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Abstract. We show that there are computably enumerable (c.e.) sets with

maximum initial segment Kolmogorov complexity amongst all c.e. sets (with
respect to both the plain and the prefix-free version of Kolmogorov complex-

ity). These c.e. sets belong to the weak truth table degree of the halting
problem, but not every weak truth table complete set has maximum initial

segment Kolmogorov complexity. Moreover, every c.e. set with maximum ini-

tial segment prefix-free complexity is the disjoint union of two c.e. sets with
the same property; and is also the disjoint union of two c.e. sets of lesser initial

segment complexity.

1. Introduction

Kolmogorov complexity measures the complexity of a finite sequence in terms of
the shortest program that can generate it. It may also be used in order to study
the initial segment complexity of infinite sequences, and it is this approach that
led to the definition of random sequences in [Lev73, Cha75]. Measures of relative
initial segment complexity were initially introduced for the class of computably
enumerable (c.e.) reals (i.e. reals that are the limits of increasing computable
sequences of rationals) and were used in order to characterize Chaitin’s Ω numbers
as the c.e. reals with maximum initial segment complexity. In this note we are
concerned with the initial segment complexity of c.e. sets. We discover a class of
c.e. sets of maximum initial segment complexity and study some of its properties.
These c.e. sets may be seen as analogues of Chaitin’s Ω numbers in the class of c.e.
sets.

In Section 1.1 we review the measures that have been used in the literature
in order to classify classes of reals according to their initial segment complexity.
In Section 1.2 we give an account of the known properties concerning the initial
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segment complexity of c.e. sets. In Section 1.3 we give an outline of our results,
which are presented in detail in the main part of this note.

1.1. Measures of relative initial segment complexity. One of the earliest
measures for comparing the initial segment complexity of reals (which we identify
with their binary expansion) was introduced and studied in [Sol75]. It is known
as the ‘Solovay reducibility’, often denoted by ≤S , and for c.e. reals it essentially
measures the hardness of approximation ‘from below’. It is a preorder and it induces
a partially ordered degree structure that is known as the Solovay degrees. In a
series of papers [Sol75, CHKW01, KS01] it was shown that the random c.e. reals
are exactly the reals in the greatest Solovay degree, and they coincide with the
halting probabilities of universal prefix-free machines. This structure was studied
further (see [DH10, Section 9.5] for an overview) and was generally accepted as an
adequate measure for classifying initial segment complexities for the class of c.e.
reals. A number of related measures were introduced in [DHL04] with the hope
of providing measures of relative complexity for different classes of reals. Let KM

denote the Kolmogorov complexity function with respect to the Turing machine
M (i.e. KM (σ) is the length of the shortest string τ such that M(τ) = σ, and ∞
if this does not exist). Let K = KU where U is a fixed optimal universal prefix-
free machine and let C = KV where V is a fixed optimal universal (plain) Turing
machine. Also, let C(σ|τ) denote the Kolmogorov complexity of σ relative to τ (i.e.
when τ is given as an oracle in the underlying machine that describes σ). A real
X is called random if ∃c∀n, K(X �n) ≥ n − c. Perhaps the most straightforward
measure of relative initial segment complexity is ≤K (already implicit in [Sol75]).

(1.1) X ≤K Y
def⇐⇒ ∃c∀n (K(X �n) ≤ K(Y �n) + c).

We may express the fact that X ≤K Y simply by saying that the prefix-free initial
segment complexity of X is less than (or equal to) the prefix-free initial segment
complexity of Y . The plain complexity version ≤C of the above relation is defined
analogously. These preorders induce the K-degrees and the C-degrees respectively,
which have received a certain amount of attention (see [DH10, Section 9.7]). We
note that ≤S is contained in ≤K and so the K-degrees of c.e. reals have a largest
element that contains the random c.e. reals. The main proposal for an alternative
to Solovay reducibility that applies to more general classes of reals was the relative
K-reducibility (in symbols, rK), which is defined by

(1.2) X ≤rK Y
def⇐⇒ ∃c∀n (K(X �n | Y �n) ≤ c).

Note that X ≤rK Y can be defined equivalently using plain complexity, by the
relation ∃c∀n (C(X �n | Y �n) ≤ c). This follows from the basic relations between
plain and prefix-free complexity, namely the fact that there exists a constant d such
that C(σ|τ) ≤ K(σ|τ) + d and K(σ|τ) ≤ 2C(σ|τ) + d for all strings σ, τ . It is not
hard to see that the relation X ≤rK Y is equivalent to (1.3).

(1.3)
There exists a partial computable function f : 2<ω × N → 2<ω

and a constant c such that ∀n∃j < c (f(Y �n, j) ↓= X �n).

This shows that X ≤rK Y implies X ≤K Y and X ≤C Y . Moreover (as observed
in [DHL04]) X ≤rK Y implies X ≤T Y (where ≤T is the Turing reducibility). In
[MS07] it was observed that X ≤C Y implies X ≤T Y , provided that Y is a subset
of {22n | n ∈ N}.
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1.2. The initial segment complexity of c.e. sets. By [Bar68], if A is a c.e. set
then ∃c∀n, C(A �n) ≤ 2 log n+c; on the other hand, there are c.e. sets B such that
∀n C (B �n) ≥ log n− b for some constant b. Each of these observations lead to a
more informative view about c.e. sets with complicated initial segments. The first is
from [Kum96] and is known as the Kummer dichotomy. It says that every member
in a certain class of c.e. Turing degrees that is known as the array non-computable
degrees contains a c.e. set A such that C(A �n) ≥ 2 log n − c for infinitely many n
and some constant c; on the other hand if the degree of a c.e. set B is not in that
class and f is any computable order (i.e. nondecreasing unbounded function) then
∃b∀n, C(B �n) ≤ log n + f(n) + b. The second is from [KHMS06, KHMS11] and
characterizes the c.e. sets A such that ∀n, C(A �n) ≥ f(n) for a computable order
f , as the weak truth table complete c.e. sets (i.e. the sets that compute the halting
problem with a computable bound on their use in the computation). These are also
called complex sets.

Further research on this topic concerns the behavior of the measures of complex-
ity that we discussed in Section 1.1 on the class of c.e. sets. In [Bar05] it was shown
that in the Solovay degrees of c.e. sets there are pairs with no upper bound; in
particular, there is no maximum degree. In [Bar11b] it was shown that there are no
minimal pairs in the structure of the K-degrees of c.e. sets. This gave an elementary
property that distinguishes this structure from the C-degrees, the rK-degrees and
the Solovay degrees of c.e. sets. A number of other features in the K-degrees and
the C-degrees degrees of c.e. sets (including splitting theorems and cone avoidance
arguments) were shown in [Ste11, Chapter 2] (see [Bar11a, Section 5]) and [BL11,
Section 6] by emulating the corresponding arguments in the c.e. Turing degrees.

1.3. Our results. Perhaps the most basic question concerning the relative initial
segment complexity of c.e. sets is whether there exist c.e. sets that are more complex
(modulo a constant) than any other c.e. set. In view of the Kummer dichotomy
and the behavior of the c.e. sets in the Solovay degrees, one would guess a negative
answer for any of the measures of relative complexity of Section 1.1. In Section
2 we show that, surprisingly, there are complete (i.e. maximum) elements in the
partial orders of the rK-degrees, the C-degrees and the K-degrees of c.e. sets.

There are c.e. sets of maximum initial segment complexity amongst all c.e. sets.

We also show that they form a proper subclass of the complex sets of [KHMS06,
KHMS11]. In Section 3 we show some splitting properties of the c.e. sets in the
rK-degrees, the C-degrees and the K-degrees. In particular, every c.e. set can be
split into two disjoint c.e. sets of the same K-degree, while this fails in the cases of
the rK-degrees and the C-degrees. The former result is rather surprising and can
be seen as a formal expression of the following statement.

Every c.e. set is the disjoint union of two c.e. sets of the same

initial segment prefix-free complexity.

As a consequence, every c.e. complex set is the disjoint union of two complex c.e.
sets and an analogous result holds for the K-complete c.e. sets.

It remains to be seen if the K-degrees of the c.e. sets are dense; by the splitting
theorems of [Ste11, Chapter 2], [Bar11a, Section 5] they are downward dense. A
relevant open question is whether every pair of c.e. sets has a least upper bound in
the c.e. K-degrees.
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2. Maximum initial segment complexity in the c.e. sets

We show that there exists a c.e. set B such that W ≤rK B for all c.e. sets W .
According to the discussion of Section 1.1 this set will also satisfy W ≤C B and
W ≤K B for all c.e. sets W . We will use a particular way of ensuring one set is
rK-reducible to another, which is particular to the class of c.e. sets. Condition
(2.1) of Lemma 2.1 says that for every ` and for every c enumerations into A �`, at
least one enumeration into B �` occurs.

Lemma 2.1 (rK-reductions for c.e. sets). Let A,B be c.e. sets with enumerations
satisfying the following property:

(2.1)
There exists c such that for every ` and s < t, if |A[t] �` −A[s] �` | ≥ c
then |B[t] �` | > |B[s] �` |.

Then A ≤rK B.

Proof. It suffices to define a partial computable function f that meets (1.3). The
definition of f is as follows. For each σ and j, wait for a stage s such that B[s] �|σ|=
σ and the remainder of |A[s] �|σ| | divided by c is j. Then let f(σ, j) = A[s] �|σ|.

For the verification, first we show that for each `, if f(B �`, j) is defined and j is
the remainder of |A �` | divided by c then it equals A �`. Indeed, suppose that the
definition occurred at stage s. If A[s] �` is not correct, there must occur at least c
enumerations into A �` after stage s. But according to condition (2.1) this means
that B[s] �` is not a prefix of B, a contradiction. Finally for each ` it is clear that
f(B �`, j) will be defined if j is the remainder of |A �` | divided by c. �

We may now use Lemma 2.1 in order to prove that there are rK-complete c.e. sets.

Theorem 2.2 (rK-completeness). There exists an rK-complete c.e. set B. In
particular, W ≤rK B for all c.e. sets W ; moreover the reductions are uniform in
the indices of the c.e. sets.

Proof. We make use of Lemma 2.1 in order to construct the required reductions.
Without loss of generality, we only deal with c.e. sets W such that W (0) = W (1) =
0. For the duration of this proof we let (We) be an effective enumeration of all
c.e. sets that satisfy this condition, such that at any stage s at most one number
is enumerated in ∪e<sWe. As usual (by a standard convention), n ∈We[s] implies
n < s and e < s. Note that, given the nature of the rK-reducibility, a uniform
sequence of reductions for this restricted class of sets is sufficient for the proof of
the theorem. Let Ie(i) = [2i, 2i+1) ∩We. Clearly, this family of sets is uniformly
c.e. and |Ie(i)| ≤ 2i for all e, i. We define B by enumerating it during the stages of
the universal enumeration of (We) as follows. For each i > 0 and each 2e+3 times
that a number is enumerated into ∪t≤iIe(t), we enumerate into B the least number
in [2i−1, 2i) which is currently out of B. Formally, at stage s + 1 for each e and
i > 0 such that∣∣∣⋃

t≤i

Ie(t)[s+ 1]
∣∣∣ = 2e+3 and

∣∣∣⋃
t≤i

Ie(t)[s+ 1]
∣∣∣ > ∣∣∣⋃

t≤i

Ie(t)[s]
∣∣∣

we enumerate the least element of [2i−1, 2i)−B[s] into B[s+ 1].
First, note that the enumeration of B is computable, although there is an un-

bounded quantifier on e, i in each step. This is because Ie(i)[s] = ∅ whenever e ≥ s
or i ≥ s. Second, fix i > 0 and note that at each stage at most one number
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from [2i−1, 2i) is requested by the construction to be enumerated in B. More-
over every such request corresponds to some (possibly many) e. We claim that
for each e, there can be at most 2i+1/2e+3 = 2i−e−2 corresponding requests for
enumeration into B ∩ [2i−1, 2i). This follows from the construction and the fact
that | ∪t≤i Ie(t)| ≤ 2i+1. Hence, overall there can be at most

∑
e 2i−e−2 = 2i−1

requests for enumeration into B ∩ [2i−1, 2i). This means that if at some stage s+ 1
the construction requests an enumeration of a number in [2i−1, 2i) − B[s] into B,
we have [2i−1, 2i)−B[s] 6= ∅ (i.e. such an enumeration will occur).

Finally, fix e and observe that condition (2.1) of Lemma 2.1 holds for c = 2e+3

and A = We. Indeed, pick any ` and let i be the least number such that ` ≤ 2i+1.
Then enumerations in We �` are also enumerations in ∪t≤iIt. Hence at every 2e+3

enumerations in We �`, an enumeration will occur in B ∩ [2i−1, 2i), which is also an
enumeration in B �`. �

The following consequence is immediate, in view of the discussion of Section 1.1.

Corollary 2.3. There exists a ≤C-complete and ≤K-complete c.e. set.

Recall that a computable order is a nondecreasing unbounded computable func-
tion, and that a set X is called complex if there is a computable order f such that
∀n, C(A �n) ≥ f(n). This is equivalent to the condition that ∀n, K(A �n) ≥ g(n)
for some computable order g. In [KHMS06, KHMS11] it was shown that a c.e. set is
complex if and only if it is in the same weak truth table degree as the halting prob-
lem. We clarify the relation between complex sets and K-complete (or C-complete)
sets. Moreover, we observe that there are many-one complete c.e. sets which are
not ≤K-complete or ≤C-complete.

Theorem 2.4. Every ≤C-complete and every ≤K-complete c.e. set is in the weak
truth table degree of the halting problem. The converse does not hold.

Proof. Clearly, every ≤K-complete and every ≤C-complete c.e. set is complex.
Hence they are in the weak truth table degree of the halting problem.

In order to show that the converse does not hold, it suffices to produce two m-
complete sets A0, A1 such that Ai 6≤K A1−i for i < 2 (and similarly for ≤C). It is
not hard to see that there exist two c.e. sets B0, B1 and a computable order f such
that

¬∃c∀n, K(Bi �n) ≤ K(B1−i �n) + f(n) + c for each i < 2.

In any case, this is a consequence of Theorem 3.7 and the results from [KHMS06,
KHMS11] about the initial segment complexity of the c.e. sets in the weak truth
table degree of the halting problem. Let g(0) = 0 and let g(n + 1) be the least
k > g(n) such that f(k) > 2n + 2. Let Ai(g(n)) = ∅′(n) for all n > 0 and let
Ai(k) = Bi(k) if k 6= g(t) for all t > 0. Clearly Ai, i < 2 are m-complete. Note
also, that there are at most f(n)/2 many places in Ai �n which are used to code ∅′.
This means that there exists a constant c such that

K(Ai �n) ≤ K(Bi �n) + f(n) + c

K(Bi �n) ≤ K(Ai �n) + f(n) + c

for all n ∈ N and i < 2. Hence Ai 6≤K A1−i for i < 2. A similar argument deals
with the case for ≤C . �
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3. Splitting theorems for computably enumerable sets

The decomposition of c.e. sets into disjoint c.e. sets is a major topic in com-
putability theory which is relevant to mathematical logic in general. Various split-
ting theorems have been discovered since the early days of the subject and [DS93] is
a comprehensive survey of this area. In this section we are concerned with splitting
theorems that are relevant to the measures of complexity ≤rK ,≤C , ≤K and the
results of Section 2. According to [Ste11, Chapter 2], [Bar11a, Section 5] (and the
classic Sacks splitting theorem) if ≤r∈ {≤rK ,≤C ,≤K} then every c.e. set A >r ∅
is the disjoint union of two c.e. sets A0, A1 such that Ai 6≤r A1−i for each i < 2.
On the other hand there are c.e. sets that cannot be split in the same degree, for
example with respect to the Turing reducibility (a result from [Lac67]). We show
that the same holds for ≤C (hence, also for ≤rK and ≤S). If ≤r is a preorder, we
let ≡r denote the induced equivalence relation.

Theorem 3.1 (Non-splitting for ≤C). There exists a c.e. set A such that for all
pairs of c.e. sets W,V , if W ∪ V = A and W ∩ V = ∅ then A 6≡C W or A 6≡C V .

Proof. In [Lac67] a version of this theorem was shown for ≡C replaced by ≡T .
This argument may be used in order to produce a set A ⊆ {22n | n ∈ N} with the
same properties. Such a modification is straightforward. By [MS07] (as remarked
in Section 1.1) such a set satisfies the desired properties. �

We note that the set of Theorem 3.1 may be chosen in the Turing degree of the
halting problem, in the same way that the corresponding set from [Lac67] may be
chosen with the same property (as noticed in [Lad73b]).

In view of the above discussion (in particular Theorem 3.1), it is rather surprising
that every c.e. set can be split into two c.e. sets in the same K-degree. Moreover,
as we see in the following, this unexpected fact has interesting consequences.

Theorem 3.2 (Splitting in the same degree for K-reducibility). Every c.e. set can
be split into two c.e. sets of the same K-degree. In other words, if A is a c.e.
set then there exist c.e. sets A0, A1 such that A0 ∪ A1 = A, A0 ∩ A1 = ∅ and
A ≡K A0 ≡K A1.

Proof. We fix a computable enumeration of A and define the splitting A0, A1 as
in the statement of the theorem. It suffices to construct a prefix-free machine M
such that the following requirements are met for all n:

(3.1) KM (A �n) ≤ K(Ai �n).

Without loss of generality we may assume that enumerations into A happen only at
odd stages and that at each stage at most one such enumeration takes place. Also
we may fix a universal prefix-free machine U , which is used for the definition of
K-reducibility and which has weight less than 1/4, and it is convenient to assume
that new descriptions only appear in U at even stages. At each odd stage s+ 1 we
will be concerned with the weights

wi(n)[s] =
∑

n<k≤s

2−K(Ai�k)[s].

In the above, K(Ai �k)[s] denotes the value as defined at the end of stage s.
Construction. At each odd stage s+ 1, if n enters A at this stage let j be (the least
number) such that wj(n)[s] ≤ w1−j(n)[s]. Then enumerate n into A1−j . At each
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even stage s+ 1 and for each n ≤ s and i ≤ 1 such that KM (A �n)[s] > K(Ai �n)[s]
enumerate an M -description of A[s] �n of length K(Ai �n)[s].
Verification. By the construction, it suffices to show that the requests that we
enumerate for M have weight at most 1. Each request enumerated for M at stage
s + 1 is triggered by finding KM (A �n)[s] > K(Ai �n)[s] for some n and some
i = 0, 1. In this way we may divide M into two machines M0,M1 corresponding to
A0, A1 respectively. We show that the weight of the M0-requests is at most 1/2. A
symmetric argument shows that the weight of the M1-requests is also at most 1/2,
so this will conclude the proof.

Each M0-request at stage s+1 is triggered by finding KM (A �n)[s] > K(A0 �n)[s]
for some n, i.e. the request may be thought of as corresponding to the (leftmost)
shortest U [s]-description τ of A0 �n [s]. When this happens we say that τ becomes
used (with respect to M0). Once τ becomes used it remains used for the rest of
the construction. Let us say that an M0-request is primary if it corresponds to
a U -description, which was not used prior to the point at which the request was
made. If an M0 request is not primary, we call it secondary. Note that secondary
requests may occur when a number is enumerated into A but not A0, meaning that
a new initial segment of A must now be given a description as short as that which
we have previously seen given for the unchanged initial segment of A0. Clearly
the weight of the primary M0-requests is bounded by the weight of the universal
machine (which determines K(Ai �n) and its approximations). Since the latter is
less than 1/4, it suffices to show that the same holds for the weight of the secondary
M0-requests.

Note that if at an odd stage s no number is enumerated into A then any M0-
requests made at stage s+ 1 will be primary. Moreover the same holds if a number
is enumerated in A0 at stage s. We show that for every increase in the weight of the
secondary M0-requests we can count an equal (or even larger) increase in the weight
of the universal machine U . Indeed, if at stage s + 1 some secondary M0-requests
are enumerated, a number m, which is smaller than all the lengths of the strings for
which these secondary requests require descriptions, must have entered A1 at stage
s. According to the construction (and since we assume that new descriptions only
enter U at even stages) this means that w0(m)[s] = w0(m)[s − 1] ≤ w1(m)[s − 1].
Hence we can count weight w1(m)[s− 1] in the domain of U , which is greater than
or equal to the total weight of the secondary M0-requests made at stage s + 1.
Since A(m)[t] 6= A(m)[s − 1] for all t ≥ s this weight in the domain of U will not
be counted twice. It follows that the weight of the secondary M0-requests is also
bounded by 1/4. Hence the weight of the M0-requests is bounded by 1/4+1/4=1/2.
This (and the entirely symmetric argument for M1) shows that the weight of the
M -requests is bounded by 1. �

Clearly if a set is complex then all sets that are K-equivalent to it are complex.
Hence the following is a consequence of Theorem 3.2.

Corollary 3.3 (Splitting for complex c.e. sets). Every c.e. complex set can be split
into two disjoint complex c.e. sets.

The complex c.e. sets are exactly the c.e. sets in the weak truth table degree of the
halting problem. Hence Corollary 3.3 may be stated as follows.

Corollary 3.4 (Splitting for wtt-complete sets). Every c.e. set A ≡wtt ∅′ is the
disjoint union of two c.e. sets A0 ≡wtt A1 ≡wtt ∅′.
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We note that Corollary 3.4 is no longer true if ≡wtt is replaced by ≡T. Moreover,
there are many c.e. sets X such that Corollary 3.4 is no longer true when ∅′ is
replaced by X (even when ≡wtt is replaced with ≡T). These are results from
[Lac67, Lad73b]. The existence of a c.e. Turing degree such that all of its c.e.
members can be split in the same degree is a result from [Lad73a]. Such degrees
are known as ‘completely mitotic’ (mitotic being the name of c.e. sets that can be
split in the same Turing degree). Since the Turing degree of the halting problem
is not completely mitotic, Corollary 3.4 is an interesting consequence. Further
contrasts may be obtained by comparing our corollary with a number of splitting
results that are surveyed in [DS93]. A particularly striking example (originally from
[AS85]) is the existence of a Turing complete set such that every c.e. splitting of it
has a member which is low.

We conclude with a generalization of the splitting theorem from [Ste11, Chapter
2], [Bar11a, Section 5] that was discussed at the beginning of this section. We
present two versions. The first version is as follows.

Theorem 3.5 (Splitting for the K-degrees and the C-degrees, version 1). Let f be a
right c.e. function and let A be a c.e. set such that ¬∃c∀n, C(A �n) ≤ f(n)+c. Then
A is the disjoint union of two c.e. sets A0, A1 such that ¬∃c∀n, C(Ai �n) ≤ f(n)+c
for each i < 2. A corresponding statement holds for K in place of C.

Proof. By Theorem 3.2 the K-version of the above theorem holds. For the C-
version we argue as follows. Let f [s] be a computable approximation to f such that
f(n)[s + 1] ≤ f(n)[s] for all n, s. In the course of enumerating the elements of A
into A0 and A1 we satisfy the following requirement for e ∈ N and i < 2.

R〈e,i〉 : ∃n
[
C(Ai �n) > f(n) + e

]
.

Define the length of agreement of R〈e,i〉 at stage s by

l(e, i)[s] = the largest n ≤ s such that ∀j ≤ n (C(Ai �j)[s] ≤ f(j)[s] + e)

and let r(e, i)[s] = maxt≤s{l(e, i)[t], e}. By definition, r(e, i)[s] is non-decreasing in
the stages s. Let Ai[0] = ∅ for i = 0, 1 and without loss of generality assume that
at each stage exactly one element is enumerated in A.

Construction. If x ∈ A[s+ 1]−A[s] consider the least 〈e, i〉 such that x ≤ r(e, i)[s]
and enumerate x into Ai.

Verification. Clearly A0, A1 are c.e. and disjoint; moreover A = A0∪A1. By induc-
tion we show that each R〈e,i〉 is satisfied. Clearly R〈e,i〉 is met if and only if r(e, i)[s]
reaches a limit as s→∞. The induction hypothesis is that there exists some stage
s0 such that for all 〈e′, i′〉 < 〈e, i〉 requirement R〈e′,i′〉 is met and r(e′, i′)[s] remains
constant for all s ≥ s0; moreover all numbers enumerated in A after s0 are larger
than the final values of r(e′, i′), 〈e′, i′〉 < 〈e, i〉.

For a contradiction, suppose that R〈e,i〉 is not met, so r(e, i)[s] tends monotoni-
cally to infinity as s → ∞. Then by the construction, A1−i is computable. Hence
∃c∀n, C(A �n) ≤ C(Ai �n) + c. This relation, along with the failure of R〈e,i〉
contradicts the hypothesis about A. Hence R〈e,i〉 is met and this concludes the
induction step. �

A class of sets of very low initial segment complexity was introduced in [LL99] by the
name ultracompressible sets. A set A is ultracompressible if for every computable
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order f there exists c such that ∀n, K(A �n) ≤ K(n) + f(n) + c. The following is
an immediate consequence of Theorem 3.2.

Corollary 3.6. Every c.e. set that is not ultracompressible is the disjoint union of
two c.e. sets that are not ultracompressible.

A similar argument gives the following version of Theorem 3.3.

Theorem 3.7 (Splitting for the K-degrees and the C-degrees, version 2). Let
f be a right c.e. function and let A be a c.e. set such that ¬∃c∀n, K(A �n) ≤
K(n) + f(n) + c. Then A is the disjoint union of two c.e. sets A0, A1 such that
¬∃c∀n, K(Ai �n) ≤ K(A1−i �n)+f(n)+c for each i < 2. Moreover a corresponding
statement holds for C in place of K.

Proof. We give the proof for K-reducibility, since the case for C-reducibility is
entirely similar. We proceed as in the proof of Theorem 3.5 (using the same nota-
tion).

R〈e,i〉 : ∃n
[
K(A1−i �n) > K(Ai �n) + f(n) + e

]
.

Define the length of agreement l(e, i)[s] of R〈e,i〉 at stage s to be the largest n ≤ s
such that ∀j ≤ n (K(A1−i �j)[s] ≤ K(Ai �j)[s] + f(j)[s] + e). Define the restraint
r(e, i)[s] of R〈e,i〉 at stage s to be maxt≤s{l(e, i)[t], e}. By definition, r(e, i)[s] is
non-decreasing in the stages s. Let Ai[0] = ∅ for i = 0, 1 and without loss of
generality assume that at each stage exactly one element is enumerated in A.

Construction. If x ∈ A[s+ 1]−A[s] consider the least 〈e, i〉 such that x ≤ r(e, i)[s]
and enumerate x into A1−i.

Verification. Clearly A0, A1 are c.e. and disjoint; moreover A = A0 ∪ A1. By in-
duction we show that each R〈e,i〉 is satisfied. Clearly R〈e,i〉 is met if and only if
r(e, i)[s] reaches a limit as s→∞. The induction hypothesis is that there is a stage
s0 such that for all 〈e′, i′〉 < 〈e, i〉 requirement R〈e′,i′〉 is met and r(e′, i′)[s] remains
constant for all s ≥ s0; moreover all numbers enumerated in A after s0 are larger
than the final values of r(e′, i′), 〈e′, i′〉 < 〈e, i〉.

If R〈e,i〉 is not met then Ai is computable. Hence there exists some constant such
that K(A �n) ≤ K(n) + f(n) + c. This contradicts the hypothesis on A. Hence
R〈e,i〉 is met and the induction step is complete. �

We conclude with a number of open problems. The following question from [RS08]
is related to the topics discussed in this note and remains open.

Question 1. Is every sequence rK-reducible to a random sequence?

Another question is whether, for example, the K-degrees of the c.e. sets are dense.
Given the coding method that we introduced in the proof of Theorem 2.2, this
seems to be related to the question of whether every pair of c.e. sets has a least
upper bound in the K-degrees. We note that the density results that were obtained
in [DHN02] are not very related to this question as they refer to the case of c.e. reals
(where it is easy to see that the usual addition between reals is a join operator)
and not c.e. sets.
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