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A recent theorem of Brattka, Miller and Nies [1] shows that a real number r in the unit
interval is computably random if and only if every nondecreasing computable function from
the unit interval to the real numbers is differentiable at r. Here we establish a counterpart
result that characterizes normality to a given base in terms of differentiability of functions
computable with finite transducers (injective finite state automata).

For a real number r we consider the unique expansion in base b of the form r = [z] +
Yoo anb™™ where the integers 0 < a, < b, and a,, < b — 1 infinitely many times. This last
condition over a,, ensures a unique representation of every rational number. Let us recall that
Borel’s original definition of normality in [2] is equivalent to the following simpler one [3].

Definition. A real number r is simply normal to a given base b if each digit in {0, 1, .., (b—1)}
occurs with the same limiting frequency 1/b in the expansion of r in base b. A number is
normal to base b if it is simply normal to the each base b, for very positive integer i.

For a finite set of symbols A we write A* and A“ to denote, respectively, the set of finite
and infinite sequences of symbols in A,

Definition. (1) A finite state transducer is a 4-uple C' = (Q, qo, 0, 0), where Q is a finite
set of states, gy € Q is the initial state, § : Q@ x A — @ is the transition function and
0: QxA— A* is the output function. A finite state transducer processes the input symbols
according to the current state q. When a symbol a € A is read, the automaton moves to state
0(q,a) and outputs o(q,a). The extension of § and o to process strings are §* : Q@ x A* — Q
and o* : @ x A* — A* such that, for a € A, s € A* and A the empty string, §*(q,\) = ¢,
0*(q,as) = 0*(6(q,a),s), and 0*(q, \) = A, 0*(q,as) = o(q,a)o*(d(q,a),s).. The extension of
o to infinite sequences 0* : Q x AY — AY is 0*(q, ) = limy_, 0(q, z[1..k]).

(2) The function fc : AY — A% computed by C = (Q, qo,0,0) is fo(z) = 0*(qo, ).

(3) A function f : AY — AY is computable by a finite state transducer when f = fo
for some finite state transducer C. A function f : A“ — R is computable by a finite state
transducer when f = conv(f¢) for some finite state transducer C, where conv : A — R is
the usual map conv(z) = Y., t~‘z[i], with ¢ the cardinality of A.

The following example shows that the obvious definition of differentiability is not appro-
priate for our purposes.



Example. Let I = (q,q,m,m) where m and mo are respectively the projections func-
tions of the first and second argument. So, the function f; : {0,1}* — R is the iden-
tify function mapped to the unit interval. The obvious definition of differentiability would
yield limy, o0 27%(conv(ns(q, z[1..k — 1]1)) — conv(7s(q, z[1..k — 1]0))) = 1. Now, let C' =
({q,70,71},q,9,0) such that for a,b € 2, §(q,b) = 74,0(rp,a) = q,0(q,b) = X, 0(rp,a) = ba.
It is easy to check that fo : {0,1}* — R is also the identify function mapped to the unit
interval. However, limy,_,o, 27%(conv(o*(q, z[1..k — 1]0)) — conv(0*(g, z[1..k — 1]0))) does not
exist for any x.

Definition. The differential of a non-decreasing function f : A — R at x is

Df(r) = lim ¢H(F(e{LK12) — f(al1k0°)) = Tim u(F(Tpy i)/ 4(Teps i),
where ¢ is the cardinality of A, Ts = {sz : x € A“} is the cone defined by the string s, and
f(Ts) ={f(sx) : x € A“}. We say that f is differentiable at z if D f(x) exists.

Now we can formulate the announced result.

Theorem. A real number r is normal to a given base b if, and only if, every real valued non-
decreasing function computable by a finite state transducer is differentiable at the expansion
of r in base b.

The proof relies in the characterization of normal sequences as those incompressible by
information lossless finite state compressors, result that follows from [6, 4, 5]. An adaptation
is needed to deal with the non-decreasing condition.
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