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Abstract

We introduce the concept of effective dimension for a general met-
ric space. Effective dimension was defined by Lutz in (Lutz 2003) for
Cantor space and has also been extended to Euclidean space. Our ex-
tension to other metric spaces is based on a supergale characterization
of Hausdorff dimension. We present here the concept of constructive
dimension and its characterization in terms of Kolmogorov complexity.
Further research directions are indicated.

1 Introduction

Effective dimension in Cantor space was defined by Lutz in [8, 9] in order to
quantitatively study complexity classes [7]. The connections of effective di-
mension with Information Theory [11], in particular with Kolmogorov com-
plexity and compression algorithms, some of them suspected even before the
definition of effective dimension itself ([12, 13, 15, 16, 1] and more recently
for other spaces [14]), have lead to very fruitful areas of research including
those within Algorithmic Information theory [3].

In this paper we will explore the definition of effective dimension for
more general metric spaces. The long term purpose of this line of research
is to find more and easier dimension bound proofs in those spaces, while the
connections with Information Theory already suggest further developments.
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The original definition of effective dimension was done in Cantor space
which is the set of infinite binary sequences with the usual longest-common-
prefix-based metric. The spaces of infinite sequences over other finite alpha-
bets have been also explored, for instance the case of Finite-State effectivity
is particularly interesting with this variation [2]. Finally, the Euclidean space
Rn has been explored by several papers that go back to fractal geometry,
starting in [10].

Gales and supergales, introduced by Lutz in [8], are intuitively betting
strategies in a guessing game on the elements of Cantor space. They allow
the interpretation of Hausdorff dimension in terms of prediction and provide
natural effectivizations of dimension by restricting the computability and
resource-bounds used in the computation of these betting strategies.

We introduce here the concept of nice cover of a metric space. A nice
cover can simulate very closely any of the covers required in the definition
of Hausdorff dimension, while it allows simple representations of the points
in the space and the use of gales as betting games on those representations.

We then characterize Hausdorff dimension using supergales for any met-
ric space with a nice cover. Spaces with nice covers can be fairly general
(they are not even required to be locally separable). This characterization
allows the definition of effective dimension by restricting the family of su-
pergales that can be used.

In this paper we present an initial step in this direction by introducing
the definition of constructive dimension on a metric space. We then charac-
terize constructive dimension in terms of Kolmogorov complexity and sketch
further properties such as absolute stability (that is, the fact that construc-
tive dimension can be pointwise defined) and a correspondence principle
(that is, the fact that constructive dimension coincides with Hausdorff di-
mension for an interesting family of sets). We finish with a list of topics for
further development.

2 Preliminaries

Let (X, ρ) be a metric space. (From now on we will omit ρ when referring
to space (X, ρ)).
Definition. The diameter of a set A ⊆ X is

diam(A) = sup {ρ(x, y) |x, y ∈ A} .

Notice that the diameter of a set can be infinite.
Definition. Let A ⊆ X. A cover of A is C ⊆ P(X) such that A ⊆ ∪U∈CU .
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Definition. Let A ⊆ X. A is separable if there exists a countable set
S ⊆ A that is dense in A, that is, for every x ∈ A, δ > 0 there is an s ∈ S
such that ρ(x, s) < δ.
Definition. The ball of radius r > 0 about x ∈ X is the set B(x, r) =
{y ∈ X | ρ(y, x) < r}.
Definition. An isolated point in X is x ∈ X such that there is a δ > 0
with B(x, δ) ∩X = {x}.

We will be interested in metric spaces that have no isolated points. No-
tice that metric spaces consisting only of isolated points have little interest
for Hausdorff dimension (see definition below), while Hausdorff dimension
in general spaces can be analyzed by restricting to non isolated points in the
space.

We include the basic definitions of Hausdorff dimension. We refer the
reader to [4] for a complete introduction and motivation.

For each A ⊆ X and δ > 0, we define the set of countable δ-covers of A

Hδ(A) = {U | U is a countable cover of A and diam(U) < δ for every U ∈ U } .

We can now define Hs
δ (A) and Hs(X)

Hs
δ (A) = inf

U∈Hδ(A)

∑
U∈U

diam(U)s.

Hs(A) = lim
δ→0

Hs
δ (A).

Notice that Hs
δ (X) is monotone as δ → 0 so Hs(X) is well defined. It is

routine to verify that Hs is an outer measure [4], Hs is called the s-Hausdorff
measure.
Definition. (Hausdorff [5]). The Hausdorff dimension of A ⊆ X is

dimH(A) = inf {s ∈ [0,∞) |Hs(A) = 0} .

Let Σ be a finite set. We denote as Σ∗ the set of finite strings over Σ.

3 A supergale characterization of dimension in some
metric spaces

3.1 Nice covers

We introduce the concept of a nice cover for a metric space. A nice cover
allows well behaving representations of all points in the space, and it will
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be the key to the gale characterization of Hausdorff dimension in the next
subsection. Intuitively, a nice cover of A is a sequence of covers of A that
can closely simulate any Hausdorff cover of A.

Let X be a metric space without isolated points.
Definition. Let c ∈ N.A c-nice cover of X is a sequence (Bn)n∈N with
Bn ⊆ P(X) for every n and such that the following hold

1. (Decreasing monotonicity) For every n ∈ N, for every U ∈ Bn, |{V ∈
Bn+1, V ⊆ U}| <∞.

2. (Increasing monotonicity) For every n ∈ N, U ∈ Bn, m < n, there is a
unique V ∈ Bm such that U ⊆ V .

3. (c-cover) For every r ∈ N there is an ε > 0 such that for every A ⊆ X
with 0 < diam(A) < ε there exists {U1, . . . , Uc} ⊆ ∪n>rBn a cover of
A, with diam(Ui) < c · diam(A) for every i.

Definition. A nice cover of X is a c-nice cover for some c ∈ N.
Notice that the above definition does not require the elements of each

cover Bn to be open or disjoint.

Theorem 3.1 If X has a countable nice cover then X is separable.

Notice that both examples mentioned in the introduction (Cantor space
and Euclidean space) correspond to metric spaces with countable and very
simple nice covers.

3.2 Supergale characterization of Hausdorff dimension

In this subsection we prove a supergale characterization of Hausdorff dimen-
sion for X with a nice cover. Notice that each nice cover gives an equivalent
characterization of dimension.

The concept of gale we introduce here is the natural extension of the
gales introduced in [8] to spaces with nice covers, while the flexibility on the
metric spaces makes the proof of this characterization quite more involved
than the case of Cantor spaces proven in [8]. For instance we cannot assume
anything about the diameters of the covers used.

Let X be a metric space with a nice cover, fix a nice cover (Bn)n∈N. Let
B = ∪nBn. For n ∈ N, let B≥n = ∪m≥nBm.
Definition. Given x ∈ X, a B-representation of x is a sequence (wn)n∈N
such that wn ∈ Bn and x ∈ ∩nwn.

We denote with R(x) the set of B-representations of x ∈ X.
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A supergale is intuitively a strategy in a betting game on a representation
(wn)n∈N of an unknown x ∈ X.
Definition. Let s ∈ [0,∞). An s-supergale d is a function d : B → [0,∞)
such that the following hold

•
∑

U∈B0 d(U) diam(U)s <∞,

• for every n ∈ N, for every U ∈ Bn the following inequality holds

d(U) diam(U)s ≥
∑

V ∈Bn+1,V⊆U
d(V ) diam(V )s. (1)

An s-gale is an s-supergale for which equation (1) holds with equality.
Definition. An s-supergale d succeeds on x ∈ X if there is a (wn)n∈N ∈
R(x), such that

lim sup
n

d(wn) =∞.

Definition. Let d be an s-supergale. The success set of d is

S∞[d] = {x ∈ X | d suceeds on x} .

Definition. Ĝ(A) = {s | there is an s-supergale d with A ⊆ S∞[d]}.

Theorem 3.2 (Supergale characterization) Let X be a metric space that
has a nice cover, let A ⊆ X. Then

dimH(A) = inf Ĝ(A).

Proof. Let s > dimH(A). Then for any k ∈ N there is a countable cover of
A, Ck, such that

∑
U∈Ck diam(U)s < 2−k and diam(U) > 0 for each U ∈ Ck.

(If necessary substitute each Un ∈ Ck with diam(Un) = 0 by a ball of radius
2−k/s−n/s−1).

Let r ∈ N and fix ε as in property (3) of nice covers, let k = kr > kr−1
be such that 2−k < ε. Using property (3) of nice covers we can get a cover
Ek ⊆ B≥r of A such that∑

W∈Ek

diam(W )s < c1+s · 2−k.
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Let Dk = {U |U ∈ Ek and no proper superset of U is in Ek }. Then Dk
is a cover of A and ∑

W∈Dk

diam(W )s < c1+s · 2−k.

Define dk : B → [0,∞) as follows,
For U ∈ B, if diam(U) = 0 then d(U) = 1.
If diam(U) > 0, U ∈ Bn for n > 0, and there is V ∈ Bn−1 − Bn and

W ∈ Dk with U ⊆ V ⊆W then

dk(U) =
dk(V ) diam(V )s∑

U ′⊆V,U ′∈Bn diam(U ′)s
.

Otherwise, if U ∈ Bn − Bn−1 for n > 0 or U ∈ Bn for n = 0,

dk(U) =
∑

W∈Dk∩B≥n,W⊆U

diam(W )s

diam(U)s
.

Claim 3.3 dk is an s-supergale.

Proof of Claim 3.3. Let V ∈ Bn−1 − Bn with diam(V ) > 0 and∑
U ′⊆V,U ′∈Bn diam(U ′) > 0.
If there is W ∈ Dk such that V ⊆W then

∑
U⊆V,U∈Bn

dk(U) diam(U)s =
∑

U⊆V,U∈Bn

dk(V ) diam(V )s∑
U ′⊆V,U ′∈Bn diam(U ′)s

diam(U)s

= dk(V ) diam(V )s.

If for any W ∈ Dk, V 6⊆W then

dk(V ) =
∑

W∈Dk∩B≥n−1,W⊆V

diam(W )s

diam(V )s
.

Therefore,∑
U⊆V,U∈Bn

dk(U) diam(U)s =
∑

U⊆V,U∈Bn

∑
W∈Dk∩B≥n,W⊆U

diam(W )s

diam(U)s
diam(U)s

=
∑

U⊆V,U∈Bn

∑
W∈Dk∩B≥n,W⊆U

diam(W )s

≤
∑

W∈Dk∩B≥n−1,W⊆V
diam(W )s = dk(V ) diam(V )s,
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where the last inequality follows from property (2) of nice covers.
For every U ∈ B0, we use the second part in the definition of dk (since

there is no n > 0 with U ∈ Bn and V ∈ Bn−1−Bn with U ⊆ V ). Therefore,
using property (2) of nice covers,∑

U∈B0

dk(U) diam(U)s ≤
∑
W∈Dk

diam(W )s < c1+s · 2−k <∞.

�

Claim 3.4 If W ∈ Dk, dk(W ) = 1.

Proof of Claim 3.4. If diam(W ) > 0 and W ∈ Bn, since all sets in Dk are
incomparable, we use the second part in the definition of dk and

dk(W ) =
∑

W ′∈Dk∩B≥n,W ′⊆W

diam(W ′)s

diam(W )s
= 1.

�

Claim 3.5 For every k ∈ N, U ∈ B, with diam(U) > 0, dk(U) ≤ c1+s·2−k
diam(U)s .

Proof of Claim 3.5.
We prove by induction on n −m that for every n,m ∈ N with m < n,

U ⊆ V with diam(U) > 0, U ∈ Bn and V ∈ Bm,

dk(U) ≤ dk(V ) diam(V )s

diam(U)s
.

By the definition of supergale, if U ∈ Bn, dk(U) ≤ dk(U
′) diam(U ′)s

diam(U)s for

U ′ ∈ Bn−1 with U ⊆ U ′. By induction dk(U
′) ≤ dk(V ) diam(V )s

diam(U ′)s and therefore

dk(U) ≤ dk(V ) diam(V )s

diam(U)s .

For every W ∈ B0 with diam(W ) > 0, we use the second part in the

definition of dk and so dk(W ) ≤ c1+s·2−k
diam(W )s .

Since for every U ∈ B there is a W ∈ B0 with U ⊆W we have that

dk(U) ≤ dk(W ) diam(W )s

diam(U)s
≤ c1+s · 2−k

diam(U)s
.

�
We define next an s-supergale d(U) =

∑
r 2krd2kr(U).
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By Claim 3.5 d is well-defined.
By Claim 3.4, if W ∈ Dk, d(W ) ≥ 2k. Since for every r, Dkr ⊆ B≥r is a

cover of A, we have that A ⊆ S∞[d] and s ∈ G(A).
For the other direction, let s ∈ Ĝ(A). Then there exists an s-supergale

d such that A ⊆ S∞[d].

Claim 3.6 The set R = {U | d(U)diam(U) > 0} is countable.

Claim 3.7 Let d be an s-supergale. Then for every E ⊆ B∩R such that all
sets in E are incomparable we have that∑

W∈B0

d(W ) diam(W )s ≥
∑
V ∈E

d(V ) diam(V )s.

For each k ∈ N let

Ck =

U
∣∣∣∣∣∣diam(U) > 0, d(U) > 2k ·

∑
W∈B0

d(W ) diam(W )s

 ,

let Dk = {U |U ∈ Ck and no proper superset of U is in Ck }. Then, using
Claim 3.7,

∑
U∈Dk diam(U)s ≤ 2−k.

Notice that for every k, Dk is a 2−k/s-cover of S∞[d], so dimH(A) ≤ s.
This completes our proof.

�

4 Constructive dimension

In this section we take a first step in the effectivization of Hausdorff dimen-
sion by considering constructive dimension. We consider spaces that have
computable nice covers (defined below). Computable nice covers have a fla-
vor similar to computable metric spaces, although we conjecture they are
incomparable to those.

Then we characterize constructive dimension in terms of Kolmogorov
complexity using the concept of Kolmogorov complexity of x ∈ X at preci-
sion r ∈ N inspired by [10]. This characterization, together with the absolute
stability and correspondence principle sketched below allows a full Theory
of Information view of Hausdorff dimension in some general metric spaces.
Definition. Let X be a metric space with a nice cover (Bn)n∈N. We say
that X has a computable nice cover if the following hold,
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4. (Small size) There is an 0 < ζ < 1 such that for every n ∈ N, for every
U ∈ Bn, diam(U) < ζn.

5. (Computable diameter) B = ∪nBn is countable and there is a surjective
δ : Σ∗ → B for a finite Σ such that diam ◦ δ is computable.

6. (Computable cover) For each n ∈ N, U ∈ N, PU = {V |V ∈ Bn+1, V ⊆ U }
can be computed from δ−1(U).

Fix a space X with a computable nice cover. Fix δ as in the definition
above.
Definition. Let d be a supergale. Then d is contructive if d ◦ δ is lower
semicomputable.
Definition. Let A ⊆ X,

Ĝconstr(A) = {s | there is a constructive s-supergale d with A ⊆ S∞[d]} .

Definition. Let A ⊆ X. We define the constructive dimension of A as
cdim(A) = inf Ĝconstr(A).

Constructive dimension can be characterized in terms of Kolmogorov
complexity as follows. Let K(w) denote the usual self-delimiting Kolmogorov
complexity of w ∈ Σ∗.
Definition. Let x ∈ X, let r ∈ N. The Kolmogorov complexity of x at
precision r is

Kr(x) = inf
{

K(w)
∣∣x ∈ δ(w), 2−r < diam(δ(w)) ≤ 2−r+1

}
.

Theorem 4.1 Let X be a metric space with a computable nice cover. Let
x ∈ X,

cdim(x) = lim inf
r

Kr(x)

r
.

Proof. Let s, s′ be rational such that s > s′ > s′′ > lim infr
Kr(x)
r . Let

A =
{
w
∣∣K(w) ≤ s′(− log(diam(δ(w))))

}
.

Then A is computably enumerable.
We define d as follows, let U ∈ Bn with diam(U) > 0,

d(U) =
∑

V⊆U,V ∈δ(A)∩B≥n

diam(V )s
′

diam(U)s
.
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d is well defined since
∑

V ∈δ(A) diam(V )s
′ ≤

∑
w 2−K(w) <∞.

d is an s-supergale since for W ∈ Bn−1,∑
U⊆W,U∈Bn

d(U) diam(U)s =
∑

U⊆W,U∈Bn

∑
V⊆U,V ∈δ(A)∩B≥n

diam(V )s
′ ≤

≤
∑

V⊆W,V ∈δ(A)∩B≥n−1

diam(V )s
′

= d(W )diam(W )s.

If U ∈ δ(A) then d(U) ≥ diam(U)s
′−s. Since Kr(x) ≤ rs′′ for infinitely

many r, for those r there is a w with K(w) ≤ rs′′, x ∈ δ(w) and 2−r <
diam(δ(w)) ≤ 2−r+1. Therefore w ∈ A and d(w) ≥ diam(δ(w))s

′−s ≥
2(r−1)(s−s

′).
By condition (4) of computable nice covers, δ(w) ∈ B>ar (for a =

1/(− log(ζ))) and x ∈ S∞[d].
For the other direction, let s > cdim(x). Let d be a constructive s-

supergale such that x ∈ S∞[d]. For each k ∈ N, let

Ak =

w
∣∣∣∣∣∣ d(δ(w)) ≥ 2k(

∑
W∈B0

d(W ) diam(W )s)

 .

Then the number of w ∈ Ak such that 2−r < diam(δ(w)) ≤ 2−r+1 is at most
2−k+rs. Therefore for w ∈ Ak with 2−r < diam(δ(w)) ≤ 2−r+1, K(w) ≤
rs− k +O(log k) +O(log r), and

lim inf
r

Kr(x)

r
≤ rs− k +O(log k) +O(log r)

r
≤ s.

�
We next state without proof the property of total stability of constructive

dimension (see [9] for the corresponding version in Cantor space).

Theorem 4.2 Let X be a metric space with a computable nice cover. Let
A ⊆ X. Then

cdim(A) = sup
x∈A

cdim(x).

Finally we remark (again without detailing a proof in this initial paper)
that for arbitrary unions of Π0

1 sets Hausdorff dimension and constructive
dimension coincide. See [6] for the Cantor space version.
Definition.
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• For each U ∈ B, let the U -cylinder be defined as CU = {x ∈ X |x ∈ U }.

• For A ⊆ X, A ∈ Σ0
1 if there is a computable h : N→ Σ∗ such that

A =
⋃
i∈N

Cδ(h(i)).

• For A ⊆ X, A ∈ Π0
1 if Ac ∈ Σ0

1.

• For A ⊆ X, A ∈ Σ0
2 if there is a computable h : N×N→ Σ∗ such that

A =
⋃
i∈N

⋂
j∈N

Cc
δ(h(i,j)).

Theorem 4.3 Let X be a metric space with a computable nice cover. Let
A ⊆ X be a union of Π0

1 sets. Then cdim(A) = dimH(A).

5 Further directions

This paper intended to give an initial view of effective dimension on arbitrary
metric spaces. A number of issues have not been addressed here including
the following.

• The definition of resource-bounded dimension for resource-bounds other
than lower semicomputability.

• The role of different (computable) nice covers in effectivization and
condition for their equivalence within it. For instance Finite-State
dimension in Euclidean space depends heavily on the choice of nice
cover [2].

• The exact relationship between computable nice covers and computable
metric spaces.

• The effectivization of packing dimension, a dual of Hausdorff dimen-
sion for which a gale characterization exists (proof not included in this
initial paper).
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