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Abstract In this note we propose optimal designs for the prediction of the individual
responses as well as for the individual deviations from the population mean response
in random coefficient models. In this situation the mean population parameters are
assumed to be unknown such that the performance measures of the prediction do
not coincide for both objectives and, hence, the design optimization lead to substan-
tially diverse results. For simplicity we consider the case, where all individuals are
treated in the same way. If the population parameters were known, Bayesian opti-
mal designs would be optimal (Gladitz and Pilz,1982). While the optimal design for
the prediction of the individual responses differ from the Bayesian optimal design
propagated in the literature (Prus and Schwabe, 2011), the latter designs remain their
optimality, if only the individual deviations from the mean response are of interest.

1 Introduction

Random coefficient regression models, which incorporate variations between indi-
viduals, are getting more and more popular in many fields of application, especially
in biosciences. The problem of optimal designs for estimation of the mean popula-
tion parameters in these models has been widely considered and many theoretical
and practical solutions are available in the literature. More recently prediction of
the individual response as well as of the individual deviations from the population
mean response attracts larger interest in order to create individualized medication
and individualized medical diagnostics or to provide information for individual se-
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lection in animal breeding, respectively. The frequently applied theory developed by
Gladitz and Pilz (1982) for determining designs, which are optimal for prediction,
requires the prior knowledge of the population parameters, which can be useful if pi-
lot experiments are available. In this note we consider the practically more relevant
situation, where the population parameters are unknown.

The paper is organized as follows: In the second section the model will be spec-
ified and the prediction of individual effects will be introduced. Section three pro-
vides some theoretical results for the determination of optimal designs, which will
be illustrated in section 4 by a simple example. The final section presents some
discussion and conclusions.

2 Model Specification and Prediction

In the general case of random coefficient regression models the observations are
assumed to result from a hierarchical (linear) model: At the individual level the jth
observation of individual i is given by

Yi j = f(xi j)>β i + εi j, xi j ∈X , j = 1, ..,mi, i = 1, ..,n, (1)

where n denotes the number of individuals, mi is the number of observations
at individual i, f = ( f1, .., fp)> is the vector of known regression functions, and
β i = (βi1, ..,βip)> is the individual parameter vector specifying the individual re-
sponse. The experimental settings xi j may be chosen from a given experimental re-
gion X . Within an individual the observations are assumed to be uncorrelated given
the individual parameters. The observational errors εi j have zero mean E(εi j) = 0
and are homoscedastic with common variance Var(εi j) = σ2.

At the population level the individual parameters β i are assumed to have an un-
known population mean E(β i) = β and a given covariance matrix Cov(β i) = σ2D.
All individual parameters and all observational errors are assumed to be uncorre-
lated.

The model can be represented alternatively in the following form

Yi j = f(x j)>β + f(x j)>bi + εi j (2)

by separation of the random individual deviations bi = β i− β from the mean re-
sponse β . Here these individual deviations bi have zero mean E(bi) = 0 and the
same covariance matrix Cov(bi) = σ2D as the individual parameters.

We consider the particular case that the number of observations as well as the ex-
perimental settings are the same for all individuals (mi = m and xi j = x j). Moreover,
we assume for simplicity that the covariance matrix D is regular. The singular case
will be addressed shortly in the discussion.

In the following we investigate both the predictors of the individual parameters
β 1, ...,β n and of the individual deviations b1, ...,bn.
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As shown in Prus and Schwabe (2011), the best linear unbiased predictor β̂ i of
the individual parameter β i is a weighted average of the individualized estimate
β̂ i;ind = (F>F)−1F>Yi, based on the observations at individual i, and the estimator
of the population mean β̂ = (F>F)−1F>Ȳ,

β̂ i = D((F>F)−1 +D)−1
β̂ i;ind +(F>F)−1((F>F)−1 +D)−1

β̂ . (3)

Here F = (f(x1), ..., f(xm))> denotes the individual design matrix, which is equal for
all individuals, Yi = (Yi1, ...,Yim)> is the observation vector for individual i, and
Ȳ = 1

n ∑
n
i=1 Yi is the average response across all individuals.

It is worth-while mentioning that the estimator of the population mean may be
represented as the average β̂ = 1

n ∑
n
i=1 β̂ i;ind of the individualized estimates and does,

hence, not require the knowledge of the dispersion matrix D, whereas the predictor
of the individual parameter β i does.

The performance of the prediction (3) may be measured in terms of the mean

squared error matrix of (β̂
>
1 , ..., β̂

>
n )>. Using results of Henderson (1975) it can be

shown that this mean squared error matrix is a weighted average of the correspond-
ing covariance matrix in the fixed effects model and the Bayesian one,

MSE β = σ
2((In− 1

n 1n1>n )⊗ (F>F+D−1)−1 +( 1
n 1n1>n )⊗ (F>F)−1), (4)

where In is the n×n identity matrix, 1n is a n-dimensional vector of ones and “⊗”
denotes the Kronecker product of matrices as usual. Note that this representation
slightly differs from that given in Fedorov and Hackl (1997, section 5.2).

Similarly the best linear unbiased predictor b̂i = β̂ i− β̂ of the individual devia-
tion bi can be alternatively represented as a scaled difference

b̂i = D((F>F)−1 +D)−1(β̂ i;ind− β̂ ) (5)

of the individualized estimate β̂ i;ind from the estimated population mean β̂ . The
corresponding mean squared error matrix of the prediction of individual deviations
(b̂>1 , ..., b̂>n )> can be written as a weighted average of the covariance matrix of the
prediction in the Bayesian model and the dispersion matrix D of the individual ef-
fects

MSE b = σ
2((In− 1

n 1n1>n )⊗ (F>F+D−1)−1 +( 1
n 1n1>n )⊗D). (6)

Note that in the case of a known population mean β , which was considered by
Gladitz and Pilz (1982), the mean squared error matrix for the prediction of individ-
ual parameters coincides with that for the prediction of individual deviations, which
equals σ2 In⊗ (F>F+D−1)−1.
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3 Optimal Design

The mean squared error matrix of a prediction depends crucially on the choice of
the observational settings x1, ...,xm, which constitute a design and can be chosen
by the experimenter to minimize the mean squared error matrix in a certain sense.
Typically the optimal settings will be not necessarily all distinct. Then a design

ξ =
(

x1 , ..., xk
w1 , ..., wk

)
(7)

can be specified by its distinct settings x1, ...,xk, k ≤ m, say, and the corresponding
numbers of replications m1, ...,mk or the corresponding proportions w j = m j/m.

For analytical purposes we make use of approximate designs in the sense of
Kiefer (see e. g. Kiefer, 1974), for which the integer condition on mw j is dropped
and the weights w j ≥ 0 may be any real numbers satisfying ∑

k
j=1 m j = m. For these

approximated designs the standardized information matrix for the model without
individual effects (β i ≡ β , i. e. D = 0) is defined as

M(ξ ) = ∑
k
j=1w jf(x j)f(x j)> = 1

m F>F. (8)

Further we introduce the standardized covariance matrix of the random effects ∆ =
mD for notational ease. With these notations we may define the standardized mean
squared error matrices as

MSE β (ξ ) = (In− 1
n 1n1>n )⊗ (M(ξ )+∆

−1)−1 +( 1
n 1n1>n )⊗M(ξ )−1 (9)

for the prediction of the individual parameters and

MSE b(ξ ) = (In− 1
n 1n1>n )⊗ (M(ξ )+∆

−1)−1 +( 1
n 1n1>n )⊗∆ (10)

for the prediction of the individual deviations. For any exact design ξ the matrices
MSE β (ξ ) and MSE b(ξ ) coincide with the mean squared error matrices (4) and (6),
respectively, up to a multiplicative factor σ2/m.

In this paper we focus on the integrated mean squared error (IMSE) criterion,
which is defined, in general, as

IMSE β =
∫
X E(∑n

i=1(µ̂i(x)−µi(x))2)ν(dx) (11)

for prediction of individual parameters, where µ̂i(x) = f(x)>β̂ i and µi(x) = f(x)>β i
denote the predicted and the true individual response, and the integration is with
respect to a given weight distribution ν on the design region X , which is typically
uniform. The standardized IMSE-criterion Φβ = m

σ2 IMSE β can be represented as

Φβ (ξ ) = (n−1) tr((M(ξ )+∆
−1)−1V)+ tr(M(ξ )−1V), (12)
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which is a weighted sum of the IMSE-criterion in the fixed effects model and the
Bayesian IMSE-criterion, where V =

∫
X f(x)f(x)>ν(dx) is the “information” of the

weight distribution ν and “tr” denotes the trace of a matrix.
With the general equivalence theorem (see e. g. Silvey, 1980) we may obtain the

following characterization of an optimal design.

Theorem 1. The approximate design ξ ∗ is IMSE-optimal for the prediction of indi-
vidual parameters, if and only if

f(x)>((n−1)(M(ξ ∗)+∆
−1)−1V(M(ξ ∗)+∆

−1)−1 +M(ξ ∗)−1VM(ξ ∗)−1) f(x)
≤ tr(((n−1)(M(ξ ∗)+∆

−1)−1M(ξ ∗)(M(ξ ∗)+∆
−1)−1 +M(ξ ∗)−1)V) (13)

for all x ∈X .
For any experimental setting x j of ξ ∗ with w j > 0 equality holds in (13).

The IMSE-criterion for the prediction of individual deviations is given by

IMSE b(ξ ) =
∫
X E(∑n

i=1(µ̂
b
i (x)−µ

b
i (x))2)ν(dx), (14)

where µ̂b
i (x) = f(x)>b̂i and µb

i (x) = f(x)>bi denote the predicted and the true indi-
vidual response deviation form the population mean, respectively. The standardized
IMSE-criterion Φb = m

σ2 IMSE b can again be written as

Φb(ξ ) = (n−1) tr((M(ξ )+∆
−1)−1V)+ tr(∆V). (15)

The first term in (15) coincides with the criterion function of the Bayesian IMSE-
criterion and the second term is constant. Hence, Bayesian IMSE-optimal designs
are also IMSE-optimal for the prediction of individual deviations. The characteri-
zation of IMSE-optimal designs is given by the corresponding equivalence theorem
for Bayes optimality.

Theorem 2. The approximate design ξ ∗ is IMSE-optimal for the prediction of indi-
vidual deviations, if and only if

f(x)>(M(ξ ∗)+∆
−1)−1V(M(ξ ∗)+∆

−1)−1f(x)
≤ tr((M(ξ ∗)+∆

−1)−1M(ξ ∗)(M(ξ ∗)+∆
−1)−1V) (16)

for all x ∈X .
For any experimental setting x j of ξ ∗ with w j > 0 equality holds in (16).

4 Example

To illustrate our results we consider the model Yi j = βi1 + βi2x j + εi j of a straight
line regression on the experimental region X = [0,1], where the settings x j can be
interpreted as time or dosage. We assume uncorrelated components such that the
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covariance matrix D = diag(d1,d2) of the random effects is diagonal with diagonal
entries d1 and d2 for the variance of the intercept and the slope, respectively. To
exhibit the differences in the design criteria the variance of the intercept is assumed
to be small, d1 < 1/m.

According to Theorems 1 and 2, the IMSE-optimal designs only take observa-
tions at the endpoints x = 0 and x = 1 of the design region, as the sensitivity func-
tions, which are the left hand sides in the conditions (13) and (16), are polynomials
in x of degree 2. Hence, the optimal design ξ ∗ is of the form

ξw =
(

0 1
1−w w

)
, (17)

and only the optimal weight w∗ has to be determined. For designs ξw the criterion
functions (12) and (15) are calculated with δk = mdk to

Φβ (ξw) = 1
3

(
(n−1)(3δ1+δ2+δ1δ2)

(δ1+1)(wδ2+1)−w2δ1δ2
+ 1

w(1−w)

)
, (18)

Φb(ξw) = 1
3

(
(n−1)(3δ1+δ2+δ1δ2)

(δ1+1)(wδ2+1)−w2δ1δ2
+3δ1 +δ2

)
. (19)

To obtain numerical results the number of individuals and the number of obser-
vations at each individual are fixed to n = 100 and m = 10. For the variance d1 of the
intercept we use the value 0.001. Figure 1 illustrates the dependence of the optimal
weight w∗ and the rescaled variance parameter ρ = d2/(1+d2), which mimics in
a way the intraclass correlation and has the advantage to be bounded such that the
whole range of slope variances d2 can be shown. The optimal weight for the predic-
tion of individual parameters increases in the slope variance d2 from 0.5 for d2→ 0
to about 0.91 for d2→ ∞. For d1 < 1/m the Bayesian optimal design, which is also
optimal for the prediction of individual deviations, has optimal weight w∗ = 1 for
all positive values of d2, which results in a singular design.

In Figure 2 the efficiencies eff(ξ ) = Φ(ξw∗)/Φ(ξ ) are plotted for the op-
timal design ξ0.5 in the fixed effects model ignoring the individual effects and
for the naive equidistant design ξ̄ , which assigns weights 1/m to the m settings
x j = ( j− 1)/(m− 1). For the prediction of individual parameters the efficiency of
the design ξ0.5 decreases from 1 for d2 → 0 to approximately 0.60 for d2 → ∞,
whereas ξ̄ shows an overall lower performance going down to 0.42 for large d2.

For the prediction of individual deviations the efficiency of both designs show a
bathtub shaped behavior with limiting efficiency of 1 for d2 → 0 or d2 → ∞. This
is due to the fact that all regular designs are equally good for small d2 and equally
bad for large d2, since the criterion function (15) behaves like tr(∆V) for d2 → ∞

independently of ξ . The minimal efficiencies are 0.57 for ξ0.5 and 0.43 for ξ̄ .
For the sake of completeness also the efficiency is plotted with respect to the

Bayes criterion, which equals the first term in both criteria (12) and (15) to show
that the efficiency may differ although the design optimization seems to be the same.
This difference is due to the second (constant) term in (15). It should also be noted
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Fig. 1 Optimal weights w∗ for the prediction of individual parameters (solid line) and for the
prediction of individual deviations (dashed line)

that the present efficiencies cannot be interpreted as savings or additional needs in
terms of sample sizes as in fixed effect models.

5 Discussion and conclusions

In this paper we point out similarities and differences in the theory of optimal de-
signs for the prediction of individual parameters and individual deviations compared
to Bayesian designs. The objective function of the IMSE-criterion is a weighted av-
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Fig. 2 Efficiency of ξ0.5 (left panel) and ξ̄ (right panel) for the prediction of individual parameters
(solid line), individual deviations (dashed line) and the Bayes criterion (dotted line)
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erage of the Bayesian and the “standard” counterparts in the case of prediction of
individual parameters and defines, hence, a compound criterion. For the prediction
of individual deviations the Bayesian optimal designs remain optimal, while the
criteria differ by an additive constant.

A generalization of the present results to singular dispersion matrices D is
straightforward, although there is no Bayesian counterpart in that case and the for-
mulae become less appealing. Such singular dispersion matrices naturally occur, if
only parts of the parameter vector are random and the remaining linear combinations
are constant across the population. In particular, in the case of a random intercept
model, when all other parameters are fixed, the optimal design for the prediction of
the individual parameters can be obtained as the optimal one in the corresponding
model without individual effects (Prus and Schwabe, 2011), while for prediction of
the individual deviations any meaningful design will be optimal.

The method proposed may be directly extended to other linear design criteria
as well as to the class of Φq-criteria based on the eigenvalues of the mean squared
error matrix. Although the design optimality presented here is formulated for ap-
proximate designs, which generally may not be exactly realized. These optimal ap-
proximate designs can serve as a benchmark for candidates of exact designs, which
for example are obtained by appropriate rounding of the optimal weights. Optimal
designs for situations, which allows for different individual designs, will be subject
of future research, in particular, in the case of sparse sampling, where the number
of observations per individual is less than the number of parameters.
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