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A recent theorem of Brattka, Miller and Nies [1] shows that a real number r in the unit
interval is computably random if and only if every nondecreasing computable function from
the unit interval to the real numbers is differentiable at r. Here we establish a counterpart
result that characterizes normality to a given base in terms of differentiability of functions
computable with finite transducers (injective finite state automata).

For a real number r we consider the unique expansion in base b of the form r = bxc +∑∞
n=1 anb

−n where the integers 0 ≤ an < b, and an < b − 1 infinitely many times. This last
condition over an ensures a unique representation of every rational number. Let us recall that
Borel’s original definition of normality in [2] is equivalent to the following simpler one [3].

Definition. A real number r is simply normal to a given base b if each digit in {0, 1, .., (b−1)}
occurs with the same limiting frequency 1/b in the expansion of r in base b. A number is
normal to base b if it is simply normal to the each base bi, for very positive integer i.

For a finite set of symbols A we write A∗ and Aω to denote, respectively, the set of finite
and infinite sequences of symbols in A,

Definition. (1) A finite state transducer is a 4-uple C = 〈Q, q0, δ, o〉, where Q is a finite
set of states, q0 ∈ Q is the initial state, δ : Q × A → Q is the transition function and
o : Q×A → A∗ is the output function. A finite state transducer processes the input symbols
according to the current state q. When a symbol a ∈ A is read, the automaton moves to state
δ(q, a) and outputs o(q, a). The extension of δ and o to process strings are δ∗ : Q×A∗ → Q
and o∗ : Q × A∗ → A∗ such that, for a ∈ A, s ∈ A∗ and λ the empty string, δ∗(q, λ) = q,
δ∗(q, as) = δ∗(δ(q, a), s), and o∗(q, λ) = λ, o∗(q, as) = o(q, a)o∗(δ(q, a), s).. The extension of
o to infinite sequences o∗ : Q×Aω → Aω is o∗(q, x) = limk→∞ o(q, x[1..k]).

(2) The function fC : Aω → Aω computed by C = 〈Q, q0, δ, o〉 is fC(x) = o∗(q0, x).
(3) A function f : Aω → Aω is computable by a finite state transducer when f = fC

for some finite state transducer C. A function f : Aω → R is computable by a finite state
transducer when f = conv(fC) for some finite state transducer C, where conv : Aω → R is
the usual map conv(x) =

∑
i≥1 t

−ix[i], with t the cardinality of A.

The following example shows that the obvious definition of differentiability is not appro-
priate for our purposes.
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Example. Let I = 〈q, q, π1, π2〉 where π1 and π2 are respectively the projections func-
tions of the first and second argument. So, the function fI : {0, 1}ω → R is the iden-
tify function mapped to the unit interval. The obvious definition of differentiability would
yield limk→∞ 2−k(conv(π∗2(q, x[1..k − 1]1)) − conv(π∗2(q, x[1..k − 1]0))) = 1. Now, let C =
〈{q, r0, r1}, q, δ, o〉 such that for a, b ∈ 2, δ(q, b) = rb, δ(rb, a) = q, o(q, b) = λ, o(rb, a) = ba.
It is easy to check that fC : {0, 1}ω → R is also the identify function mapped to the unit
interval. However, limk→∞ 2−k(conv(o∗(q, x[1..k − 1]0)) − conv(o∗(q, x[1..k − 1]0))) does not
exist for any x.

Definition. The differential of a non-decreasing function f : Aω → R at x is
Df(x) = lim

k→∞
t−k(f(x[1..k]1ω)− f(x[1..k]0ω)) = lim

k→∞
µ(f(Tx[1..k]))/µ(Tx[1..k]),

where t is the cardinality of A, Ts = {sx : x ∈ Aω} is the cone defined by the string s, and
f(Ts) = {f(sx) : x ∈ Aω}. We say that f is differentiable at x if Df(x) exists.

Now we can formulate the announced result.

Theorem. A real number r is normal to a given base b if, and only if, every real valued non-
decreasing function computable by a finite state transducer is differentiable at the expansion
of r in base b.

The proof relies in the characterization of normal sequences as those incompressible by
information lossless finite state compressors, result that follows from [6, 4, 5]. An adaptation
is needed to deal with the non-decreasing condition.
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