
RESOLUTE SEQUENCES IN INITIAL SEGMENT COMPLEXITY

GEORGE BARMPALIAS AND ROD G. DOWNEY

Abstract. We study infinite sequences whose initial segment complexity is

invariant under effective insertions of blocks of zeros in-between their digits.

Surprisingly, such resolute sequences may have nontrivial initial segment com-
plexity. In fact, we show that they occur in many well known classes from

computability theory, e.g. in every jump class and every high degree. More-

over there are degrees which consist entirely of resolute sequences, while there
are degrees which do not contain any. Finally we establish connections with

the contiguous c.e. degrees, the ultracompressible sequences, the anti-complex

sequences thus demonstrating that this class is an interesting superclass of the
sequences with trivial initial segment complexity.

1. Introduction

Given an infinite random binary sequence X we may reduce its initial segment
complexity by inserting blocks of zeros between its original digits. Even a single
zero in-between every other digit of X will reduce its complexity dramatically.
But what if X is not random? Can we always alter the complexity of its initial
segments by ‘spreading out’ its digits in an effective manner? Clearly if X has trivial
initial segment complexity, the simplification of its initial segments will not result
in a ‘measurable’ reduction of their complexity. Surprisingly, there are nontrivial
sequences X whose initial segment complexity is invariant under such effective
‘block inserting’ operations. Intuitively, these sequences have the property that

it is very hard to locate bits of significant information in their initial segments.

In this article we exhibit such examples in a variety of classes from computability
theory and study this proper superclass of the family of sequences with trivial
initial segment complexity. In particular, we establish connections with a number
of notions from computability and Kolmogorov complexity like the jump hierarchy,
the contiguous degrees, the ultracompressible sets of [LL99], the facile sets of [Nie09,
Section 8.2] and the anti-complex sets of [FGSW12].

Last revision: 25 August 2012.
Key words and phrases. Kolmogorov complexity, Computably enumerable sets, trivial reals.
This research was partially done whilst the authors were visiting fellows at the Isaac New-

ton Institute for the Mathematical Sciences, Cambridge U.K., in the programme ‘Semantics &
Syntax’. Barmpalias was supported by the Research fund for international young scientists num-
ber 611501-10168 from the National Natural Science Foundation of China, and an International

Young Scientist Fellowship number 2010-Y2GB03 from the Chinese Academy of Sciences; partial
support was also received from the project Network Algorithms and Digital Information number
ISCAS2010-01 from the Institute of Software, Chinese Academy of Sciences.

1



2 GEORGE BARMPALIAS AND ROD G. DOWNEY

1.1. Formal expressions of resoluteness. We measure the complexity of binary
strings σ via the plain Kolmogorov complexity C(σ) prefix-free Kolmogorov com-
plexity K(σ); this is the length of the shortest program that produces σ in an un-
derlying plain or prefix-free machine respectively. For background on Kolmogorov
complexity we refer to [DH10]. Let X ≤K Y denote ∃∀n K(X �n) ≤ K(Y �n) + c
and similarly for the plain complexity. These preorders induce equivalence relations
≡K , ≡C and corresponding degree structures that are known as the K-degrees and
the C-degrees respecively. Intuitively, two sequences in the same degree have the
same initial segment complexity.

The operation of inserting 0s between various digits of a given sequence is equiv-
alent to shifting the bits of the sequence at various places and filling in the gaps
with 0s. Let us refer to increasing functions f : N → N as shifts. If we view an
infinite binary sequence X as a set of natural numbers, then the result of such a
shift operation may be expressed as the image of X under f .

Definition 1.1 (Shifts). An increasing function f : N→ N is called shift. For each
set Z we let Zf = {f(n) | n ∈ Z}. A shift is called trivial if ∀n (f(n) < n+ c) for
some constant c.

Invariance under shift operations with respect to the plain and the prefix-free com-
plexity can be defined as follows.

Definition 1.2 (Invariance). A set Z is K-invariant under f if Z ≡K Zf and is
C-invariant under f if Z ≡C Zf .

For every sequence Z and every computable shift f we have Zf ≤K Z, so the
application of a computable shift on a sequence may only reduce its initial segment
complexity. Note that if a shift f is trivial then for every sequence X the sequence
Zf is (modulo finitely many bits) merely the result of shifting the bits of Z by a
fixed number of places. Trivial shifts are not very interesting from our point of view
as they preserve most notions of complexity on all sequences.

Definition 1.3 (K-resolute sequences). An infinite sequence Z is called K-resolute
if Z ≡K Zf for all computable shifts f . The C-resolute sequences are defined
analogously.

This definition is arguably a faithful formalization of the property that we discussed
earlier, i.e. the ability of a sequence to preserve its initial segment complexity despite
any computable insertion of blocks of 0s in-between its digits. This is an expression
of ‘resoluteness’ of a sequence, i.e. the inability to locate significant amounts of
information in its initial segments. There are other, similar ways to express this
informal concept. For example, consider property (1.1).

(1.1) For all computable shifts f , ∃c∀n K(Z �f(n)) ≤ K(Z �n) + c.

This also expresses a form of ‘resoluteness’ of a sequence. Moreover it is not hard
to see that K-resolute sequences meet (1.1). Indeed, since there exists a constant
c such that ∀n |K(Zf �f(n))−K(Z �n)| < c, for any computable shift f ,

(1.2) if Z ≡K Xf , then ∃c∀n |K(Z �f(n))−K(Z �n)| < c.

We say that a set is weakly K-resolute if it meets condition (1.1).
Yet another form of ‘resoluteness’ may be expressed in terms of conditional

complexity, as in (1.3). Here an order is a nondecreasing and unbounded function.

(1.3) For all computable orders g, ∃c∀n K(Z �n | n) ≤ K(Z �g(n) | n) + c.



RESOLUTE SEQUENCES IN INITIAL SEGMENT COMPLEXITY 3

Moreover each of the above notions has a version with respect to plain complexity.
As interesting as it may be, we will not be concerned with the technical question

about the relationship between the above resoluteness notions. Instead, we focus
on the notion of Definition 1.3 and note that our main results also hold for the two
other notions (also with respect to plain complexity).

In the following, we use the term ‘resolute’ to refer collectively to any of the
above three formal variations on this concept and the versions with respect to plain
complexity, while ‘K-resolute’ is reserved for the notion of Definition 1.3. A degree
is K-resolute if it contains a K-resolute set.

1.2. Resoluteness and complexity. Intuitively, sequences with ‘consistently high
complexity’ cannot be resolute. On the other hand, sequences with trivial complex-
ity are resolute. We give an overview of the relationship between complexity and
resoluteness in more precise terms. In our context, trivial sequences are the K-
trivial sequences, i.e. the sequences X such that ∃c∀nK(X �n) ≤ K(n) + c. It
was shown in [Nie05] that this class is downward closed under Turing reducibility.
Hence, if X is K-trivial and f is a computable shift then Xf ≡K X. In other
words, K-trivial sequences are K-resolute.

On the other end of the spectrum, a sequence X is called random if there exists a
constant c such that ∀n K(X �n) ≥ n−c. It is clear that random sequences are not
K-resolute. In fact, much more is true. A set is called complex if ∀n K(X �f(n)) ≥ n
for some computable function f . This definition is from [KHMS06, KHMS11] where
it was shown to be equivalent to the condition that a diagonally noncomputable
function is weak truth table reducible to X. Clearly complex sets are not weakly
K-resolute (i.e. they do not meet (1.1)). It follows that complex sets are not K-
resolute. Similar considerations apply to the C-resolute sets.

In turns out that K-resolute sets have very low initial segment complexity, but
not necessarily trivial complexity. A class of sequences of ‘ultra-low’ initial segment
complexity was introduced in [LL99]. We say that X is ultracompressible if for all
computable orders h, there exists c such that K(X �n) ≤ K(n) + h(n) for all
sufficiently large n. A related class of sequences of low complexity was introduced
in [FGSW12]. A set X is anti-complex if for all computable orders f we have
C(A �f(n)) ≤ n for all but finitely many n. It is not hard to see that in this definition
it does not matter if we use prefix-free complexity instead of plain complexity. Also,
it is not hard to see that every ultracompressible set is anti-complex.

The proof of the following observation uses two notions from computability the-
ory. A set X is called superlow if the jump X ′ of X is truth-table reducible to the
halting problem ∅′. Also, a degree a is called array computable if there exists a
function that can be computed from the halting problem with computable use of
this oracle, which dominates all a-computable functions.

Proposition 1.4. Every K-resolute set is ultracompressible (hence, anti-complex).
The converse is not true, even for c.e. sets.

Proof. Let X be a K-resolute set. In order to show that it is ultracompressible,
let g be a computable order. Without loss of generality we may assume that g is
onto. Let f be a computable increasing function such that g(f(n)) = n2 for all

n. Then there exists some constant c such that K(Xf �n) ≤ K(n) + 2
√
g(n) + c

for all n, since Xf �n has at most
√
g(n) nonzero bits. Since X is K-resolute,



4 GEORGE BARMPALIAS AND ROD G. DOWNEY

Ultracompressible

Resolute

K-trivial
Sparse

Figure 1. Classes of sequences of low initial segment complexity.

∃d∀n, K(X �n) ≤ K(n)+2
√
g(n)+d. Since limn(g(n)−2

√
g(n)) =∞ this implies

that K(X �n) ≤ K(n) + g(n) for almost all n. Hence X is ultracompressible.
For the second clause we note that by [Nie09, Theorem 8.2.29], every set with

array computable c.e. degree is ultracompressible. Also, by [FGSW12, Theorem 1.3]
(and the fact that the array computable c.e. degrees are exactly the c.e. traceable
degrees) every set with array computable c.e. degree is anti-complex. On the other
hand, by [Nie09, Exercise 8.2.10], every superlow set is array computable. Hence
it suffices to construct a superlow c.e. set which is not K-resolute. This is entirely
similar to the typical construction of a superlow c.e. set which is not K-trivial (e.g.
see [Nie09, Exercise 5.2.10]) where K-triviality is replaced by (1.1). We leave this
argument as an exercise for the motivated reader, as it does not present any novel
features. �

A variation of ultracompressible sets was introduced in [Nie09, Section 8.2] in
terms of conditional complexity. A sequence X is called facile if for each order h
and all sufficiently large n we have K(X �n | n) ≤ h(n). It is not hard to see that
every facile set is ultracompressible.

Proposition 1.5. All sequences that meet resoluteness condition (1.3) are facile,
but the converse does not hold (even for c.e. sets).

The first clause of this proposition is straightforward while the proof of the second
clause is entirely analogous to the argument in the proof of Proposition 1.4.

The analogues of Propositions 1.4 and 1.5 with respect to plain complexity also
hold (with similar proofs). We illustrate some of the above observations In Figure 1,
where one may interpret ‘resolute’ with any of the three notions of resoluteness that
we considered (i.e. K-resoluteness or one of (1.1), (1.3) and the plain complexity
versions of these notions). Note that in the case of (1.3), one may also replace
‘ultracompressible’ with ‘facile’ since the latter property is guaranteed by (1.3).
Sparse sets will be defined in Section 2.

2. Resoluteness and sparseness

Intuitively, any information in a resolute set is coded in a very sparse way. In
other words, a block of high complexity in a sequence may be used in order to
reduce its initial segment complexity significantly, by ‘spreading out’ the bits of
this block. In this section we formulate a notion of sparseness that is sufficient to
guarantee resoluteness, and flexible enough to provide examples in many classes
from computability theory. A concrete motivation for this notion as a tool for the
study of resoluteness is the following observation. By direct coding on the values of
the iterations of a given computable shift f we show that there are many sequences
whose initial segment complexity is invariant under the application of f .



RESOLUTE SEQUENCES IN INITIAL SEGMENT COMPLEXITY 5

Af

f

f
A

Figure 2. Construction of sparse and resolute sets.

Proposition 2.1. Let f be a computable shift. Every many-one degree contains a
set X such that X ≡K Xf .

Proof. Let Y be a set and g(n) = fn(0). Define X = {g(n) | n ∈ Y } so that
Y ≡m X. It remains to show that KM (X �n) ≤ K(Xf �n) + 1 for a prefix-free
machine M and all n. Let F = {f i(0) | i ∈ N} and given n > 0 let t0, . . . tk be
the first k + 1 members of F that are less than n. Then all bits of X �n are 0
except perhaps ti, i ≤ k. Moreover X(ti) = Xf (ti+1) for all i < k. Hence in order
to describe X �n we just need a description of Xf �n and the value of X(tk). This
shows that there is a machine M such that ∀n (KM (X �n) ≤ K(Xf �n) + 1). �

The bits of X of Proposition 2.1 that carry some information (‘significant bits’)
are far apart with respect to f . In particular, the image of the position of each such
bit under f is the position of the next significant bit. In fact, for the equivalence
X ≡K Xf it suffices that the image under f of each significant bit is at most as large
as the position of the next significant bit. This property is illustrated in Figure 2
(where ‘diamonds’ indicate the significant bits and ‘dots’ indicate the rest of the
bits) and is the motivation for Definition 2.2. Given an increasing function g and
two sets (viewed as infinite binary sequences) X,Y we denote by X ⊗g Y the set
that is obtained by replacing the g(i)th bit of X with the ith bit of Y , for each i.

Definition 2.2 (Sparse sets). Given an increasing function g we say that a set A
is g-sparse if A = E ⊗f X for a computable set E, a computable function f with
g(f(i)) < f(i+1) for all i, and some set X. A set B is called sparse if it is g-sparse
for all computable increasing functions g.

Traditional notions of sparseness are based on the feature that the 1s have (in
a certain sense) ‘low density’ in the initial segment of a sequence. An example
here is the various immunity notions from classical computability theory (immune,
hyperimmune, hyperhyperimmune etc.). These notions are closer to the special case
of Definition 2.2 with E = ∅. Definition 2.2 also involves a notion of domination. For
example, if we require E = ∅ in the definition then we only get sets A with A′ ≥T
∅′′. Such sets compute a function that dominates all computable functions. By
considering sparseness modulo computable sets (i.e. allowing E to be a computable
set that depends on the choice of g) we obtain a much richer class, as we demonstrate
in the following sections. For example, in Section 3 we show that sparse sets occur
in all jump classes.

We show that sparseness indeed guarantees resoluteness. In order to do this, we
need two technical observations.

Lemma 2.3. Let f, g : N→ N be computable increasing functions with the property
that g(n + 1) > f(g(n)) for all but finitely many n. If E is a computable set then
E ⊗g X ≡K (E ⊗g X)f for all sets X.



6 GEORGE BARMPALIAS AND ROD G. DOWNEY

Proof. It suffices to find a prefix-free machine M such that

∀n KM

(
(E ⊗g X) �n

)
≤ K

(
(E ⊗g X)f �n

)
+ 1

By the choice of f, g, for each sufficiently large number n we have |g(N) �n | ≤
|f(g(N)) �n | + 1. Hence for each sufficiently large n, in order to describe the first
n bits of E ⊗g X we only need a description of the first n bits of (E ⊗g X)f and
at most one extra bit. It follows that the machine M with the desired property
exists. �

The following lemma can be proved similarly.

Lemma 2.4. Let g be an order and let f be a computable increasing function such
that f(n) ≤ g(f(n + 1)) for all but finitely many n. If Z = E ⊕f X where E is a
computable set and X is any set, then ∃c∀n K(Z �n | n) ≤ K(Z �g(n) | n) + c.

If a set A is sparse, then given any any computable order h we have A = E ⊗f X
for some computable set E, some set X and some computable increasing function
f such that f(i) < h(f(i + 1)). Indeed, consider the increasing function h∗ : n 7→
min{i : max{n, h(n− 1)} < h(i)}. Since A is sparse, it can be written as E ⊗f X
for some computable set E, some set X and some computable increasing function
f such that h∗(f(i)) < f(i+ 1). In particular, f(i) < h(f(i+ 1)) for all i.

The following is a direct consequence of the above discussion, Definitions 1.3,
2.2, and Lemmas 2.3, 2.4. Moreover it holds in terms of plain complexity by the
same arguments.

Corollary 2.5. Every sparse set Z is K-resolute and meets (1.3).

We can show that there are Turing complete sparse (hence resolute) sets. Since
(by [DHNS03]) complete sets are not K-trivial, these are the first (and most easily
produced) nontrivial examples of resolute sets. Without additional effort, we take
a step further and show the following stronger statement. A degree a is called high
if a′ ≥ 0′′.

Theorem 2.6. Every high c.e. degree contains a sparse (hence resolute) c.e. set.

Proof. Let a be a high c.e. degree and let A be a c.e. set in a. By a simple
variation of Martin’s characterization of high c.e. degrees in terms of dominating
functions in [Mar66], a computes a sequence (xi) with computable approximations
lims xi[s] = xi satisfying the following properties for each i, s:

(a) f(xi) < xi+1 for all computable shifts f and all but finitely many i;
(b) xi[s] < xi+1[s] and xi[s] ≤ xi[s+ 1];
(c) if xn[s] 6= xn[s+ 1] then xn[s+ 1] > s+ 1;
(d) xi[s] ∈ N[i].

Consider the set D consisting of the numbers n such that n = xi[s] for some i, s
such that xi 6= xi[s]. Clearly D is c.e. and is computable from A. Moreover it is
easy to see that it computes A, so that it has degree a. It remains to show that
D is sparse. We define a computable set E and a computable function g such that
D = E ⊗g X for some set X and f(g(n)) < g(n+ 1) for all n. Let i0 be a number
such that f(xi) < xi+1 for all i ≥ i0 and let s0 be a stage such that xi[s] = xi for
all i ≤ i0 and s ≥ s0. Define g(0) = xi0 and let g(i + 1) = xi+1[s] for the least
stage s ≥ s0 such that xi+1[s] > f(g(i)) and s > g(xi+1[s]). In this case we say
that g(i + 1) was defined at stage s. According to the hypothesis about (xi), the



RESOLUTE SEQUENCES IN INITIAL SEGMENT COMPLEXITY 7

function g is total and computable. Moreover f(g(n)) < g(n+ 1) for all n. The set
E is defined recursively as follows. To compute E �n find the least j, sj such that
g(j) is defined at stage sj and g(j) > n. For each t < n, if t 6∈ g(N) and t = xk[s]
for some k < j and s ≤ si let E(t) = 1; otherwise let E(t) = 0. According to the
properties of (xi), after stage si there will be no additional positions < n occupied
by approximations to the values of (xi). Hence the sets E,D agree on the positions
in N− g(N). Hence D = E ⊗g X for some set X. �

The proof of Theorem 2.6 can be modified to a construction of a hyperimmune Π0
1

sparse set. Curiously enough, such sets have to be high.

Proposition 2.7. Every sparse hyperimmune set is high.

Proof. Let A be a sparse set which is not high. Let f be an A-computable function
such that for each i there exist at least 2i numbers in A �f(i). Since A is not high
there exists a computable function h such that h(i) > f(i) for infinitely many i.
Since A is sparse, we may choose a computable set E and a computable function
g such that g(i) > h(i) for all i and A = E ⊕g X for some set X. From this
presentation it follows that A is not hyperimmune. �

It is, perhaps, not surprising that there are K-resolute sets that are not sparse.
By applying Proposition 2.7 to a K-trivial hyperimmune set we get the following
(since K-trivial sets are not high [Nie05]).

Corollary 2.8. There exists a K-trivial set which is not sparse.

At this point we have justified the diagram in Figure 1. We note that all of the
depicted classes are meager, in the sense of Baire category. Indeed, every weakly
2-generic set has effective packing dimension 1 so it is not ultracompressible.

Another way to obtain sparse and resolute sets is to use basis theorems on
effectively closed sets. For this purpose, we need the following fact.

Theorem 2.9. There exists a non-empty Π0
1 class with no computable paths which

consists entirely of sparse sequences.

Proof. We will define a partial computable function ϕ with binary values such that
the set of all total extensions of it, is the required Π0

1 class. Fix a computable double
sequence (xn[s]) with x0[s] = 0 and such that (a)-(d) of Theorem 2.6 hold. Let
(ϕe) be an effective sequence of all partial computable functions. We assume the
standard convention that if ϕe(n)[s] ↓ then e, n are less than s. The construction
of ϕ is as follows: at stage s, if ϕe(xe)[s] ↓ for some e < s and ϕ(xe[s]) is undefined,
then define ϕ(xe[s]) = 1 − ϕe(xe)[s]. Moreover for each i < s, if i 6= xe[s] for all
e < s and ϕ(i) is undefined, define ϕ(i) = 0.

For the verification, first note that since each xe[s] reaches a limit as s → ∞
(and each time it is redefined it takes a value on which ϕ is currently undefined) the
Π0

1 class of total extensions of ϕ is perfect. Indeed, there are infinitely many e ∈ N
for which ϕe is the empty function, and for these numbers e the function ϕ will be
undefined on xe := lims xe[s]. Second, there are no computable extensions of ϕ.
Indeed, given e ∈ N, if ϕe is total then by the construction we have ϕ(xe) 6= ϕe(xe)
where xe := lims xe[s]. Finally, we show that every extension of ϕ is sparse. Let g
be an increasing computable function. Then by the properties of (xe[s]) there exists
some e0 such that f(xe) < xe+1 for all e > e0. We may define a computable set E
as follows. Let E �xe0 = ϕ �xe0 and let s0 be a stage where xe0 [s] has reached a limit.



8 GEORGE BARMPALIAS AND ROD G. DOWNEY

Also let y0 = xe0 . At step e > e0 find a stage s > s0 such that f(xi)[s] < xi+1[s] for
each i ≤ e and xe+1[s] < s. Then define the bits of E in the interval (ye−1, xe[s]]
to be the bits of ϕ in the same interval, except where ϕ is (currently) undefined in
which case we choose value 0. Also let ye = xe[s].

For each n, positions between yn and yn+1 in E include the values of some codes
xe[s], where s is the stage found in step n + 1 of the construction of E. By the
construction, if (zi) is the sequence of these positions we have g(zj) < zj+1 for each
j. Therefore any extension A of ϕ can be written as E ⊗f X where f(i) = zi and
X is some set (giving the bits of A on positions zi). �

A set is called computably dominated if every function computable from it is domi-
nated by a computable function. The strong version of the computably dominated
basis theorem (see [Nie09, Theorem 1.8.44 ]) says that every Π0

1 class without com-
putable paths has a perfect subclass of computably dominated sets. By applying
this basis theorem to the class of Theorem 2.9 we get more examples of sparse sets.

Corollary 2.10. There are uncountably many computably dominated sparse sets.

In particular, there are uncountably many resolute sets.

3. Jump inversion with K-resolute sequences

A set A is called superlow if A′ ≡tt ∅′. Curiously enough, it is more involved to
produce a non-trivial sparse c.e. set which does not realize the highest jump, than it
is to produce one that does. A possible heuristic explanation for this is that the the
notion of sparseness involves some type of domination (which is characteristic to
high sets). Similar remarks apply to the construction of K-resolute sets (compare
with the straightforward constructions of Section 2 that produce high sets).

Theorem 3.1. There exists a superlow sparse c.e. set A which is not K-trivial.

Proof. We use a priority tree construction to construct a c.e. set A with the re-
quired properties. Let (Φe) be an effective enumeration of all Turing function-
als and let (ϕe) be an effective enumeration of all strictly increasing partial com-
putable functions. Without loss of generality we may assume that, for all e, i, s, if
ϕe(i + 1)[s] ↓ then ϕe(i)[s] ↓. Moreover let ∗ denote concatenation of strings. In
order to ensure that A is sparse it suffices to satisfy the following conditions.

Re : ϕe is total⇒ ∃E,X, g, (A = E ⊗g X and ∀i, ϕe(g(i)) < g(i+ 1))

where E ranges over all computable sets, X ranges over all sets and g ranges over
all computable functions. In order to ensure that A is not K-trivial it suffices to
construct a prefix-free machine N (as usual, by enumerating a Kraft-Chaitin set of
requests) such that the following conditions are satisfied.

Pe : ∃n K(A �n) > KN (n) + e.

We will also ensure that A′ ≡tt ∅′ by ensuring that the values of A′ can be approx-
imated with a computable modulus of convergence. The priority tree is the full
binary tree where each level e is associated with requirements Re, Pe. In particu-
lar, each node of length e has two branches with labels 1,0 that correspond to a
guess about whether ϕe is total or not. In addition, each such node (based on the
guesses about the totality of ϕi, i < e) will work toward the satisfaction of Pe. The
construction will proceed in stages s+1, where a path δs of length s will be defined



RESOLUTE SEQUENCES IN INITIAL SEGMENT COMPLEXITY 9

through the tree. Given a node α, we say that stage s is an α-stage if α ⊂ δs.
Define `α(s) to be max{i | ∀j < i ϕ|α|(j)[s] ↓} if s is an α-stage and 0 otherwise.
A stage s is called α-expansionary if `α(s) > `α(t) for all t < s.

Let α→ nα be a one-one function from the nodes of the tree to N such that the
sum of 2−nα for all nodes α is at most 1/2. We fix the priority list P0, R0, P1, . . . .
Each node carries a strategy Pα for P|α| and a strategy Rα for R|α|. Injury of a
strategy Pα means the initialization of it and all of its parameters. There will be no
injury of the Rα strategies. Strategy Pα may be injured either because δs moves to
the left of it, or because ΦAi (i)[s] becomes defined at some stage s for some i < |α|
(with appropriately large use). At stage s+1 the quota for weight of the N -requests
that node α may enumerate is 2−tα[s], where tα[s] = nα + uα[s] + |α| and uα[s] is
the number of times that Pα has been injured in the stages up to s. A number is
called large at some stage of the construction if it is larger than the value of every
parameter of the construction up to that stage.

Strategy Rα will define a computable sequence (qαi ) of potential ‘codes’ such
that φe(q

α
i ) < qαi+1 for all i such that qαi+1 ↓. If ϕ|α| is partial, the sequence (qαi )

will be finite. These ‘codes’ will be chosen inductively as a subsequence of (qβi ),
where β is the largest initial segment of α with β ∗ 1 ⊆ α (if such segment does not
exist, codes are chosen as a subsequence of the identity sequence). For each α we

let pαi = qβi where β is as above, and pαi = i if such β does not exist.

Strategy for Pα.

(1) Pick a large number mα.
(2) Let Dα be a set of 2tα terms of (pα〈α,2i+1〉) with i > mα.

(3) Let rα = maxDα + 1 and enumerate an N -description of rα of length
tα − |α|.

(4) Wait until K(A �rα)[s] ≤ KN (rα)[s] + |α|.
(5) Enumerate max(Dα −A[s]) into A and go to step 4.

Note that the loop between steps 4 and 5 can only be repeated at most 2tα − 1
times. Hence K(A �rα) > KN (rα) + |α|. We say that node Pα requires attention at
stage s + 1 if α ⊆ δs and the strategy for α is ready to perform the next step. In
other words, in the following cases:

(a) mα is undefined;
(b) mα ↓ but Dα is undefined, and there are 2tα terms of (pαi ) as required in

step (2) of the strategy for Pα;
(c) the strategy is in step 4 and K(A �qα)[s] ≤ KN (n)[s] + e.

The strategy Rα operates at α-expansionary stages and defines (qαi ). Note that
since ϕ|α| is increasing, we also have qαi ≥ i for all I such that qαi is defined.

Strategy for Rα.

(1) Let qα0 be pα〈α,0〉.

(2) Let j be the largest number such that qαj ↓ and define qαj+1 to be the least
pα〈α,2i〉 which is greater than ϕ|α|(q

α
j ).

We say that Rα requires attention at stage s + 1 if α ∗ 1 ⊆ δs and the strategy is
ready to perform the next step. In other words, if qα0 is undefined or ϕ|α|(q

α
j ) is

defined for some j but qαj+1 is undefined. The construction includes an injury of
the strategies from the implicit lowness requirement. Injury of α means injury Pα.



10 GEORGE BARMPALIAS AND ROD G. DOWNEY

Construction. At stage s+ 1 define a path δs of length s inductively, starting from
the root and from each node α choosing branch 1 if s is an α-expansionary stage
and 0 otherwise. Injure all nodes to the right of δs. For each e < s such that
ΦAe (e)[s] ↓ with use ue and each α such that |α| ≥ e, mα[s] < ue injure Pα. For
each α ⊂ δs for which Rα requires attention, execute the next step of Rα. If some
Pα with α ⊂ δs requires attention, pick the least such α, execute the next step of
its strategy.

Verification. We first verify that A′ ≤tt ∅′. Each Pα may only be injured by com-
putations ΦAe (e)[s] ↓ for e ≤ |α|. Every injury of α initiates another round of the
strategy of α. At any round, the maximum amount of enumerations into A that
α may perform is bounded by the current value of tα. On the other hand, the
current value of tα may be computed by the number of injuries that α has en-
dured. It follows that there is a computable bound on the number of times that
each computation ΦAe (e)[s] ↓ may be ‘disturbed’ (by enumeration into A below the
current use of the computation). Hence A′ may be computably approximated with
a computable modulus of convergence, which shows that A′ ≤tt ∅′.

Let δ be the leftmost path such that for all n we have δ �n⊂ δs at infinitely many
stages s. By induction we show the following for each α ⊂ δ:

(i) Pα is injured or requires attention finitely many times;
(ii) if α ∗ 1 ⊂ δ then (qαi ) is total.

Let α be a node and suppose that these clauses hold for all β ⊂ α. According to
the above discussion, beyond a certain stage the computations ΦAe (e) will either
converge permanently or diverge permanently. Therefore the lowness requirements
will stop injuring Pα. On the other hand (by the induction hypothesis) beyond a
certain stage the strategies Pγ for γ ⊂ α and γ to the left of α will stop requiring
attention. Therefore they will cease enumerating numbers in to A and Pα will stop
being injured. After such a stage, Pα will stop requiring attention before it has
completed 2tα enumerations into A. This completes the induction step for (i).

For (ii) note that by the induction hypothesis the sequence (pαi ) is total. We may
assume that α ∗ 1 ⊂ δ (otherwise (ii) holds trivially). Then there will be infinitely
many α-expansionary stages and, by the construction, (qαi ) will be totally defined.
This completes the inductive proof of (i), (ii).

Finally we show that A meets all requirements Pe, Re. Let α be the unique
node on δ of length e. For Pe, let s0 be a stage after which Pα is not injured.
By properties (i)-(iii) that we established it follows that (pαi ) is total. Moreover
the terms pα〈α,2i+1〉 may only be enumerated into A by Pα. Hence the strategy

Pα will complete the preliminary steps (1)-(3) and will enter the loop (4)-(5) thus
ensuring (as explained in the remark following the description of this strategy) that
K(A �rα) > KN (rα) + |α| for a certain number rα. It follows that Pe is met.

For Re, if α ∗ 0 ⊆ δ then ϕe is partial and Re is met. Otherwise α ∗ 1 ⊆ δ and
by (iii), (qαi ) is total. Note that when a term qαi is defined, the strategies to the
right of α ∗ 1 will not enumerate into A any numbers ≤ qαi . The same holds for the
strategies γ ⊆ α or those that lie to the left of α ∗ 1. Moreover the only numbers
enumerated in A by the strategies extending α ∗ 1 are terms of (qαi ). It follows that
α defines a computable set E and the function g(i) = qαi such that A = E⊗gX for



RESOLUTE SEQUENCES IN INITIAL SEGMENT COMPLEXITY 11

some set X. Moreover by the definition of (qαi ) we have ϕe(g(i)) < g(i+ 1) for all
i. Hence Re is met. �

In some respect, the construction in the proof of Theorem 3.1 resembles the con-
struction of a maximal set. However, the lowness requirements apparently make
the use of some type of a tree argument necessary.

Corollary 3.2. There exists a superlow K-resolute c.e. set A which is not K-
trivial.

A general jump inversion theorem for sparse sets is easy to obtain since we have
already constructed a perfect Π0

1 class of sparse sets with no computable paths.

Theorem 3.3 (Jump inversion with sparse sets). Every jump class contains a
sparse set. In particular, every degree above 0′ contains the jump of a sparse set.

Proof. By [JS72] given a degree a ≥ 0′ and a Π0
1 class P with no computable

members, there exists X ∈ P such that X ′ is a member of a. Therefore the
theorem is a consequence of Theorem 2.9. �

The jump inversion for c.e. sparse sets involves a modification of the argument that
we used in the proof of Theorem 3.1.

Theorem 3.4 (Jump inversion with sparse c.e. sets). For every Σ0
2 set S ≥T ∅′

there exists a sparce c.e. set A such that A′ ≡T S.

Proof. The argument here is similar to the one in the proof of Theorem 3.1, so we
use the same notation and terminology. Requirements Re remain the same and the
tree of strategies is also the same. We also need to satisfy S ≡T A′. The coding of
S into A′ will be achieved via the standard ‘thickness’ requirements, only that the
codes that are used need to be chosen from the ones produced by the Re strategies.
Let D be a c.e. set such that if e ∈ S then D[e] = N �n for some n, and if e 6∈ S
then D[e] = N[e]. We may fix an enumeration of D such that at each stage s, if
〈e, n〉 ∈ D[e][s] then 〈e, i〉 ∈ D[e][s] for all i < n. In the following construction,
‘injury’ of a node α is merely a way to say that δ2s+1 moved to the left of α. We
may assume that if ΦAe is undefined then ΦAe [s] is undefined for infinitely many s.

Construction. At stage 2s + 1 define a path δ2s+1 of length s inductively, starting
from the root and from each node α choosing branch 1 if s is an α-expansionary
stage and 0 otherwise. For each α ⊂ δ2s+1 for which Rα requires attention, execute
the next step of Rα and injure all nodes that lie to the right of δ2s+1. At stage
2s+2, for each α with |α| < s enumerate into A all pα〈α,2i+1〉 which are defined with

i ∈ D[|α|][2s + 2] and are larger than all uses of any computations ΦAi (j)[2s + 1] ↓
with j < e and larger than the last stage where α was injured.

Verification. We first verify that A′ ≤T S. Since S computes ∅′, it also computes
D. In order to decide if ΦAe (e) ↓ we first compute a stage s0 at which D[i][s0] = D[i]

for all i < e such that D[i] is finite. Moreover inductively, we may compute whether
ΦAi (i) ↓ for each i < e, and a stage s1 > s0 such that ΦAi (j)[s] ↓ for all s ≥ s1 and
each j < e such that ΦAj (j) ↓. Let ve be the maximum use of the oracle A in these

computations. Next, we ask if there is a stage 2s+ 2 > s1 such that ΦAe (e)[2s+ 2]
is defined with some use ue and for all pα〈α,2i+1〉[s] with |α| < e, D[|α|] = N[|α|],



12 GEORGE BARMPALIAS AND ROD G. DOWNEY

pα〈α,2i+1〉[s] > ve and pα〈α,2i+1〉[s] ≤ ue we have i ∈ D[|α|][2s + 2] or the last stage

where α was injured is larger than ue. If such a stage does not exist, then clearly
ΦAe (e) is undefined. Otherwise, the construction will preserve the computation,
hence ΦAe (e) is defined. Hence S computes A′.

Next, we show that S ≤T A′. In order to decide if e ∈ S we first find a stage s0
at which all computations ΦAi (i), i < e that eventually converge, actually converge
at s0 with correct A use. Moreover let ue be the maximum of these uses. Then we
search for some x such that one of the following holds :

(a) for all α with |α| = e, all i > x and all s > x either pα〈α,2i+1〉[s] is undefined,

or it is ≤ ue or it is a member of A[s];
(b) for all α with |α| = e, all i > x and all x either pα〈α,2i+1〉[x] is undefined, or

it is ≤ ue or it is not a member of A[s].

If e ∈ S we show that (a) holds for some x. Indeed, in this case D[|α|] = N[|α|] and
all defined terms pα〈α,2i+1〉[s] which are not prohibited by the convergence of ΦAi (i),

i < e will eventually enter A according to the construction. By a standard use of
‘true stages’ in the enumeration of A (i.e. stages s where for the least number n
entering A we have A[s] �n is a prefix of A) we get that all of these terms that are
larger than ue will be permitted to enter A at some point of the construction.

If e 6∈ S we show that (b) holds for some x. Indeed, in this case D[|α|] is finite
for all α with |α| = e. Let x be larger than all the elements of this set. Then none
of the codes pα〈α,2i+1〉 with i > x that are defined may enter A.

Furthermore, it is not possible that both (a), (b) occur for some x. Indeed, let
δ be the leftmost path such that δ ⊂ δ2s+1 for infinitely many s. If α = δ �|α| then
(pαi ) is total, which shows that at least one of (a), (b) must fail (for sufficiently
large x). Since the search for an x such that (a) or (b) hold is computable in A′,
this gives a computation of whether e ∈ S from A′.

We conclude with a proof that A meets each Re requirement. Let α be the
unique node on δ of length e and let s0 be a stage such that δs is to the right of α
or an extension of it, for all s ≥ s0. If α ∗ 0 ⊆ δ then ϕe is partial and Re is met.
Otherwise α ∗ 1 ⊆ δ and (qαi ) is total. Note that when a term qαi is defined at some

stage s > s0, no numbers pβi for β to the right of α ∗ 1 will enumerated into A after
s, unless they are larger than s. The same holds for the nodes β which lie to the left
of α ∗ 1. Moreover the only numbers enumerated in A by the strategies extending
α ∗ 1 are terms of (qαi ). Finally the finitely many nodes γ that prefix α enumerate
computable (possibly infinite) sets of codes pγ〈γ,2i+1〉 into A. It follows that α can

define a computable set E and the function g(i) = qαi such that A = E ⊗g X for
some set X. Moreover by the definition of (qαi ) we have ϕe(g(i)) < g(i+ 1) for all
i. Hence Re is met. �

4. Completely resolute and resolute-free degrees

We are interested in two extremes, namely the degrees which do not contain
resolute sets and the degrees that consist entirely of resolute sets. A degree is
called completely K-resolute if every set in it is K-resolute. Similar definitions
apply to the other notions of resoluteness that we have considered. Note that every
K-trivial degree is completely K-resolute, so we will be interested in nontrivial
examples of such degrees. A degree is called resolute-free if it does not contain



RESOLUTE SEQUENCES IN INITIAL SEGMENT COMPLEXITY 13

any resolute set (with respect to any of the definitions of resoluteness that we have
discussed).

It turns out that the existence of such degrees is very related to two observations
between bounded Turing reductions (i.e. weak truth table reductions) and resolute
sets. Note that if f is a computable shift and A ≡K B then Af ≡K Bf .

Proposition 4.1. If A is K-resolute and A ≡K B then B is also K-resolute. The
same holds for ‘weakly K-resolute’ in place of ‘K-resolute’.

Proof. First, we show the case for K-resolute sequences. Let f be a computable
shift. Under the assumptions there are constants ci such that for all n,

K(B �n) ≤ K(A �n) + c0 ≤ K(Af �n) + c1 ≤ K(Bf �n) + c3.

Hence B ≡K Bf . Since f was chosen arbitrarily, B is also K-resolute.
Second, for the case of weakly K-resolute sequences let f be a computable shift.

Under the assumptions there are constants di such that for all n,

K(B �f(n)) ≤ K(A �f(n)) + d0 ≤ K(A �n) + d1 ≤ K(B �n) + d3.

Since f was chosen arbitrarily, B is also weakly K-resolute. �

Proposition 4.2. If B is weakly K-resolute and A ≤wtt B then A ≤K B.

Proof. Since A ≤wtt B there is a computable increasing function f such that
∃d∀n (K(A �n) ≤ K(B �f(n)) + d). Since B is weakly K-resolute, there exists a
constant c such that ∀n (K(B �f(n))) ≤ K(B �n) + c). Hence A ≤K B. �

These observations point to the fact that in order to produce a degree which
does not contain any resolute sets it suffices to produce a set that is not resolute
and its Turing degree ‘collapses’ to (i.e. contains) a single weak truth table degree.
Similarly, in order to produce a degree which consists entirely of resolute sets it
suffices to produce a resolute set whose Turing degree ‘collapses’ to (i.e. contains)
a single weak truth table degree.

Proposition 4.3. Every computably dominated K-resolute degree is completely
K-resolute. Moreover the same holds for weakly K-resolute in place of K-resolute.

By the application of the uncountable version of the computably dominated basis
theorem for Π0

1 classes (e.g. see [Nie09, Theorem 1.8.44]) on the class of Theorem
2.9, along with Corollary 2.5 we have the following consequence.

Corollary 4.4. There exist uncountably many completely K-resolute degrees.

In particular, since there are only countably many K-trivial degrees, there are
completely K-resolute degrees which are not K-trivial. Similar results hold for the
resolute-free degrees.

Corollary 4.5. There exist uncountably many resolute-free degrees.

Indeed, there are uncountably many 1-random computably dominated degrees.

Corollary 4.6. Every (weakly) K-resolute sequence computable from a Martin-Löf
random computably dominated degree is computable.



14 GEORGE BARMPALIAS AND ROD G. DOWNEY

Proof. By Demuth [Dem88] (also see [DH10, Theorem 8.6.1] for a neat proof)
every noncomputable set that is truth-table reducible to a Martin-Löf random set
is Turing equivalent to a Martin-Löf random set. On the other hand, there is a
Martin-Löf random set of computably dominated degree, and computably dom-
inated degrees consist of a single truth-table degree. Hence the statement is a
consequence of Propositions 4.1 and 4.2. �

We are interested in c.e. examples of completely K-resolute and resolute-free
degrees. In [FGSW12, Theorem 4.3] it was shown that there exists a c.e. degree
which contains no anti-complex sets. Since every ultracompressible set is anti-
complex, this degree does not contain any ultracompressible or (by Proposition
1.4) resolute sets.

Theorem 4.7. There exists a resolute-free c.e. degree.

Finally, we wish to produce nontrivial examples of completely K-resolute c.e.
degrees. A c.e. degree is called contiguous if all the c.e. sets in it are weak truth
table equivalent. The existence of nontrivial contiguous degrees was first shown and
exploited in [LS75]. A degree is called strongly contiguous if all the sets in it are
weak truth table equivalent; in other words, it consists of a single weak truth table
degree. The existence of strongly contiguous c.e. degrees was shown in [Dow87].

Theorem 4.8. Every strongly contiguous c.e. degree is completely K-resolute.

Proof. We say that a c.e. degree a is ‘wtt-bottomed’ if the c.e. weak truth table
degrees inside a have a least element. It suffices to show that every c.e. set in the
least weak truth table degree inside a wtt-bottomed degree is K-resolute. Indeed,
strongly contiguous c.e. degrees are clearly wtt-bottomed so the result would follow
from Proposition 4.1.

Assume that a is a ‘wtt-bottomed’ c.e. degree and A is a c.e. set in the least weak
truth table c.e. degree inside a. We show that A is K-resolute. Given a computable
shift f we wish to construct a prefix-free machine M such that

(4.1) ∀n KM (A �n) ≤ K(Af �n).

Without loss of generality we may assume that the weight of the underlying uni-
versal prefix-free machine U (i.e. the sum of all 2−|σ| such that U(σ) ↓) is < 2−1.
In order to define M , we construct an auxiliary c.e. set B such that B ≡T A. Let
A[s] be the enumeration of A with respect to a standard enumeration of all c.e. sets
(and Turing functionals). The enumeration of B will be defined in these stages via
a standard system of movable markers δ(n)[s] When we say ‘move δ(n)’ at stage
s+ 1 of the construction we mean

• enumerate δ(n)[s] into B;
• let δ(n)[s+ 1] = 〈n, s+ 1〉;
• let δ(i)[s+ 1] = 〈n, s+ 1〉 for each i ∈ (n, s].

Let δ(0)[0] = 0. We may assume that any number that enters A at stage s is strictly
less than s. Let g(n) = max{i | f(i) ≤ n}. Note that g(n) ≤ n for all n.

Enumeration of B. At stage s + 1 define δ(s + 1)[s + 1] = s + 1. If n be the least
number that enters A, move δ(g(n)). If there is no such n, do nothing more.



RESOLUTE SEQUENCES IN INITIAL SEGMENT COMPLEXITY 15

Note that the enumeration of B is well defined. In order to show that A ≡T B,
note that for each m

(4.2) δ(m) only moves if the approximation to A �f(m+1) changes.

Hence each δ(m) reaches a limit. Moreover, since g(n) ≤ n for all n, every time
that the approximation to A �n changes, the approximation to B �δ(n) also changes.
Also when δ(n) moves, its current value is enumerated in B. Hence A ≤T B. On
the other hand, by (4.2) and the fact that δ(m)[s] ≥ m for all s it follows that
the approximation to B �n does not change unless the approximation to A �f(n+1)

changes. This shows that B ≤T A. Hence A ≡T B.
By the hypothesis on A there exists a Turing functional Γ with a computable

bound on use function γ such that ΓB = A. Let (si) be an increasing computable
sequence of the ‘expansionary stages’ in the reduction ΓB = A, i.e. the stages s
where the maximum ns such that ΓB �ns= A �ns at stage s is larger than the
corresponding numbers nt for all t < s. Clearly, nsi ≥ i for all i. We may assume
that if γ(n)[s] is defined then its value is < s.

(4.3)
Suppose that A[st] �n 6= A[st+1] �n for some t and n ≤ t. Then for all k >
t, if A[sk] �n 6= A[sk+1] �n we also have have A[sk] �g(n) 6= A[sk+1] �g(n)

Indeed, by stage st all γ(i), i ≤ t are defined. In the interval of stages [st, st+1]
some number m < n enters A. Hence in the construction of B (which runs on the
same stages) δ(g(m))[st+1] is defined and larger than γ(n). Hence if A[sk] �g(n)=
A[sk+1] �g(n) for some k > t we also have A[sk] �g(m)= A[sk+1] �g(m) which means
that no number ≤ γ(n) will be enumerated into B in the interval of stages (sk, sk+1].
Since (si) are expansionary stages and ΓB = A it follows that A[sk] �n 6= A[sk+1] �n.
This concludes the proof of (4.3).

Finally we may use (4.3) in order to construct a prefix-free machine M with the
property (4.1). We do this dynamically during the stages (si) using a standard
Kraft-Chaitin request set. At stage si, for each n < t such that KM (A �n)[si] >
K(Af �n)[si] we enumerate a description of A �n of length K(Af �n)[si]. It suffices
to show that the ‘weight’ of the requests is bounded by 1. Fix n. By (4.3) each
description of the universal machine U of a string of length n (in particular the
strings that have been current values of Af �n) corresponds to at most two M -
descriptions (which we enumerate in order to reduce KM (A �n)). Indeed, (4.3)
says that if we enumerate two descriptions of A �n based on the same U -description
of Af �n (in fact, same value of Af �n) then the next description of A �n will
be enumerated based on a new description (and new value) of Af �n. Since the
weight of the domain of the universal prefix-free machine is < 2−1, the weight of
the request set for M is bounded by 1. �

We note that the proof of Theorem 4.8 is easily adaptable for the other resolute-
ness notions that we have considered. For example, it holds with respect to plain
complexity.

A degree a is low if a′ = 0′. By [ASF88] there exists a strongly contiguous c.e.
degree which is not low. Hence we have the following consequence.

Corollary 4.9. There exists a completely K-resolute c.e. degree which is not low.

A number of questions regarding the relationship between the Turing degrees
and the K-degrees were raised in [MN06] and answered in [MS07]. For example,
in [MS07] it was observed that there are uncountably many sets such that all of



16 GEORGE BARMPALIAS AND ROD G. DOWNEY

the sets in their Turing degree are in the same K-degree (i.e. have the same initial
segment prefix-free complexity). In particular, the K-trivial c.e. degrees are not
the only degrees such that all of their members are in the same K-degree. Here we
see this phenomenon inside the c.e. degrees.

Corollary 4.10. There exists a c.e. Turing degree which is not low, yet all the sets
in it have the same initial segment (plain or prefix-free) complexity .

We note that by [MS07] the complete c.e. degree does not have this property, i.e.
it contains sets with different initial segment complexity.

References

[ASF88] K. Ambos-Spies and P. A. Fejer. Degree theoretic splitting properties of recursively
enumerable sets. J. Symbolic Logic, 53:1110–1137, 1988.

[Dem88] O. Demuth. Remarks on the structure of tt-degrees based on constructive measure

theory. Comment. Math. Univ. Carolin., 29(2):233–247, 1988.
[DH10] Rod Downey and Denis Hirshfeldt. Algorithmic Randomness and Complexity.

Springer, 2010.

[DHNS03] Rod G. Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan. Trivial reals.
In Proceedings of the 7th and 8th Asian Logic Conferences, pages 103–131, Singapore,

2003. Singapore Univ. Press.

[Dow87] R. G. Downey. ∆0
2 degrees and transfer theorems. Illinois J. Math., 31:419–427, 1987.

[FGSW12] Johanna Franklin, Noam Greenberg, Frank Stephan, and Guohua Wu. Anti-

complexity, lowness and highness notions, and reducibilities with tiny use. Submitted,

2012.
[JS72] Carl G. Jockusch, Jr. and Robert I. Soare. Π0

1 classes and degrees of theories. Trans.

Amer. Math. Soc., 173:33–56, 1972.

[KHMS06] Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan. Kolmogorov complexity
and the recursion theorem. In STACS, pages 149–161, 2006.

[KHMS11] Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan. Kolmogorov complexity
and the recursion theorem. Trans. Amer. Math. Soc., 363, 2011.

[LL99] James I. Lathrop and Jack H. Lutz. Recursive computational depth. Inf. Comput.,

153(1):139–172, 1999.
[LS75] R. Ladner and L. Sasso. The weak truth-table degrees of the recursively enumerable

sets. Ann. Math. Logic, 8:429–448, 1975.

[Mar66] Donald A Martin. Classes of recursively enumerable sets and degrees of unsolvability.
Z. Math. Logik Grundlag. Math., 12:295–310, 1966.

[MN06] Joseph S. Miller and André Nies. Randomness and computability: open questions.

Bull. Symbolic Logic, 12(3):390–410, 2006.
[MS07] Wolfgang Merkle and Frank Stephan. On C-degrees, H-degrees and T-degrees. In

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC 2007),

San Diego, USA, 12–16 June 2007, pages 60–69, Los Alamitos, CA, USA, 2007. IEEE
Computer Society.

[Nie05] André Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305, 2005.
[Nie09] André Nies. Computability and Randomness. Oxford University Press, 2009.

George Barmpalias: State Key Lab of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing 100190, P.O. Box 8718, China.

E-mail address: barmpalias@gmail.com

URL: http://www.barmpalias.net

Rod G. Downey: School of Mathematics, Statistics and Operations Research, Vic-
toria University, P.O. Box 600, Wellington, New Zealand.

E-mail address: rod.downey@vuw.ac.nz

URL: http://homepages.ecs.vuw.ac.nz/~downey

http://www.barmpalias.net
http://homepages.ecs.vuw.ac.nz/~downey

	1. Introduction
	1.1. Formal expressions of resoluteness
	1.2. Resoluteness and complexity

	2. Resoluteness and sparseness
	3. Jump inversion with K-resolute sequences
	4. Completely resolute and resolute-free degrees
	References

