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Abstract. We study the computably enumerable sets in terms of the:

(a) Kolmogorov complexity of their initial segments;
(b) Kolmogorov complexity of finite programs when they are used as oracles.

We present an extended discussion of the existing research on this topic, along

with recent developments and open problems. Besides this survey, our main
original result is the following characterization of the computably enumerable

sets with trivial initial segment prefix-free complexity. A computably enumer-

able set A is K-trivial if and only if the family of sets with complexity bounded
by the complexity of A is uniformly computable from the halting problem.

1. Introduction

The study of computably enumerable sets is a major part of classical computabil-
ity theory. The main focus in Kolmogorov complexity on the other hand is arguably
strings and sequences of high complexity, hence not (segments of) the characteristic
sequences of computably enumerable sets. Despite this, the study of the initial seg-
ment Kolmogorov complexity of computably enumerable (c.e. for short) sets dates
back to the work of Barzdins [Bar68] and hence is nearly as old as the theory of Kol-
mogorov complexity itself. Moreover, as we argue in the following, it is motivated
by natural questions about c.e. sets and has interesting nontrivial interactions with
the traditional study of c.e. sets from computability theory.

This paper is concerned with the study of the computably enumerable sets in
terms of:

(a) the complexity of their initial segments;
(b) the complexity of finite programs when they are used as oracles.

Kolmogorov complexity is a well known measure of complexity of strings that is
based on the intuitive idea that complicated strings do not have short descriptions.
We will focus on two variants, the plain and the prefix-free complexity, which
are formally defined in Section 2. However our discussions, as well as some of
the arguments we present (in particular the arguments of Section 6), are often
applicable to different variations like monotone or process complexity (see [DH10,
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Section 3.15] for an introduction). We will not be talking about the complexity of
left or right c.e. reals, namely the binary expansions of reals in (0, 1) whose left or
right Dedekind cut is computably enumerable. This is already a well developed area
(see [DH10, Chapter 5] for an elaborate presentation) and is not directly relevant to
our topic. Moreover we do not discuss the interesting topic of the resource bounded
versions of clauses (a), (b) (see [LV08, Chapter 7] for a general introduction on
resource bounded Kolmogorov complexity and [LV08, Theorem 7.1.3] which refers
to the resource bounded initial segment complexity of a c.e. set).

We start with a brief overview of the basics of Kolmogorov complexity in Section
2. In Section 3 we motivate the topic of this paper with various intuitive questions
and a survey of the relevant work in the literature. More specifically, in Section
3.1 we study the c.e. sets according to clause (a) and we discuss to what extend
the motivating questions have been addressed in the literature. Furthermore, we
present the main original result in this paper (whose proof is given in Section 5), as
an answer to one of these questions. Section 4 consists of an analogous discussion
of the study of c.e. sets according to clause (b). Finally Section 6 is devoted to the
special topic of c.e. splittings with respect to (a) and (b). Throughout the paper
we point to several open questions in the context of each discussion.

2. Background on Kolmogorov complexity and randomness

A standard measure of the complexity of a finite string was introduced by Kol-
mogorov in [Kol65]. The basic idea behind this approach is that simple strings have
short descriptions relative to their length while complex or random strings are hard
to describe concisely. Kolmogorov formalized this idea using the theory of compu-
tation. In this context, Turing machines play the role of our idealized computing
devices, and we assume that there are Turing machines capable of simulating any
mechanical process which proceeds in a precisely defined and algorithmic manner.
Programs can be identified with binary strings.

2.1. The definition of complexity and randomness. A string τ is said to be
a description of a string σ with respect to a Turing machine M if this machine
halts when given program τ and outputs σ. Then the Kolmogorov complexity of
σ with respect to M (denoted by CM (σ)) is the length of its shortest description
with respect to M . It can be shown that there exists an optimal machine V , i.e.
a machine which gives optimal complexity for all strings, up to a certain constant
number of bits. This means that for each Turing machine M there exists a constant
c such that CV (σ) < CM (σ) + c for all finite strings σ. Hence the choice of the
underlying optimal machine does not change the complexity distribution signifi-
cantly and the theory of Kolmogorov complexity can be developed without loss of
generality, based on a fixed underlying optimal machine U . We let C denote the
Kolmogorov complexity with respect to a fixed optimal machine.

When we come to consider randomness for infinite strings, it becomes important
to consider machines whose domain satisfies a certain condition; the machine M
is called prefix-free if it has prefix-free domain (which means that no program for
which the machine halts and gives output is an initial segment of another). Similarly
to the case of ordinary Turing machines, there exists an optimal prefix-free machine
U so that for each prefix-free machine M the complexity of any string with respect
to U is up to a constant number of bits larger than the complexity of it with respect
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to M . We let K denote the prefix-free complexity with respect to a fixed optimal
prefix-free machine.

In order to define randomness for infinite sequences, we consider the complexity
of all finite initial segments. A finite string σ is said to be c-incompressible if
K(σ) ≥ |σ| − c, where K = KU . Levin [Lev73] and Chaitin [Cha75] defined an
infinite binary sequence X to be random (also called 1-random) if there exists some
constant c such that all of its initial segments are c-incompressible. By identifying
subsets of N with their characteristic sequence we can also talk about randomness of
sets of numbers. Moreover the above definitions and facts relativize to an arbitrary
oracle X when the machines that we use have access to this external source of
information. For example, in this case we write KX for the corresponding function
of prefix-free complexity.

This definition of randomness of infinite sequences is independent of the choice
of underlying optimal prefix-free machine, and coincides with other definitions of
randomness like the definition given by Martin-Löf in [ML66]. The coincidence of
the randomness notions resulting from various different approaches may be seen as
evidence of a robust and natural theory.

2.2. Sets of descriptions and construction of machines. The weight of a
prefix-free set S of strings, denoted wgt(S), is defined to be the sum

∑
σ∈S 2−|σ|.

The weight of a (oracle) prefix-free machine MX is defined to be the weight of its
domain and is denoted wgt(MX).

Prefix-free machines are most often built in terms of request sets. A request set
L is a set of pairs 〈ρ, `〉 where ρ is a string and ` is a positive integer. A ‘request’
〈ρ, `〉 represents the intention of describing ρ with a string of length `. We define
the weight of the request 〈ρ, `〉 to be 2−`. We say that L is a bounded request set if
the sum of the weights of the requests in L is less than 1. This sum is the weight
of the request set L and is denoted by wgt(L).

The Kraft-Chaitin theorem (see e.g. [DH10, Section 2.6]) says that for every
bounded request set L which is c.e., there exists a prefix-free machine M such that
for each 〈ρ, `〉 ∈ L there exists a string τ of length ` such that M(τ) = ρ. The same
holds when L is c.e. relative to an oracle X, giving a machine MX . In Section 5
and the proof of Proposition 3.1 we freely use this method of construction without
explicit reference to the Kraft-Chaitin theorem.

3. Measuring the complexity of a computably enumerable set

3.1. Initial segment complexity of computably enumerable sets. Com-
putable sets have trivial Kolmogorov complexity. In order to produce the first
n bits of a computable set it suffices to have a description of n, since all other
information can be coded in a fixed program.1 Computably enumerable sets may
not be computable, but it is not hard to see that the information they may absorb
in their initial segments is quite limited.

(3.1) How complex can the segments of the characteristic sequence of a c.e. set be?

Barzdins [Bar68] observed that 2 log n is an upper bound (up to an additive con-
stant) of the plain Kolmogorov complexity of the first n bits of any computably
enumerable set. Moreover he constructed a c.e. set A such that C(A �n) ≥ log n

1Note that we may consider C(n) either by identifying it with C(0n) or by assuming that the
underlying optimal machine prints numbers, as well as strings. Similarly for K(n).
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for all n while Chaitin [Cha76a] (utilizing a result of Meyer, see [LV08, Exercise
2.3.4]) showed that if ∀n (C(X �n) ≤ log n + c) for some constant c then X is
computable. On the other hand Solovay [Sol75] observed that there is no c.e. set
such that 2 log n is a lower bound of the initial segment complexity of it (even up to
an additive constant). Note that log n is an upper bound of C(n). Hölzl, Kräling
and Merkle [HKM09] observed that, in fact, for every c.e. set A there are infinitely
many n such that C(A �n) is bounded by C(n) (plus an additive constant). Finally
Kummer [Kum96] showed that there are c.e. sets A such that C(A �n) ≥ 2 log n− c
for some constant c and infinitely many n. Moreover he showed that the Turing
degrees that contain such complex c.e. sets are exactly the array non-computable
c.e. degrees (a well studied class of degrees from computability theory). For a more
detailed overview of these results and their proofs we refer to [DH10, Section 16.1].

We are not aware of a thorough study of question (3.1) in terms of the prefix-free
complexity, but some facts may be obtained from the above results and the known
relationships between C and K (see [DH10, Section 4.2] for a presentation of the
equations of Solovay from [Sol75] that relate C and K). Moreover the observation
from [HKM09] holds for K invariably.

Our next question concerns the relation between the overall information that
is coded into a c.e. set and the way that this information affects the Kolmogorov
complexity of its initial segments. Note that C(n) and K(n) are lower bounds for
the plain and prefix-free initial segment complexity of any sequence. Hence we may
say that the plain or prefix-free initial segment complexity of a set is trivial if it is
bounded by one of these C(n) or K(n) respectively (up to an additive constant).
Such sets are also known as C-trivial or K-trivial respectively.

(3.2)
How much information can be coded into a c.e. set with trivial or
‘low’ initial segment complexity?

As we already discussed, Chaitin [Cha76a] showed that sequences with trivial plain
initial segment complexity are computable. The case of prefix-free complexity
turned out to be more interesting. In [DHNS03] it was shown that sequences with
trivial prefix-free initial segment complexity cannot compute the halting problem.
Hirschfeldt and Nies extended this result in [Nie05] and showed that the amount
of information that can be coded into K-trivial sequences is in fact quite limited.
On the other hand, a number of results say that there are Turing complete sets
of ‘very low’ initial segment complexity. For example, given a nondecreasing un-
bounded ∆0

2 function g there exists a complete c.e. set A and a constant c such that
K(A �n) ≤ K(n) + g(n) + c for all n. This was demonstrated by Frank Stephan,
see [BV11, Section 5]. In [BB10, BV11] it was shown that this result is optimal,
in the sense that it is no longer true if one of the conditions on g is removed. A
stronger result was obtained in [Bar11b]. It was shown that there are complete c.e.
sets of arbitrarily low complexity, with respect to the nontrivial complexities of the
c.e. sets. A more precise statement of this result is given in Section 3.2 where a
formal way for comparing the initial segment complexities of two sets is discussed.

Another topic of interest concerns the study of the ways in which sufficiently
random oracles are no better than computable oracles for performing certain com-
putational tasks. An early observation from [dLMSS55] is that if a set is c.e. relative
to a sufficiently random oracle then it is c.e. without the use of an oracle. Moreover
it is well known (e.g. see [BLS08a, Section 3]) that if a sequence X is random, then
it is random relative to every sufficiently random sequence. We give an example of
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such a result in the context of this paper. Recall that K(n) is the trivial complexity
and a set is K-trivial if its complexity is trivial (modulo an additive constant). The
following observation says that if the initial segment complexity of a c.e. set relative
to a sufficiently random oracle is trivial, then the set is already K-trivial. The level
of randomness that is required for this result is weak 2-randomness. An oracle is
weakly 2-random if it is not a member of any null Π0

2 class.

Proposition 3.1. Suppose that X is weakly 2-random and A is a c.e. set. If
∃c∀n KX(A �n) ≤ K(n) + c then A is K-trivial.

Proof. Given a c.e. set A and a constant c, the class of oracles X such that
∀n KX(A �n) ≤ K(n) + c is a Π0

2 class. Hence it suffices to show that if this
class is not null then A is K-trivial. On this assumption, by Kolmogorov’s 0-1
law there exists a constant d such that the measure of the oracles X such that
∀n KX(A �n) ≤ K(n) + d is larger than 1/2. Let U be the underlying optimal
oracle machine such that µ(UX) < 1/2 for all oracles X. We also assume that any
computations of U at stage s use less than s bits of the oracle. Without loss of
generality we may assume that for all X, if there is a UX description of length n
that describes some string τ then for each i > n there exists a UX description of τ
of length i. Given a computable enumeration A[s] of A we construct a prefix-free
machine M as follows. At stage s+ 1 let n be the least number ≤ s such that

• KM (A �n)[s] > K(n)[s] + d
• KX(A �n)[s] ≤ K(n)[s] + d for a set of oracles X of measure > 1/2

(if there is no such n, do nothing). Then enumerate an M -description of A �n [s]
of length K(n)[s] + d.

It remains to prove that the request set for M is bounded. Let σi be the ith
description enumerated in M . It suffices to show that

∑
i≤n 2−|σi| < 1 for all n. For

a contradiction, suppose that
∑
i≤n0

2−|σi| ≥ 1 for some n0, and let s0 be the stage
where σn0

was enumerated into our machine M . Each string σi, i ≤ n0 contributes
at least 2−|σi|−1 to the expected weight of the machine UX�s0 , where X �s0 is any
oracle of length s0. Since µ(UX) < 1/2 for all oracles X, this expected value is also
less than 1/2. This gives the required contradiction. �

Note that Proposition 3.1 is no longer true if we replace ‘weakly 2-random’ with ‘1-
random’ since there are 1-random sequences which compute all c.e. sets. Moreover
the same proof shows the result in the more general case when A is ∆0

2.
We would like to make a note of another way to study the complexity of c.e.

sets which was introduced by Chaitin [Cha76b] and will not be studied in this
paper. The (algorithmic) entropy of a c.e. set A was defined as the probability
that a universal c.e. operator enumerates A. Most of the research around this
concept has to do with the relationship to another measure of complexity, namely
the length of the shortest prefix-free description of a c.e. index of A. Solovay
[Sol75, Sol77] obtained an upper bound of the latter in terms of the entropy function
and Vereshchagin [Ver07] improved it for the special case of finite sets. For a more
elaborate overview of this research on the algorithmic entropy of c.e. sets we refer
to [DH10, Section 16.2].

3.2. Measures of relative complexity on computably enumerable sets.
A fruitful way to study the complexity of a sequence is to compare it with the
complexities of other sequences. Measures of relative complexity provide a formal
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way to do this. In the case of initial segment complexity, a number of such measures
were introduced by Downey, Hirschfeld and LaForte in [DHL04]. One such measure
is the ≤K reducibility defined as

X ≤K Y ⇐⇒ ∃c∀n (K(X �n) ≤ K(Y �n) + c)

as well as its plain complexity version ≤C which is defined similarly. We may
express the fact that X ≤K Y simply by saying that the initial segment complexity
of X is less than (or equal to) the complexity of Y . The result from [Bar11b] that
we discussed in relation to question (3.2) may be formally stated as follows. Given
any c.e. set B which is not K-trivial, there exists a Turing complete c.e. set A such
that A <K B.

A central topic in the study of c.e. sets in computability theory are the ‘c.e.
splittings’, see [DS93]. We say that a pair B,C of c.e. sets is a c.e. splitting of A if
B ∩ C = ∅ and B ∪ C = A. One of the simplest questions that we can ask about
the initial segment complexity of c.e. splittings is the following.

(3.3)
Given a c.e. set can we split it into two c.e. sets of strictly less
initial segment complexity?

A positive answer was given in [Bar11a, Section 5] for both the plain and the prefix-
free complexity, provided that the given set has non-trivial complexity. In Section 6
we give an extension of this splitting theorem, showing that the splitting may avoid
bounding the complexity of any given nontrivial ∆0

2 set. Note that such results can
be viewed as analogues of the classic Sacks splitting theorem that was proved in
[Sac63] for the Turing degrees.

(3.4)
Given a c.e. set can we split it into two c.e. sets of the same initial
segment complexity?

This question is formally addressed in Section 6, but remains open. We note that
the sets that satisfy the analogue of (3.4) in the Turing degrees are called mitotic and
have been studied extensively in computability theory, see [Lad73b, Lad73a, DS89].
The existence of non-mitotic sets was shown by Lachlan in [Lac67].

(3.5)
Is there a c.e. set whose initial segment complexity is maximal
amongst the c.e. sets?

This question has been answered negatively in [Bar05] with respect to a stronger
measure ≤cl, where X ≤cl Y if X �n can be computed from Y �n+c for some
constant c and all n. In [ASDFM11] an easier proof of this result was given. By
[DHL04] the partial order ≤cl coincides with the Solovay reducibility on the c.e.
sets, which is a standard measure of relative randomness for the larger class of c.e.
reals. In particular, it does express in some (crude) sense the relative complexity
of sequences. Other aspects of ≤cl on the c.e. sets were studied in [BL06, Day10].
A similar study would be interesting for ≤K and ≤C . For example, we do not
know if the corresponding structures of c.e. degrees are dense. Another question is
whether for every pair of c.e. sets A,B there exists a c.e set C such that A ≤K C
and B ≤K C.

(3.6)
How ‘large’ is the class of sets with initial segment complexity
bounded by the complexity of a c.e. set?

There are many ways to measure the largeness of a class of reals, including deter-
mining the cardinality of the class. In the case of ≤C ,≤K it turns out that the
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lower cones below a c.e. sets are always subsets of ∆0
2, hence countable (e.g. see

[BV11, Section 2]). It is interesting to examine if these are uniform subclasses of
∆0

2, in the sense that they can be indexed by a single ∅′-computable predicate. In
Section 5 we prove the following characterization.

Theorem 3.2. The following are equivalent for a computably enumerable set A.

(a) A is K-trivial;
(b) every set X ≤K A is truth-table reducible to ∅′.

Moreover the above clauses are equivalent to the condition that {X | X ≤K A} is
uniformly computable in ∅′.

This result provides an answer to question (3.6) since a uniform subclass of ∆0
2

may be considered ‘effectively small’ while classes that do not admit a uniform
parameterization are, in a sense, ‘effectively large’. A more precise treatment of
this notion of ‘largeness’ may be obtained via the use of resource bounded measure,
an approach that was developed by Jack Lutz in various contexts and is based on
the use of effective martingales. In our case we are interested in the size of a set of
reals as a subclass of ∆0

2. An example of such a study is [HT08] where it is shown
that the ∆0

2 measure of the class of oracles that are computable by an incomplete
∆0

2 set is 0. We may ask the same question with respect to ≤K , ≤C as a formal
version of question (3.6). In other words, to determine the ∆0

2 measure of the class
of oracles with initial segment complexity bounded by the complexity of a given
c.e. set.

Since Section 5 is entirely devoted to the proof of Theorem 3.2, we wish to say a
few more words on its relevance with the work of other authors. Both directions of
the equivalence that it asserts are nontrivial. Chaitin [Cha77] observed that (by a
relativization of an argument from [Lov69]) all K-trivial sequences are computable
from the halting problem; equivalently, they have a computable approximation.
However this proof is not uniform, hence it does not show that the K-trivial se-
quences can be listed by a single machine operating with oracle ∅′. One of the
consequences of Nies [Nie05] was that the family of K-trivial sequences is indeed
uniformly ∅′-computable. This is the only known proof of this fact and is highly
nontrivial, involving the full power of what is now known as the decanter method.

We already pointed out that given any c.e. set A, the class of sequences with
initial segment prefix-free complexity that is bounded by the complexity of A is
contained in ∆0

2. This is merely an extension of the argument for the case where
A = ∅, so again it is nonuniform. We wanted to know if this class can be uniformly
∅′-computable in any cases other than the known case where A is K-trivial. A
positive answer would have interesting consequences on the local structures of the
K degrees. For example, combined with the results in [BV11] it would establish the
existence of a pair of ∆0

2 sets that form a minimal pair in the K degrees. However,
Theorem 3.2 shows that this uniformity is a special feature that characterizes the
K-trivial computably enumerable sets.

Corollary 3.3. The following are equivalent for any finite collection of computably
enumerable sets Ai, i < k.

(a) There exists i < k such that Ai is K-trivial;
(b) The sets X such that X ≤K Ai for all i < k are truth-table reducible to ∅′.

Moreover (a), (b) are equivalent to the condition that {X | ∀i < k (X ≤K Ai)} is
uniformly computable in ∅′.
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This generalization of Theorem 3.2 may be obtained by an application of a result
in [Bar11b]. Namely, it was shown that given two c.e. sets B,C such that ∅ <K B
and ∅ <K C there exists a c.e. set A such that A ≤K B, A ≤K C and ∅ <K A.2

(3.7) What is ‘algorithmical independence’ for computably enumerable sets?

The notion of algorithmic independence of random sequences is well understood
through the concept of relative randomness. In particular, two random sequences
may be regarded algorithmically independent if each of them is random relative
to the other. Various authors have attempted to extend the notion of algorithmic
independence to a wider class of sequences. Such formalizations have been suggested
by Levin [Lev74, Lev84, Lev02] through the concept of ‘mutual information’ of
sequences, and by Calude and Zimand [CZ10]. Although the exact relationship
between these formalizations is not known, some of them are clearly too crude
for the purpose of expressing independence for pairs of computably enumerable
sets. For example the definitions in [CZ10] are not sensitive to additive logarithmic
factors. In particular, since the complexity of a c.e. set is at most 4 log n, every
pair of c.e. sets is independent according to [CZ10]. It would be interesting to
address question (3.7) by crafting an appropriate formalization which expresses
the informal concept of independence for c.e. sets. We note that the concept of
minimal pairs with respect to ≤K , ≤C does express some notion of independence.
The existence of minimal pairs of c.e. sets with respect to ≤C was shown in [MS07]
and the nonexistence with respect to ≤K was shown in [Bar11b].

4. Relative compression power of computably enumerable oracles

A second way to study the c.e. sets with respect to Kolmogorov complexity is
to examine their power when they take the place of an oracle in the underlying
optimal universal machine. Recall that KX denotes the prefix-free complexity
relative to oracle X. Hirschfeldt and Nies showed in [Nie05] that KX does not
differ from K more than a constant if and only if X ≡K ∅. In other words, the
oracles that do not improve the compression of finite programs significantly are
exactly the oracles with trivial initial segment prefix-free complexity. A natural
way to compare the compression power of oracles was introduced in [Nie05] in the
form of the reducibility ≤LK .

X ≤LK Y ⇐⇒ ∃c∀σ (KY (σ) ≤ KX(σ) + c).

In other words X ≤LK Y formalizes the notion that Y can achieve an overall
compression of the strings that is at least as good as the compression achieved by
X. Moreover by [KHMS12] it coincides with X ≤LR Y which denotes the relation

2At this point we would like to draw a parallel between the study of the K degrees of c.e. sets

and the K degrees of Martin-Löf random sets that was the object of study in [MY08, MY10].

One of the main open questions in this study was whether there is a maximal element in the K
degrees of random reals, which is an analogue of question (3.5). Moreover it was shown that is a

pair of random reals X,Y which has no upper bound with respect to ≤K . Finally it was shown
that given any finite collection Xi, i < k of random reals, there exists a random real Y such that

Y <K Xi for all i < k. The analogue of this result for the c.e. sets was proved in [Bar11b]. This

analogy stems from the analogy between the oscillation of the prefix-free complexity of a random
sequence between n and n+K(n) and the oscillation of the complexity of a c.e. set between K(n)

and 4 logn.
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that every random sequence relative to Y is also random relative to X. The induced
degree structure is known as the LK degrees.

This measure of relative complexity has been studied extensively in the literature,
although most of the publications are written in terms of ≤LR. Moreover the
structure of the c.e. sets under ≤LK has also been studied. It is not hard to see
that ≤T is contained in ≤LK so the c.e. Turing degrees have more in common
with the c.e. LK degrees than the c.e. K degrees. In particular, the LK degree of
the halting set is complete. Despite this, the two structures are not elementarily
equivalent [Bar10b]. In particular, there are no minimal pairs in the structure
of LK degrees of c.e. sets. Analogues of various questions that were discussed in
Section 3.2 have been addressed for ≤LK . Splitting and non-splitting theorems (see
questions (3.3) and (3.4)) where obtained in [BLS08a, BM09] and are discussed in
Section 6.2.

The size of lower ≤LK cones (see question (3.6)) in terms of cardinality was
studied in [BLS08a, BLS08b, Mil10] and was fully determined in [Bar10c] (for the
c.e. case) and in [BL11] in general. In [Bar10c] it was shown that for every c.e.
set A which is not K-trivial the class {X | X ≤LK A} contains a perfect Π0

1

class. In [BB10] it was shown how this argument can be strengthened so that the
constructed Π0

1 class does not have K-trivial members (this is one of the arguments
where avoiding the K-trivial paths in the constructed Π0

1 class is highly non-trivial).
On the other hand in [Bar10a] it was shown that every Π0

1 class with no K-trivial
paths contains a ≤LK-antichain of size 2ℵ0 . The combination of these results shows
that the lower ≤LK-cone below any c.e. set which is not K-trivial is rather large,
in the following sense.

Corollary 4.1. If A is c.e. and not K-trivial then {X | X ≤LK A} contains a
≤LK-antichain of size 2ℵ0 .

Recently, Yu Liang showed that it it is not true that every perfect set contains a
≤LK-antichain of size 2ℵ0 . In fact, quite interestingly, he showed that there exists
a perfect set of reals which is a chain with respect to ≤LK .

We have already mentioned that ≤LK contains ≤T . This fact allows various
standard questions to be asked about the structure of the c.e. Turing degrees inside
a c.e. LK degree. Such issues have been studied in [BLS08a, BLS08b]. Ever c.e.
LK degree contains infinite chains and antichains of Turing degrees. In fact, the
following stronger result was shown, where |T denotes Turing incomparability.

(4.1)
If A is a noncomputable incomplete c.e. set then there exist c.e. sets
B,C,D in the LK degree of A such that B <T A <T C and D |TA.

The proof of (4.1) consists of encapsulating a number of basic c.e. Turing degree
constructions (often involving the finite and infinite injury priority method) inside
an LK degree.

Another question about the structure of the c.e. LK degrees is whether it is
dense. In [BLS08b] it was shown that if A <LK B for two c.e. sets whose LK
degrees have ≤T -comparable c.e. members then there exists a c.e. set C such that
A <LK C <LK B. In particular, the LK degrees of c.e. sets are upward and
downward dense. However the density of the c.e. LK degrees is an open question,
also stated in [MN06, Question 9.12]. A relevant question is if there are c.e. sets A,B
such that A <LK B and every c.e. set in the LK degree of A is ≤T -incomparable
with every c.e. set in the LK degree of B. When the sets are not required to be c.e.
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this question admits a positive answer. This follows from the fact that each LK
degree is countable [Nie05] and the fact that there are LK degrees with uncountably
many predecessors [BLS08a].

Finally, not much is known about least upper bounds in the LK degrees of c.e.
sets. For every sets A,B a natural upper bound in the Turing (and hence the LK)
degrees is A⊕B. However although the Turing degree of A⊕B is the least upper
bound of the degrees of A, B the same is not necessarily true for their LK degrees,
even when they are computably enumerable. This was first noticed in [Nie05] and
various results since show that in some cases the LK degree of A⊕B is, in a certain
sense, very far from being the least upper bound of the degrees of A and B (e.g.
[BLS08b, Corollary 12]). Diamondstone [Dia11] showed that with respect to ≤LK
every pair of low sets has a low c.e. upper bound. If we consider a pair of low c.e.
sets A,B such that A ⊕ B ≡T ∅′ then by [Dia11] the LK degree of A ⊕ B is, in a
certain sense, very far from being the least upper bound of A,B. We do not know
of any pair of c.e. sets of incomparable LK degrees which have a least upper bound
in the LK degrees of c.e. sets. We also do not know of a pair of c.e. sets whose LK
degrees do not have a least upper bound in the LK degrees of c.e. sets.

5. Proof of Theorem 3.2

Let us call (c) the clause that {X | X ≤K A} is uniformly computable in ∅′.
Then Theorem 3.2 says that clauses (a), (b), (c) are equivalent. The implication
from (a) to (b) is a result from [Nie05]. Since the sets that are truth-table reducible
to ∅′ are uniformly ∅′-computable, clause (b) implies (c). For the remaining impli-
cation assume that A is c.e. and not K-trivial. Moreover let (Xi) be a uniformly
∅′-computable family of sets. This means that there is a universal computable ap-
proximation (Xi[s]) such that each Xi[s] converges to Xi as s → ∞. It suffices to
construct a computable approximation B[s] converging to set B such that B ≤K A
and B 6= Xi for all i.

For the satisfaction of B 6= Xi we pick a number ni (a witness) and at each stage
s we let B(ni)[s] = 1−Xi(ni)[s]. Since Xi(ni) converges, B(ni)[s] converges to an
appropriate value. For B ≤K A we will construct a prefix-free machine M such
that

(5.1) KM (B �k) ≤ K(A �k) for all k

where KM denotes the prefix-free complexity relative to the machine M . Recall
that K denotes the prefix-free complexity relative to a fixed universal prefix-free
machine U . Without loss of generality we may assume that wgt(U) < 2−2. The
enumeration of M is straightforward. At each stage we look for the least k such
that (5.1) is not satisfied and we enumerate an M -description of B[s] �k of length
K(A �k)[s]. The condition B ≤K A is satisfied provided that we manage to keep
the weight of the requests that we enumerate into M bounded. This bound may
be obtained via an analysis of the requests that are enumerated in M in relation
to the descriptions that are produced in U .

5.1. The model. Each description that is enumerated in M corresponds to a
unique description in the domain of the universal machine U of the same length.
Indeed, when the construction requests M to describe some B[s] �x at stage s+ 1,
this is in order to achieve KM (B �x)[s] ≤ K(A �x)[s]. Hence the new description
in M corresponds to the (least) shortest description in U of A �x [s]. Since the
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S0S1S2S3· · ·

Figure 1. Infinite nested decanter model.

approximation to B changes in the course of the construction, this correspondence
is not one-to-one. If a U -description σ corresponds to n distinct M -descriptions we
say that σ is used n times.

Let S0 be the domain of U and for each k > 0 let Sk contain the descriptions
in the domain of U which are used at least k times. Note that Si+1 ⊆ Si for each
i. According to the correspondence that we defined between the domains of U , M
a string σ in the domain of U that is used k times incurs weight k · 2−|σ| to the
domain of M . Hence (5.2) holds.

(5.2) wgt(M) ≤
∑
k

k · wgt(Sk).

A U -description is called active at stage s if U(σ)[s] ⊆ A[s]. By the direct way
that M is enumerated, all descriptions that enter S1 at some stage s are currently
active. More generally, only currently active strings may move from Sk to Sk+1 at
any given stage.

The sets Sk may be visualized as the nested containers of the infinite decanter
model of Figure 1. As the figure indicates, descriptions may move from Sk to Sk+1

but they also remain in Sk. If B(ni)[s] 6= B(ni)[s+ 1] at some stage s+ 1 for some
witness ni, some strings move from Sk to Sk+1 for various k ∈ N (i.e. they are used
one more time). In this case we say that these strings were reused by ni.

5.2. Movable markers and auxiliary machines. A single witness ni may use
each description in the domain of U at most once, thus contributing to a 2:1 corre-
spondence between the domains of M and U . However t many witnesses may create
a 2t : 1 correspondence between U,M which may inflate the bound in (5.2). For
this reason the witnesses ni will be movable and obey the following rules (provided
that they are defined).

• ni[s] < ni+1[s] and ni[s] ≤ ni[s+ 1];
• If B(ni)[s] 6= B(ni)[s+ 1] then ni+1[s+ 1] moves to a large value.

The witnesses ni[s] will ultimately reach limits ni. In order to ensure that the
descriptions in U that are reused many times have sufficiently small weight (i.e.
they describe sufficiently complex strings), for each witness ni we enumerate a
prefix-free machine Ni during the construction. The purpose of Ni is to achieve
∀z (KNi(A �z) ≤ K(z) + ci) for some constant ci. Since A is not K-trivial, this will
ultimately fail. However this failure will help to demonstrate that ni+1 converges
(and, indirectly, that the weight of the strings that are reused by ni is sufficiently
small). Each time ni moves, the value of ci increases by 1. Such an event is
described as an ‘injury’ of ni. In particular, if at some stage s a witness ni moves
while nj , j < i remain constant this causes nx, x ≥ i to be injured, which has the
following consequences:

• nx, x > i become undefined;
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• the values cx, x ≥ i increase by 1.

Each witness will only be injured finitely many times. We let ci[s] denote the value
of ci at stage s and ci[0] = i+ 3.

At each stage s let ti[s] be the least number t such that KNi
(A �t)[s] > K(t)[s]+

ci[s]. Each witness ni has the incentive to move its successor ni+1 at some stage
s+1 if it observes a set of descriptions of segments of A[s] that are longer than ni+1,
of sufficient weight. This weight is determined by the threshold qi[s] and is set to
2−K(ti)[s]−ci[s]. Witness ni may move its successor ni+1 either because the above
weight exceeds the threshold or because the approximation to B(ni) changes. Due
to this second incentive for movement, a new parameter pi[s] will tune the threshold
to an appropriate value. In particular, witness ni requires attention at stage s+ 1
if it is defined and one of the following occurs:

(a) B(ni)[s] = Xi(ni)[s];
(b)

∑
ni+1[s]<j≤s 2−K(A�j)[s] ≥ qi[s]− pi[s].

At each stage s+ 1 the machines Ni will be adjusted according to changes of K(n)
for n < ti[s]. This is done by running the following subroutine.

(5.3)
For each i ≤ s and each n < ti[s], if K(n)[s+ 1] < K(n)[s]
then enumerate an Ni-description of A[s] �n of length
K(n)[s+ 1] + ci[s].

A large number at stage s+ 1 is one that is larger than any number that has been
the value of any parameter in the construction up to stage s.

5.3. Construction of B,M,Nr. At stage 0 place n0 on 0. At stage s + 1 run
(5.3). If none of the currently defined witnesses requires attention, let k be the
largest number with nk[s] ↓, let z be the least number that is bounded by s and
the current value of some marker such that KM (B �z)[s] > K(A �z)[s] and

• place nk+1 on the least large number;
• enumerate an M -description of B[s] �z of length K(A �z)[s].

Otherwise let x be the least number such that nx requires attention and define
nx+1[s+ 1] to be a large number. Moreover declare ni[s+ 1], i > x+ 1 undefined,
set cj [s+1] = cj [s]+1 for each j > x and if (a) applies set B(nx)[s] = 1−Xi(nx)[s].
If (b) applies set px[s+1] = 0 and enumerate an Nx-description of A �tx [s] of length
K(tx)[s]. If (b) does not apply set px[s+ 1] = px[s] +

∑
mx[s]<j≤s 2−K(A�x)[s].

5.4. Verification. When ni+1 is first defined at some stage s it takes a large value
so ti[s] < ni+1[s]. Moreover ti can only increase when Ni computations are enu-
merated on strings of length ti, which happens only when ni+1 moves. Hence by
induction we have (5.4).

(5.4) For all i, s, if ni+1[s] is defined then ti[s] < ni+1[s].

If K(n) decreases at some stage s+1 for some n < ti[s], subroutine (5.3) will ensure
that KNi

(A �n)[s+ 1] ≤ K(n)[s+ 1] + ci[s+ 1]. Hence ti may only decrease at s+ 1
if A[s+ 1] �ti[s] 6= A[s] �ti[s], which implies (5.5).

(5.5) If A[s] �ti[s]= A[s+ 1] �ti[s] then ti[s] ≤ ti[s+ 1].

The enumeration of descriptions into Ni occurs with overhead ci, in the sense that
at stage s any description of a string of length n that is defined in Ni has length
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K(n)[s] + ci[s]. This implies (5.6).

(5.6)
At any stage s the weight of the Ni-descriptions that
describe initial segments of A[s] is less than 2−ci[s].

For each i there is a machine Ni as prescribed in the construction.

Lemma 5.1. For each i the weight of the requests in Ni is bounded.

Proof. The weight of the requests that are enumerated in Ni by subroutine (5.3)
is bounded by the weight of the domain of U , which is at most 2−2. In order to
calculate the weight of the requests that are enumerated by the main construction,
let sj be the stages where requests are enumerated into Ni. Note that during
each interval [sj , sj+1) the successor witness ni+1 may move many times, thereby
increasing pi which becomes 0 at sj+1. At each sj the witness ni+1 moves to a large
value and the weight of the request that is issued inNi is qi[s] ≤

∑
x∈(ni+1[sj−1],s]

wx,

where s−1 = 0 and wx is the weight of the descriptions in U that describe strings
of length x. Hence by induction the weight of the requests that are enumerated in
Ni in this way is also bounded by the weight of the domain of U . Hence wgt(Ni) ≤
2−2 + 2−2 = 2−1. �

In order to calculate a suitable upper bound for each wgt(Sk) of (5.2) we need
(5.7). Recall that a U description σ is reused by nj at stage s+1 if it is the leftmost
string describing A[s] �z via U for some z ∈ (nj [s], nj+1[s]] and at stage s + 1 the
construction enumerates an M -description of B[s] �z of length K(A �z)[s]. Note
that every reused U -description is actually reused by some ni.

(5.7)
If during the interval of stages [s, r] the witness nj is not injured
then the weight of the strings that it reuses during this interval
which remain active at stage r is at most 2−cj [s] + pj [s].

Indeed, if at some stage the witness nj+1 moves but no enumeration in Nj takes
place, the weight of the additional strings that nj may be called to repay at some
later stage equals the increase in pj . Hence to prove (5.7) it suffices to show that
at each stage in [s, r] where an Nj enumeration takes place (and pj becomes 0) the
weight of the strings that have been reused by mj and remain active is at most

2−cj [s].
At each such stage x the weight of the additional strings that nj may be called

to repay at some later stage at most qj [x]. Moreover at stage x a string of weight
qj [x] is used to describe A �tj [x] via Nj . By (5.4) if at least one of these additional
descriptions in U continues to be active at stage r, then A[x] �tj [s]= A[r] �tj [s].
Hence by (5.5) we get that tj [y] ≥ tj [x] for all y ∈ [x, r]. So during the stages in
[x, r] the weight of the descriptions in U that nj repaid and remain active at stage
r is bounded by the weight of the descriptions in Nj that describe segments of A[r].

By (5.6) this is at most 2−cj [s]. This concludes the proof of (5.7).

Lemma 5.2. The weight of the requests that are enumerated in M is finite.

Proof. Since only strings in the domain of U are used, wgt(S1) < 2−2 and since
S2 ⊆ S1 we also have wgt(S2) < 2−2. Let k > 1. Every entry of a string into Sk+1

is due to some witness nx which reused it when it was already in Sk. Since k > 1,
this string entered Sk due to another witness ny with y > x ≥ 0 which subsequently
moved to a large value. Inductively, that string entered S1 due to a witness nz with
z ≥ k− 1. Fix z, let Szk contain the strings in Sk that entered S1 due to witness nz
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and let (si) be the increasing sequence of stages where witness nz is injured. Note
that at this point we do not assume that (sj) is a finite.

The strings that move from Szk to Sk+1 are currently active and may be divided
into the packets of strings that enter S1 due to nz during each interval (si, si+1].
According to (5.7) the weight of the strings in the ith packet which are still active at
si+1 (hence, may move from Szk to Sk+1 later on) is bounded by 2−cz [si−1]. So the

weight of the strings that enter Sk+1 from Szk is bounded by
∑
j 2−cz [sj−1]. Since

cz[sj+1− 1] = cz[sj ] < cz[sj − 1] for all j, this weight is bounded by
∑
j 2−cz [0]−j =

2−cz [0]+1. Since cz[0] = z+ 3 this bound becomes 2−z−2. Since Sk = ∪z≥k−1Szk the
total weight of the strings that enter Sk+1 from Sk is bounded by

∑
z≥k−1 2−z−2 =

2−k. Therefore by (5.2) the weight of M is finite. �

By Lemma 5.2 the machine M prescribed in the construction exists. The following
proof uses the fact that each Ni is a prefix-free machine, which was established in
Lemma 5.1.

Lemma 5.3. For each i the witness ni moves only finitely many times i.e. ni[s]
reaches a limit.

Proof. Assume that this holds for all i ≤ k. Then nk stops moving after some
stage s0. The construction will define nk+1 at some later stage s1. In the following
we write nk for the the limit of nk[s] when s → ∞. Similarly, ck[s] reaches a
limit ck := ck[s0] at s0. Since A is not K-trivial there is some least j such that
KNk

(A �j) > K(j) + ck. If s2 > s1 is a stage where the approximations to A �j
and K(i), i ≤ j have settled then the approximations to tk, qk also reach a limit
by this stage.

Let s3 > s2 be a stage at which the approximation to the membership of nk in
Xk has reached a limit. If nk+1 moved after stage s3 this would be solely due to
clause (b) of Section 5.2. Hence at such a stage the construction would enumerate
an Nk-description of A �j of length K(j) + ck which contradicts the choice of j.
Hence nk+1 reaches a limit by stage s3 and this concludes the induction step. �

We may now show that B ≤K A.

Lemma 5.4. The approximation to B converges and (5.1) is met.

Proof. If k is not the limit of some witness ni then B(k) will only change finitely
often, since witnesses are defined monotonically and redefined to large values. On
the other hand for the limit value ni of the ith witness the construction will stop
changing the approximation to B(ni) once the approximation to X(ni) stops chang-
ing. Hence the approximation to B converges. Moreover the constant enumeration
of M descriptions by the construction ensures that (5.1) holds for B. �

Finally, we may conclude that B is not a member of the given uniformly ∅′-
computable family of sets. Given k consider the limit nk of the kth witness that
was established in Lemma 5.3. The construction explicitly ensures that the final
value of B(nk) is 1−X(nk). Hence B 6= Xk for all k. This concludes the verification
of the construction and the proof of Theorem 3.2.

6. Computably enumerable splittings and Kolmogorov complexity

A computably enumerable (c.e.) splitting of a c.e. set A is a pair of disjoint c.e.
sets B,C such that A = B ∪ C. This notion has been the subject of interest for
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many researchers in computability but also in logic in general. For example it plays
a special role in the study of the lattice of the c.e. sets under inclusion (see [DS90]),
which is a very developed area of computability theory (see [Soa87, Chapter X]
for an overview). Moreover the Turing degrees of c.e. splittings have been studied
extensively (see [Soa87, Chapter XI] for an overview). For a comprehensive survey
of c.e. splittings in computability theory we suggest [DS93].

In this section we discuss c.e. splittings in the context of Kolmogorov complexity.
For example, we are interested in the initial segment complexity of the members
B,C of the splitting given the complexity of the original set A. In Section 6.1 we
show that some of the classical theory of c.e. splittings can be generalized (both
in terms of results and in terms of methods) to the context of initial segment
complexity. Section 6.2 discusses analogous results when c.e. sets are used as oracles
for compressing finite programs. Our presentation has a bias toward the prefix-free
version of Kolmogorov complexity, but most of the results and methods that we
discuss in this section also hold for plain Kolmogorov complexity.

The results that we present regarding the structure of the K degrees (compar-
ing the initial segment complexity of c.e. sets) and the structure of the LK de-
grees (comparing the compression strength of c.e. oracles) revolve around the same
structural questions and often have the same answers. However in general the two
structures are very different, even in the case of c.e. sets. For example, ≤LK is an
extension of Turing reducibility but, as many results in [MS07] demonstrate, there
is no direct connection between ≤K and Turing reducibility. In particular, there is
a complete c.e. LK degree (i.e. maximum amongst the c.e. LK degrees) but it is
not known if there is a maximum c.e. K degree. In our view this is unlikely, and a
more interesting open question is whether there exist maximal c.e. K degrees.

The general programme of transferring results and methods from classical com-
putability theory to the study of Kolmogorov complexity (as well as its limitations)
is a fascinating topic and a critical discussion of it and its relation with arithmetical
definability may be found in [BV11, Section 1].

6.1. Initial segment complexity and c.e. splittings. Given a computably enu-
merable set A, we are interested in the initial segment complexity of the members
of the various splittings of A. It is not hard to see that the Kolmogorov complex-
ity of A �n is equal to the Kolmogorov complexity of the last number < n that
enters A in a computable enumeration of it. A basic result from [Bar11a, Section
5] and [Ste11, Chapter 2] is that the analogue of the Sacks splitting theorem (e.g.
see [Soa87, Theorem 3.1]) holds in the context of plain or prefix-free Kolmogorov
complexity.

(6.1)
If A is c.e. set and A >K ∅ then A is the disjoint union of two c.e.
sets A0, A1 such that A0|KA1 and A0, A1 <K A.

In particular, if a c.e. set has nontrivial initial segment complexity then it can
be split into two c.e. sets with strictly less initial segment complexity. This fact
also holds for the plain complexity C in place of K. Note that the assumption
A >K ∅ is stronger than A >C ∅ which is merely another way to say that A is
noncomputable. For various combinations of (6.1) with other splitting theorems
(like the classic Sacks splitting theorem) we refer to [Bar11a, Section 5] and [Ste11,
Chapter 2].
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We wish to combine (6.1) with cone avoidance. First, we demonstrate a cone
avoidance argument in the K degrees in isolation, in terms of Π0

1 classes. A tree
is a computable function from strings to strings which preserves the compatibility
and incompatibility relations. A real X is a path through a tree T if all of its
initial segments belong to the downward closure of the image of T under the prefix
relation. We denote the set of infinite paths through a tree T by [T ].

Theorem 6.1 (Cone avoidance for ≤K and Π0
1 classes). If A is ∆0

2 and A 6≤K ∅
then there exists a Π0

1 class of reals X such that X 6≤K ∅ and A 6≤K X.

Proof. The task of avoiding K-trivial members when constructing a Π0
1 class has

been extensively discussed in [KS07, BLS08b, BV11, BB10]. In order to focus on
the cone avoidance ideas we only prove a simpler version of Theorem 6.1 which
merely requires the Π0

1 class to be perfect. The combination of this construction
with extra requirements guaranteeing that the Π0

1 class does not have K-trivial
members is along the lines of the argument discussed in [KS07]. In particular, it
is not as simple as the case in [BV11] but it is much simpler than the argument
discussed in [BLS08b] (which is in turn simpler than the one in [BB10]).

Let A[s] be a computable approximation to A. We approximate a perfect Π0
1

tree T : 2<ω → 2<ω and ensure that A 6≤K X for all paths X through T . Let Tσ
denote the image of σ under T and let Tσ[s] denote its approximation at (the end
of) stage s. We will satisfy the following requirements.

Re : ∀σ ∈ 2e ∃n ≤ |Tσ| [K(A �n) > K(Tσ �n) + e].

We define the length of agreement `σ for each string σ of length e in order to
monitor the satisfaction of Re with respect to Tσ. Let `σ[s] be the largest number
n ≤ s such that K(A �j)[s] ≤ K(X �j)[s]+e for some extension X of Tσ[s] in [T [s]]
and all j < n. We view the approximations to each Tσ as a movable marker. We
say that Tσ requires attention at stage s+ 1 if `σ[s] is larger than |Tσ[s]|.

At stage 0 we let Tσ[0] = σ for all σ. At stage s + 1 let σ be the least string
of length at most s that requires attention (if there is no such string, do nothing).
Let Tσ[s + 1] = Tρ[s] where ρ is the least extension of σ such that |Tρ[s]| is larger
than `σ[s] and K(A �j)[s] ≤ K(Tρ[s] �j)[s] + e for all j < |Tρ[s]|. Moreover for each
string η let Tσ∗η[s+ 1] = Tρ∗η[s].

We start the verification of the construction by noting that the reals that are
paths through all trees T [s] form a Π0

1 class. Moreover since the nodes Tσ can only
move to existing nodes in T [s] at stage s+ 1 in a monotone fashion, it follows that
[T [s + 1]] ⊆ [T [s]] for all stages s. Hence if we show that each node Tσ reaches a
limit then the paths through the limit tree T form a perfect Π0

1 class.
It remains to show that T [s] reaches a limit T such that Re is satisfied for all

e. We show this by induction. Assume that by stage s0 all nodes Tσ with |σ| ≤ e
have reached a (finite) limit such that Ri is satisfied for each i ≤ e. Fix a string
σ of length e + 1. If Tσ is redefined infinitely often, then Tσ[s] converges to a
computable real X such that K(A �n) ≤ K(X �n) + e + 1 for all n. This is a
contradiction since A is not K-trivial. Hence Tσ[s] reaches a finite limit Tσ such
that K(A �n) > K(Tσ �n) + e+ 1 for some n ≤ |Tσ|. Hence Re+1 is satisfied. This
completes the induction step and the proof. �

The methods of construction behind (6.1) (from [Bar11a, Section 5] and [Ste11,
Chapter 2]) and Theorem 6.1 can be combined in a proof of the following enhanced
splitting theorem.
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Theorem 6.2 (Splitting with cone avoidance for ≤K). Let A be a c.e. set such
that A 6≤K ∅ and let X be a ∆0

2 set such that X 6≤K ∅. Then A is the union of two
disjoint c.e. sets A0, A1 such that A0|KA1, Ai <K A and X 6≤K Ai for i = 0, 1.

Proof. In the course of enumerating the elements of A into A0 and A1 we satisfy
the following requirement for e ∈ N and i = 0, 1.

R〈e,i〉 : ∃n
[
K(A1−i �n) > K(Ai �n) + e

]
.

Thus we ensure that A0 6≤K A1 and A1 6≤K A0. By [Bar11a, Lemma 5.1] we also
get A0, A1 <K A. Define the length of agreement l(e, i)[s] of R〈e,i〉 at stage s to be
the largest n ≤ s such that ∀j < n (K(A1−i �j)[s] ≤ K(Ai �j)[s]+e). We also need
to meet the following requirement for all e ∈ N and i = 0, 1.

N〈e,i〉 : ∃n [K(X �n) > K(Ai �n) + e].

We define the length of agreement m(e, i) in order to monitor the satisfaction of
R〈e,i〉. Let m(e, i)[s] be the largest number n ≤ s with the property that for all
j < n, K(X �j)[s] ≤ K(Ai �j)[s] + e. Let the restraint imposed by R〈e,i〉, N〈e,i〉 on
the enumeration of Ai at stage s+ 1 be given by

r(e, i)[s] = max
t≤s
{l(e, i)[t],m(e, i)[t], e}.

Note that by definition the restraint is non-decreasing in the stages s. Let Ai[0] = ∅
for i = 0, 1 and without loss of generality assume that at each stage exactly one
element is enumerated in A.

Construction. If x ∈ A[s+ 1]−A[s] consider the least 〈e, i〉 such that x ≤ r(e, i)[s]
and enumerate x into A1−i.

Verification. By induction we show that for all 〈e, i〉 requirements R〈e,i〉, N〈e,i〉 are
met and r(e, i) reaches a limit. Suppose that there is a stage s0 such that for
all 〈e′, i′〉 < 〈e, i〉 the requirements R〈e′,i′〉, N〈e′,i′〉 are met and r(e′, i′)[s] remains
constant for all s ≥ s0. Without loss of generality we may assume that s0 is large
enough so that all numbers enumerated in A after s0 are larger than the final
values of r(e′, i′), 〈e′, i′〉 < 〈e, i〉. By the choice of s0, after that stage all numbers
enumerated into Ai will be larger than the current value of r(e, i).

For a contradiction, suppose that R〈e,i〉 is not met. Then the length of agreement
l(e, i) and the restraint r(e, i) tend to infinity. Since r(e, i)[s] is nondecreasing in
s it follows that Ai is computable; hence K-trivial. Since R〈e,i〉 is not met, it
follows that A1−i is K-trivial. Since A is the disjoint union of A0 and A1 we have
A ≡T A0⊕A1. Then A is K-trivial, given that K-triviality is closed under the join
operator. This contradicts the assumption about A. Hence R〈e,i〉 is met.

For a second contradiction, assume that N〈e,i〉 is not met. Then the length
of agreement m(e, i) and the restraint r(e, i) tend to infinity. Since r(e, i)[s] is
nondecreasing in s it follows that Ai is computable, hence K-trivial. Since N〈e,i〉 is
not met, it follows that X is K-trivial. This contradicts our assumption about X.
Hence N〈e,i〉 is met.

To conclude the induction step (and the proof) it suffices to show that r(e, i)[s]
reaches a limit as s tends to infinity. But this is a direct consequence of its definition
and the fact that R〈e,i〉, N〈e,i〉 are met. �
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The proof of Theorem 6.2 can be written for ≤C instead of ≤K with no essential
changes. This trivial modification gives the following analogue.

Theorem 6.3 (Splitting with cone avoidance for ≤C). Let A be a c.e. set such that
A 6≤C ∅ and let X be a ∆0

2 set such that X 6≤C ∅. Then A is the union of two c.e.
sets A0, A1 such that A0 ∩A1 = ∅, A0|CA1 and Ai <C A, X 6≤C Ai for i = 0, 1.

The above results establish the existence of c.e. splittings of strictly lesser com-
plexity. We would like to know if it is always possible to split a c.e. set into two
parts of the same initial segment complexity. It is not hard to see that there exist
specially crafted c.e. sets that can be split into two c.e. sets of the same complexity.
For example, given any c.e. set A the set A⊕A has this property. We do not know
whether every c.e. set A is the union of two c.e. sets B,C such that B ∩ C = ∅
and A ≡K B ≡K≡ C. The same question has been studied in the context of
Turing degrees. Lachlan [Lac67] showed that there exists a c.e. set that cannot be
split into two c.e. sets of the same Turing degree. The c.e. sets which can be split
into two c.e. sets of the same Turing degree are called mitotic and were studied in
[Lad73b, Lad73a] and [DS89].

A related topic of interest concerns the relationship of ≤K ,≤C with ≤T in the
context of c.e. sets. This was studied in [MS07] more generally, but the arguments
used there provide facts about the c.e. case as well. For example, the K-degree
of the halting set does not contain all the c.e. members of any c.e. Turing degree.
Moreover the same holds for the C-degree of the halting set. Further results (along
the lines of the theorems in [MS07]) relating ≤K ,≤C with ≤T in the case of the
c.e. sets may be obtained by a more careful examination of the methods in [MS07].

6.2. Compression with c.e. oracles and splittings. We have already stressed
that the LK reducibility (measuring the compressing power of oracles) is quite dif-
ferent to K reducibility (measuring the initial segment complexity of reals) even in
the context of c.e. sets. However the two measures are quite related on the random
sequences. In fact, it was shown in [MY08] that if X,Y are random sequences then
X ≤LK Y if and only if Y ≤K X. In other words, a random sequence X can com-
press finite programs at least as efficiently as another random sequence Y exactly
if its initial segments are at most as complex as those of Y .

A similarity between the two measures also occurs in the case of c.e. oracles, with
respect to the various splitting properties that where discussed in Section 6.1. Such
properties of LK have mostly been studied in terms of the related reducibility ≤LR.
As we discussed in Section 4 it coincides with ≤LK . Morever it is rather straightfor-
ward to translate an argument concerning ≤LR to the analogous argument about
≤LK , by replacing effectively open sets with prefix-free machines. The argument
in [BL11] may be useful as a guide for such a translation. In the following we only
use ≤LK , although most of the original proofs in the literature of the results that
we discuss refer to ≤LR. We start with the following analogue of (6.1) that was
proved in [BLS08a] (also see [Bar10b, Footnote 7] and [Ste11, Chapter 2]).

(6.2)
If A is c.e. set and A >LK ∅ then A is the disjoint union of two
c.e. sets A0, A1 such that A0|LKA1 and A0, A1 <LK A.

Cone avoidance works for ≤LK much in the same way as it does for ≤K .

(6.3) Theorems 6.1 and 6.2 hold for ≤LK in place of ≤K .
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The proof of (6.3) does not involve any new ideas, other than the ones presented
in [BLS08a] and in Section 6.1. For this reason it is left to the motivated reader.
Similar cone avoidance arguments have been used in [Mor11].

The study of c.e. sets that cannot be split in the same LK degree was the topic
of [BM09, Section 3].

(6.4)
There exists a c.e. set A which cannot be split into two c.e. sets
B,C such that A ≡LK B ≡LK C.

Moreover the set A that was constructed was shown to be Turing complete. Recall
that the analogue of (6.4) for ≤K is an open question. The following character-
ization of triviality with respect to ≤LK was another result from [BM09, Section
3].

(6.5)
A c.e. set is K-trivial if and only if it computes a set which cannot
be split into two c.e. sets of the same LK degree.

The analogue of (6.5) for the case of Turing degrees (i.e. that every noncomputable
c.e. set computes a non-mitotic set) was shown in [Lad73b]. An interesting open
question on this topic is the existence of c.e. LK degrees in which all c.e. sets can
be split into two c.e. sets of the same LK degree. The analogue of this question for
the Turing degrees was answered positively in [Lad73a] and was further studied in
[DS89].
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[ML66] Per Martin-Löf. The definition of random sequences. Information and Control, 9:602–

619, 1966.
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