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Abstract

A new algorithm is presented which for a wide class of designs is capable of deducing
the appropriate analysis of variance from the design only. As a consequence the use
of a model formula for specifying the analysis becomes dispensable. This unique
feature distinguishes the current approach from other existing procedures. A user-
friendly implementation is described and the use of the program is illustrated with
several examples.
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1 Introduction

This paper is about a computer program for the analysis of variance (anova).
Even before finishing the reading of the first sentence the reader may wonder
if another such program is needed. In the paper I will try to answer this
question in the affirmative by explaining how the proposed AutomaticAnova
package can simplify the analysis of complex anova models with complicated
blocking structures and factors having random and fixed effects in a way, I
believe, that no other existing package can. Of course, this statement needs to
be taken with a pinch of salt, because although being very general the theory
underlying the program has its limitations and, essentially, only applies to
orthogonal designs as defined by Bailey (2008). Also, in order to prevent later
confusion, it seems to be appropriate to point out from the beginning that,
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despite being a familiar term, the name ‘orthogonal design’ means different
things to different people and therefore being clear about the definition used
in this paper is important.

The AutomaticAnova package originated from two sources. One was the teach-
ing of a module Design of Experiments originally designed by R. A. Bailey,
the material of which is now available in Bailey (2008). The other was an in-
terdisciplinary collaboration with biologists on the personality of bumblebees
reported in Muller et al. (2010). From teaching the module it became clear
that the theory had some algorithmic content which had not been recognized
before and which could lead to the anova being automated. The joint work
with the biologists on the other hand revealed that a software implementation
of Bailey’s theory could tremendously reduce the time needed for providing
consultancy. Moreover, in order to be useful to non-statisticians, usage of the
software had to be very simple and intuitive. The final product appears to
meet both criteria.

At this point it seems to be appropriate to give the reader an idea about what
‘automating the analysis of variance’ means. In short, this phrase refers to the
AutomaticAnova package’s capability to infer an appropriate model from a
design provided in the form of a spreadsheet and to carry out the corresponding
analysis without the need to specify a model formula. From a practical point
of view the fact that the user does not have to specify the model appears to
be crucial, since from experience it seems that non-statisticians usually find it
hard to understand and to correctly apply the operators, such as nesting and
crossing, which are commonly offered by software for defining anova models.
It is also worthwhile to note that the AutomaticAnova package’s algorithm
for deriving the model from a design is not based on a finite collection of
predefined designs or models, but works for any orthogonal design.

The sections that follow provide a brief account of the theory on which the
AutomaticAnova package is based, present the algorithm for automating the
anova and give some information on the implementation. In addition, the
practical use of the package is explained and illustrated with several examples.
The paper concludes with a discussion of limitations and further extensions.

2 Bailey’s theory for orthogonal designs

The analysis of variance is one of the most versatile and popular statistical
techniques in common use. Although the principles on which the anova is
based are well understood, there exist different perspectives on the method.
In one, the anova is regarded as an instance of the general linear model and
the analysis is considered from a regression point of view based on projec-
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tion matrices (e.g., Christensen, 1987). Other presentations focus on model
equations and corresponding decompositions of sums of squares and degrees
of freedom (Montgomery, 1991; Sahai and Ageel, 2000). A third approach puts
more emphasis on randomization ideas and clearly distinguishes the structure
of the observational or experimental units from the structure of the treatments
(Nelder, 1965a,b), hence the model formula plays a secondary role. The practi-
cal differences between the approaches for mixed anova models with fixed and
random effects become apparent when one looks at software packages such
as SAS (see, e.g., Littell et al., 2006), which is close in spirit to the first two
approaches, and GenStat, which implements the third approach. Interestingly,
it is not uncommon to find that proponents of different anova ‘schools’ have
difficulties understanding each other. A thorough discussion of these matters
is beyond the scope of this paper, but more information can be found, for
example, in the discussion papers by Speed (1987) and Gelman (2005).

In this paper, the focus is on a version of the third approach presented in the
monograph by Bailey (2008), which generalizes the seminal work of Nelder
(1965a,b). The brief summary of the theory below is necessary for understand-
ing the material in Section 3. Related ideas have been presented by Houtman
and Speed (1983), Tjur (1984) and Bailey (1981, 1996). Readers who are fa-
miliar with Bailey’s approach to the anova may skip the rest of this section
and only use it as a reference later on.

2.1 Definitions and notation

In what follows, for the most part I adopt the notation in Bailey (2008) to
facilitate comparisons of the material in this paper with the more compre-
hensive account in Bailey’s book. Where a modified notation is used this is
motivated by trying to make some aspects of the theory more explicit.

The theory distinguishes the set Ω of size N which represents the observational
units from the set T of treatments which has size t. A plot (or block) factor F
is a function from Ω to a finite set of nF levels and similarly a treatment factor
G is a function from T to a finite set of nG levels. In accordance with Nelder
(1965a), plot factors reflect the structure, natural or otherwise, of the units,
such as arrangements into blocks, ignoring the treatments, whereas treatment
factors indicate what is done to the units. For simplicity of presentation we
assume that the elements of Ω are the integers 1, . . . , N and that for every
factor H on Ω or T with nH levels these are also represented by integers
1, . . . , nH .

Each plot factor F gives rise to a partition of Ω into the F -classes F [[i]] =
{ω ∈ Ω : F (ω) = i} for i = 1, . . . , nF , and likewise a treatment factor G
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introduces a partition of T into G-classes G[[j]] = {a ∈ T : G(a) = j}, where
j = 1, . . . , nG. Thus each factor H with nH levels can be identified with a set
of nH sets, which are the H-classes. Bailey (2008, p. 169) defines the classes
associated with a factor in a slightly different way, but both definitions lead
to the same partitions.

There are two special factors each of which can be defined on Ω or T . The
universal factor U has only a single level and hence also a single U -class
equal to Ω or T depending on whether U is regarded as a factor on the set
of observational units or the set of treatments. The equality factor E has as
many levels and hence E-classes as there are elements in Ω or T . For E defined
on Ω these classes are the singletons {ω}, ω ∈ Ω, whereas for E defined on T
the E-classes are all sets {a}, where a ∈ T . Since it should always be clear
from the context on which set the factor U (or E) is defined I will use the
same symbol U (or E) for the factors on Ω and T .

By identifying each plot factor F with the corresponding partition {F [[i]] :
i = 1, . . . , nF}, any given collection of plot factors can be partially ordered in
a simple way. To this end, let F be a finite set of plot factors. Two factors
F,G ∈ F are equivalent, denoted by F ≡ G, if they have the same classes,
that is if every F -class is equal to some G-class and vice versa. Otherwise they
are called inequivalent. Moreover, F is said to be finer than G (or G to be
coarser than F ) if the factors are inequivalent and if for every i = 1, . . . , nF
there exists a j ∈ {1, . . . , nG} such that F [[i]] ⊆ G[[j]]. This is denoted by
F ≺ G or G � F . For inequivalent factors F,G ∈ F , in words F ≺ G means
that whenever two units in Ω have the same level of F then they also have
the same level of G. Finally, a factor F ∈ F is finer than or equivalent to
G ∈ F , which is denoted by F � G (or G � F ), if F ≺ G or F ≡ G. Any
set F of plot factors can then be partially ordered in terms of the relations ≺
or �. Likewise, any set of treatment factors G on T can be partially ordered
in terms of similarly defined relations ≺ or �. Clearly, the finer relation ≺ is
irreflexive and hence it is a strict partial order.

In addition to being able to separately define partial orders for sets of plot
and treatment factors, new factors can be created from old ones by means of
two binary operators ∧ and ∨. Since the operators are defined in the same
way for plot and treatment factors, I only present the details for plot factors.
Suppose F and G are two plot factors. Then the infimum of F and G, which
is denoted by F ∧G, is defined as the coarsest plot factor which is finer than
or equivalent to F and finer than or equivalent to G. More formally, F ∧ G
is the infimum of F and G if (a) F ∧ G � F and F ∧ G � G and (b) for
every plot factor H with H � F and H � G it follows that H � F ∧G. The
supremum of F and G, represented by F ∨ G, is defined as the finest plot
factor which is coarser than or equivalent to F and coarser than or equivalent
to G. In formal terms, F ∨G is the supremum of F and G if (a) F � F ∨G
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and G � F ∨ G and (b) for every plot factor H with F � H and G � H it
follows that F ∨ G � H. Both the infimum F ∧ G and the supremum F ∨ G
are unique up to equivalence.

Given two factors F and G on the same set, finding the infimum is always easy,
whereas finding the supremum is more complicated and this will be considered
in more detail in Section 3. Both ∧ and ∨ are commutative operators. Also it
is worth noting that the two operators are associative, that is (F ∧G) ∧H =
F ∧ (G ∧H) and (F ∨G) ∨H = F ∨ (G ∨H), which implies that infima and
suprema of three or more factors are also well-defined.

With these definitions in place one can move on to define what it means for
two factors F and G on the same set (Ω or T ) to be orthogonal. Every class
(F ∨G)[[k]], k = 1, . . . , nF∨G, of the supremum F ∨G is the union of a certain
number of F -classes. At the same time (F ∨G)[[k]] is also the union of some
of the G-classes. For every k suppose that (F ∨ G)[[k]] = F [[ik,1]] ∪ · · · ∪
F [[ik,uk

]] where {ik,1, . . . , ik,uk
} ⊆ {1, . . . , nF} and (F ∨ G)[[k]] = G[[jk,1]] ∪

· · ·∪G[[jk,vk
]] where {jk,1, . . . , jk,vk

} ⊆ {1, . . . , nG}. Then F and G are defined
to be orthogonal if for every k = 1, . . . , nF∨G the following two conditions are
satisfied: (a) F [[ik,r]]∩G[[jk,s]] 6= ∅ for r = 1, . . . , uk and s = 1, . . . , vk and (b)
there exists a constant ck such that for r = 1, . . . , uk and s = 1, . . . , vk it holds
that the size of F [[ik,r]]∩G[[jk,s]] divided by the product of the sizes of F [[ik,r]]
and G[[jk,s]] is equal to ck. Bailey (2008, p. 179) defines the orthogonality of
two factors in a different way, but her Theorem 10.5 shows that both definitions
are equivalent. She also notes that the characterization of orthogonality given
here is more useful for checking if two factors are orthogonal.

We are now in a position to define orthogonal designs in the sense of Bailey
(2008, p. 198). Such a design is characterized by twelve properties some of
which can be checked very quickly while verifying others can take some time.
Let F be a set of mutually inequivalent plot factors on Ω and G be a set of
mutually inequivalent treatment factors defined on T . In other words, any two
factors in F are not equivalent and the same applies to any pair of factors in G.
Further suppose that the treatments are allocated to the observational units
according to a design function T which is defined on Ω and takes values in T .
Thus T (ω) is the treatment assigned to observational unit ω. It is worth noting
that for every factorG ∈ G the compositionG◦T , where (G◦T )(ω) = G(T (ω)),
is also a factor on Ω. By definition the triple (F ,G, T ) is then an orthogonal
design if

(i) F is an orthogonal plot structure (Bailey, 2008, p. 194), that is
(a) if F ∈ F then all its F -classes have the same size,
(b) U ∈ F ,
(c) E ∈ F ,
(d) if F ∈ F and G ∈ F then F ∨G ∈ F ,
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(e) if F ∈ F and G ∈ F then F ∧G ∈ F ,
(f) if F ∈ F and G ∈ F then F is orthogonal to G,

(ii) G is an orthogonal treatment structure (Bailey, 2008, p. 190), that is
(a) U ∈ G,
(b) if F ∈ G and G ∈ G then F ∨G ∈ G,
(c) if F ∈ G and G ∈ G then F is orthogonal to G,

(iii) the function T is such that
(a) if F ∈ G and G ∈ G then F ◦ T and G ◦ T are orthogonal on Ω,
(b) if F ∈ F and G ∈ G then F and G ◦ T are orthogonal on Ω,
(c) if F ∈ F and G ∈ G then F ∨ (G ◦ T ) is equal to H ◦ T for some

H ∈ G.

The following comments about the definition may be helpful. Bailey (2008)
calls a factor with property (i)(a) uniform, but more commonly such a factor
is referred to as a balanced factor in the experimental design literature. If F
and G are both in F then the common size of the F -classes can be different
from the common size of the G-classes. Part (iii) of the definition explicitly
mentions the design function T in (a), (b) and (c) which is slightly different
from the exposition in Bailey (2008, p. 198), but hopefully adds some clarity.

Trying to provide a motivation for each of the twelve properties in the def-
inition of an orthogonal design would amount to repeating large portions of
Bailey (2008, Chapter 10) and the interested reader is referred to the original
source. However, it is worth noting that the class of orthogonal designs defined
here includes the simple orthogonal block structures of Nelder (1965a,b), but
also some other types of design (see, e.g., Bailey, 1996, p. 60) and hence is
more general. The main reason for including the admittedly lengthy definition
of orthogonal designs here is to introduce the designs in a form that is suitable
for describing the AutomaticAnova algorithm is Section 3.

2.2 Orthogonal designs, Hasse diagrams, and the anova table

The main advantage of considering orthogonal designs (F ,G, T ) is that they
allow a particularly simple analysis. Moreover, for these designs the calculation
of degrees of freedom and sums of squares can be easily performed by using
Hasse diagrams, one for the set of plot factors F and one for the treatment
factors in G, which represent the partial order ≺. Two examples are shown in
Figure 1.

The Hasse diagram for the plot factors F is a directed graph, in which the
elements of F are the vertices and where there is an edge with endpoints
F,G ∈ F if and only if (a) F ≺ G and (b) there exists no other H ∈ F
with F ≺ H ≺ G. In this case the vertex for F is drawn below the vertex for
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G. Because of this convention no arrows are needed when a Hasse diagram is
drawn. If F and G are inequivalent and neither F ≺ G nor G ≺ F , where
possible the vertices for F and G are displayed beside each other, so that none
of the vertices for the two factors is above or below the other. Next to each
vertex for a factor F ∈ F we write the number nF of its levels. Because ≺ is
only a partial order, the Hasse diagram for F will usually not be a complete
graph, that is not all vertices will be connected by edges.

Part (i) of the definition of an orthogonal design implies that the vertices for
U and E on Ω will always be at the top and bottom of the Hasse diagram for
the plot factors, respectively. Moreover, part (i) of the definition also ensures
that the vertex for the supremum F ∨G of two inequivalent factors F,G ∈ F
where neither F ≺ G nor G ≺ F is always above and connected to both F
and G, though not necessarily via single edges. Likewise, the vertex for the
infimum F ∧ G of two such factors F,G ∈ F is always below and connected
to the vertices for F and G.

It should be noted that for any two inequivalent plot factors F,G ∈ F of an
orthogonal design both the infimum F ∧G and the supremum F ∨G are also
elements of F , but often the corresponding factors may have different names
or labels. For example, if F ≺ G, then F ∧ G = F and F ∨ G = G so that,
if in addition neither F nor G is equivalent to either U or E on Ω, the set
F = {E,F,G, U} satisfies the conditions (i)(b)–(i)(e) in the definition of an
orthogonal design, but F does not contain additional factors called F ∧G or
F ∨G and there will be no extra vertices for these factors in the Hasse diagram
for plot factors.

The Hasse diagram for the set of treatment factors G of an orthogonal design
(F ,G, T ) is drawn in exactly the same way as the diagram for the plot factors
F . Because of the weaker requirements in part (ii) of the definition there are,
however, some differences. First, the diagram for the treatment factors always
includes a vertex for the universal factor U on T at the top, but not necessarily
a vertex for the equality factor E on T . Secondly, for every pair of inequivalent
treatment factors F,G ∈ G which are such that neither F ≺ G nor G ≺ F
the Hasse diagram always includes a vertex for the supremum F ∨G, but not
necessarily a vertex for the infimum F ∧ G. Whether the equality factor and
all or selected infima form part of the diagram depends on whether they are
elements of G. Put differently, whether these factors appear in the diagram
depends only on which factors are included in G, which is decided before
the drawing stage. How this is done will be considered further in Section 3.
However, if G contains the equality factor or the infimum of two factors, then
in the Hasse diagram for treatments factors these are represented exactly as
in the diagram for plot factors.

Theorems 10.6 and 10.7 in Bailey (2008, pp. 182–184) provide the basis of a
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simple procedure for using the Hasse diagrams to calculate degrees of freedom
and corresponding sums of squares for the plot and treatment factors of an
orthogonal design. Since the procedure is the same for plot and treatment
factors, here I only describe the details for plot factors.

For every plot factor F the degrees of freedom are denoted by dF and defined
as the dimension of a corresponding subspace WF of the vector space RN

(Bailey, 2008, p. 183). Theorem 10.6 then shows that for every F ∈ F the
degrees of freedom dF are equal to the number of levels nF minus the sum of
the degrees of freedom of all plot factors G ∈ F that are coarser than F : in
symbols dF = nF−

∑
G�F dG. Since on Ω no factor is coarser than the universal

factor U , it follows that dU = nU = 1. This result translates into a graphical
procedure on the Hasse diagram for plot factors as follows: Start with the
universal factor U at the top of the diagram and annotate the diagram by
writing down the degrees of freedom dU = 1 next to the number of levels
nU = 1, preferably using a color or font which is different from the one used
for the numbers of levels. Subsequently, move down the diagram along the
edges. At each vertex F , subtract the degrees of freedom of all factors G � F
whose vertices are above and connected to F from the number of levels nF to
obtain dF and annotate the diagram with the degrees of freedom for F . This
process terminates with the equality factor E at the bottom of the diagram.

Theorem 10.7 leads to a similar procedure for calculating the sum of squares
SS(F ) associated with each plot factor F . In this, for every F ∈ F the number
of levels nF in the Hasse diagram is replaced with the crude sum of squares
CSS(F ), which is defined as the squared Euclidean length of the orthogonal
projection of the data vector onto another subspace VF of RN (Bailey, 2008,
p. 184), and the degrees of freedom dF are replaced with SS(F ), which is
defined as the squared Euclidean length of the orthogonal projection of the
data vector onto the vector space WF mentioned before. With these modi-
fications the calculation of the sums of squares proceeds as before by work-
ing down the Hasse diagram from U , since, as follows from Theorem 10.7,
SS(F ) = CSS(F )−∑

G�F SS(G) and, in particular, SS(U) = CSS(U).

For the treatment factors in G degrees of freedom and sums of squares are
calculated in the same way by using the Hasse diagram for treatment factors.
Since it is not immediately obvious from Bailey’s presentation, it should be
noted that, at least when sums of squares are calculated, for every G ∈ G the
vector spaces VG◦T and WG◦T are used, where T is the design function of the
orthogonal design (F ,G, T ). Also because the Hasse diagram for the treatment
factors does not necessarily contain the equality factor E on T nor the infimum
of F ∧G for every pair of factors F,G ∈ G the process of calculating degrees
of freedom or sums of squares does not necessarily terminate at the vertex for
E but can end at two or more vertices corresponding to mutually inequivalent
factors other than E. The following example shows how the procedure for
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Plot factors

E

B

U

30, 24

6, 5

1, 1

Treatment factors

E

S 3, 2

U

P 5, 4

1, 1

15, 8

Fig. 1. Hasse diagrams for plot and treatment factors in Example 1

calculating degrees of freedom works in practice.

Example 1 In an experiment reported by Bailey (2008, p. 145) thirty apple
trees were grouped into six blocks of size five. Each of three spray treatments
was applied to two whole blocks chosen at random. Within each block each of
five methods of pruning was used on a single randomly selected tree.

Here the set Ω of observational units contains the integers 1, . . . , 30 represent-
ing the trees. The arrangement of the trees into blocks is reflected by a plot
factor B where for every ω ∈ Ω the value B(ω) is the number of the block
containing the tree ω. Other trivial plot factors are the universal factor U
and the equality factor E which distinguishes the different trees. Thus for this
experiment F = {E,B,U} is a natural set of plot factors and E ≺ B ≺ U .

The set of treatments T contains the fifteen combinations of spray treatments
and pruning methods. For each a ∈ T we can consider the treatment factor S,
where S(a) is the spray component of a, and the factor P , where P (a) is the
pruning component of a. On T the equality factor E distinguishes between
the treatments and it can be verified that E = S ∧ P . Furthermore, for the
universal factor U on T it can be seen that U = S ∨ P . A possible choice for
the set of treatment factors is then G = {E, S, P, U}. For these factors it holds
that E ≺ S ≺ U and E ≺ P ≺ U , but neither S ≺ P nor P ≺ S.

For every ω ∈ Ω the design function T gives the treatment combination aω in
T that was applied to tree ω, that is T (ω) = aω. It can then be shown that
the triple (F ,G, T ) is an orthogonal design.

Figure 1 presents the Hasse diagrams for plot and treatment factors, where the
degrees of freedom are shown in bold. From the diagram for the plot factors
it can be easily seen that, for example, the degrees of freedom for E on Ω
are equal to the number of trees minus the degrees of freedom for all coarser
factors above E, that is dE = nE − dU − dB = 30 − 1 − 5 = 24. As was
explained before, the degrees of freedom for other factors are obtained by the
same method. Apart from the numbers, the Hasse diagrams for the sums of
squares (not shown here) are identical to those for the degrees of freedom. 2

Bailey (2008, p. 193) assumes that the plot factors have random effects and
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Table 1
Portion of the anova table for a stratum F ∈ F containing factors G1, . . . , Gk ∈ G

Stratum Source SS DF MS F

F G1 SS(G1) dG1 MS(G1) = SS(G1)
dG1

MS(G1)
MS(res)

...
...

...
...

...

Gk SS(Gk) dGk
MS(Gk) = SS(Gk)

dGk

MS(Gk)
MS(res)

residual SS(res) dres MS(res) = SS(res)
dres

total SS(F ) dF

that for any α and β in Ω the covariance of the corresponding response
variables Yα and Yβ only depends on the finest factor F ∈ F for which
F (α) = F (β). If α = β, then the finest such factor is E and the assumption
implies that all response variables have the same variance σ2. Furthermore,
if α 6= β and if F is the finest plot factor in F with F (α) = F (β), then the
covariance of Yα and Yβ can be written as ρFσ

2, where ρF is the correlation
between the two response variables. By contrast, the treatment factors are
assumed to have fixed effects.

Under these assumptions the anova table for an orthogonal design (F ,G, T )
can be easily constructed from the Hasse diagrams. For every plot factor in F ,
that is every vertex in the Hasse diagram for plot factors, there is a stratum
which is labelled by the plot factor. For the purpose of presenting only how the
anova table is generated, the definition of the strata can be omitted, but more
details can be found in Bailey (2008, p. 196). If F ∈ F , then the correspond-
ing degrees of freedom dF and the sum of squares SS(F ) for the stratum F
are obtained from the relevant Hasse diagram for plot factors. Regarding the
treatment factors, Theorem 10.11 in Bailey (2008, p. 198) shows that every
G ∈ G is contained in a uniquely determined stratum F ∈ F . More precisely,
for every G ∈ G the stratum containing the source of variation for G is the
one for the coarsest factor F ∈ F with F � G ◦ T . The degrees of freedom dG
and the sum of squares SS(G) for G ∈ G are obtained from the Hasse diagram
for the treatment factors.

For every stratum the anova table then contains several rows. Table 1 shows
such a portion for a stratum F ∈ F , where for simplicity of presentation it
is assumed that stratum F contains the treatment factors G1, . . . , Gk ∈ G.
The table has a row for each treatment factor and two additional rows for the
residual in the stratum and the total. From left to right the columns give the
name of the stratum, indicate sources of variation and report sums of squares,
degrees of freedom, means squares and F values as appropriate.

As already mentioned, the degrees of freedom and sums of squares for F and
G1, . . . , Gk come from the Hasse diagrams. The degrees of freedom dres for the
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residual in stratum F are obtained by subtracting the sum of the degrees of
freedom of the treatment factors in the stratum from dF . Likewise, the sum of
squares SS(res) for the residual in stratum F is obtained by subtracting from
SS(F ) the sums of squares for the treatment factors in F . Mean squares are
obtained in the usual way. In order to test the effect of a treatment factor Gj

in stratum F , an F statistic is calculated as the ratio of the mean squares for
Gj and the residual in F . With the additional assumption that the effects of
all plot factors in F follow independent normal distributions it follows that
under the null hypothesis of no Gj effect the corresponding F statistic has
an F distribution with dGj

and dres numerator and denominator degrees of
freedom.

Sometimes all degrees of freedom for a stratum are taken up by the treatment
factors. Then, the degrees of freedom and the sum of squares for the residual
in the stratum are equal to zero so that no corresponding mean square can
be calculated and no tests of the treatment factors can be performed. In such
cases, it still appears to be helpful to include a row for the residual if the
stratum contains more than one treatment factor, because this emphasizes
that no tests of treatment factors can be done. On the other hand, if the
degrees of freedom for a stratum F are completely accounted for by a single
treatment factor G, then F and G are confounded and the effect of G cannot
be tested, but the lines for the residual in the stratum F and the total are
omitted.

The full anova table for an orthogonal design (F ,G, T ) is obtained by com-
bining the portions for the individual strata F ∈ F in Table 1. By convention,
subtables for coarser factors in F are written above the portions for finer fac-
tors. Thus, similar to the Hasse diagram for the plot factors, the full anova
table has the stratum for the universal factor U on Ω at the top and the stra-
tum for the equality factor E on Ω at the bottom. At the end of the table a
line ‘Total’ is added, which in the sums of squares column reports the squared
Euclidean length of the data vector and in the degrees of freedom column
the total number of observations N . Of course, both these values can also be
obtained by adding up the values in the columns above them.

Example 1 (continued) In order to illustrate the construction of the anova
table we return to the experiment on apple trees where F = {E,B,U} and
G = {E, S, P, U}. The response data are reported by Bailey (2008, p. 145).
Every factor in F defines a stratum and in order to be able to write down
the rows in Table 1 for each of these, the treatment factors in G need to be
allocated to E, B and U in F , respectively.

Starting with the coarsest factor U on Ω it can be seen that, as always, this
coincides with the composition of U on T and the design function T , which
shows that the only source of variation in the U stratum is U on T . Also,
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Table 2
Full anova table for Example 1

Stratum Source SS DF MS F

U U 51915.9680 1 51915.9680

B S 1116.7461 2 558.3731 2.3321

residual 718.2938 3 239.4313

total 1835.0399 5

E P 1835.1540 4 458.7885 6.1969

S ∧ P 284.1319 8 35.5165 0.4797

residual 888.4186 12 74.0349

total 3007.7046 24

Total 56758.7125 30

following the earlier remarks, no lines for residual or the total are shown in
this stratum. The next stratum corresponds to the block factor B. Because
the spray treatments are applied to entire blocks it follows that B � S ◦ T .
Also, as always, for E on Ω it holds that E � S ◦ T . Figure 1 shows that
B is coarser than E, and so B is the coarsest plot factor which is finer than
or equivalent to S ◦ T , which implies that S is tested in stratum B. For the
pruning factor P the equality factor E on Ω is the only factor in F which is
finer than or equivalent to P ◦ T , and so P is tested in the final stratum for
E. Similarly, it can be seen that the equality factor E = S ∧ P on T , which
represents the interaction between spray treatments and pruning methods, is
also tested in the stratum for E on Ω. Both the tables for the B and the E
stratum contain a line for the residual. Putting together the subtables for the
strata and adding the line for ‘Total’ then gives the full anova table in Table 2.

In order to test for effects of the treatment factors, the F values in Table 2 are
compared with percentage points of appropriate F distributions. The denom-
inator degrees of freedom of these distributions are those for the residual in
the stratum in which a factor is tested. For example, the test for differences
between the spray treatments is carried out in the blocks stratum and so the F
distribution with 2 and 3 degrees of freedom is used, whereas both the prun-
ing methods and the interaction of spray treatments and pruning methods
are tested in the E stratum so that both tests use F distributions with 12
denominator degrees of freedom. 2

The sums of squares in the full anova table, and hence the mean squares and
F values, can only be computed after data have been collected. By contrast,
an orthogonal design (F ,G, T ) completely determines the degrees of freedom
of the factors and the residuals in the different strata, even before data are
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available. The corresponding subtable of the full anova table which only con-
tains the columns for the strata, sources of variation and degrees of freedom
is known as the skeleton anova (Nelder, 1965b; Bailey, 2008). This table is
particularly useful at the planning stage of an experiment, because it shows
in which stratum each treatment factor is tested. Moreover, for each test the
residual degrees of freedom in the appropriate stratum of the skeleton anova
represent the denominator degrees of freedom of the relevant F distribution.
By looking at these one can, for example, identify the tests with the lowest
power and modify the design if the power is deemed to be too low. Thus by
using the design alone the appropriate analysis can be anticipated and if nec-
essary the design can be modified to help prevent problems which cannot be
corrected once the data have been collected.

If, in addition to the design, response data are available, the AutomaticAnova
package produces the full anova table. Otherwise, the program generates the
skeleton anova from the design. It is now time to look at how the package
works.

3 Automating theory: The AutomaticAnova algorithm

At the end of his paper, Nelder (1965b) articulated the vision of creating
a computer program for analyzing simple orthogonal block structures. With
contributions from, among others, Wilkinson (1970), Wilkinson and Rogers
(1973) and Payne and Wilkinson (1977) this vision became a reality and con-
tinues to live on in GenStat.

This section explores the hidden algorithmic content of Bailey’s theory for
orthogonal designs and explains in more detail how this can be exploited for
automating the anova. I start by presenting the main idea from a bird’s eye
perspective and then move on to addressing the more technical issues. Readers
who have skipped Section 2 may consult this material as appropriate and may,
in particular, wish to remind themselves about the definition of orthogonal
designs.

3.1 The main algorithm

In what follows it is assumed that the experimental layout, that is the allo-
cation of the observational units to the factors, is available in the form of a
spreadsheet with a row for each observational unit and a column for each fac-
tor. Moreover, it is assumed that it has been decided which columns represent
plot and treatment factors, respectively. The important consequences of these
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assumptions are that the following are known: (a) the set Ω of observational
units, (b) the set F̃ of plot factors on Ω and (c) the value (G◦T )(ω) for every
G ∈ G̃ and every ω ∈ Ω, where G̃ is the set of treatment factors and T is the
design function. The set T of treatments is not known and, in general, cannot
be deduced from the spreadsheet. This has the subtle technical implication
that although G◦T is known for every G ∈ G̃ as a factor on Ω, strictly speak-
ing both T , as a function taking values in T , and G̃, as a set of factors defined
on T , are also not known. In what follows, I make the the mild assumption
that every treatment in T is applied to at least one unit in Ω, so that T is
a surjective mapping. Furthermore, in order to avoid clumsy terminology, in
what follows the (known) set G̃Ω = {G ◦ T : G ∈ G̃} will also be referred to
as the set of treatment factors, but from the notation it should be clear that
technically this is different from G̃.

Despite the fact that T , T and G̃ are not known, they do exist and for the
triple (F̃ , G̃, T ) one may wonder which of the properties in the definition of an
orthogonal design can be checked by using only the sets F̃ and G̃Ω, which are
obtained from the spreadsheet. Obviously, checking the properties under (i)
and (iii) in the definition is possible. Since by assumption T is surjective, the
properties (ii)(a) and (ii)(b) can also be checked. The former test amounts to
verifying if the set G̃Ω contains the universal factor U on Ω. Property (ii)(b)
holds if the supremum of any two elements of G̃Ω is also in the set, because, as
is not difficult to prove, (F ◦T )∨ (G ◦T ) = (F ∨G) ◦T for any factors F and
G defined on T . The only property of an orthogonal design that cannot be
checked by using F̃ and G̃Ω from the spreadsheet is the orthogonality condition
(ii)(c) on T . However, none of the proofs in Bailey (2008) which lead to the
anova described in Section 2.2 uses the property (ii)(c). Therefore, if by using
F̃ and G̃Ω it can be verified that the triple (F̃ , G̃, T ) satisfies the properties
(i), (ii)(a), (ii)(b) and (iii), then the same anova is obtained.

The overarching principle behind the AutomaticAnova algorithm presented
below is as follows: If a ‘user’ can provide the experimental layout, that is
the allocation of the observational units to the plot and treatment factors,
giving rise to sets F̃ and G̃Ω of plot and treatments factors as above, then this
design information essentially determines how the analysis should be done.
The correct anova is obtained by embedding the sets F̃ and G̃Ω into the, in
a sense, smallest design which satisfies all the properties of an orthogonal
design except (ii)(c), provided such a design exists, and by performing the
anova computations as in Section 2.2. Both the embedding and the analysis
can be done automatically, but it is the embedding which makes the use of
a model formula dispensable. Put differently, embedding the sets of plot and
treatment factors provided by the user into a design as suggested is equivalent
to inferring an appropriate model from the design. This embedding is the
essence of the proposed automation of the anova and the unique feature which
distinguishes the AutomaticAnova package from other anova software. I now
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present the general algorithm, which is followed by some further comments
and explanations.

Assume a set F̃ of mutually inequivalent plot factors and a set G̃Ω = {G ◦ T :
G ∈ G̃} of mutually inequivalent treatment factors on Ω are derived from the
experimental layout in a spreadsheet, where G̃ denotes the (unknown) set of
treatment factors on the (unknown) set of treatments T . Also suppose that
the (unknown) design function T is surjective.

As will be explained in more detail below, the set G̃∗Ω to be defined next is
related to testing interactions. Let k be a positive integer and let G̃∗Ω be the
union of G̃Ω and the set of all infima of up to k different factors in G̃Ω. For
example, if G̃Ω = {A◦T,B ◦T,C ◦T} and k = 3 then G̃∗Ω contains the original
factors A ◦T , B ◦T , C ◦T and the infima (A ◦T )∧ (B ◦T ), (A ◦T )∧ (C ◦T ),
(B ◦ T )∧ (C ◦ T ) and (A ◦ T )∧ (B ◦ T )∧ (C ◦ T ). If some of these factors are
equivalent, then for each subset of equivalent factors G̃∗Ω only contains one of
these factors. For k = 1 it follows that G̃∗Ω = G̃Ω. It is not difficult to prove
that (F ◦ T ) ∧ (G ◦ T ) = (F ∧ G) ◦ T for any factors F and G defined on
T . This implies that forming G̃∗Ω is equivalent to adding to G̃ all infima of up
to k factors in G̃ and forming the composition H ◦ T for every factor H in
the augmented set. The AutomaticAnova algorithm can then be described as
follows.

Algorithm 1 Suppose a set of mutually inequivalent plot factors F̃ , a set of
mutually inequivalent treatment factors G̃Ω and a positive integer k are given.

(A1) Find the the smallest set F of factors on Ω with F̃ ⊆ F which includes
the factors U and E on Ω, and which is such that for every F,G ∈ F the
infimum F ∧G and the supremum F ∨G are also in F .

(A2) Form the set G̃∗Ω and find the smallest set GΩ of factors on Ω with G̃∗Ω ⊆ GΩ

which includes U on Ω and which is such that for every F,G ∈ GΩ the
supremum F ∨G is also in GΩ.

(A3) Check if F fulfills the conditions (i)(a) and (i)(f) for an orthogonal de-
sign. If any of these is violated, terminate with an error message.

(A4) For GΩ check the orthogonality requirement (iii)(a) in the definition of an
orthogonal design and (iii)(b) for F and GΩ. If any of these is violated,
terminate with an error message.

(A5) For every F ∈ F and every G ∈ GΩ whose supremum F ∨G is not in GΩ

add F ∨G to GΩ.
(A6) Carry out the anova with plot factors F from (A1) and treatment factors

GΩ from (A5) as described in Section 2.2.

The following additional comments about the algorithm may be helpful. In
practice, the set F in (A1) is obtained by adding to F̃ the infimum F ∧ G
and the supremum F ∨ G of every F,G ∈ F̃ and iterating the process until
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F̃ becomes stable. Subsequently, unless they are already in F̃ , the factors U
and E on Ω are also included. If in the process of adding infima and suprema
some factors turn out to be equivalent, then for every such set of equivalent
factors only a single factor is included in the final set F . If the tests in (A3)
are successful, then F possesses the properties (i) of an orthogonal design.

The way in which the set GΩ in (A2) is obtained is more complicated and
requires some further explanation. By assumption T is surjective. This implies
that adding U on Ω to the set G̃Ω = {G ◦ T : G ∈ G̃} is equivalent to adding
U on T to G̃. Likewise, since (F ◦ T ) ∨ (G ◦ T ) = (F ∨G) ◦ T for any factors
F and G defined on T , adding the supremum (F ◦ T ) ∨ (G ◦ T ) of any two
factors in G̃Ω to G̃Ω is equivalent to adding the supremum F ∨G of F,G ∈ G̃
to G̃. Thus adding (F ◦ T ) ∨ (G ◦ T ) for every F ◦ T,G ◦ T ∈ G̃Ω to G̃Ω,
iterating the process until G̃Ω does not change any more, and finally, unless
the factor is already included, adding U on Ω to G̃Ω ensures that at the end
of the process the underlying set G̃ of treatment factors on T satisfies the
properties (ii)(a) and (ii)(b) of an orthogonal design. In a similar way, in step
(A2) the set GΩ is obtained by adding to G̃∗Ω all suprema (F ◦ T ) ∨ (G ◦ T )
of factors in G̃∗Ω, iterating the process and, if not already included, adding U
on Ω. This procedure ensures that G̃∗Ω ⊆ GΩ and that every factor in G ∈ GΩ

can be represented as G = Ḡ ◦ T where Ḡ is from a set of treatment factors
G on T which satisfies the requirements (ii)(a) and (ii)(b) for an orthogonal
design. It should be noted that since every factor G ∈ GΩ can be written as
G = Ḡ ◦ T the tests of properties (iii)(a) and (iii)(b) in (A4) are well-defined.

The reason for generating GΩ from G̃∗Ω and not from the original G̃Ω is that
after adding suprema the augmented set G̃Ω will not necessarily contain the
infima (F ◦ T ) ∧ (G ◦ T ) of factors F ◦ T,G ◦ T in the original G̃Ω from the
spreadsheet which are such that neither (F ◦T ) ≺ (G◦T ) nor (G◦T ) ≺ (F ◦T ).
In order to be able to test the interaction between any two such factors it is
however necessary to add the infimum for every F ◦ T and G ◦ T in the
original set G̃Ω where F is not finer than G and vice versa to G̃Ω. This is done
by forming the set G̃∗Ω with k = 2. Similarly, if interactions involving up to
k > 2 factors in G̃Ω are to be tested, the set G̃∗Ω for the desired value of k needs
to be constructed from G̃Ω. Thus by making k part of the input, the algorithm
offers the flexibility to include, up to a certain degree, all interactions of the
treatment factors in the input set G̃Ω in the anova.

One not immediately obvious consequence of the choice of k in the input to
the algorithm is worthwhile to note. When forming G̃∗Ω, all infima involving
up to k of the factors in G̃Ω are included, thereby enabling anova tests of
interactions involving up to k factors. However, if, for example, k = 3 and the
infimum (F ◦ T ) ∧ (G ◦ T ) ∧ (H ◦ T ) of three factors in G̃Ω is equivalent to
either one of the original factors in G̃Ω or to the infimum of two factors in G̃Ω,
then (F ◦T )∧ (G◦T )∧ (H ◦T ) will not be added to G̃∗Ω and the corresponding
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three-factor interaction cannot be tested. In other words, for every value of
k the algorithm attempts to include as many as possible tests of interactions
involving at most k treatment factors, but only performs the tests which the
input design as represented by F̃ and G̃Ω allows to be done.

After completing step (A5) the sets F and GΩ satisfy the property (iii)(c)
of an orthogonal design. This follows since, as explained above, every factor
G ∈ GΩ can be written as Ḡ ◦ T , where Ḡ is a factor on T , and adding the
supremum F ∨ G = F ∨ (Ḡ ◦ T ) for F ∈ F to GΩ is, by using that T is
surjective, equivalent to adding a factor H on T with H ◦ T = F ∨ (Ḡ ◦ T ) to
the set G of treatment factors on T . The discussion in Bailey (2008, p. 197)
implies that step (A5) does not have to be iterated. That is, if all necessary
suprema F ∨ G of factors F ∈ F and G ∈ GΩ have been added to GΩ, then
there is no need to repeat (A5) with F and the augmented set GΩ. Likewise,
it is not necessary to repeat the test of property (ii)(b).

Moreover, it follows from Bailey (2008, p. 198) that if in (A4) the test of
property (iii)(a) confirms the orthogonality of the factors in GΩ and the test of
(iii)(b) the orthogonality of the factors in F and GΩ, then at the end of (A5)
the orthogonality conditions (iii)(a) for the augmented set GΩ and (iii)(b) for
F and the augmented set GΩ are also satisfied. In practice this means that the
conditions (i)(f) for F from (A1) and (iii)(a) for GΩ from (A2) are checked
separately and that subsequently (iii)(b) is tested for F and GΩ. If all these
tests confirm the orthogonality, then the suprema necessary for (iii)(c) are
added to GΩ in step (A5) without having to repeat the tests of (iii)(a) and
(iii)(b) for the augmented set GΩ.

If the tests in steps (A3) and (A4) of the algorithm are successful, then the
design represented by F from (A1) and the augmented set GΩ from (A5) satis-
fies all the requirements of an orthogonal design apart from (ii)(c). Therefore,
in the final step (A6) the anova can be performed as described in Section 2.2.

3.2 Algorithmic details

Algorithm 1 represents a top-level blueprint which describes the main tasks
to be carried out by the AutomaticAnova program. However, there are several
additional issues which need to be considered at a more detailed level. Below,
these are addressed in an order which roughly corresponds to the sequence in
which the different issues need to be dealt with in a piece of computer code.

Although the distinction between plot and treatment factors needs to be main-
tained in order to be able to derive the correct anova, in practice all factors in
this section are defined on Ω. In what follows, every factor F with nF levels
on Ω will be identified with the set of its F -classes. That is, the letter F refers
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to both the factor name and the set {F [[i]] : i = 1, . . . , nF}.

3.2.1 Finding infima and suprema

Let F and G be two factors defined on the same set with nF and nG levels,
respectively. As indicated in Section 2, finding the infimum of F and G is easy,
and the F ∧G-classes are the non-empty intersections of the F -classes and G-
classes (Bailey, 2008, p. 172), that is F ∧G = {F [[i]]∩F [[j]] : F [[i]]∩F [[j]] 6=
∅, i = 1, . . . , nF , j = 1, . . . , nG}.

Finding the supremum F ∨G is more involved. Bailey (2008, p. 173) describes
one possibility, which however does not translate easily into suitable computer
code. As was noted in Section 2 every F ∨ G-class can be represented as the
union of some F -classes and also as the union of some G-classes. The class
of F ∨ G containing any given F -class F [[i]], say, can then be obtained by
joining all other F -classes F [[j]] with F [[i]], for which there exists a G-class
intersecting both F [[j]] and F [[i]], and iterating this process as appropriate.
In other words, if F [[j]] is joined with F [[i]] the logic has to be repeated for
F [[j]]. These considerations lead to the algorithm below, which describes the
procedure by using standard set operations and pseudo-code for assignments
and flow control. This is to be used on copies of F and G so that the original
factors are still available after F ∨G has been computed.

Algorithm 2 Suppose that F = {F [[i]] : i = 1, . . . , nF} and G = {G[[j]] :
j = 1, . . . , nG} are factors on the same set and that the F -classes in F are
arranged in an arbitrary but fixed order. Denote by F(i) the ith element of F .
This notation is introduced, because the size of F shrinks during the execution
of the algorithm. Then find F ∨G as follows:

F ∨G := ∅;
While |F | > 0 do

(F ∨G)new := F(1);
F := F \ {F(1)};
i := |F |;
While i > 0 do

If exists G[[j]] ∈ G : (F ∨G)new ∩G[[j]] 6= ∅ and F(i) ∩G[[j]] 6= ∅
Then (F ∨G)new := (F ∨G)new ∪ F(i);

F := F \ {F(i)};
i := |F |;

Else i := i− 1;
End If;

End While;
F ∨G := F ∨G ∪ {(F ∨G)new};

End While;
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Return F ∨G;

It is worth noting that both the infimum and the supremum can be computed
without having to refer to the partial order � used in their definitions.

3.2.2 The closure of a set of factors

In order to embed the input set F̃ of plot factors into a set F of factors on Ω
which has the properties (i)(b)–(i)(e) of an orthogonal design, unless they are
already in F̃ the universal factor U and the equality factor E have to be added.
Moreover, for every F,G ∈ F̃ the infimum F ∧ G and the supremum F ∨ G
have to be included. There is a tricky issue here, because if at some point,
for example, F ∨ G is added, then it needs to be made sure that properties
(i)(d) and (i)(e) hold for the augmented set. This implies that the process
of including infima and suprema has to be iterated until no new infima or
suprema are added. For convenience, I refer to the resulting set F as the
closure of F̃ .

In practice, the closure F with the required properties (i)(b)–(i)(e) can be
obtained by using the following algorithm. Again, this is meant to be carried
out on a copy of F̃ , so that the original set F̃ remains unchanged.

Algorithm 3 Set F equal to F̃ . Then, until F stops changing repeat the
following steps:

(1) For every pair F,G ∈ F̃ , add F ∧ G and F ∨ G to F , provided these
factors are not already elements of F .

(2) Set F̃ equal to F obtained in (1).

Finally, if not already included, add U and E to F .

In step (2), replacing F̃ with F from (1) ensures, that the next time (1) is
executed, it is checked if further infima or suprema, which involve some of
the new factors from the most recent execution of (1), need to be added to F .
Adding U and E at the end of the procedure is computationally more efficient,
but both factors could also be added to F before starting the iteration.

As explained in Section 3.1, in order to be able to test interactions involving
up to k treatment factors in G̃Ω from the spreadsheet, where k is part of the
input, the step (A2) of the AutomaticAnova algorithm which involves the set
G̃∗Ω is performed. In order to create G̃∗Ω from the input set G̃Ω for the given k,
initially G̃∗Ω is set equal to G̃Ω. Subsequently, for every (F ◦T ) ∈ G̃∗Ω and every
(G ◦ T ) ∈ G̃Ω, unless it is already included, the infimum (F ◦ T ) ∧ (G ◦ T ) is
added to G̃∗Ω. In total, this step is carried out k − 1 times which ensures, that
every infimum in the final set G̃∗Ω involves at most k of the original factors in
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G̃Ω.

Embedding G̃∗Ω into a set GΩ in step (A2) requires an iterative procedure similar
to Algorithm 3. However, in the step corresponding to (2) above only suprema
are added. Also only U is included at the end. Again, it is convenient to call
the resulting set GΩ the closure of G̃∗Ω.

The input sets F̃ and G̃Ω to Algorithm 1 consist of mutually inequivalent
factors. The procedures in this section ensure that this property carries over
to the closures F and GΩ. It is however possible that F ≡ (G ◦ T ) for some
F ∈ F and (G ◦ T ) ∈ GΩ.

3.2.3 Extracting the ≺ and � relations

Although not necessarily required for computing infima and suprema, the finer
relation ≺ and the finer or equivalent relation � are needed for generating
Hasse diagrams and for the anova calculations. Also, having a concise repre-
sentation of the relations is helpful when checking if factors are orthogonal.

Let H be some set of m factors defined on the same set, for example, one
of the sets F or GΩ in Algorithm 1. Also assume that the factors in H are
arranged in an arbitrary but fixed order. The � relation for the factors in H
can be represented by an m×m matrix with elements equal to zero or one. By
interpreting the row and column numbers as the positions of the factors in H,
every element of the matrix can be associated with an ordered pair of factors
in H. If F � G, then the corresponding element of the matrix will be equal to
one; otherwise it is zero. Because every factor can be regarded as a collection
of its classes, it can be decided if F � G by checking for every F -class if it is a
subset of some G-class. If F � G and at least one of the F -classes is a proper
subset of one of the G-classes, then F ≺ G, which shows how a similar matrix
representing the finer relation can be obtained.

If the factors in H are mutually inequivalent, then the � relation coincides
with the ≺ relation, except that for every F ∈ H it holds that F � F but
not F ≺ F . Thus for mutually inequivalent factors a matrix representing the
≺ relation can be obtained from the matrix for � by replacing all diagonal
elements with zero.

If in addition to H there is another ordered set I of n factors which are defined
on the same set as those in H, then by using an m×n matrix where the rows
correspond to factors in H and the columns to factors in I the relation F � G
for F ∈ H and G ∈ I can be represented similarly. In the AutomaticAnova
algorithm this relation is considered for H = F and I = GΩ.
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3.2.4 Hasse diagrams

For a set H of m mutually inequivalent factors on the same set which are ar-
ranged in an arbitrary but fixed order, obtaining the directed graph underlying
the Hasse diagram from the matrix for the finer relation ≺ in Section 3.2.3 is
straightforward. This can be done by computing the edge set or, equivalently,
the adjacency matrix of the graph.

For F,G ∈ H there is an edge from F to G if and only if (a) F ≺ G and (b)
there exists no other H ∈ H with F ≺ H and H ≺ G. Thus if F is the ith and
G is the jth factor in F , where i 6= j, then there is an edge between the two
factors if the (i, j)th element of the ≺ matrix is equal to one and if for every
h different from both i and j the product of the (i, h)th and (h, j)th elements
of the matrix is zero.

The adjacency matrix is an m × m matrix whose row and column numbers
can be interpreted as the positions of the factors in F . The (i, j)th element of
the matrix is equal to one if there is an edge between the factors at positions
i and j in F , and zero otherwise. In step (A6) of Algorithm 1 this procedure
is applied separately to H = F and H = GΩ. For drawing the Hasse diagram
I assume that a routine is available which can generate the plot from the set
of edges or the adjacency matrix.

3.2.5 Checking orthogonality and balance

In what follows suppose that F is the closure of F̃ and GΩ the closure of G̃∗Ω
from Section 3.2.2. In order to check the orthogonality requirements (i)(f),
(iii)(a) and (iii)(b) for F and GΩ it is possible to implement a literal test of
the defining condition for orthogonality in Section 2.1. The required amount of
computation can be reduced if F � G, because then F and G are orthogonal
(Bailey, 2008, p. 179) and the more elaborate test can be avoided.

Checking the condition (i)(a) in step (A3) for the plot factors in F is straight-
forward and amounts to verifying that for every F ∈ F the F -classes have the
same size.

3.2.6 Keeping track of factor names

The factors in the input sets F̃ and G̃Ω to Algorithm 1 are assumed to have
names which are provided by the user, for example as the column headings in
a spreadsheet. So far for convenience the factors have been called F , G and
so forth, but in applications they will usually carry more meaningful names.
During the execution of the AutomaticAnova algorithm new factors are created
from the original ones by means of the ∧ and ∨ operators. Both are binary
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operators, but as mentioned in Section 2.1 they possess the property of being
associative which implies that factors such as F ∨G∨H ∨ I are well-defined.
Keeping track of the correct factor names requires some careful bookkeeping.
For example, if the supremum of A ∧ B and F ∨ G is formed where B ≺ F ,
then (A ∧ B) ∨ (F ∨ G) = F ∨ G since A ∧ B � B ≺ F � F ∨ G and so the
simpler name F ∨G for the supremum should be used.

3.2.7 Anova computations

If for the given inputs F̃ , G̃Ω and k Algorithm 1 has been successful in em-
bedding F̃ and G̃Ω into sets F and GΩ, then in step (A6) the anova table is
constructed as described in Section 2.2. If response data are available, then
the full anova table is produced which for convenience also reports p-values
for the different F tests. Otherwise, the algorithm returns the skeleton anova
table.

Calculations of degrees of freedom and sums of squares are done separately
for the plot factors in F and the treatment factors in GΩ. The crude sum of
squares CSS(F ) for a factor F on Ω with nF levels is calculated as (Bailey,
2008, p. 178)

CSS(F ) =
nF∑
i=1

(total of the responses for all units in F [[i]])2

size of F [[i]]
,

where F [[i]] is the F -class for level i. As explained in Section 2.2, for the resid-
ual in each stratum the degrees of freedom and sums of squares are obtained by
subtraction. In order to allocate the treatment factors to the strata the m×n
matrix representing the � relation for F and GΩ at the end of Section 3.2.3 is
used.

4 Implementation

Algorithm 1 was implemented in Mathematica 8 as the AutomaticAnova
package. This package provides a single function for reading in the data and
carrying out the anova computations. In order to enhance usability, the pro-
gram was supplemented with a graphical user interface (GUI) in the Automatic-
AnovaGUI package, which loads the AutomaticAnova package and provides
a command for launching the GUI. Both packages were extensively tested on
Microsoft Vista and Windows platforms. Their usage is explained in the next
section.

Input data are read from a Microsoft Excel file containing the experimen-
tal layout in a spreadsheet with rows for the observational units and named
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columns for the factors. Response data are not necessarily required. From the
spreadsheet input sets to Algorithm 1 of plot and treatment factors F̃ and
G̃Ω are created as specified by the user. The data structure for a factor F is
a list of lists, or set of sets, which literally corresponds to the representation
{F [[i]] : i = 1, . . . , nF}.

The implementation heavily uses set operations, such as the union and in-
tersection, for computing infima, suprema and closures. Design matrices and
matrix inversions are not required. The drawing of Hasse diagrams is accom-
plished by means of a built-in Mathematica function which can generate the
diagram from the adjacency matrix. At each vertex the name F of a factor is
displayed together with the pair (nF , dF ) indicating the number of levels and
degrees of freedom. In the Hasse diagram and the anova table the infimum
F ∧G of two factors F and G is shown as ‘I(F , G)’ and the supremum F ∨G
as ‘S(F , G)’. This notation extends naturally to more than two factors.

5 Package usage

The governing principle behind the design of the AutomaticAnova package
and its GUI was the wish to create a user-friendly piece of software which
would be intuitive to use and which, as far as possible, would protect the
non-expert from going wrong. In order to minimize the risk of incorrect input
specifications, the AutomaticAnovaGUI package uses dynamic enabling of di-
alogs and options to guide the user through the few steps which are necessary
for analyzing a set of data. Since in many fields of application data are stored
in Microsoft Excel files, this input format is also used by the AutomaticAnova
and the AutomaticAnovaGUI packages.

Essentially, the user then has to select the plot and treatment factors and,
if available, a response variable from an Excel spreadsheet. Furthermore, the
maximum number of treatment factors which can be involved in tests of in-
teraction effects has to be specified. As was mentioned before, the program
does not require a model formula. The resulting anova table together with the
Hasse diagrams can be saved as a nicely formatted PDF file.

The remainder of this section provides a brief user guide. The focus is on the
GUI provided by the AutomaticAnovaGUI package, which is recommended for
most users. Despite being used for the implementation, it is worth pointing
out that no knowledge of Mathematica is needed.
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5.1 Software requirements and package files

In order to get started the user needs to have access to Mathematica 8. In
what follows, I assume that this has been installed under Microsoft Vista or
Windows. The AutomaticAnova and AutomaticAnovaGUI packages are pro-
vided in the two files AutomaticAnova.m and AutomaticAnovaGUI.m, which
can be downloaded from the author’s web page. It is also planned to make the
packages available for download as supplementary files from the journal’s web
page. These files need to copied to the same directory. For simplicity suppose
that this directory is called C:\MyFiles, but note that the user is completely
free to choose the directory.

5.2 Input file

The packages work on input data provided as a Microsoft Excel spreadsheet
in a file with extension .xls or .xlsx. Many other programs can export data
in that format and such files may also be used. The spreadsheet is expected
to have a row for each observational unit and named columns for the factors
and for the response variable, if present.

The cells in the column for a factor need to show the levels of the factor which
are assigned to the observational units in the rows. That is, for a factor F
each row contains the value F (ω) for the unit ω represented by the row. In
the current implementation, the factor levels must be integers, so no text labels
can be used. Usually the levels of a factor F with nF levels are coded by the
integers 1, . . . , nF but sometimes it is more convenient to use other values. For
example, if a factorial design is used in which the levels of F are represented
by the numbers 0, . . . , nF − 1 then these values can be used directly. Also, the
levels do not necessarily have to be consecutive numbers, which is useful when
the levels represent selected values of a quantitative variable. Since internally
every factor is identified with the set of its classes, it is however immaterial
which integers are used for indicating the different factor levels. In particular,
the factor levels carry no numerical or quantitative meaning and just serve to
distinguish the levels of a factor from each other.

In addition there is one convention which needs to be observed and which is
crucial for the program to be able to identify the correct model. This concerns
the coding of the levels of nested factors. To illustrate how the coding has
to be done, consider an experiment where 3 educational programmes (P ) are
to be compared in 7 different school districts (D) with 20 schools (S) per
district and using 5 classes (C) from each school, where the letters in brackets
represent abbreviated names of the corresponding factors in the spreadsheet.
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Here P is a treatment factor and the other factors are plot factors. In total
there are then N = 700 observational units and hence rows in the spreadsheet
(in addition to the one for the column names).

The levels of P are coded as 1, 2, 3. Likewise, because D is the coarsest plot
factor its levels are coded by the integers 1, . . . , 7. In the spreadsheet, the 100
units representing the classes within the same district have the same level of
D. The next finer plot factor is S. The 20 schools in each district are different
from the schools in every other district, so in total there are 140 schools. It is
essential to note that therefore S is treated as a factor with nS = 140 levels,
which are coded as 1, . . . , 140. Thus, for example, in the seven districts the
levels of S representing the first school are 1, 21, 41, 61, 81, 101 and 121,
respectively. If instead S was regarded as a factor with nS = 20 levels, then
the program would assume that the school represented by level 1 is the same in
all school districts. Similarly, because the classes within a school are different
from the classes in every other school the factor C has nC = 700 levels which
are represented by the integers 1, . . . , 700. Although in this example the coding
has been explained for plot factors it is applied in the same way, if there are
nested treatment factors.

In general the equality factor E and the universal factor U do not have to
be part of the spreadsheet and are added internally as appropriate by the
program. Since in the above example the factor C for classes coincides with
E the column for C can be omitted from the spreadsheet.

The above coding of the nested factor for schools serves the same purpose as
the nesting and dot operators in GenStat or some formal interaction terms
in the SAS model specification, where however both programs would treat
schools as a factor S with nS = 20 levels only. To the non-statistician these
mechanisms for telling the software that schools in one district are different
from schools in other districts usually remain nebulous and incomprehensible.
By contrast, it appears that the coding used here can be explained much more
easily, because it corresponds to the actual conduct of an experiment. After
looking at some examples, I believe, the non-expert user will understand that
levels corresponding to smaller objects, such as schools, which are contained in
larger objects, such as districts, have to be represented by different numbers.

5.3 Loading the packages

After starting Mathematica, in order to be able to use the AutomaticAnova
and AutomaticAnovaGUI packages, first one needs to open a new notebook
file by using the program’s File menu. Secondly, a command needs to be
executed which tells Mathematica where to find the AutomaticAnova.m
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and AutomaticAnovaGUI.m files. Assuming that these have been copied to
the directory C:\MyFiles as suggested in Section 5.1, in the notebook the
user needs to type and execute the command SetDirectory["C:\\MyFiles"].
Note that the directory name has to be enclosed in double quotes and that
a double backslash is used to represent the single backslash in the directory
name. The quickest way to execute the command is by selecting it with the
mouse and simultaneously pressing the Shift and Enter keys on the keyboard.

Finally, one of the packages has to be loaded. If the GUI is to be used, then
the command Get["AutomaticAnovaGUI‘"] needs to be typed and executed
in exactly the same way. The grave accent (ASCII character 96) tells Mathe-
matica that a package file is to be loaded. Note that this command should be
executed only once per Mathematica session, since it defines several names
which are protected when a second attempt to load the package is made.
Similarly, the command Get["AutomaticAnova‘"] loads the command line
version of the package. When loading the GUI there is no need to also execute
the Get["AutomaticAnova‘"] command, because this is handled internally.

The above steps have to repeated at the beginning of every Mathematica
session. Alternatively, the notebook containing the two commands for setting
the directory and loading the appropriate package can be saved as a file with
extension .nb, which can be opened and evaluated at the start of a new session.

5.4 GUI workflow

After loading the AutomaticAnovaGUI package the GUI shown in Figure 2 is
launched by typing and executing the command AutomaticAnovaGUI[] in the
Mathematica notebook which is already open. The GUI has five sections,
briefly described below, which become active at the appropriate points in the
analysis process.

Input file The Microsoft Excel input file described in Section 5.2 is opened
by using a standard dialog.

Factors and response Plot and treatment factors in the input file can be
selected by clicking on the respective buttons. In addition, a single response
variable can be specified. Each of those specifications is optional. The pro-
gram produces the full anova table if all three types of variable are specified
and the skeleton anova if the response variable is missing. If treatment but
no plot factors are selected, then the analysis for a completely randomized
design with the chosen treatment factors is performed. Conversely, if plot
but no treatment factors are specified, then the anova table for a random-
effects-only model is generated.

Level of interaction of treatment factors This section becomes active only
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Fig. 2. Graphical user interface provided by AutomaticAnovaGUI package

if treatment factors were selected. Otherwise, it has no effect. By default the
program tries to include all possible interactions of the treatment factors
in the analysis. Alternatively, a main-effects-only analysis can be requested.
Another alternative is to specify the maximum number of treatment factors
for which tests of interactions are to be performed by selecting the “User
defined” option and clicking on the “Upper bound for interactions” button.
This upper bound specifies the input value k for Algorithm 1. Users who
are not sure what the appropriate level of interaction is should, at least for
the purpose of an initial analysis, make no changes to this section.

Review and confirm settings for analysis Before being able to run the
anova the user must review the input specifications in a separate window
by clicking on the corresponding button. If everything is correct, then the
option for confirming the settings needs to be selected. Otherwise, the user
can go back to the previous sections and make changes.

Controls It is only after the settings have been confirmed that the “Run anal-
ysis” button becomes active. The output is displayed in a separate window
from where it can be saved as a report in a PDF file.
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5.5 Command line mode

More experienced users of Mathematica may sometimes wish to access the
objects containing the Hasse diagrams and the anova table directly. This is
possible by loading the AutomaticAnova.m file and executing the function
AutomaticAnova provided therein in a Mathematica notebook. A detailed
description of how this function is used can be obtained by executing the
command ?AutomaticAnova. Since for the majority of users the GUI is rec-
ommended, I do not present further details here.

6 Examples

This section illustrates the use of the GUI in Section 5.4 with several exam-
ples. Although the AutomaticAnovaGUI package is used throughout, in what
follows I use the shorter name AutomaticAnova as a shorthand for this. The
examples range from simple to complex and illustrate the wide range of de-
signs that can be analyzed. Limitations of the approach will be discussed at
the end of the paper.

6.1 Design with between-subjects and within-subjects factors

Experiments where individuals (people or animals), usually referred to as sub-
jects, are sequentially exposed to several treatments are common in many ap-
plication areas and the corresponding factors are known as within-subjects
factors. In addition, there are often between-subject factors which do only
vary across but not within the individuals. The responses of an individual can
be regarded as a block of observations and in the analysis this is reflected by
introducing a plot factor for subjects.

Example 2 A hypothetical study presented by Gamst et al. (2008, p. 391)
involves twenty college students and has two between- and one within-subjects
factor. One between-subject factor is ‘Age’ which distinguishes between two
age groups and the other is ‘Gender’. Half of the participants are from each
age group and in both groups equal numbers of male and female students are
used. The within-subject factor ‘Attraction’ has two levels corresponding to
descriptions of a person by whom a respondent’s romantic partner is suppos-
edly attracted. Every participant reads both descriptions and a score reflecting
strength of jealousy is measured immediately after reading each version (for
the data see Gamst et al., 2008, p. 392). In this simple example, the authors
assume that there are no effects of the order in which the descriptions are
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U H1,1L

Age H2,1L Gender H2,1L Attraction H2,1L

IHAge,GenderL H4,1L IHAge,AttractionL H4,1L IHGender,AttractionL H4,1L

IHAge,Gender,AttractionL H8,1L

Fig. 3. Hasse diagram from AutomaticAnova for treatment factors in Example 2

read, but in general it is advisable to take such order effects into account.

The input file for the AutomaticAnova has forty rows and five columns. Of
these three are for ‘Age’, ‘Gender’ and ‘Attraction’ with levels coded as 1 and
2 and one column ‘y’ contains the responses. Furthermore, there is a column
called ‘Subject’ for a factor with levels 1, . . . , 20 representing the individual
students. In addition to selecting the response variable, ‘Subject’ has to be
specified as a plot factor and ‘Age’, ‘Gender’ and ‘Attraction’ as treatment
factors. Since here all possible interactions of the treatment factors are of
potential interest the default option for the level of interaction explained in
Section 5.4 is used.

Stratum Source SS DF MS F p-value

U U 462.4000 1 462.4000

Subject Age 48.4000 1 48.4000 46.6506 4.0433 ´ 10-6

Gender 57.6000 1 57.6000 55.5181 1.3772 ´ 10-6

IHAge,GenderL 0.0000 1 0.0000 0.0000 1.0000

residual 16.6000 16 1.0375

total 122.6000 19

E Attraction 16.9000 1 16.9000 54.0800 1.6244 ´ 10-6

IHAge,AttractionL 0.1000 1 0.1000 0.3200 0.5795

IHGender,AttractionL 4.9000 1 4.9000 15.6800 0.0011

IHAge,Gender,AttractionL 8.1000 1 8.1000 25.9200 0.0001

residual 5.0000 16 0.3125

total 35.0000 20

Total 620.0000 40

Fig. 4. Anova table for Example 2 from AutomaticAnova
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The Hasse diagram for the plot factors is not shown here: it is a chain similar
to the one in Figure 1 with vertices for, from top to bottom, the universal
factor U (1, 1), ‘Subject’ (20, 19) and the equality factor E (40, 20), where for
every factor F the pair (nF , dF ) indicates the number of levels nF and the
degrees of freedom dF . For the treatment factors the program produces the
Hasse diagram in Figure 3 and the anova table in Figure 4 as explained in
Section 2.2. In the table, a source label such as ‘I(Age, Gender)’ stands for
the infimum of the two factors. The corresponding F test is for the interaction
of ‘Age’ and ‘Gender’. The sums of squares, degrees of freedom, mean squares
and F tests in Figure 4 are identical to those reported by (Gamst et al., 2008,
p. 393). 2

6.2 Split-plot experiment

The next example considers a classical split-plot experiment. This type of
design and the corresponding analysis are covered in many textbooks such as
Cochran and Cox (1957), Montgomery (1991) and Sahai and Ageel (2000),
among others.

Example 3 Littell et al. (2006, p. 135) describe a greenhouse experiment in
which four doses of a pesticide were applied to two varieties of a plant. The
experiment involved five benches which were used as blocks. Each bench was
divided into four sections, each of which contained one plant of each variety.
On each bench separately, the four doses were applied to the four sections
in a random order. Although not mentioned explicitly, the authors’ analysis
is consistent with assuming that in each section the two varieties were also
allocated at random. Thus, using common split-plot terminology, the sections
represent whole plots and the plants are subplots. A response was measured
on each plant and the data are available as Data Set 4.6 in Littell et al. (2006,
Appendix 2).

Assuming that the columns in the input file are named ‘Bench’, ‘Section’,
‘Dose’, ‘Variety’ and ‘y’ for the response, when using the AutomaticAnova
GUI the first two variables need to be specified as plot and the next two
as treatment factors. A factor for the individual plants is not required, since
this would coincide with the equality factor E on the set of the observational
units, which is automatically included. In addition, ‘y’ has to be selected as
the response variable. Since every bench has different sections, in the input
file the coding convention in Section 5.2 needs to be observed, which implies
that the factor ‘Section’ has twenty levels.

The Hasse diagrams, not shown here, look similar to those in Figure 1. For
the plot factors the diagram is a chain with, from bottom to top, four vertices
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Stratum Source SS DF MS F p-value

U U 24319.6923 1 24319.6923

Bench Bench 119.7340 4 29.9335

Section Dose 545.5048 3 181.8349 13.6254 0.0004

residual 160.1440 12 13.3453

total 705.6488 15

E Variety 11.9902 1 11.9902 2.7762 0.1151

IHVariety,DoseL 29.6427 3 9.8809 2.2878 0.1176

residual 69.1020 16 4.3189

total 110.7350 20

Total 25255.8100 40

Fig. 5. Anova table for Example 3 from AutomaticAnova

for E (40, 20), ‘Section’ (20, 15), ‘Bench’ (5, 4) and U (1, 1). For the treatment
factors the Hasse diagram has a diamond shape with U (1, 1) at the top, the
infimum of ‘Variety’ and ‘Dose’ (8, 3) at the bottom and separate vertices for
‘Variety’ (2, 1) and ‘Dose’ (4, 3) in between. By using the default setting in
Section 5.4 for the level of interaction of the treatment factors, the anova table
in Figure 5 is obtained. 2

6.3 Latin square with randomized complete blocks in sub-columns

In the previous two examples the observational units had a very simple struc-
ture which could be represented by a chain in the Hasse diagram for the plot
factors. A major strength of the AutomaticAnova is however that it can also
handle situations with more complicated plot and/or treatment structures, as
is illustrated next.

Example 4 The following description of an actual experiment together with
an analysis of simulated data using SAS is presented by Federer and King
(2007, pp. 47–51). The data are also available as a data set sbex2_2 in a
file Example2.2.sas which accompanies the book and these were used in the
analysis reported below.

The experiment involves five apple tree rootstocks which were arranged in
a 5 × 5 Latin square. In addition, four soil treatments were applied using a
randomized complete block design where the five columns of the Latin square
formed the blocks. Federer and King (2007, p. 47) state that “the rows and
rootstocks of the Latin square are crossed with soil treatments” and later that
the “soil treatments go across all rows” (p. 48). In order to better understand
this description, first it should be noted that combinations of rows and root-
stocks together identify the 25 different cells of the Latin square. Secondly, all
four soil treatments are applied to every cell of the Latin Square which follows
from the use of the word “crossing” in the above quote. Thirdly, that the soil
treatments go across all rows together with the information that a randomized
complete block design with columns of the Latin square as blocks was used
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U H1,1L

Row H5,4L Column H5,4L

Sub-column H20,15L Cell H25,16L

E H100,60L

Fig. 6. Hasse diagram from AutomaticAnova for plot factors in Example 4

implies that effectively every column was divided into four sub-columns to
which the soil treatments were applied in a random order.

In total there are N = 100 observational units, which are the intersections of
the sub-columns with rows. The unit structure can be described by four plot
factors ‘Row’, ‘Column’, ‘Cell’ and ‘Sub-column’ with 5, 5, 25 and 20 levels
respectively, where the number of levels of the ‘Sub-column’ factor follows from
the coding convention in Section 5.2. The treatment factors are ‘Rootstock’
with 5 and ‘Soil tmt’ with 4 levels.

Federer and King (2007) do not consider a separate factor ‘Cell’ but identify
this with the effect for crossing ‘Column’ with ‘Rootstock’. Likewise, instead of
a factor ‘Sub-column’ they consider the crossing of ‘Column’ and ‘Soil tmt’. In
order to analyze the experiment, the authors need to perform the anova for two
different models and combine these using some additional hand calculations,
since “a SAS PROC GLM code for the appropriate analysis including the row
blocking is not available” (Federer and King, 2007, p. 49). Also the error terms
used in the F tests of the rootstock effect, the soil treatment effect and their
interaction need to be indicated explicitly in additional SAS directives. These
complications appear to be caused by not explicitly distinguishing between
plot and treatment factors.

The AutomaticAnova with the default option “All interactions” on the other
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Stratum Source SS DF MS F p-value

U U 1.0002 ´ 108 1 1.0002 ´ 108

Row Row 147.4386 4 36.8596

Column Column 1318.6297 4 329.6574

Sub-column Soil tmt 351.8826 3 117.2942 0.3643 0.7800

residual 3863.2837 12 321.9403

total 4215.1663 15

Cell Rootstock 1159.7645 4 289.9411 1.3074 0.3220

residual 2661.1326 12 221.7611

total 3820.8971 16

E IHSoil tmt,RootstockL 825.9588 12 68.8299 0.2757 0.9906

residual 11982.2751 48 249.6307

total 12808.2338 60

Total 1.0004 ´ 108 100

Fig. 7. Anova table for Example 4 from AutomaticAnova

hand produces the combined analysis from an input file with columns ‘Row’,
‘Column’, ‘Cell’, ‘Sub-column’ ‘Rootstock’, ‘Soil tmt’ and ‘y’ for the response,
where the levels of all factors are coded by the integers from 1 up to the number
of factor levels, by only specifying which columns represent plot and treatment
factors respectively and by selecting ‘y’ as the response variable. The Hasse
diagram for the plot factors is shown in Figure 6. By swapping the vertices
for ‘Cell’ and ‘Sub-column’ it is possible to obtain an equivalent version of the
diagram in which no edges intersect. For the treatment factors the diagram is
diamond shaped as in Figure 1 and hence not presented here. The anova table
is shown in Figure 7. It should be noted that this analysis agrees with the
combined analysis in Federer and King (2007, pp. 49–51) where it is described
in the text only.

As an extension, Federer and King (2007, p. 99) consider the situation where
the four soil treatments are the combinations of two factors ‘Fumigation’ and
‘Composting’ with two levels each and present the breakdown of the degrees
of freedom in the corresponding anova. By including these factors into the

Stratum Source DF
U U 1

Row Row 4

Column Column 4

Sub-column Fumigation 1

Composting 1

IHFumigation,CompostingL 1

residual 12

total 15

Cell Rootstock 4

residual 12

total 16

E IHFumigation,RootstockL 4

IHComposting,RootstockL 4

IHFumigation,Composting,RootstockL 4

residual 48

total 60

Total 100

Fig. 8. Skeleton anova for extended version of Example 4 from AutomaticAnova
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input file and re-running the AutomaticAnova with the same plot factors as
before and treatment factors ‘Rootstock’, ‘Fumigation’ and ‘Composting’ and
leaving the response variable unspecified, one obtains the skeleton anova table
in Figure 8, which agrees with the results in Federer and King (2007, p. 99).
2

6.4 Four treatment factors in nine strata

The final example to be considered in detail was presented by Professor T.
Loughin at the Joint Statistical Meeting 2005 in Minneapolis and communi-
cated to me by Professor C.-S. Cheng. It illustrates how by using the skeleton
anova the correct analysis can be anticipated before data are available. The ex-
perimenters later decided to run a simplified version of the experiment and so
there exist no response data for the original design described below (Loughin,
personal communication).

Example 5 An experiment to determine what factors influence weed control
and yield with genetically-altered soybean varieties involves t = 126 treat-
ments which are all possible combinations of 3 varieties of soybean, 2 times
of herbicide application, 3 rates of herbicide application and 7 weed species
which were chosen based on resistance to a particular herbicide. Motivated by
practical constraints a field is divided into 4 blocks, each of which can accom-
modate all 126 treatments in separate spots. In total there are then N = 504
spots which represent the observational units.

Every block is divided into 3 plots of equal size on which the soybean varieties
are to be planted. Every such plot is divided further into two subplots to
which the herbicide is applied early or late. In order to accommodate the
different application rates every subplot is split again into three sub-subplots.
Unrelated to the division into plots and smaller subunits each of the blocks is
divided into 7 strips to which the weed species are allocated.

Figure 9 provides a schematic representation of the experimental layout. In
this, the small rectangles represent the observational units or spots. Every
block consists of 18 columns of 7 spots which are the sub-subplots to which
one of the three application rates coded as 1, 2 or 3 is applied. Sets of three
columns form the subplots and the time of herbicide application is shown above
each subplot. Pairs of subplots make up the plots and the soybean variety to
be planted on each plot is indicated. Finally, the weed species allocation to
the strips or rows of each block is shown.

The input file for the AutomaticAnova has 504 rows for the observational
units (plus one row for the column names) and nine columns. Five columns
are for the plot factors B (blocks), P (plots), S (subplots), SS (sub-subplots)

34



Block 1

Variety 1 Variety 3 Variety 2

Early Late Late Early Late Early

Weed 1 → 1 3 2 3 1 2 3 2 1 1 3 2 2 1 3 1 2 3

Weed 2 → 1 3 2 3 1 2 3 2 1 1 3 2 2 1 3 1 2 3

Weed 3 → 1 3 2 3 1 2 3 2 1 1 3 2 2 1 3 1 2 3

Weed 4 → 1 3 2 3 1 2 3 2 1 1 3 2 2 1 3 1 2 3

Weed 5 → 1 3 2 3 1 2 3 2 1 1 3 2 2 1 3 1 2 3

Weed 6 → 1 3 2 3 1 2 3 2 1 1 3 2 2 1 3 1 2 3

Weed 7 → 1 3 2 3 1 2 3 2 1 1 3 2 2 1 3 1 2 3

Block 2

Variety 3 Variety 1 Variety 2

Late Early Early Late Early Late

Weed 3 → 2 1 3 3 2 1 1 2 3 3 1 2 3 2 1 2 1 3

Weed 4 → 2 1 3 3 2 1 1 2 3 3 1 2 3 2 1 2 1 3

Weed 7 → 2 1 3 3 2 1 1 2 3 3 1 2 3 2 1 2 1 3

Weed 5 → 2 1 3 3 2 1 1 2 3 3 1 2 3 2 1 2 1 3

Weed 2 → 2 1 3 3 2 1 1 2 3 3 1 2 3 2 1 2 1 3

Weed 1 → 2 1 3 3 2 1 1 2 3 3 1 2 3 2 1 2 1 3

Weed 6 → 2 1 3 3 2 1 1 2 3 3 1 2 3 2 1 2 1 3

Block 3

Variety 1 Variety 2 Variety 3

Early Late Late Early Early Late

Weed 6 → 2 3 1 1 2 3 1 3 2 2 3 1 3 1 2 1 3 2

Weed 3 → 2 3 1 1 2 3 1 3 2 2 3 1 3 1 2 1 3 2

Weed 2 → 2 3 1 1 2 3 1 3 2 2 3 1 3 1 2 1 3 2

Weed 5 → 2 3 1 1 2 3 1 3 2 2 3 1 3 1 2 1 3 2

Weed 1 → 2 3 1 1 2 3 1 3 2 2 3 1 3 1 2 1 3 2

Weed 4 → 2 3 1 1 2 3 1 3 2 2 3 1 3 1 2 1 3 2

Weed 7 → 2 3 1 1 2 3 1 3 2 2 3 1 3 1 2 1 3 2

Block 4

Variety 2 Variety 3 Variety 1

Late Early Early Late Late Early

Weed 2 → 2 1 3 3 1 2 2 3 1 1 2 3 3 2 1 2 3 1

Weed 4 → 2 1 3 3 1 2 2 3 1 1 2 3 3 2 1 2 3 1

Weed 5 → 2 1 3 3 1 2 2 3 1 1 2 3 3 2 1 2 3 1

Weed 7 → 2 1 3 3 1 2 2 3 1 1 2 3 3 2 1 2 3 1

Weed 6 → 2 1 3 3 1 2 2 3 1 1 2 3 3 2 1 2 3 1

Weed 3 → 2 1 3 3 1 2 2 3 1 1 2 3 3 2 1 2 3 1

Weed 1 → 2 1 3 3 1 2 2 3 1 1 2 3 3 2 1 2 3 1

Fig. 9. Experimental layout in Example 5

and ST (strips). A factor for the individual spots is not needed since this is
equivalent to the equality factor E. The remaining four columns represent the
treatment factors called ‘Variety’ with 3 levels, ‘Time’ with 2 levels, ‘Rate’
with 3 levels and ‘Weed’ with 7 levels. The coding convention in Section 5.2
implies that the plot factors have numbers of levels equal to nB = 4, nP = 12,
nS = 24, nSS = 72 and nST = 28, which can be easily verified by looking at
the experimental layout in Figure 9.

In the GUI, the plot and treatment factors need to be selected from the input
spreadsheet. Since there is no response variable this remains unspecified. The
experimenters were interested in testing all main effects and all possible in-
teractions involving two, three or four of the treatment factors, which means
that the default option “All interactions” in Section 5.4 can be used.

35



U H1,1L

B H4,3L

P H12,8L

S H24,12L

ST H28,24L

SS H72,48L

IHP,STL H84,48L

IHS,STL H168,72L

E H504,288L

Fig. 10. Hasse diagram from AutomaticAnova for plot factors in Example 5

The Hasse diagram for the plot factors is shown in Figure 10. In addition to
the original plot factors and E and U , the diagram contains two more infima.
As explained in Section 2.2 every vertex in the diagram gives rise to one of
the nine strata in the skeleton anova table in Figure 11. In the table, lines
labeled by infima, such as ‘I(Time, Variety)’, of two or more treatment factors
correspond to tests of interactions. Tests which are performed in a stratum
with many residual degrees of freedom tend to have a higher power. 2

6.5 Further examples

Additional examples, several of which are qualitatively different from the ones
presented here, are reported in Bailey (2008, Chapter 10). For example, the
strip-plot design in Bailey (2008, Fig. 10.32) illustrates a situation where the
supremum of two plot factors ‘washing machine’ and ‘dryer’ needs to be in-
cluded in the list of plot factors in order to obtain the correct analysis. The
AutomaticAnova package handles this automatically even if ‘washing machine’
and ‘dryer’ are specified as the only plot factors. Similarly, in Example 10.21
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Stratum Source DF
U U 1

B B 3

P Variety 2

residual 6

total 8

S Time 1

IHTime,VarietyL 2

residual 9

total 12

ST Weed 6

residual 18

total 24

SS Rate 2

IHTime,RateL 2

IHVariety,RateL 4

IHTime,Variety,RateL 4

residual 36

total 48

IHP,STL IHVariety,WeedL 12

residual 36

total 48

IHS,STL IHTime,WeedL 6

IHTime,Variety,WeedL 12

residual 54

total 72

E IHRate,WeedL 12

IHTime,Rate,WeedL 12

IHVariety,Rate,WeedL 24

IHTime,Variety,Rate,WeedL 24

residual 216

total 288

Total 504

Fig. 11. Anova table for Example 5 from AutomaticAnova

the supremum of a plot factor ‘cell’ and the treatment factor ‘T ’ needs to
be included as a treatment pseudofactor ‘P ’ and again this is automatically
done by the software when ‘column’, ‘block’ and ‘cell’ are selected as the plot
factors and ‘T ’ is specified as the treatment factor. For each of the examples
in Bailey (2008, Chapter 10) the reported analysis was replicated by using the
GUI version of the AutomaticAnova package, which gave the same results in
all cases.

As mentioned before, the orthogonal designs defined by Bailey (2008) represent
a generalization of the simple orthogonal block structures in Nelder (1965a,b).
Example 10 in Bailey (1991) describes a poset block structure which is not a
simple orthogonal block structure. For this design the AutomaticAnova pack-
age also produces the correct analysis.
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7 Discussion

At the start of the paper the question was raised whether another anova
program is needed. In the previous sections I have tried to show that the
AutomaticAnova package and its GUI offer a user-friendly alternative to stan-
dard software, which for a wide class of potentially complex designs can pro-
duce the correct analysis by asking the user only for minimal input informa-
tion. The program’s ability to deduce the analysis from the design and the
specification of the plot and treatment factors alone is a unique feature which
makes the specification of a model formula obsolete and thus to the best of
my knowledge distinguishes the AutomaticAnova package from any existing
anova procedures available in other software.

The usefulness of Hasse diagrams for representing anova models has been rec-
ognized by Taylor and Hilton (1981), Tjur (1984), Bergerud (1996) and Vilizzi
(2005). Lohr (1995) emphasizes applications of the diagrams for teaching and
consulting purposes. Several of these papers discuss how the diagram can be
generated and used for deriving the anova table. However, none considers the
question how the partial order underlying the diagram can be automatically
extracted from the design.

The approach presented in the current paper also has its limitations and for
the benefit of potential users, in particular non-statisticians, these should be
pointed out very clearly. Firstly, the class of designs for which the Automatic-
Anova package can be used does not include incomplete block designs nor
augmented block designs in which new treatments are added to some but not
all blocks, since both types of design violate some of the orthogonality require-
ments. Secondly, in order to be able to use the package, the design for the plot
factors needs to be balanced in the sense of property (i)(a) in the definition
of an orthogonal design. For the treatment factors this is not necessarily the
case and Bailey (2008, p. 181) provides some examples of situations where the
treatment factors are unbalanced. Yet, in general more often than not unbal-
anced designs are not amenable to an analysis by means of the methods in this
paper. Thirdly, some designs confound effects of the treatment factors with
effects of the plot factors and this can lead to violations of the orthogonality
requirements. The AutomaticAnova package will however tell the user when
such violations occur.

A different sort of limitation arises as a consequence of the balance between
simplicity and comprehensiveness the program strives to achieve. More pre-
cisely, as explained in Section 5.4 the user can specify only the level of in-
teraction of the treatment factors, but not, for example, that the analysis for
a design with three treatment factors should only include one of the three
possible two-factor interactions. When designing the package, offering this
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possibility by providing some additional options was ruled out, because it was
deemed to make the program less usable for non-statisticians. Yet, a person
versed in the anova may be able to work around similar problems by including
additional factors representing specific contrasts in the input file.

The AutomaticAnova package has some additional features which space does
not allow me to go into. For example, the program can also handle regular
fractional factorial designs. In this regard, there are still some issues which
concern the listing of all effects which are aliased with a given treatment ef-
fect which will hopefully be fully addressed in a later version of the package.
Also, for the plot factors the AutomaticAnova output provides estimates of
the variance components if response data are available or otherwise analytic
formulae for the anova estimators of the variance components, which are de-
rived from the design. Again, space does not allow me to go into any details
except that the values in the output are estimates of the θF parameters in the
proof of Theorem 10.9 in Bailey (2008).

Some extensions which are planned for the future are the addition of residual
plots for checking model assumptions and the automatic suggestion of a Box-
Cox transformation of the response variable where appropriate. At the moment
the implementation has not been optimized for speed and, although usually
the analysis only takes a few seconds, for some complex designs, such as the
one in Example 5, the program may run for about one hour. It is hoped to
also address this in a subsequent version.

The fact that the AutomaticAnova package has been developed for Mathe-
matica appears to be a hurdle for making the program available to a wide
audience of users. The algorithms in Section 3 should be sufficient to enable
others to implement versions of the program in other programming languages,
although this may not be straightforward if the language does not support set
operations. It is therefore planned to develop a web application which offers an
interface to the AutomaticAnova functionality that can be used even without
having access to Mathematica.
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