A SIZE INDEX FOR MULTITAPE TURING MACHINES

RAINER GLASCHICK

ABSTRACT. In search of a single number like Shannon’s state-symbol product
to compare the complicacy of Turing Machines including those with multiple
tapes and tape heads, a number called TM index is proposed, using a generic
definition for single and multi tape machines.
together with their TM indices, including the recently re-discovered physical

machine built by G. Hasenjaeger.

CONTENTS

1. Introduction

2. Generalised Turing Machines
2.1. Motivation

2.2. Generalised Turing Machines
2.3. Extended Turing Machines
2.4. Standard Turing Machines
2.5. Margenstern’s colours

2.6. Tape Memory

2.7. Penalties

3. Invariants

3.1. Moving state to an extra tape
3.2. Many synchronous tapes

3.3. Splitting (or joining) symbol and move action

4. Examples

4.1. Notational remarks

4.2. A very simple non-UTM

4.3. Moore’s machine

4.4. Hasenjaeger’s machines

4.5. Hooper’s machines

4.6. Rogozhin’s machines

4.7. Wolfram’s machine

4.8. Woods’ and Neary’s machines
5. Overview of TM indices and colours
References

Date: 2012-09-09.

Several examples are shown

© © 00 00 0000 O LU i WN N -

[N R e i e e i = R e
SO Voo U= OO

This work was intiated by an invation as a visiting fellow to the Isaac Newton Institute for
the Mathematical Sciences in the programme Semantics & Syntaz, and I got much help from

Turlough Neary and Damien Woods.

2 RAINER GLASCHICK

1. INTRODUCTION

When the Heinz Nixdorf MuseumsForum® searched for objects to be presented
during the Alan Turing year, a physical model of a Turing machine built by Gisbert
Hasenjaeger was located by its director Norbert Ryska. Unlike some other physical
models, Hasenjaeger’s machine is not only a curiosity, but has also an interesting
theoretical background. Searching for the relevance of this machine, the starting
point was Shannon’s state-symbol product, as he wrote in [Shannon1956]: An in-
teresting unsolved problem is to find the minimum possible state-symbol product for
a universal Turing machine. Having only four states and three binary tapes, giving
the very small state-symbol product of eight, this would indicate an unnoticed mile-
stone. But with the use of more than one tape, Shannon’s state-symbol product
looses its significance, see e.g. [Hooper1969).

Nevertheless, a single number to indicate the complicacy of a Turing Machine
with more than one tape or more heads would be nice indicator for a ranking,
although it is clear that such a ranking cannot replace an in-depth analysis.

Hooper proposed the number m - n? for a machine with m states, n symbols
(including blank and end marker) and p tapes, which is equal to the state-symbol
product for a single tape machine. However, this number implies that the tapes are
all of the same kind, i.e. all provide all operations, have the same alphabet, etc.
Hooper used further in his article the triple (m,n,p) to characterise the machines,
not the single number obtained from his formula.

In his German text, [Priese1979a] uses two-dimensional tapes and gives three
complexity types:

e a quadruple (z,b,d, k), where z is the number of states, b the number of
symbols, d the number of tape dimensions, and k the number of heads or
tapes

e Hooper’s number, i.e. z-b*

e the number of possible instructions, basically (z - bk 2d)z'bk

In his English paper [Priese1979b], only the third number, called complezity, is
used. However, this number is not only very large, so the logarithm is used; it
more or less characterises a class of machines, and, like Hooper, does not take into
account if tapes are non-erasable, cyclic etc.

In their 2009 paper [NearyW2009], Neary and Woods give an excellent overview
of small universal TMs in general, and concentrate on weakly universal ones in
particular, all as single tape machines.

Margenstern [Margenstern1993] uses colours to characterize Turing Machines
with a single tape, and cites Pavlotskaia to prove that a minimum number of colours
is necessary for a machine to be universal.

This text gives a (not novel) definition for a Turing Machine, here called gen-
eralised TM, which embraces TMs with one or more tapes in a single model, and
defines a size indicator for it, called T'M indez, that is

e equal to Shannon’s state-symbol product for standard single-tape TMs,
e is invariant for two transformations intuitively considered irrelevant,
e gives smaller numbers for restricted machines (non-erasable, weakly univer-

salS)

Comparing the TM index is logical only for machines that serve the same task,
and for universal Turing machines in particular.

Multihead and multitape machines that were introduced and used in the discus-
sion of computational complexity by Hartmanis and Stearns [HartmanisS1965] are
likewise covered, but not with examples, see also [JiangSV1997].

Lin Paderborn, Germany: http://www.hnf.de/

http://www.hnf.de/

A SIZE INDEX FOR MULTITAPE TURING MACHINES 3

It has been observed that reducing the state-symbol product for TMs often

e increases the computational complexity in time and space,
e requires extra effort to encode and decode the tape contents,
e makes it difficult to determine that the machine stopped.

In particular the complexity issues are not contained in this text, for these, see
e.g. [WoodsN2009].

Throughout the text, the abbreviation TM is used for Turing Machine, UTM for
Universal Turing Machine, gTM for generalised Turing Machine, sTM for standard
Turing Machine, and zTM for extended Turing Machine.

2. GENERALISED TURING MACHINES

2.1. Motivation. Looking at various variants of (deterministic) Turing Machines,
they all have in common a finite state machine, that sends symbols and action
commands to an unlimited deterministic memory, and in return receives a symbol
that is used to advance the finite state machine; see also [Fischer1965a]?.

This definition of a generalised TM could be regarded as a template or class of
TMs, as it does not require a specific memory.

Note that several definitions of a TM do not formally define the tape memory.
The tape is often introduced by its inscriptions, and the changes to the inscriptions
are mostly explained just verbally. One could have the impression that TMs are
just finite state machines, and miss the specialty of the tape memory.

The attribute generalised is used to distinguish from a standard TM, that has a
single tape without restrictions and in each state writes to the tape and moves the
tape during a single state transition®.

2.2. Generalised Turing Machines. An generalised Turing Machine (gTM) is
a finite state organ ¥ connected to an unlimited memory organ ¥, both having an
input and an output each, such that the output of the memory ¥ is an input to
the state organ X, and its output is an input to the memory.

2.2.1. The finite state subsystem. The finite state subsystem X is a deterministic
finite state machine described by the sixtuple (S, I, ¥, o, s¢, s1) with:

e a finite set of states S = s, s1, 89, .. .,

e a finite input alphabet I = iy,1o,...,

e a finite action alphabet ¥ = 11,19, ...,

e a state stepping (partial) map o : (S — {sp}) x I = ¥ x §

The state s; is called the start state, and the state sg the stop state, thus there
must not be a step defined for it.

The action alphabet embraces the symbols written as well as the movement of
the tape, thus it is different from the input alphabet. This does not exclude that
the input symbols as well as the actions may be n-tuples; e.g. for a 3-tape machine,
the input symbols might be triples and the actions sextuples; see below for the
extended TM. The only restriction is that the memory subsystem does understand
the action symbols and produces input symbols for the state machine.

Two-dimensional tapes as in [Priese1979a, Priese1979b] fit perfectly in the above
definition: if the tapes are binary, the input alphabet has two members, but the
action alphabet has eight instead of four (up and down as well as right and left for

2Cooper in his Computability Theory [Cooper2003] uses this same model in his definition of a
TM, i.e. provides separate actions for writing and movement, but does not extend his model to
multi-tape machines.

3This is what has become standard now; Turing’s machine definition allows several actions
combined in one state transition to avoid states with less significance to understanding the function
of the machine.

4 RAINER GLASCHICK

each input symbol), probably as pairs with the symbols to be written. Multihead
TMs must keep more state in the memory subsystem.

The stepping map need not be a total function; there may be undefined input
combinations, often because they will never occur. See the next section on stop
states.

Being defined on finite sets, the stepping map is normally described by some sort
of table or matrix; here, a table with four columns will be used: The first two give
the current state and input element, the last two the action and the next state.

2.2.2. The stop state. In this definition, a stop state is stipulated®.

Several TM definitions declare the stop of the machine when o is undefined for
the current state and input symbol, or they do not show the stop state in the state
table, but have a remark in the text. In these cases, often only the missing line in
the state table has to be added, as has been done in some of the examples below.
When the stop state is reached, the action output symbol is arbitrary and not sent
to the memory, thus any one could be used; this may be indicated by dashes in the
state tables, that are not counted as actions.

For other TMs, the stop state is equivalent to a certain cycle of states. This
cycle should be at least detectable by a FSM. Then, its states have to be counted
too, unless a simple extension of the state machine would do.

2.2.3. The memory subsystem. The memory is an unlimited deterministic subsys-
tem using the same sets as the state machine for S, I and V¥, described by the
sixtuple (T, r,w, S, I, ¥) with:

e a (unlimited) set of states T = ¢1, ¢, . ..

e a read function r : T'— I to read the current symbol of the tape state

e a write function w : T x ¥ — T to write, i.e. execute an action and return
a new tape state

The first memory state ¢; is called the initial memory contents.

2.2.4. The combination is the gSM. Combining the state machine and the memory,
a generalised Turing Machine is thus described by the tuple:

(Sa Ia \I/,U, 507513Ta Taw)

Note that the initial memory contents ¢; is not included, in order to allow the
application of a single machine to different initial memory contents.

So the application of a gTM to an initial memory contents ¢; generates a list of
quadruples (s;,t;,4;,%;) with (for 7 > 0 until sj.1 = s¢):

iy =7(t;)
(85+1,%5) = o(sj,15)

ijr1 = w(ty, V)

The symbols i; and v; are redundant and were used for clarity.

4Alan Turing’s definition for computable numbers uses cycle-free machines, that are running
forever without going into cycles, i.e. repeating a pattern periodically on the tape, as compared
to machines used for the solution of the Entscheidungsproblem.

A SIZE INDEX FOR MULTITAPE TURING MACHINES 5

2.2.5. The TM index. The generalised TM state table complicacy index, or TM
index for short, is defined as a single number by

11191
81/

For a standard TM with one erasable tape, it is equal to the state-symbol prod-
uct, see below. For the product |I|- ||, the term symbol state area size or simply
10 size might be used, and for the whole term after the state count the term symbol
equivalent.

This index, as it uses the cardinality of ¥, thus depends on which actions are
possible on the memory (i.e. if tapes move in only one direction) and the number
of symbols that could be written (i.e. for non-erasable or read-only memory), and
thus reflects characteristics from the memory subsystem.

This, however, does not honor every quirk in the memory subsystem, see 2.6.6
on penalties. In this case, we call the TM index without penalties the basic TM
index.

2.3. Extended Turing Machines. A extended Turing Machine (xTM) is a spe-
cial case of the generalised TM, which differentiates the output symbols and the
tape movements, using a subset of the input symbols as output symbols.

Here, the action symbols are pairs of elements from a set O of state output
symbols and a set = of memory instructions. Naturally, the memory subsystem
now must accept these pairs.

The set O of symbols output to the memory is taken from the input symbols,
but needs not to cover them all. This allows to express directly that symbols on
the tape are only present in the initial tape inscription, and are never written. A
new set of memory instructions = is introduced, and the extended TM is a gTM
with the tuple (S, I, ¥, 0, s, s1, T, 7, w), having:

e the output symbol set O C I

e the memory instructions = = {&1, &, ...}

e where the memory actions are ¥ C O x =

e and the memory write function is w: T x (O X Z) = T

Note that the expression

1]-10] - |=|
2

is only equal to the gTM index, if ¥ = O x Z, i.e. if all combinations of output
symbols and instructions are used as memory actions.

Note that because the set of output symbols O may be a subset of the input
symbols I, this allows to express characteristics of non-erasing machines and weak
machines already in the state machine, and not only as (mostly verbal) restrictions
of the memory subsystem.

Note also, that the input and output symbols as well as the memory instructions
might still be (sub-) tuples, (e.g pairs for two tapes).

The extended TM will not be used in the examples, because it looks not suitable
to define a useful index.

2.4. Standard Turing Machines. The standard TM is an xTM, where:

e the set of output symbols is equal to the input symbols: I = O
e the set of movement operations has two members Z = {R, L}

|51 -

Thus, the TM index becomes, because |Z| = 2:

Y1-1Y]- 1=l

81y 5

6 RAINER GLASCHICK

_is). /L2
2
=5[]

which is equal to Shannon’s state-symbol product.

For binary machines, there are only 4 action symbols possible, and these are
normally all used, if it is a standard TM, even though only two of them can be used
per state. This allows all 4 action symbols if the machine has more than 2 states,
which has been proved to be necessary anyhow. For a non-erasing binary machine,
there may be still 4 actions, so there are 4 - 2 possible combinations of actions and
input symbols per state.

As the examples below show, rather often single tape TMs with many symbols
do not use all combinations, so that in these cases the TM index is smaller than
the state-symbol product, which might be surprising first, but indicates that the
memory has to be less complex than for a full TM.

2.5. Margenstern’s colours. For a standard TM, Margenstern introduces in
[Margenstern1993] the colours of an instruction as the combination of the input
symbol and action, i.e. output and movement operation for a gTM. It is possible
to look at the set of colours per state and per machine. The maximum numbers
of colours per state is |I| - |O| - 2 = |I|> - 2, as any input can be combined with
any output with one out of two movements, and input symbols are the same as
output symbols for a standard TM. The set of colors per machine then contains the
colours of all instructions of all states. However, it seems to be of limited value for
an index number, because it is limited by the above number, even for many states.
(If a single state uses up all colours, no other state can add new colours). If follows
that the number of colours of a binary machine is 8 at most. (Astonishingly, the
set of colours for a machine is often less than the maximum.)

Instead, the sum of the number of colours per state could be used, which is not
greater than the product |I| x |¥|, the IO size of an gTM. So it might be more
specific, but might not be invariant to some transformations, as it heavily depends
on the distribution of colours versus states.

It would be interesting to analyze the Theorems given by [Margenstern1993|
(some of which were found by Pavlotskaia), if they could be applied to the TM
index, but this is outside the scope of this work.

2.6. Tape Memory. No attempt will be made to expand the examples by proper
tape memory definitions, only some illustrations are shown for standard TMs. Note
that the position of the read-write head must be recorded in the state of the memory.
It would be desirable to have something like the TM index for the state machine
for the memory system, in order to reflect the complicacy of the memory. However,
the tape memory is regarded not only as fairly simple in its structure, but there
are only a few varieties, that can serve a much larger number of state machines.
Also, several of the specialties of the tape memory can be cared for in the gTM
definition and state table analysis, except e.g. cyclic tapes. Thus, such an attempt
is not tried here.

2.6.1. Tape memory as a n-tuple. A fairly simple and flexible memory for a stan-
dard TM uses a n-tuple for the tape contents (except the still blank part), and an
integral number as an index into to the n-tuple as location for the tape head.

Using n = |(z1, ..., xy)| for the number of elements in the n-tuple (z1,...,z,),
and defining the auxiliary functions «, A and ¢, we could model the tape state as a
set (or pair) of a natural number and an n-tuple of input symbols:

ty =Ky (G50 05,20 djk =10 Gk - 005))

A SIZE INDEX FOR MULTITAPE TURING MACHINES 7

1<k <l
K(tj) = kj
)\(tj) = lj = |(7;j,17 ij727 - ’L.j’kjfl, ij,kj e ij,l]-)|

Va S lj : C(tj,x) = ij@
The read function is just:

r(t;) = C(tj, K(t5))

For the write function, the action symbol is a pair (y, z) where y € O C I and
z € {R, L} and the new state depends on the values of z and k; = k(¢;) as follows,
where I; = A(¢;):

z =R, k 75[: ((y,Z)) = {kj+1,(ij,laij,Q;-~-ij,k]-717yaij,kj+17---ij,lj)}
z=R, k _l ((72))_{Skj+1a(ij71aij72a"'ij,kj—layvyo)}

= L k 7& 1 w(Jo (y7)) - {kj - 17 (ij717~ .. 7?:j7kj_17y7' . aij,lj)}

z = L k =1 w(VR (y7)) - {17 (yanvij,Qa oo aij,lj)}

where g is the blank symbol. A blank tape is then ¢; = {1, (yo)} with x(t1) = 1,
so the first operation extends it to two elements.

This scheme extends easily to multi-tape machines and multi-dimensional tapes.
Cyclic tapes are also not difficult to integrate, as they have a fixed size and thus the
n-tuple with the contents is initially predefined and does not change, and the tape
position is taken modulo this size. Non-erasing tapes just require more conditions on
the function, and are sufficiently characterized by less actions in the gTM definition.

2.6.2. Tape memory as string. The single tape memory used in the standard TM
could be described as as a symbol chain or string, using an extra symbol not in the
input-output-symbol to note the position of the read-write-head. This is often the
state number, in which case the set of symbols and states must be distinct.

2.6.3. Tape memory as two pushdown stores. Tape memory is a pair of symbol
strings, i.e. n-tuples of input symbols, plus the current symbol, the strings consti-
tuting the parts left and right to the head.

2.6.4. Tape memory as fixed mapping from integer numbers to symbols. The tape
contents is a mapping m : Z — S from integer numbers to symbols, and the state
is the pair (s;,m;), see [Boerger1985]. It is presumed that the domain of mj, i.e.
the smallest and largest number for the memory state used so far, needs not be
tracked explicitly, but can be efficiently determined from the mapping itself.

2.6.5. Tape memory as gliding mapping integer numbers. The tape state is a map-
ping m(i,y) : Z — Y from integer numbers to symbols, where the symbol for zero
is the current position of the head. As the tape head is always mapped from zero,
there is no need to keep it besides the mapping. However, realisation of a mapping
requires a table for each state, and thus doubles the size to save a single index.

2.6.6. Restricted tapes. In many cases, tapes are restricted:

they can only move in one direction

they do not move at all

the tapes are read-only, i.e. the initial inscription is never changed

a symbol may not be erased

the symbols constitute an ordered graph with respect to writing, (which is
a generalisation of a non-erasable tape)

the tapes are cyclic (if read-only)

e the tapes are infinitely prefilled with patterns

Except the last ones, these conditions have an influence in the TM index because
fewer operations are provided.

8 RAINER GLASCHICK

2.7. Penalties. In case the TMs have some quirks that allow fewer states by leav-
ing out features that the others have, e.g. a missing stop state or requiring a cyclic
tape, penalties may correct for these cases. However, penalties depend on human
judgement and thus are estimates. The following rules are applied in the examples:

If one of the tapes is cyclic and read-only, i.e. has a single infinitely repeated
pattern, this saves at least one action and thus reduces the TM index. Maybe it
also increases the computational complexity, but this is not taken into account in
the TM index. Thus, a penalty of one extra operation to compensate for the saved
move in the other direction could be applied.

If the tape is infinite, but not filled with blanks, but with a repeating pattern
outside the encoding of the guest machine, this is regarded more complicated than
a cyclic tape, and thus an action penalty of two is used.

If the tape is not only infinite, but also filled with a pattern that is not repeating,
an action penalty of at least three is used.

If there is no stop state easily added, some extra states may be added in the
calculation. The number used should estimate the necessary effort to determine
the stop situation. If the stop is a cycle of n states, a state penalty of n — 1 is
used, as a coupled FSM to detect the cylcle would need n states. If the stop is not
detected by a defined cycle, the state penalty becomes very large, if not infinite.
At least, the number of states plus 1 will be used.

Thus, using the state penalty Ps and the operation penalty Py, the formula for
the estimated TM index becomes:

] - (1] + Po)

181+ Ps) - :

3. INVARIANTS

Transformations on standard TMs and their influence on the state symbols prod-
uct have been studied since Shannon, and as the TM index is the same, these need
not to be evaluated here.

So here the emphasis is on changes in the number and characteristics of more
than one tape. For these, some machine transformations can be given that do not
alter the TM index.

3.1. Moving state to an extra tape. Shannon proved that with only one tape,
a l-state standard UTM is not possible.

If a second tape is allowed, a machine with only 1 state is fairly simple, using the
technique used by Hooper in appendix II of [Hooper1969]. For a standard Turing
machine, just a second (changeable) tape is added, the number of symbols on this
tape being equal to the number of states. This second tape is never moved, it just
serves to replace the states.

The transformation of any n-state m-symbol 1-tape machine with the common
two operations is simple: Just use the pairs of the m symbols and n states as inputs,
giving m - n new input symbols, and write the new state to second tape, i.e. use
pairs of new state and new symbol as actions, i.e. m -2 -n actions. The TM index

was n - 4/ "“2"'2 before and is 1 - 4/ W+M thereafter, thus is equal under this

transformation. Hence, using the square root is essential.

3.2. Many synchronous tapes. Any n-state, m-symbol, 1-tape TM can be sim-
ply transformed to a n-state, 2-symbol, multitape machine, using either unary or
binary representation. All tapes are moved the same each time.

If unary representation is used, m tapes are required, the symbols are represented
by a bit on one of the m tapes only.

A SIZE INDEX FOR MULTITAPE TURING MACHINES 9

Although m tapes with 2 symbols each span an input space of size 2™, only m
of these are used. Similarily, there are still only 2-m actions, thus the symbol state
area size is still n - m -2 -m - n, and the TM index is unchanged.

If binary representation is chosen, k tapes are required such that 2¥ > m The m
symbols are binary coded. As only the used symbols and actions are counted, the
TM index is still the same.

3.3. Splitting (or joining) symbol and move action. A case that might at
the first glance be counter intuitive is the splitting of actions, because one might
demand that this operation, that does not change the net behavior, should keep
the TM index invariant.

For a standard TM, it is redundant to have a nmo mowve, just change action,
because this action could then be replaced by that of the target state®. An engineer
might argue technically, that the symbol change and the tape movement have to be
done sequentially anyhow, as the tape can only be moved once the symbol write has
finished. So he might propose a TM, where the action set does not contain the four
members: {OR,0L,1R,1L}, but instead use the action set {0,1, R, L} i.e. either
move or change symbol. Because every state of the original TM would have to be
split into two states, there would be twice the number of states and thus the TM
index double. The engineer should, however, come to the conclusion that it would
normally be less effort to have a three-phase clock instead of a two-phase clock,
speeding up the machine by the factor 4/3 and using half the number of memory
cells for the state memory. Thus, the increase in the TM index is finally sensible,
at least if used as an indicator for the technical effort.

With multitape TMs, the picture is different. For the human it is much easier
to understand a state table, when just one tape is moved at a time. Whether e.g.
the examples below can be optimized (regarded as gTMs), and if this can be done
by a general algorithm, has not yet been explored.

4. EXAMPLES

Several TMs are discussed, and the results summarized in Table 1. Some stan-
dard TMs are included for comparison.

4.1. Notational remarks. State tables are written down using four columns, as
indicated above:

actual state number
input symbols
action symbols

next state number

It is assumed that input symbols are mapped to a single character per tape,
which is possible in the cases given. If the machine has more than one tape, the
input symbol column thus has two or more characters that represent the symbols
on the tapes.

For the action symbols, it depends on the machine if there is a single character
used for writing symbol or moving the tape, or two characters for writing a symbols,
and moving the tape afterwords. In the latter case, five columns may be used, where
the colums for the output symbol and the tape movement could be seen as joined
to a single column if seen as an gTM. The hyphen character is used as symbol for
no action.

In order to increase human readability, dots are used in the tables as follows:

5except for the stop state, see examples

10 RAINER GLASCHICK

In the input column, they denote that the input symbol may be any of those
on the tape, and the state table line in fact represents as many lines as there are
symbols for the dot. This implies that for each dot, all the symbols to be generated
are explicitly used in at least one other line.

In the output column, the meaning of the dot is same symbol as input.

E.g., Hasenjaeger’s machine could either move or punch on the R-tape, because
the Wang instructions are like this, including the option not to move or punch,
which is represented by -. On Hooper’s machine, a pair is given of the new symbol
— which may be the same — and the tape move including no move, explicitly
denoted by -.

Dots in the last column simply mean keep that state.

From a mathematical point of view, there is no difference whether a symbol on
a tape is replaced by itself (output) or nothing done; from a technical point of view
the latter mostly means significantly less circuitry, but it can be easily detected and
is noted here by dots just for readability. For counting the numbers to calculate
the TM index, dots are resolved to the respective values.

The condition that tapes are presumed to be cyclic is not noted in the state
tables directly, as are other restrictions.

Note that for calculating the TM index, it is irrelevant if e.g. the operations are
noted with two characters, like OR, OL, 1R and 1L or four different single characters,
as long as it is used consistently. We just need to expand the dots and count the
number of different input conditions and the number of different actions.

It would have been a nice exercise to transform each non-binary TM to a binary
TM and calculate the TM index, optionally doing some optimizations.

Please keep in mind that the issues of computational complexity and the effort
of encoding and decoding are not covered by the TM index.

4.2. A very simple non-UTM. Just to have a very simple TM, we give a (non-
optimal) state table for a non-universal binary TM that appends a mark at the end
of a chain of marks:

s in out s’
1 M R 1
1 b - 2
2 b M 2
2 M - 0

It has two states, two input symbols b,M and three output actions R,M, - so the
state-symbol product is 4, but the TM index is 2 - v/3 = 3.46, because the L action
is not used. The colour count is 4 instead of 6 for the same reason.

4.3. Moore’s machine. This machine, published in [Moore1952], was perhaps the
first multitape machine with a small number of states with a fully published state
table. Also, Moore discussed the conditions to physically build such a machine and
found it feasible, the largest problem being the erasable tape, as also observerd by
Hasenjaeger, see [Hasenjaeger1987].

The machine has 15 states and 3 tapes, one for the simulated machine, one
non-erasable tape for remembering the next state, and one read-only unidirectional
cyclic tape for the coded state table. The coding just writes four numbers for each
state, using alternately inverted unary numbers®.

The state table is (in the order used by Moore, without his extensive comments):

S PQR PQR S’
111. -R- 2

62.1,3,4 is encoded 12,0!,13,04, i.e. 1101110000

A SIZE INDEX FOR MULTITAPE TURING MACHINES 11

21.. R—-1
1 10. -L-
31.. R— .
301. -L- 4
101. -L- 4
4 01. -L- .
4 00. R—- 5
5 00. R— .
5 10. -R- 1
1 00. -R- 6
6 00. R—— 7
7 10. --0 8
7 00. R—— 9
901. --18
10 10. --L 8
10 00. R-- 11
11 10. --R 8
8 100 -1- 13
8 101 -1- 12
12 111 -R- 15
15 .0. -1- 13
13 11. -R- 14
14 10. R-- 15
15 .0. -1- 13
13 01. -L- 4

As it has 3 tapes, it has 23 = 8 input symbols, which are covered by the state
table. Only 8 actions are used for the tape, as only one tape is operated at a state
transition. So the symbol equivalent is v/32 = 5.7, giving a basic TM index of

8-8
154/ == =84,
5oy 5 =849

For the cyclic tape, an action penalty of 1 used. There is no stop state; perhaps
because the state number zero cannot be coded. If in the encoding of the state table
a state number is used for which not definition exists, the machine will endlessly
search that state number on the program tape. According to the rules given above,
a state penalty of 14 has to be used, although a smaller solution might be possible.
The estimated TM index is thus:

8- (8+1)

(15 + 14) - =174

4.4. Hasenjaeger’s machines. Hasenjaeger never published details himself, just
some global remarks in [Hasenjaeger1987]; he just did build a physical machine he
called the Mini-Wang.” According to his hand-written notes, he started the design
in 1962 and did the schematics in 1963, thus his machine could be dated as of
1964. No evidence is known today when the machine was ready for and used in
demonstrations in seminars and lectures in Miinster or Bonn.
The binary encoding for Wang’s instructions used by Hasenjaeger is:

e 1: mark tape

e (01: move right

e 001: move left

"He had build a larger machine of similar design before and called it the Wang machine,
because Wang in [Wang1957] showed that a universal machine could be non-erasing.

12 RAINER GLASCHICK

e 00 0™ 1: conditional skip n instructions

Note that each instruction has exactly one marked bit, so the number of ones is
the number of instructions to skip.

4.4.1. The original machine with a bi-directional progamme tape. The (real) Hasen-
jaeger machine in its original form for a bi-directional cyclic programme tape® and
without stop state is:

S PQR PQR S’
I: P=1 is punch, P=0 other instruction
1 1.0 R-M . mark if not marked, next instruction
1 1.1 R— . do not mark if marked, next instruction
10.. R—-2 other instruction, take the O
IT: R, L or other; Q is zero on entry
2 10. R-R 1 go right, next instruction
2 00. RR- . save O in Q, check next P bit
2 11. RLL 1 next P bit is 1, go left, clear Q, next inst.
2 01. RL- 3 next P bit is 0, this is a skip

III: skip part 1: count zeroes to Q, if mark

3 0.0 R—-. R has space, skip zeroes until P=1
31.0R-1 R has space, end found: next instruction
3 0.1 RR- . R has mark, count zeroes until P=1
3 1.11R- 4 R has mark, end found: exec skip
IV: skip part 2: execute
4 01. L-—- . while Q>0, skip zeroes on P, leave Q
4 11. LL- . while Q>0, skip a one, decrement Q
4 0. R—— 1 Q=0, next instruction (mark prepended)

It has four distinct states and three binary tapes, P, Q and R. Tape P is the
programme tape with a defined initial inscription encoded as above, (using rela-
tive backward jumps only and a cyclic tape to achieve forward jumps), and it is
unchangeable. Tape Q is also unchangeable and has just a single mark, which is
at the tape head position when the machine starts. Thus, tape Q can be used as
a counter. Tape R is the working tape® for the simulated (guest) machine and not
erasable.

As there are three binary tapes, so it has 23 = 8 input combinations, which are
all used and defined. The actions are:

e - R and L for tape P and tape Q
e plus M for tape R.

Thus, the maximum number of possible output actions is 3*3*4 = 36, but only
9 of these are used, e.g. tape R is only modified in three lines of the state table.

Thus, the symbol equivalent is 1/% = /36 = 6.0 (incidently 3 - 2 for 3 tapes

with 2 symbols), and the basic TM index is:

8-9
44— =24
5 0

ignoring that there is no stop and that tape P is necessarily cyclic to allow
conditional transfers to any instruction on tape P.

8build only recently from a bidirectional uniselector found in his legacy
9 Rechenband in German, means calculating tape

A SIZE INDEX FOR MULTITAPE TURING MACHINES 13

To replace tape P by a not-cyclic one is not trivial, thus a penalty of one action
is used, giving an estimated TM index of:

8- (10+1)
2

As regards the missing stop state, Hasenjaeger in his private notes refers to what
he calls a dynamic stop, i.e. using a conditional skip 0, i.e. jump back just to the
same instruction. This means that tape R does not act, and tape P stays within a
small section of the tape, and the relay pattern repeats each 10 clocks, which is not
easy to detect. Using the above penalty rules, that would mean a state penalty of
3, giving an estimated TM index of:

4. =26.5

8- (9+1)

(4+3)- = 44.27

It is, however, easy to detect a skip O by splitting the last line of state 3 as
follows:

3 111 LR- 4 end found; R has mark, need to skip
3101 -—- 0 skip 0 is stop

in which case no state penalty is necessary. However, the current hardware can
sense tape R only in state 1 and 3, and tape Q only in state 2 and 4, so this requires
a changed hardware. Another option could be to treat marking a marked state as
a stop. But the conditional backward jump spaces one too far and lands on the
mark that terminates an instruction, which has no effect, as tape R is on a mark
anyhow, but requires that the mark on a marked tape does not stop.

Thus, excluding the engineering aspect, only the penalty for the cyclic tape P is
needed, giving an estimated TM index of 26.5.

4.4.2. The modified machine with a uni-directional progamme tape. When the ma-
chine was found, there was no documentation available and a unidirectional pro-
gramme tape enclosed, which did not fit to the state table. Looking for a way to
have this configuration running, using forward jumps seemed to be the solution,
requiring only a small change in the state table, namely inverting a relay contact:

S PQR PQR S’
I: P=1 is punch, P=0 other instruction
1 1.0 R-M. mark if not marked, next instruction
11.1 R— . no need to mark if marked, next instruction
1 0.. R—-2 other instruction, take the O

II: R, L or other; Q is zero on entry

2 10. R-R 1 go right, next instruction
2 00. RR- . save 0 in Q, check next P bit
2 11. RLL 1 next P bit is 1, go left, clear (, next inst.
2 01. RL- 3 next P bit is 0, this is a skip
III: skip part 1: count zeroes to Q, if mark
3 0.0 R- . R has space, skip zeroes until P=1
31.0R-1 R has space, end found: next instruction
3 0.1 RR- . R has mark, count zeroes until P=1
3 1.1 RR- 4 R has mark, end found: need to skip

IV: skip part 2: execute
4 01. R—— . while Q>0, skip zeroes on P, leave Q
4 11. RL- . while Q>0, skip a one, decrement Q

14 RAINER GLASCHICK

4 .0. —— 1 Q=0, next instruction

Just the direction of skipping is changed from backwards to forwards, and using
the cyclicity of the tape for backward jumps. However, this slows down the exe-
cution, as actions like skipping over a string of marks each time cycle the P-tape,
making demonstrations nearly incomprehensible. Also, the dynamic stop is hard
to see, but could be done as before, though not in the physical machine:

3 111 RR- 4 R has mark, end found: need to skip
3 101 -—- 0 R has mark, end found, stop
Because tape P has one action less, the machine has two less, thus the basic TM
index is
6-7
44— =212
2
Adding the penalty for the cyclicity of tape P, gives an estimated TM index of:

8 (7+1)
2

4. =226

4.4.3. The compact machine. As I observed only recently, in state 2 of the above
machine tables, tape Q is used as auxiliary state memory (similar to Hooper).
Taking this further on, one state may be saved:

S PQR PQR S’

I: P=1 is punch, Q is zero on entry
1 100 R-M . mark while not marked, next instruction
1 101 R—- O if already marked, stop
1 00. RR- . save 0 in Q, change to alternate state
1 11. RLR . was 01: R, next instruction
1 01. RL- 2 consumed two zeros, continue decoding

IT: L or Jump; Q is zero on entry

2 10. R-L 1 was 001: L, next instruction

2 00. RR- . bias Q, change to alternate state

2 010 R—— . R has space, no jump, skip zeroes

2 110 RL- 1 R has space, no jump, done

2 011 RR- . R has mark, jump, count number of zeros

2 111 L-- 3 end of jump instruction, execute jump
III: execute jump

301. L— . skip zeros backwards

3 11. LL- . skip back and count instruction

3 00. R— . Q zero, before end of next instruction

3 10. R— 1 Q zero, continue with next instruction

It uses tape P bidirectional, and there are 8 input symbols and 8 output actions,
giving a symbol equivalent of 5.7. With with only 3 states the basic TM index is:
8-8

34/ ——=17.0
2

This machine stops if an already marked place has to be marked, which is possible
here. Although this increases the effort for some transformations from standard
TMs to Wang-Hasenjaeger TMs, here the goal is to have a low TM index. Just one
action penalty for the cyclic tape gives an estimated TM index of:

8- (8+1)

3.
2

=18.0

A SIZE INDEX FOR MULTITAPE TURING MACHINES 15

If a unidirectional tape P is used, this saves two actions:

S PQR PQR S’

I: P=1 is punch, Q is zero on entry
1 100 R-M . mark while not marked, next instruction
1 101 R—- O if already marked, stop
1 00. RR- . save 0 in Q, change to alternate state
1 11. RLR . was 01: R, next instruction
1 01. RL- 2 consumed two zeros, continue decoding

IT: L or Jump; Q is zero on entry

2 10. R-L 1 was 001: L, next instruction

2 00. RR- . bias Q, change to alternate state

2 010 R—— . R has space, no jump, skip zeroes

2 110 RL- 1 R has space, no jump, done

2 011 RR- . R has mark: count number of zeros

2 111 R—- 3 end of jump instruction, execute jump
III: execute jump

3 01. R— . skip zeros

3 11. RL- . skip mark and count instruction

3 .0. R——-1 Q zero, continue with next instruction

Thus, the basic TM index is

8-6
34— =147
2
For the cyclic tape, there is still an action penalty of 1 to be added:
. 1
3. w = 15.87

The computational complexity in time and space is not significantly changed, as
all forward jumps are shorter by a constant and all backward jumps are longer by
a constant.

However, this machine is again not compatible to the physical one, as the mu-
tually exclusive reading of tapes Q and R is no longer satisfied. The now free fourth
state (as we have to use two flipflops anyhow) can be used to implement a stop if
the jump distance is zero, which here is a no-operation.

4.5. Hooper’s machines. Hooper published in [Hooper1969] two multi-tape ma-
chines, a binary one with one state, four tapes and two symbols, that uses Wang’s
instructions (like Hasenjaeger with relative jumps and a cyclic tape); and another
one with two tapes, two states and three symbols, that uses cyclic tag systems.

4.5.1. Hooper’s 1-state Wang style UTM. This machine is remarkable in several
ways: It uses Wang’s instructions, and it uses the two additional tapes not only to
count the skip for Wang’s conditional transfer, but also to replace states by tape
contents.

The encoding used is:

e 01: mark tape

e 11: move right

e 10: move left

e (00)™: conditional skip n one-bits

The table reads in common format:

16 RAINER GLASCHICK

S PTRS PTRS PTRS S’

1 1.10 ..0. L-LL 1 1, 2)
1 0.01 ..1. LL-R 1 (3, 4
1 1.00 ..1. LR-R 1 (5, 6)
1 0010L-R- 1 €9

i 1000 .1.. L-L- 1 (8)

1 0110 ...1 L-RR 1 (9)

1 0100 ..1. L--—- 1 10

1 o111 L-— 1 1D

1 1111 ..00 L-LL 1 12

1 1100 --LL 1 13

1 0000L-L- 1 (14)

1 .011-—-—- 0 (see p. 215)

P is the progamme tape, T the target tape, and R and S are auxiliary tapes with
a predefined inscription. There are 2* = 16 possible inputs, that are all used (after
the stop condition added that is mentioned in the text). The number of possible
actions is very high (16 output symbols, and 3 tape actions each, including the
neutral one, i.e. 2%.3% = 1296). But as only 13 actions are used, the basic TM

index is very low:
1-M16;13:102

Applying a penalty of one action for the cyclic tape P, and one for the predefined
inscription of tape R and S increases the estimated TM index slightly to

16 * 15

=10.95
2

4.5.2. Hooper’s 2-state UTM. The machine has 2 states, 2 tapes, and 3 symbols
(including blank) on each, and uses a tag system to encode the guest TM.
The state table is in compact form (stop state added as mentioned in the text):

S TU TU op S’
1 00 .. R-

1 10 bb RL .

1 11 .b LL 2

1 01 .0LL 2

1 bl 1. L-

1 O0b .. L-

1 bbb 1. L- .

1 1b 0. LR 2

1 b0 .. - 0 (see p. 211)
2 bl .0 -L

2 b0 .1 -L

2 bb 11 L- 1

2 Ob .1 1LL

2 10 .1 -R

2 11 .0 -R

2 1b .. RL

2 00 .b-L .

2 01 1bRL 1

A SIZE INDEX FOR MULTITAPE TURING MACHINES 17

All 9 possible inputs are used (stop state added). Out of the 32-32 = 81 possible
output actions, only 15 are used, giving a TM index of

/9-15
2.4/ ——=164
2

4.6. Rogozhin’s machines. Rogozhin published in [Rogozhin1996] seven univer-
sal standard TMs using tag systems for encoding, of which the one with the lowest
state-symbol product of 24 and the one using a binary tape are shown. Both ma-
chines have a stop already incorporated into the state table, and use standard tapes
which are blank outside the encoded part.

4.6.1. The 4-state 6-symbol machine. The machine has 4 states and uses 6 sym-
bols, giving a state-symbol product of 24. The symbols with the arrows above the
characters are replaced by more common characters (e for east and w for west) in
the following state table:

SI0O S
1 wL .
eR .
bL .
OR .
wl .
OR 4

e
0o o5 o o

OR .
el 3
wR .
el .
1L .
bR .

NN NDNDNDDN
0O o5 0o T =

iR .
wR 4
bR .
-0
cR 1
iR 1

W wwwww
0O O 0o ©O T =

OR .
cL 2
wR .
--0
cL 2
bR .

B D D
0O o= 0 T -

Out of maximal 6 *x 2 = 12 actions, just 11 are used (unused is OL), so the TM
index is slightly less the state symbol product:
6-11

4.4/ —— =2398
2

4.6.2. The 24-state 2-symbol machine. The machine has 24 states and 2 symbols
according to the following state table:

RAINER GLASCHICK

18

SIO0 8

10 .R 5

11 .R 2
2 0 1R
2

1

.L 3
30.L 4
310L 2
4 0 1L 12
410L 9

1

1
510L 6
60 .L 7

50 1R

61 .L 7
70 .L 8
710L 6
80 .L 7
81 1R 2
9 0 .R 19

91 .L 4
10 0 1L 4
10 1 OR 13
110 .L 4

0

12 0 .R 19

111 -

121 L 14
13 0 .R 10

.R 24

1
14 0 .L 15

13

14 1 .L 11
15 0 .R 16

151 .R 17
16 0 .R 15

16 1 .R 10
17 0 .R 16

17 1 .R 21
18 0 .R 19

181 .R 20
19 0 1L 3

.R 18

19 1

20 0 1R 18
20 1 OR 18
21 0 .R 22

1 .R 23
22 0 1L 10

21

1 .R 21
23 0 1R 21
23 1 OR 21
24 0 .R 13

22

24 1 OL 3

A SIZE INDEX FOR MULTITAPE TURING MACHINES 19

As all input symbols and output actions are used, so the TM index is equal to

the state-symbol product:
24
244/ — =48
2

4.7. Wolfram’s machine. Wolfram published 2002 in [Wolfram2002] a very small
machine with only 2 states and 3 symbols, having a state symbol product of 6. A
proof for its universality was announced 2007 to be published in Complex Systems.
Whether it is really universal is not of full importance here, as it just serves to
illustrate the TM index.

The state table is:

s I 0 &
1 0 1R 2
1 1 2L

1 2 1L .
2 0 2L 1
2 1 2R .
2 2 OR 1

All 3 input symbols are used, but only 5 output actions are used (the 2L is
duplicate and OL not used), thus the basic TM index is
3-5

2.4/—— =548
2

As it seems that the machine does not only not stop, but infinitely write to the
tape, according to the above rule, a state penalty of 3 is used, which seems to be
very generous here. As the initial inscription of the tape is said to be infinite non-
repeating, an action penalty of three is used, resulting in an estimated TM index
of:

3-(5+3)

(2+3)- =17.32

The question of encoding as well as decoding as well as the computational com-
plexity are at least difficult to determine for a machine that never stops, but is, as
always here, not included in the above estimated TM index.

4.8. Woods’ and Neary’s machines. Woods and Neary have published a fairly
large number of machines, mostly for cyclic tag systems and often what they called
weakly universal, where the tape is infinitely prescribed.

4.8.1. The 4 state 5 symbol machine. Published in [WoodsN2009], it is a standard
TM with 5 symbols and 4 states, thus the state-symbol product is 20. The state
table (A replaced by %):

s I 0 9§
1 0 pul .
1 1 BR 2
1 pn OR 2
1 B IR O (see p. 171)
1 % oL 2
2 0 uL

2 1 1L .
2 p OR 1
2 B OL .
2 % pL 3

20 RAINER GLASCHICK

3 0 BR

3 1 1R .

3 1 OR 4
3 B OL 2
4 0 BR

4 1 1R .

4 p OR 3
4 B 1L 2

All 5 input symbols are used, but out of the 10 possible actions, only 6 are used,
because the delimiter % is never written to the tape. Thus, the basic TM index is
smaller than the state-symbol product:

5-6
4.4/ ——=15.49
2

The encoding fills the tape to the left with a repeating pattern, but not to the
right, thus an action penalty of two is used for the estimatd TM index:
5-8

44— =17.
5 7.89

4.8.2. The 2 state 4 symbol machine. Published in [NearyW2009] as Us 4, it has
2 states and 4 symbols and uses Rule 110 encoding. It is characterized as weakly
universal because a predefined pattern is repeatedly duplicated on the tape outside
the encodeded part.

Its state table is:

S 0 S
gL .

1L 2

1L

1L

e
HS = OH

1R 1
gL
OR
2 1R

All 4 input symbols are used, but out of the 8 possible actions, only 5 are used
(OL, 1L and @R are not used), so the basic TM index is:

N NN
H Y = O

4-5
2.4/ — =16.32
2
The predefinded repeated pattern is similar to a cyclic tape, but slightly more
complicated, so 2 action penalties might be justified, giving an estimate TM index
of:

4. 2
#:7.48

5. OVERVIEW OF TM INDICES AND COLOURS

Numbers are given in Table 1, some shown graphically in Fig. 1. The y-axis is
logarithmic as to better distinguish the points at small index numbers.
The abbreviations used are:

A SIZE INDEX FOR MULTITAPE TURING MACHINES 21

Sy SSP In Ops SyE TMi eTMi Mc
2 30 8 8 5.7 849 174 28
2 8 8 9 6.0 24.0 26.5 29
2 2 16 13 10.2 10.2 10.9 14
3 6 9 15 82 164 17
6 24 6 11 5.7 239 19
2 48 2 14 2.0 48.0 8

3 6 3 5 2.7 b5 173 6

5 20 5 6 39 155 179 11
4 8 4 5 32 63 75 8

2 6 8 6 5.7 147 159 21

TABLE 1. Summary of Numbers

Author Year Tp St
Moore 1952 3 15
Hasenjaeger (1964) 3 4

Hooper 1969 4 1

Hooper 1969 2 2

Rogozhin 1996 1 4

Rogozhin 1996 1 24
Wolfram 2007 1 2

Neary&Woods 2009 1 4

Neary&Woods 2009 1 2

Hasenjaeger® 2012 3 3

Tp: tapes

St: states

¢ estimated TM index M basic TM index

Rogozhin 48,0
|

Rogozhin 23,0
|

Wolfram 17,3 ¢ ¢ Woods&Neary 17,9
Woods&Neary 15,5l ‘ ﬂ%gn 28 glﬁ }i?

Sy: number of symbols
SSP: state symbol product
SyE: symbol equivalent
TMi: ©basic TM index
Mc: union of Margenstern’s colours
eTMi: estimated TM index (if larger)
Enc: encoding for programme
cytag: cyclic tags
r110: rule 110
300
@ Moore 174
M Moore 84,9
30 Hasenjaeger 26,5
]
Hasenjaeger 25,3
Hooper 16,4
]
Hooper 10,9
]
Hooper 10,2

1950 1960 1970

@ Neary&Woods 7,5

M Neary&Woods 6,3
Wolfram 5,5l

1980 1990 2000 2010 2020

FIGURE 1. TM Index vs. Year

HN
120
32
16
18
24
48

20

18

Enc
Moore
Wang
Wang
cytag
cytag
cytag
r110
cytag
r110
Wang

22

[Boerger1985]
[Cooper2003]
[Fischer1965a]
[Hasenjaeger1987]
[HartmanisS1965]
[Hooper1969]
[JiangSV1997]

[Margenstern1993]

[Moorel952]
[NearyW2009]
[Priese1979a)

[Priese1979b]

[Rogozhin1996]
[Shannon1956]

[Turing1936]

[Wang1957]
[Wolfram2002]

[WoodsN2009]

RAINER GLASCHICK

REFERENCES

Egon Borger: Berechenbarkeit — Komplexitdt — Logik. Vieweg Braun-
schweig 1985. In English: Computability, Complexity, Logic. Studies in Logic
and the Foundations of Mathematics, Vol. 128, North-Holland, 1989.

S. Barry Cooper: Computability Theory. John Wiley & Sons, 2008.

Patrick C. Fischer: On Formalisms for Turing Machines. Journal of the
ACM 12 (4) p.570-580, 1965.

Gisbert Hasenjaeger: On the early history of register machines. LNCS 270
p-181-188, Springer, 1987.

J. Hartmanis, R. E. Stearns: On the Computational Complezity of Algo-
rithms. Tran. Am. Math. Soc. 117, p. 285-306, 1965.

Philip K. Hooper: Some small, multitape universal Turing machines. Infor-
mation Sciences 1 (2) p.205-215, 1969

Tao Jiang, Joel I. Seiferas, Paul M. B. Vitanyi: Two heads are better than
two tapes. J. ACM 44 (2), p.237-256, 1997.

Maurice Margenstern: Non-erasing turing machines: A (new) frontier be-
tween a decidable halting problem and universality. LNCS 710, p. 375-385,
1993.

E. F. Moore: A simplified universal Turing machine. Proceedings of the 1952
ACM national meeting (Toronto) p. 50-54, 1952.

Turlough Neary, Damien Woods: Four Small Universal Turing Machines.
Fundam. Inform, 91(1), pp. 179-195, 2009.

Lutz Priese: Uber eine minimale universelle Turing-Maschine. LNCS 67, p.
244-259, 1979.

Lutz Priese: Towards a Precise Characterization of the Complexity of Uni-
versal and Nonuniversal Turing Machines. STAM Journal on Computing,
8(4), pp. 508-523, 1979.

Yurii Rogozhin: Small universal Turing machines. Theoretical Computer
Science, 168(2), pp. 215-240, 1996.

Claude E. Shannon: A Universal Turing Machine with Two Internal States.
Automata Studies, Princeton University Press, 1956.

Alan M. Turing: On Computable Numbers, with an Application to the
Entscheidungsproblem. Procedings of the London Mathematical Society,
42(2), pp. 230-265, 1936.

Hao Wang: A Variant to Turing’s Theory of Computing Machines. J. ACM,
4(1), pp. 63-92, 1957.

Stephen Wolfram: A New Kind of Science. Wolfram Media, Champaign,
2002.

Damien Woods, Turlough Neary: The complexity of small universal Turing
machines: A survey. Theoretical Computer Science 410 (4-5) p. 443-450”,
2009.

MENTROPSTR. 84, 33106 PADERBORN, GERMANY
E-mail address: rainer@glaschick-pb.de

	1. Introduction
	2. Generalised Turing Machines
	2.1. Motivation
	2.2. Generalised Turing Machines
	2.3. Extended Turing Machines
	2.4. Standard Turing Machines
	2.5. Margenstern's colours
	2.6. Tape Memory
	2.7. Penalties

	3. Invariants
	3.1. Moving state to an extra tape
	3.2. Many synchronous tapes
	3.3. Splitting (or joining) symbol and move action

	4. Examples
	4.1. Notational remarks
	4.2. A very simple non-UTM
	4.3. Moore's machine
	4.4. Hasenjaeger's machines
	4.5. Hooper's machines
	4.6. Rogozhin's machines
	4.7. Wolfram's machine
	4.8. Woods' and Neary's machines

	5. Overview of TM indices and colours
	References

