longer sequence. But in any case, Bn ⊆ Γn, and
furthermore, for v to exhibit the correct � relation to the elements of B, it will suffice that
vn ⇀ b for each b ∈ Bn; and the main point of surrogates is that we shall be able to find
such a vn inside Γn, without care for the much larger value nodes that may appear later on
in the sequences of B. But we must also ensure the correct � relation to A and C, so let
An be the terminal nodes of any sequence in A having value at least supk<n λk, and let Cn
be the nodes occuring on a sequence in C that are in Γn. Since A, B and C are completely
disjoint, it follows that An, Bn and Cn are disjoint subsets of Γn, and every node in An has
value below α and every node in Bn has value above α. Thus, by the finite-pattern property
of Γn, there is a new node vn ∈ Γn such that a ⇀ vn and vn ⇀ b for every a ∈ An and b ∈ Bn

and such that vn has no ⇀ relation with any node of Cn. Next, to define vk for k < n, let
Ak be the nodes arising from the sequences in A in the kth layer, that is, with value in the
interval [supi<k λi, λk), and similarly let Ck be any node on any sequence in C in Γk. (We
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need not consider B for defining the surrogates vk for k < n, since these surrogates act only
as parents and not as children with respect to �.) By the finite-pattern property of Γk,
there is a new node vk such that a ⇀ vk for each a ∈ Ak and vk has no ⇀ relation with any
node in Ck. This defines v = 〈v0, . . . , vn〉, which has value α and which consists of entirely
new nodes not arising in A, B and C. Furthermore, by design, a � v for each a ∈ A and
v � b for each b ∈ B, whilst v has no � relation with any sequence in C, and so we have
fulfilled this instance of the surrogate finite-pattern property. �

So what we have is a set-like OrdM -graded digraph Θ ⊆ LM , which does not have the
finite-pattern property (and cannot by observation 6), but which has the surrogate finite-
pattern property, and this is sufficient to carry out the universality construction. Specifically,
we assign to each x ∈M a surrogate sequence vx, with the same value as rank(x), ensuring
that x ∈ y ⇔ vx � vy. This can be achieved by enumerating M = {xn | n < ω }, and
choosing each vxn so as to relate via� to the previous vxk for k < n in exactly the same way
that xn relates to xk via ∈, while also having the right value and inductively maintaining
that the sequences vxn have no individual nodes in common. The surrogate finite-pattern
property of the lemma exactly ensures that this recursive construction may proceed, and
thus we build an embedding of 〈M,∈M〉 into an induced subgraph of 〈Θ,�〉.

Finally, I argue that 〈Θ,�〉 ∼= 〈A,∈M〉 for some A ⊆ LM , using the fact that � is
set-like in LM . Specifically, since each Θn is a set in LM , where � is well-founded, we
may inside LM carry out the modified Mostowski collapse of lemma 21, defining π(v) =
{ π(w) | w � v } ∪ { { ∅, v } } to find 〈Θn,�〉 ∼= 〈An,∈M〉 ∈ LM . Furthermore, since each
Θn is a � initial segment of Θ, it follows that these various isomorphisms cohere, and so
〈Θ,�〉 ∼= 〈A,∈M〉, where A =

⋃
nAn ⊆ LM .

Combining the two previous paragraphs, we observe that M is isomorphic to an induced
subgraph of Θ, which is isomorphic to a submodel of LM , and so M is isomorphic to a
submodel of LM , as desired. For the final claim of the theorem, note that an isomorphism
of M to a submodel of LM is precisely the same as a quantifier-free-elementary embedding
j : M → LM . �

Corollary 30. Every countable model 〈M,∈M〉 of set theory is universal for all countable
OrdM -graded binary relations.

Proof. This is what the proof of theorem 29 establishes. The surrogate finite-pattern property
of Θ ensures that it is universal for all countable OrdM -graded binary relations. �

Corollary 31. A countable model 〈M,∈M〉 of set theory embeds into another model 〈N,∈N〉
of set theory if and only if the ordinals of M map order-preservingly into the ordinals of N .

Proof. We needn’t assume N is countable here, since we may simply pass to a countable
submodel. For the forward implication, if j : M → N is an ∈-embedding, then f(α) =
rank(j(α)) is an order-preserving map from OrdM to OrdN . Conversely, if the ordinals of
M map into the ordinals of N , then we may externally view 〈M,∈M〉 as an OrdN -graded
digraph, and the previous corollary shows that 〈N,∈N〉 is universal for such relations. �

Corollary 32. Every ill-founded countable model of set theory 〈M,∈M〉 is universal for all
countable acyclic binary relations.

Proof. If M is not an ω-model, then already the hereditary finite sets HFM of M are universal
by theorem 9. If M has a standard ω, but the ordinals are ill-founded, then by results in
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[Fri73], it follows that OrdM ∼= λ · (1+Q) for some admissible ordinal λ. In particular, OrdM

contains a countable dense order, and so by lemma 4 every acyclic binary relation can be
OrdM -graded. Thus, 〈M,∈M〉 is universal for all such relations. �

Theorem 33 (Main Theorem 2). The countable models of set theory are linearly pre-ordered
by embeddability: for any two countable models of set theory 〈M,∈M〉 and 〈N,∈N〉, either M
is isomorphic to a submodel of N or conversely. Indeed, the countable models of set theory
are pre-well-ordered by embeddability in order type exactly ω1 + 1.

Proof. Corollary 32 shows that the models having ill-founded ordinals are all universal, so
that every countable model of set theory embeds into any of them. In particular, they are
all bi-embeddable with each other. What remains are the well-founded models, which by
corollary 31 are ordered the same as their ordinals. In particular, any two well-founded
models with the same ordinals are bi-embeddable, and any shorter model is embeddable into
any taller model.

Thus, the bi-embeddability classes of the models of set theory are in one-to-one corre-
spondence with the collection of ordinals λ such that Lλ is a model of set theory, plus one
more bi-embeddability class at the top for the ill-founded models. Since there are ω1 many
countable admissible ordinals, it follows that the order-type of the bi-embeddability classes
of the countable models of set theory (understood as models of KP) is precisely ω1 + 1. �

If one wants to consider only the countable models of ZFC, or only the models of ZFC
plus large cardinals, then the argument shows that they are pre-well-ordered in order type
η+ 1, where η is the number of countable ordinals λ for which there is a model of the theory
having height λ. If there is an inaccessible cardinal, for example, then it follows that η = ω1

for ZFC models and the countable models of ZFC are pre-well-ordered by embeddability in
order type ω1 + 1.

Finally, let me observe that one definitely doesn’t have linearity for the embeddability
relation in the context of uncountable models.

Observation 34. If ZFC is consistent, then there are two models M,N |= ZFC, such that
neither is isomorphic to a submodel of the other.

Proof. If ZFC is consistent, then on the one hand, there is an uncountable model M |= ZFC
with cofinality ω and with every cut of cofinality ω. On the other hand, one may also build
an ω1-like model N |= ZFC, so N is uncountable, but every initial segment is countable. It
follows that N has cofinality ω1.

Note that M cannot embed into N , since there are elements of M with uncountably many
predecessors, but every element of N has only countably many predecessors. And N cannot
embed into M , since the supremum of the image would be a cut of uncountable cofinality. �

10. Questions

Although the main theorem shows that every countable model of set theory embeds into
its own constructible universe

j : M → LM ,

this embedding j is constructed completely externally to M and there is little reason to
expect that j could be a class in M or otherwise amenable to M . To what extent can we
prove or refute the possibility that j is a class in M? This amounts to considering the matter
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internally as a question about V . Surely it would seem strange to have a class embedding
j : V → L when V 6= L, even if it is elementary only for quantifier-free assertions, since such
an embedding is totally unlike the sorts of embeddings that one usually encounters in set
theory. Nevertheless, I am at a loss to refute the hypothesis, and the possibility that there
might be such an embedding is intriguing, if not tantalizing, for one imagines all kinds of
constructions that pull structure from L back into V .

Question 35. Can there be an embedding j : V → L when V 6= L?

By embedding, I mean an isomorphism from 〈V,∈〉 to its range in 〈L,∈〉, which is the same
as a quantifier-free-elementary map j : V → L, a map for which x ∈ y ⇔ j(x) ∈ j(y). (Note
that if V = L, then we have some easily defined non-identity embeddings j : L→ L arising
from lemma 21, such as j(x) = { j(y) | y ∈ x } ∪ { { ∅, x } }, which has j(x) 6= x for every x.)
Question 35 is most naturally formalized in Gödel-Bernays set theory, asking whether there
can be a GB-class j forming such an embedding. If one wants j : V → L to be a definable
class, then this of course implies V = HOD, since the definable L-order can be pulled back
to V , via x ≤ y ⇔ j(s) ≤L j(y). More generally, if j is merely a class in Gödel-Bernays
set theory, then the existence of an embedding j : V → L implies global choice, since from
the class j we can pull back the L-order. For these reasons, we cannot expect every model
of ZFC or of GB to have such embeddings. Can they be added generically? Do they have
some large cardinal strength? Are they outright refutable?

It they are not outright refutable, then it would seem natural that these questions might
involve large cardinals; perhaps 0] is relevant. But I am unsure which way the answers will
go. The existence of large cardinals provides extra strength, but may at the same time make
it harder to have the embedding, since it pushes V further away from L. For example, it is
conceivable that the existence of 0] will enable one to construct the embedding, using the
Silver indiscernibles to find a universal submodel of L; but it is also conceivable that the
non-existence of 0], because of covering and the corresponding essential closeness of V to L,
may make it easier for such a j to exist. Or perhaps it is simply refutable in any case. The
first-order analogue of the question is:

Question 36. Does every set A admit an embedding j : 〈A,∈〉 → 〈L,∈〉? If not, which sets
do admit such embeddings?

The main theorem shows that every countable set A embeds into L. What about uncount-
able sets? Let us make the question extremely concrete:

Question 37. Does 〈Vω+1,∈〉 embed into 〈L,∈〉? How about 〈P (ω),∈〉 or 〈HC,∈〉?

It is also natural to inquire about the nature of j : M → LM even when it is not a class
in M . For example, can one find such an embedding for which j(α) is an ordinal whenever
α is an ordinal? The embedding arising in the proof of theorem 29 definitely does not have
this feature, since every set in M is mapped to a node in Θ, which is mapped ultimately to
π(v) = { π(w) | w � v } ∪ {{∅, v}}, and this latter set is never an ordinal.

Question 38. Does every countable model 〈M,∈M〉 of set theory admit an embedding j :
M → LM that takes ordinals to ordinals?

Probably one can arrange this simply by being a bit more careful with the modified
Mostowski procedure in lemma 21, as it is applied to Θ in the proof of the main theorem,
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theorem 29. And if this is correct, then numerous further questions immediately come to
mind, concerning the extent to which we ensure more attractive features for the embeddings
j that arise in the main theorems. This will be particularly interesting in the case of well-
founded models, as well as in the case of j : V → L, as in question 35, if that should be
possible.

Question 39. Can there be a nontrivial embedding j : V → L that takes ordinals to ordinals?

Finally, we inquire about the extent to which the main theorems of this article can be
extended from the countable models of set theory to the ω1-like models:

Question 40. Does every ω1-like model of set theory 〈M,∈M〉 admit an embedding j : M →
LM into its own constructible universe? Are the ω1-like models of set theory linearly pre-
ordered by embeddability?
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379, 1984.
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