
Normal Numbers and Finite Automata

Verónica Becher Pablo Ariel Heiber
vbecher@dc.uba.ar pheiber@dc.uba.ar

Departamento de Computación, Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires & CONICET, Argentina

August 17, 2012

Abstract

We give an elementary and direct proof of the following theorem: A real number is normal
to a given integer base if, and only if, its expansion in that base is incompressible by loss-
less finite-state compressors (these are finite automata augmented with an output transition
function such that the automata input-output behaviour is injective; they are also known
as injective finite-state transducers). As a corollary we obtain V.N. Agafonov’s theorem on
the preservation of normality on subsequences selected by finite automata, generalized to
arbitrary alphabets.

1 Statement and Discussion of Results

In this note we give an elementary and direct proof of the following:

Characterization Theorem. A real number is normal to a given integer base if, and only if, its
expansion expressed in that base is incompressible by lossless finite-state compressors.

Normality, defined by Émile Borel in 1909 [2], requires that the infinite expansion of a real
number be evenly balanced: a real number is normal to a given integer base if every block of digits
of the same length occurs with the same limit frequency in the expansion of the number expressed
in that base. For example, if a number is normal to base two, each of the digits ‘0’ and ‘1’ occur,
in the limit, half of the times; each of the blocks ‘00’, ‘01’, ‘10’ and ‘11’ occur one fourth of the
times, and so on. Lossless finite-state compressors, introduced by David Huffman in 1959 [8], are
ordinary finite automata augmented with an output transition function such that the automata
input-output behaviour is injective. They are also called injective finite-state transducers.

Although the Characterization Theorem has not hitherto appeared explicitly in print, it was
known to the experts in the field as a consequence of these two results:

(a) Schnorr and Stimm in 1971 [12] considered martingales constructed from finite automata
increased with stationary transition probabilities and used them to predict the symbols in a se-
quence. They proved that normal sequences are exactly those at which no such martingale succeeds
in making unbounded profit. The proof relies on the theory of Markov chains.∗

(b) Dai, Lathrop, Lutz and Mayordomo in 2004 [6] defined finite-state dimension as a mea-
sure of how much success is achievable by the martingales considered by Schnorr and Stimm.
Bounded success corresponds to finite-state dimension one. Their theorem establishes that the
finite-state dimension of a sequence is the infimum of all compression ratios achievable on the
sequence by lossless finite-state compressors. Therefore, finite-state dimension one is equivalent
to incompressibility by lossless finite-state compressors.

In [6] the authors also showed that every sequence normal to base two has finite-state dimen-
sion one (the result generalizes to any other base). Bourke, Hitchcock and Vinodchandran [3]

∗For instance, Lemma 2 in [12] uses that in a Markov chain with discrete time, the sequence of positive proba-
bilities in recurrent states has a Cesàro limit.

1

established the converse using the notion of entropy rate for blocks of symbols. These results
together amount to yet another proof of Schnorr and Stimm’s theorem: normality coincides with
finite-state dimension one.

Our proof of the Characterization Theorem shows the incompressibility of normal numbers
bypassing the intermediate property of finite-state dimension one. The proof is done directly in
terms of finite automata, with elementary counting arguments and basic concepts in the theory of
prefix codes.

As a corollary we obtain a a theorem due to V.N. Agafonov in 1968 on the preservation of
normality on subsequences selected by finite automata [1].

Agafonov’s Theorem. Let A be the binary alphabet. An infinite sequence is normal to the
alphabet A if, and only if, every infinite subsequence selected by a finite automaton is, again,
normal to alphabet A.

Agafonov’s publication [1] does not include the complete proof (it depends on previous work
only available in the Russian literature). M.O’Connor [11] gave it using predictors defined from
finite automata, and Broglio and Liardet [4] generalized it to arbitrary alphabets. We also obtain
Agafonov’s theorem for arbitrary alphabets.

It is known that for some slightly more powerful automata Agafonov’s theorem fails: Merkle
and Reimann [10] showed that normality is not preserved in subsequences selected by deterministic
one-counter automata (pushdown automata with a unary stack alphabet) nor by linear languages
(languajes recognized by one-turn pushdown automata, namely, the automata with limited oper-
ations on one stack: once they start popping, they must stop pushing).

Whether finite automata is the largest class that yields normality-preserving selectors is yet
to be determined. Similarly, the largest class of machines that can not compress normal numbers
remains to be known.

2 Basic Definitions

Hereafter A and B are alphabets (finite sets of at least two symbols), An is the set of strings of

n symbols from A, A<n =
⋃n−1

i=0 Ai is the set of strings of length strictly less than n, A∗ is the
set of finite strings of any length and Aω is the set of infinite sequences of symbols from A. |A|
is the cardinality of A and observe that |An| = |A|n. λ is the empty string, |s| is the length of
string s, s[i] is the symbol at position i of s, for 1 ≤ i ≤ |s|, and s[i..i + k − 1] is the string of k
consecutive symbols of s starting at position i, for 1 ≤ i ≤ |s| − k + 1. We use a similar notation
for the infinite sequences in Aω.

2.1 Normal Numbers

There are several equivalent definitions of normality†; we give here the one that is most convenient
to prove the Characterization Theorem. For notational purposes we present it directly on infinite
sequences of symbols from an alphabet A.

Definition. A sequence α ∈ Aω is simply normal to alphabet A if each individual symbol in A
has the same asymptotic frequency in α,

∀x ∈ A, lim
k→∞

occ(x, α[1..k])

k
=

1

|A|
,

†Borel’s original definition, given in [2], says: A real number r is simply normal to a given integer base b if each
digit in {0, 1, ..., b − 1} has the same asymptotic frequency 1/b in the expansion of r expressed in base b. A real
number r is normal to base b if each of the numbers r, br, b2r.. are simply normal to the bases bn, for every n ≥ 1.
Although it seems more demanding, this last condition is equivalent to require that just r be simply normal to the
bases bn, for every n ≥ 1. Another equivalent definition is in terms of equifrequency of blocks of digits, for every
block size. An alternative characterization proves that a real number x is normal to a base b if and only if, the
sequence (xbn)n≥1 is uniformly distributed modulo one. For a proof of these equivalences see, for instance, [5].

2

where occ(x, s) = |{i : x = s[i]}| is the number of occurrences of the symbol x in string s.
A sequence α ∈ Aω is normal to alphabet A if it is simply normal to alphabet An, for every n ≥ 1.

Thus, normality to a given alphabet implies normality to any power of that alphabet. And if
a sequence is normal to a given base, then so is each of its final segments.

2.2 Finite-State Compressors

A finite-state compressor is a finite automaton with two tapes, an input tape and an output tape.

Definition. A finite-state compressor is a 6-tuple C = 〈A,B,Q, q0, δ, o〉 where A is the input
alphabet, B is the output alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ :
Q×A → Q is the transition function and o : Q×A → B∗ is the output function. The automaton
processes the input symbols according to the current state q. When a symbol x ∈ A is read, the
automaton moves to state δ(q, x) and outputs o(q, x). We extend δ and o to process strings:

δ∗(q, λ) = q, o∗(q, λ) = λ,
δ∗(q, xs) = δ∗(δ(q, x), s). o∗(q, xs) = o(q, x)o∗(δ(q, x), s).

We write C(s) for o∗(q0, s) and |C(s)| for its length.

Definition. A finite-state compressor is lossless if, from a given output and finishing state, there
is at most one input that produces it from the initial state. This is equivalent to requiring that
the function f(s) = 〈o∗(q0, s), δ

∗(q0, s)〉 be injective.

Definition. The compression ratio for a finite-state compressor C of a string s ∈ A∗ is the output
length divided by the length of a standard optimal coding of s in symbols of alphabet B:

ρC(s) =
|C(s)|

|s| log|B| |A|
.

The compression ratio for a finite-state compressor C of an infinite sequence α ∈ Aω is

ρC(α) = lim inf
n→∞

ρC(α[1..n]).

The finite-state compression ratio of a given sequence α is the infimum of the compression ratios
achievable by all finite-state compressors, namely,

ρ(α) = inf{ρC(α) : C is a lossless finite-state compressor}.

If C is a lossless finite-state compressor, then any string s can be coded by a sequence of length
|C(s)|+kC , where kC depends on C itself and its finishing state, but not on s. Since the constant
does not significantly affect the compression ratio for sufficiently long strings, it makes sense to
refer to |C(s)| as the length of the compression of s.

Definition. A finite-state compressor C compresses a sequence α ∈ Aω if the compression ratio
for C of α, ρC(α), is strictly less than one. A sequence α is compressible by lossless finite-state
compressors if there is a lossless finite-state compressor C that compresses α, or equivalently, if
ρ(α) < 1.

The next lemma proves that any given sequence in alphabet A and the same sequence seen in
the alphabet power An, for any given natural number n, have the same finite-state compression
ratio.

Lemma 1. Fix n ∈ N. Let α be a sequence in Aω and let αn be the sequence in (An)ω such that
αn[i] = α[n(i− 1) + 1...ni]. Then, α and αn have the same finite-state compression ratio.

3

Proof. Given a lossless finite-state compressor C with input alphabet A we can construct another
one with input alphabet An that gives the same output. And, conversely, given a compressor with
input alphabet An we can construct another that reads symbols from A.

To go from A to An, we combine the processing of n consecutive symbols into one transi-
tion. Let C = 〈A,B,Q, q0, δ, o〉 be a finite-state compressor. For a given n, we define Cn =
〈An,B,Q, q0, δ

∗, o∗〉 by restricting the domain of δ∗ and o∗ to An. Notice that (An)
∗ ⊆ A∗,

(δ∗)
∗

= δ∗ and (o∗)
∗

= o∗, so |Cn(s)| = |C(s)| for strings s in (An)
∗
.

To go from An to A we reverse the previous conversion: a single transition that processes a
symbol in An is split into n individual transitions, so this gives rise to new intermediate states. In
the new automaton we need a different set of states, that we define by considering the prefix tree
of strings in A of length less than n. Given a finite-state compressor Cn = 〈An,B,Q, q0, δ, o〉, we
define C = 〈A,B,Q×A<n, 〈q0, λ〉, δ′, o′〉, where

δ′(〈q, s〉, x) =

{
〈q, sx〉 , if |s| < n− 1,

〈δ(q, sx), λ〉 , if |s| = n− 1.
o′(〈q, s〉, x) =

{
λ , if |s| < n− 1,

o(q, sx) , if |s| = n− 1.

The fact that (δ′)∗(〈q, λ〉, s) = 〈δ∗(q, s), λ〉 and (o′)∗(〈q, λ〉, s) = o∗(q, s) follows directly by apply-
ing n times the definitions above.

Observe that in the proof above, if one starts from a given automaton and applies the two
transformations successively, one does not recover the same automaton (because one of the trans-
formations changes the set of states and the other does not). Although the two automata are
different, their outputs coincide. It is possible, with some extra work, to perform both transfor-
mations and recover the original automaton: If we start from an automaton with input alphabet
An, apply the transformation to alphabet A, remove the unreachable states, apply the other
transformation and then rename the remaining states. If we start with an automaton with input
alphabet A, after the two transformations use a minimization algorithm to unify equivalent states.

3 Proof of the Characterization Theorem

3.1 Normal Implies Incompressible

Assume α ∈ Aω is normal to alphabet A. Let C = 〈A,B,Q, q0, δ, o〉 be an arbitrary lossless finite-
state compressor such that all its states are reachable and let ε > 0 be an arbitrarily small real.
Using elementary counting arguments, we show that the compression ratio for C of α is strictly
larger than (1− ε)3.

First, for each string s ∈ A∗, let as be the minimum addition to the output length that could
result from processing s:

as = min{|o∗(q, s)| : q ∈ Q}.
For each length n, consider the set of strings in An whose processing yields a large contribution
to the output length:

Sn = {s ∈ An : as > (1− ε)n log|B| |A|}.
Given a string s in the complement set An \ Sn there is at least one processing of s that produces
an output of length at most (1− ε)n log|B| |A|. However, C is lossless and each state is reachable,
so the string s can be associated in a unique way to a starting state qs, an ending state δ∗(qs, s),
and an output string o∗(qs, s) of length at most (1− ε)n log|B| |A|. Consequently, the assignment
f(s) = 〈qs, δ∗(qs, s), o∗(qs, s)〉, for an appropriate qs defines an injective function

f : An \ Sn → Q×Q× B<(1−ε)n log|B| |A|+1.

Thus, we can bound the cardinals of An \ Sn and Sn as follows:

|An \ Sn| < |Q|2|B|(1−ε)n log|B| |A|+1 = |B| |Q|2 |A|(1−ε)n.

|Sn| > |An| − |B||Q|2|A|(1−ε)n = |A|n(1− |B||Q|2|A|−εn).

4

Since |B||Q|2|A|−εn is arbitrarily close to 0 for a sufficiently large n, let n be large enough such
that |Sn| > |A|n(1− ε).

Let Cn be the transformation of compressor C by changing its input alphabet from A to An,
as in the proof of Lemma 1. Let αn ∈ (An)

ω
be the sequence α seen in alphabet An, that is,

αn[i] = α[(i− 1)n+ 1..in]. By the definition of normality, since α is normal to alphabet A, αn is
simply normal to alphabet An. Then, let k0 be such that

∀k > k0 ∀x ∈ An occ(x, αn[1..k])

k
> |An|−1(1− ε) = |A|−n(1− ε).

To give a lower bound for the compression length of Cn on αn[1..k], for k > k0, we consider only
the strings s ∈ Sn yielding a large contribution to the output length. For each such s, we sum up
the length of the output produced by each occurrence of s in αn[1..k]:

|Cn(αn[1..k])| ≥
∑
x∈An

occ(x, αn[1..k]) ax

>
∑
x∈Sn

k |A|−n(1− ε) ax

>
∑
x∈Sn

k |A|−n(1− ε)(1− ε)(n log|B| |A|) = |Sn|k|A|−n(1− ε)2 log|B| |An|

> (1− ε)3k log|B| |An|.

Therefore, the compression ratio for Cn of αn,

ρCn(αn) = lim inf
k→∞

|Cn(αn[1..k])|
k log|B| |An|

is at least (1 − ε)3. By the invariance of the compression ratio under transformations to powers
of the alphabet, proved in Lemma 1, ρC(α) is also at least (1− ε)3.

3.2 Not Normal Implies Compressible

Assume α ∈ Aω is not normal to alphabet A. We will show that α is compressible (regardless of
the choice of an output alphabet B). Since α is not normal to alphabet A, there is some n such
that α is not simply normal to alphabet An. Fix such a block length n. As before, let αn be the
sequence with symbols in An such that αn[i] = α[(i − 1)n + 1..in]. Then there is some x ∈ An

such that

lim
k→∞

occ(x, αn[1..k])

k
6= 1

|An|
.

Either this limit does not exist, or it is different from |A|−n. Thus, it is impossible that both,

lim inf
k→∞

occ(x, αn[1..k])

k
and lim sup

k→∞

occ(x, αn[1..k])

k
,

be equal to 1/|An|. We will define an increasing sequence of positions (ik)k∈N relative to this block
length n such that for each y ∈ An, the limiting frequency of y at positions (ik)k∈N,

fy = lim
k→∞

occ(x, αn[1..ik])

ik

is defined and fx 6= |An|−1. Let y1 = x and for j = 2, .., |An|, let yj be the j-th element of

An \ {x} in the lexicographic order. We define (ik)k∈N by taking subsequences. Let
(
i
(1)
k

)
k∈N

be

an increasing sequence of positions such that fy1
is defined and different from |An|−1. This exists

because y1 = x and we already argued that the limit for x is not |An|−1 over all subsequences.

5

And for each j, 2 ≤ j ≤ |A|n, let
(
i
(j)
k

)
k∈N

be a subsequence of
(
i
(j−1)
k

)
k∈N

such that the limit fyj

is defined when considered over positions
(
i
(j)
k

)
. Since frequencies are bounded between 0 and 1,

such a subsequence necessarily exists. Observe that the sequence
(
i
(|An|)
k

)
k∈N

verifies that for all

y ∈ An, fy is defined. By letting ik = i
(|An|)
k , for each k ∈ N, we obtain the desired sequence.

We now prove that αn is compressible. We shall bound the compression ratio of αn at the
sequence of positions (ik)k∈N. We follow an idea known from information theory as in the Noiseless-
Coding Theorem [13]. We encode the blocks via a block-to-variable-length encoding, with m-
length blocks of symbols from An, such that the average codeword-length is less than m× n. For
each integer m, we define a compressor Cm that codes the input by groups of m symbols. Let
Cm = 〈An,B, (An)

<m
, λ, δ, o〉 be such that for each q ∈ (An)<m and z ∈ An,

δ(q, z) =

{
qz , if |q| < m− 1,

λ , if |q| = m− 1.
o(q, z) =

{
λ , if |q| < m− 1,

ō(qz) , if |q| = m− 1,

where ō : (An)
m → B∗ is an injective map into a prefix-free subset of B∗ such that

|ō(z1z2...zm)| =

⌈
m∑
i=1

− log|B| fzi

⌉
.

Since ∑
s∈(An)m

|B|−|ō(s)| =
∑

s∈(An)m

m∏
j=1

fs[j] ≤ 1,

such a prefix-free set exists (for example, it can be defined by Huffman’s coding [7]). This ensures
that Cm is lossless. We now give an upper bound for the length of the output of Cm on an arbitrary
string s ∈ (An)∗. Fix p to be the largest integer such that pm ≤ |s|. By definition of Cm,

Cm(s) = o∗(λ, s) = ō(s[1..m])ō(s[m+ 1..2m] . . . ō(s[(p− 1)m+ 1..pm]).

And, using the definition of ō,

|Cm(s)| = |o∗(λ, s)| =
p∑

j=1

|ō(s[(j − 1)m+ 1..jm])| ≤ |s|/m+
∑
y∈An

occ(y, s)(− log|B| fy).

We obtain the following upper bound for the compression ratio for Cm of αn,

ρCm
(αn) = lim inf

k→∞

|Cm(αn[1..k])|
log|B| |An| k

≤ lim
k→∞

|Cm(αn[1..ik])|
log|B| |An| ik

≤ lim
k→∞

 ik
m

+
∑
y∈An

occ(y, αn[1..ik])(− log|B| fy)

/(
log|B| |An| ik

)
≤ 1

m log|B| |An|
+
∑
y∈An

fy(− log|B| fy)/ log|B| |An|.

Since we assumed there was some x ∈ An such that fx 6= |A|−n, by Shannon’s work [13] we have∑
y∈An

fy(− log|B| fy)/ log|B| |An| < 1.

Then, for some sufficiently large m, ρCm
(αn) is also strictly less than 1. This proves that αn, as

a sequence in (An)
ω

, is compressible. By the invariance of the compressibility ratio under powers
of the alphabet, shown in Lemma 1, the sequence α ∈ Aω is also compressible. This concludes
the proof of the Characterization Theorem.

6

4 Proof of Agafonov’s Theorem

As a corollary of the Characterization Theorem we obtain Agafonov’s Theorem [1]. We regard a
finite automaton that selects a subsequence of a given sequence as a finite-state compressor that
behaves as the identity function but only on selected positions. We call it a finite-state selector.

Definition. A finite-state selector is a 5-uple S = 〈A,Q, q0, δ,Qf 〉 where A is the input alphabet,
Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q × A → Q is the transition function
and Qf ⊆ Q is the set of selecting states. To ensure that for an infinite input the output is
necessarily infinite, we require that the transition function δ be free of cycles of non-selecting
states. The output function o : Q × A → A is the identity function restricted to the selecting
states: o(q, x) = x, if q ∈ Qf ; and o(q, x) = λ, otherwise. The automaton processes the input
symbols according to the current state q. When a symbol x ∈ A is read, the automaton moves to
state δ(q, x) and outputs x if q ∈ Qf ; otherwise, it outputs nothing. We define the extensions δ∗

and o∗ as in the definition of finite-state compressors. We write S(s) for o∗(q0, s), the output of
the selector on input the string s.

The next lemma is a known result in the area (see for instance [9]); it asserts that finite-state
selectors can not select a sublinear part of the input.

Lemma 2. Let α ∈ Aω and let S be a finite-state selector with k states, then ρS(α) ≥ 1/k.

Proof. Let S = 〈A,Q, q0, δ,Qf 〉 and (qn)n∈N be the sequence of states visited when process-
ing α, qn = δ∗(q0, α[1..n]). Consider blocks of k = |Q| consecutive states in the sequence
qt, qt+1, ..., qt+k−1. Since there are k states in a block either all states appear in it or there is
a cycle of states. Either way, at least one state in the block must be a selecting state; therefore,
at least one symbol from each block of k consecutive symbols of α must be selected.

We now introduce a technical tool that we will use in the proof of Agafonov’s theorem: a finite-
state compressor with more than one output. We show that the compression ratio for ordinary
finite-state compressors and for these new ones coincides.

Definition. A two-output finite-state compressor is a 7-tuple C = 〈A,B,Q, q0, δ, o1, o2〉 where A
is the input alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q×A → Q is the
transition function and oi : Q×A → B∗ are the output functions. The automaton processes the
input symbols according to the current state q. When a symbol x ∈ A is read, the automaton
moves to state δ(q, x) and outputs oi(q, x) on output tape i. We extend δ and oi to process strings
in the same way as for regular finite-state compressors. We write C(s) for 〈o∗1(q0, s), o

∗
2(q0, s)〉 and

|C(s)| = |o∗1(q0, s)|+ |o∗2(q0, s)|.

A two-output finite-state compressor is lossless if, from two given output strings and a finishing
state, there is at most one input that produces from the initial state the two strings and the fin-
ishing state. This is equivalent to requiring that the function f(s) = 〈o∗1(q0, s), o

∗
2(q0, s), δ

∗(q0, s)〉
be injective.

The definition of compression ratio for a two-output finite-state compressor is exactly as the
definition for the case of a single output.

Lemma 3. The finite-state compression ratio of a given infinite sequence is equal to the two-output
compression ratio of the same sequence.

Proof. Any lossless compressor can be emulated by a two-output lossless compressor by not using
one of the outputs. Therefore, the two-output compression ratio is clearly less than or equal
to the finite-state compression ratio. Let us show that for any lossless two-output compressor
C = 〈A,B,Q, q0, δ, o1, o2〉 and an infinite sequence α ∈ Aω we can build a lossless finite-state
compressor C ′ such that ρC′(α) is arbitrarily close to ρC(α).

7

The idea is to interleave both outputs in blocks of m symbols with one extra symbol before
each block that identifies which output it came from. Let b1, b2 ∈ B be different symbols. We will
use bi to mark that a given output block comes from output i. Let Fm, Lm : B∗ → B∗ be the
functions that split the output such that

Fm(s) = s[1..|s| − |s| mod m] and Lm(s) = [|s| − |s| mod m+ 1..|s|].

Clearly, for all s, Fm(s)Lm(s) = s, |Fm(s)| mod m = 0, and |Lm(s)| < m. Let F ′m : B∗×B → B∗
be equal to F but appending the symbol b before each block of m symbols. Thus,

F ′m(s, b) =

|Fm(s)|/m∏
i=1

b Fm(s)[im+ 1..(i+ 1)m].

Let Cm = 〈A,B,Q× B<m × B<m, 〈q0, λ, λ〉, δ′m, o′m〉 where

δ′m(〈q, t1, t2〉, x) = 〈δ(q, x), Lm(t1o1(q, x)), Lm(t2o2(q, x))〉
o′m(〈q, t1, t2〉, x) = F ′m(t1o1(q, x), b1)F ′m(t2 o2(q, x), b2).

Notice that Cm basically mimics the behavior of C and puts in its single output both outputs of
C in blocks of m bits, each preceded with an indicator symbol bi to indicate that the block came
from output i.

Consider a fixed m and let us show that Cm is lossless. Let fi : B∗ × (Q×B<m ×B<m)→ B∗
and g : B∗ × (Q × B<m × B<m) → Q be functions that, given an output and finishing state of
Cm, calculate both outputs and the finishing state, respectively, of C. From the existence of such
functions, since C is lossless, it is clear that Cm is also lossless. Let

Jt,i = {j : 1 ≤ j ≤ |t|/(m+ 1) ∧ t[j(m+ 1)−m] = bi}

be the set of positions of blocks in t that come from output i. Then,

fi(t, q, u1, u2) =

 ∏
j∈Jt,i

t[j(m+ 1)−m+ 1..j(m+ 1)]

ui

g(t, q, u1, u2) = q

Simply fi parses t into blocks of m+ 1 bits, and it appends to its output only the final m bits of
each block starting with marker bi. Finally, notice that

ρCm
(α) = lim inf

n→∞

Cm(α[1..n])

n
≤ lim inf

n→∞

m+ 1

m

|o∗1(α[1..n])|+ |o∗2(α[1..n])|
n

≤
(

1 +
1

m

)
ρC(α).

Letting C ′ = Cm for sufficiently large m we can make the compression ratio for C ′ be arbitrarily
close to the compression ratio for C.

We are ready to prove Agafonov’s Theorem generalized to arbitrary alphabets.

Agafonov’s Theorem. A sequence α ∈ Aω is normal to alphabet A if, and only if, every finite-
state selector on input α outputs a sequence normal to alphabet A.

Proof. In this proof we use finite-state compressors whose output alphabet is the same as the
input alphabet, to match the input/output behavior of finite-state selectors.

Assume α is normal to alphabetA and, towards a contradiction, suppose S = 〈A,QS , q0S , δS ,Qf 〉
is a selector such that S(α) is not normal to alphabet A. By the Characterization Theorem, there
is a lossless C = 〈A,A,QC , q0C , δC , oC〉 with output alphabet A and a positive εC such that

ρC(S(α)) = lim inf
n→∞

|C(S(α)[1..n])|/n = 1− εC .

8

We define a two-output compressor C ′ that runs C on the subsequence selected by S, and acts as
the identity function on the rest of the input sequence. Let C ′ = 〈A,A,QC×QS , 〈q0C , q0S〉, δ, o1, o2〉,
where

δ(〈qC , qS〉, x) =

{
〈qC , δS(qS , x)〉 , if qS 6∈ Qf

〈δC(qC , x), δS(qS , x)〉 , if qS ∈ Qf .

o1(〈qC , qS〉, x) =

{
λ , if qS 6∈ Qf

oC(qC , x) , if qS ∈ Qf .

o2(〈qC , qS〉, x) =

{
x , if qS 6∈ Qf

λ , if qS ∈ Qf .

By construction, C ′ is lossless, because it reproduces the input in one case, and it applies a lossless
compressor in the other case.

Let S̄ be exactly as the selector S = 〈A,QS , q0S , δS ,Qf 〉 but complementing the selecting
states. This is S̄ = 〈A,QS , q0S , δS ,Q \Qf 〉. Observe that for s ∈ A∗, C ′(s) = 〈C(S(s)), S̄(s)〉, so

|C ′(s)| = |C(S(s))|+ |S̄(s)| = |C(S(s))|+ |s| − |S(s)|.

Then,
ρC′(s) ≤ ρC(S(s))ρS(s) + (1− ρS(s))

and for α ∈ Aω,
ρC′(α) ≤ ρC(S(α))ρS(α) + (1− ρS(α)).

By Lemma 2, ρS(α) ≥ εS for a positive εS = 1/|QS |. By definition of C, ρC(S(α)) = (1− εC) for
some positive εC . Since both constants are positive,

ρC′(α) ≤ (1− εC)εS + (1− εS) < 1.

Thus, C ′ compresses α and, by Lemma 3, α is compressible by ordinary lossless finite-state com-
pressors. This contradicts the Characterization Theorem because we assumed that α is normal to
alphabet A.

The other direction of the theorem is ensured by the finite-state selector that selects all the
symbols of the input sequence.

Acknowledgements. We are thankful to Elvira Mayordomo and Ludwig Staiger for providing
us with a detailed account of the history of the Characterization Theorem and to an anonymous
referee for suggesting many improvements in the presentation of the results.

The authors are members of the Laboratoire International Associé INFINIS, Universidad de
Buenos Aires – Université Paris Diderot. This research was partially done whilst the first author
was a visiting fellow at the Isaac Newton Institute for Mathematical Sciences in the programme
‘Semantics & Syntax’.

References

[1] V. N. Agafonov. Normal sequences and finite automata. Soviet Mathematics Doklady, 9:324–
325, 1968.

[2] É. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del
Circolo Matematico di Palermo, 27:247–271, 1909.

[3] C. Bourke, J. Hitchcock, and N. Vinodch. Entropy rates and finite-state dimension. Theoret-
ical Computer Science, 349:392–406, 2005.

9

[4] A. Broglio and P. Liardet. Predictions with automata. symbolic dynamics and its applications.
Contemporary Mathematics, (135):111–124, 1992. Also in Proceedings AMS Conference in
honor of R. L. Adler. New Haven CT - USA 1991.

[5] Y. Bugeaud. Distribution Modulo One and Diophantine Approximation. Series: Cambridge
Tracts in Mathematics 193. Cambridge University Press, 2012.

[6] J. Dai, J. Lathrop, J. Lutz, and E. Mayordomo. Finite-state dimension. Theoretical Computer
Science, 310:1–33, 2004.

[7] D. Huffman. A method for the construction of minimum-redundancy codes. In Institute of
Radio Engineers, pages 1098–1102, 1952.

[8] D. Huffman. Canonical forms for information-lossless finite-state logical machines. Transac-
tions on Information Theory, 5(5):41–59, 1959.

[9] R. Lindner and L. Staiger. Algebraische Codierungstheorie – Theorie der sequentiellen
Codierungen. Akademie-Verlag, Berlin, 1977.

[10] W. Merkle and J. Reimann. Selection functions that do not preserve normality. Theory of
Computing Systems, 39(5):685–697, 2006.

[11] M. G. O’Connor. An unpredictability approach to finite-state randomness. Journal of Com-
puter and System Sciences, 37(3):324–336, 1988.

[12] C. P. Schnorr and H. Stimm. Endliche automaten und zufallsfolgen. Acta Informatica, 1:345–
359, 1972.

[13] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
1948.

10

