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ABSTRACT. In this article we prove the existence of a global solution for the
random vortex filament equation. Our work gives a positive answer to a question
left open in recent publications: Berselli and Gubinelli [5] showed the existence
of global solution for a smooth initial condition while Bessaih, Gubinelli, Russo
[6] proved the existence of a local solution for a general initial condition.

In this article we prove the existence of a global solution for the following ran-
dom vortex filament equation

dγ

dt
= uγ(t)(γ(t)), t ∈ [0,∞)(0.1)

γ(0) = γ0,(0.2)

where the initial condition γ0 : [0, 1]→ R3 is a geometric ν-rough path (for some
ν ∈ (13 , 1)), see Assumption 2.7. Here γ : [0,∞) → Dγ0 ⊂ C is some trajectory
in the subset Dγ0 of C of continuous closed curves in R3, uY , Y ∈ Dγ0 ⊂ C is a
vector field given by

(0.3) uY (x) =

∫
Y

∇φ(x− y)× dy.

where φ : R3 → R is a smooth function which satisfies certain assumptions (see
Hypothesis 3.1). The exact meaning of the line integral above and set Dγ0 we
consider will be explained below. Equation (0.1) appears in the fluid dynamics
in the theory of three dimensional Euler equations. It is well known that for two
dimensional Euler equations vorticity ~ω = curl ~u is transported along the flow of
the liquid. The situation changes drastically in three dimensional case. Additional
”stretching” term in the equation defining vorticity leads to possibility of blow up
of the vorticity. Furthermore, a result of Beale, Kato, and Majda [2] suggests that a
possible singularity of Euler equations appears when the vorticity field of the fluid
blows up. Consequently, understanding the behaviour of vorticity of ideal fluid is
one of the most important problems in fluid dynamics.

The properties of the motion of the vorticity has been studied for the last 150
years starting from the works of Helmholtz [22] and Kelvin [23]. It has been
suggested by Kelvin to use Biot-Savart law

~u(~x) =

∫
~x− ~y
|~x− ~y|3

× ~ω(~y)d~y, ~x, ~y ∈ R3
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where × denotes the vector product, combined with assumption that vorticity is
supported by some smooth curve γ

ω(~x, t) = Γ

1∫
0

δ(~x− γ(s, t))
∂γ(s, t)

∂s
ds, x ∈ R3, t ≥ 0

and definition of the flow

(0.4)

{
d ~Xt(~x)
dt = ~u( ~Xt(~x), t), t ≥ 0,

~X0(~x) = ~x.

to formally deduce the following filament equation

(0.5)
∂γ

∂t
(s, t) = − Γ

4π

1∫
0

γ(s, t)− γ(r, t)

|γ(s, t)− γ(r, t)|3
× ∂γ(r, t)

∂r
dr.

The assumption that vorticity is supported by some curve is coherent with numer-
ical simulations of 3D turbulent fluids which show that regions of large vorticity
have a form of a ”filament”, see, for instance [3], [29].

Equation (0.5) has singularity when r is close to s and the initial curve γ is
smooth. As a consequence, the energy of the solution of this equation given by the
formula

E(t) =
Γ2

8π

1∫
0

1∫
0

1

|γ(s, t)− γ(r, t)|
∂γ(r, t)

∂r
· ∂γ(s, t)

∂s
dsdr, t ≥ 0

is infinite for any smooth curve γ(·, t). Hence different methods have been em-
ployed to avoid singularity. For instance, Gallavotti [18] motivated by finiteness of
the energy integral for Brownian Motion1, considers non smooth initial curves γ0
while Rosenhead [28] has suggested to use the following model

(0.6)
∂γ

∂t
(s, t) = − Γ

4π

1∫
0

γ(s, t)− γ(r, t)

(|γ(s, t)− γ(r, t)|2 + µ2)3/2
× ∂γ(r, t)

∂r
dr.

Problem ((0.1)-(0.3)) has been studied by Berselli and Bessaih [4] and then by
Berselli and Gubinelli [5]. It contains equation (0.6) considered by Rosenhead as
a very particular case when

φ(~x) =
Γ

(|~x|2 + µ2)
1
2

, ~x ∈ R3, µ > 0.

Equation (0.1) is in fact a nonlinear PDE for a function γ : [0,∞)× [0, 1]→ R3.
A natural setting for the well-posedness of the Cauchy problem is obtained by re-
quiring the vector field u to be well defined and Lipshitz in the space variable. To
this effect the approach followed in [4] is to set up the equation as an evolution
problem in the Sobolev space H1 of closed curves in R3 with square integrable
first derivative (with respect to the parameter). This approach implies that the vec-
tor field (once lifted toH1) does not allow good estimates to have global existence.
This is ultimately due to the fact that in 3d incompressible flows vortices strech
and undergo a complex dynamics and that a priori this could lead to a explosion of

1defined as double stochastic integral
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the H1 norm. Such a difficulty should be compared to the more stable behavior of
2d vortex points which, under incompressible flows, are simply transported along
the flow lines. Exploiting the conservation of the kinetic energy of the flow and a
control of the velocity field generated by the vortex line via the associated kinetic
energy Berselli and Gubinelli [5] showed the existence of global solution to equa-
tion (0.1) with initial conditions in H1. After that Bessaih, Gubinelli, Russo [6],
partly motivated by the random filament models suggested by Gallavotti [18] and
Chorin [12], considered the above evolution problem when the initial condition is
a random closed curve which for definiteness, in the above paper, has been taken
to be the sample of a Brownian loop (a Brownian motion starting at 0 ∈ R3 and
conditioned to return to 0 ∈ R3 at time 1). In this case it is no more possible to
set up the problem in the Sobolev space H1 since Brownian trajectories almost
surely do not belong to this space. A more serious problem is the meaning to give
to the generalized Biot-Savart relation (0.3) since the line integral along a Brow-
nian trajectory is a notoriously difficult object to define. Stochastic integration (à
la Itô or Stratonovich) does not provide a good framework to study this problem
and [6] identified the natural setting to have a well posed problem by considering
the evolution as an equation on the space of rough paths.

Rough path theory has been introduced by T. J. Lyons in the seminal paper [25]
(see also [17,26,27]) as a way to overcome certain difficulties of stochastic integra-
tion theories and have a robust analytical framework to solve stochastic differential
equations and similar problems involving integration of non-regular vector-fields.
It turns out that rough paths theory and in particular the notion of controlled paths
introduced in [20] allows to give a natural interpretation to the Biot-Savart rela-
tion (0.3) and obtain a well-posed problem. Using this approach Bessaih, Gu-
binelli, Russo [6] could obtain existence of a local solution to equation (0.1) when
initial condition is a closed curve of Hölder class with exponent ν ∈ (13 , 1] (suitably
lifted to rough path space).

The aim of the present paper is to extend the energy method of Berselli and
Gubinelli to the rough path setting to obtain the global existence of solution of the
equation (0.1) when the initial condition is a (geometric) rough path, thus complet-
ing the analysis of [6].

Recently there have been some progress in the study of evolution equations in
the space of (controlled) rough paths. In particular Hairer [21] showed how to
use rough path theory to have well-posedness of a multidimensional Burgers type
equation driven by additive space-time white noise. The key technical tool to ob-
tain these results has been the observation that the non-linear term in the Burgers
equation has the same structure of the Biot-Savart relation (0.3) and thus can be
similarly handled via rough paths techniques.

Acknowledgments. The present paper is an extended version of a chapter from
the PhD Thesis of M. Neklyudov.
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1. NOTATION

In this section we present the controlled path framework introduced by Gu-
binelli [20]. Let V be a fixed Banach space. We introduce the following two
objects, where S1 denotes the unit circle:

Cn(V ) = {f ∈ C((S1)n, V ) : f(t, t, · · · , t) = 0, t ∈ S1},
C∗(V ) = ∪

k∈N
Ck(V ).

The operator δ is defined by

δ : Cn(V )→ Cn+1(V ),

(δg)(t1, · · · , tn+1) =
n+1∑
i=1

(−1)ig(t1, · · · , t̂i, · · · , tn+1), n ∈ N

satisfies the following fundamental property

δδ = 0,

where δδ is understood as an operator from Cn(V ) to Cn+2(V ). Thus δ induces a
complex and we can denote

ZCk(V ) = Ck(V ) ∩ ker δ,

BCk(V ) = Ck(V ) ∩ im δ.

To avoid confusion we will use notation δn for operator δ : Cn(V ) → Cn+1(V ).
Furthermore, it can be noticed that

im δn = ker δn+1,

i.e. ZCk+1(V ) = BCk(V ).
We will mainly consider the cases n = 1 and n = 2. Then the operator δ takes

the following form

δ1g(t, s) = g(t)− g(s), δ2h(t, u, s) = h(t, s)− h(t, u)− h(u, s), t, u, s ∈ S1.

We will use special topology in spaces C2(V ) and C3(V ). Let, for µ, ρ > 0,

|f |µ = sup
a,b∈S1

|f(a, b)|V
|a− b|µ

, f ∈ C2(V ),

Cµ2 (V ) = {f ∈ C2(V ) : |f |µ <∞}

|g|ρ,µ = sup
a,b,c∈S1

|g(a, b, c)|V
|a− b|ρ|b− c|µ

, g ∈ C3(V ),

Cρ,µ3 (V ) = {f ∈ C3(V ) : |f |ρ,µ <∞}, |
∑
i

hi|µ :=
∑
i

|hi|ρi,µ−ρi

Cµ3 (V ) = {f ∈ C3(V ) : ∃(hi), ∃(ρi) ⊂ (0, µ) : f =
∑
i

hi, |f |µ <∞},

ZCµ3 (V ) = Cµ3 (V ) ∩ ZC3(V ),

ZC1+
3 (V ) = ∪

µ>1
ZCµ3 (V ),

C1+
2 (V ) = ∪

µ>1
Cµ2 (V ).

Then following fundamental proposition has been proved in [20]:



GLOBAL SOLUTIONS OF THE RANDOM VORTEX FILAMENT EQUATION 5

Proposition 1.1. There exists an unique linear map Λ : ZC1+
3 (V ) → C1+

2 (V )
such that

δΛ = idZC1+
3 (V ) .

Furthermore, for any µ > 1, this map is continuous from ZCµ3 (V ) to Cµ2 (V ) and
we have

‖Λh‖µ ≤
1

2µ − 2
‖h‖µ, h ∈ ZC1+

3 (V ).

Now, we define class of paths for which rough path integral will be defined.

Definition 1.2. Assume that ν ∈ (0, 1). Let us fix X ∈ Cν(S1, V ). We say
that path Y ∈ C(S1, V ) is weakly controlled by X if there exist functions Z ∈
Cν(S1, L(V, V )) and R ∈ C2ν

2 (V ) such that

(1.1) Y (ξ)− Y (η) = Z(η)(X(ξ)−X(η)) +R(ξ, η), ξ, η ∈ S1,

Let DX be the set of pairs (Y,Z), where Y ∈ C(S1, V ) is a path weakly con-
trolled by X , and Z ∈ Cν(S1, L(V, V )) is such that R ∈ C2ν

2 (V ), where R is
defined by representation (1.1), i.e.

(1.2) R(ξ, η) = Y (ξ)− Y (η)− Z(η)(X(ξ)−X(η)), ξ, η ∈ S1.

Let us notice that DX is a vector space. Let us define semi-norm ‖ · ‖DX in DX by

(1.3) ‖(Y,Z)‖DX = |Z|Cν + ‖R‖C2ν
2
,

where Furthermore, let us define a norm ‖ · ‖∗DX in DX by

(1.4) ‖(Y, Z)‖∗DX = ‖Y ‖DX + |Y |C(S1,V ).

one can prove that (DX , ‖ · ‖∗DX ) is a Banach space. From now on we will denote
elements of DX by (Y, Y ′) and the corresponding function R will be denoted by
RY . We will often omit to specify Y ′ when it is clear from the context and write
‖Y ‖DX instead of ‖(Y, Y ′)‖DX .

2. DEFINITION AND PROPERTIES OF ROUGH PATH INTEGRALS

In this section we define rough path integral and state some of its properties. We
mainly follow [20] and [6]. We assume that V = R3.

Definition 2.1. Let Π : DX 3 (Y,Z) 7→ Y ∈ C(S1,R3) be the natural projection.

We will need following properties of the DX , see [20].

Lemma 2.2. Π(DX) ⊂ Cν(S1,R3).

Proof of Lemma 2.2. It follows from equality (1.1)

(2.1) ‖Y ‖Cν ≤ ‖Y ‖∗DX (1 + ‖X‖Cν ).

The proof is complete. �

Lemma 2.3. Let φ ∈ C2(R3,R3) and (Y,Z) ∈ DX . Then

(2.2) (W,W ′) := (φ(Y ), φ′(Y )Z) ∈ DX
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and the remainder has the following representation

RW (ξ, η) = φ′(Y (ξ))R(ξ, η) + (Y (η)− Y (ξ))

+

1∫
0

[∇φ(Y (ξ) + r(Y (η)− Y (ξ)))−∇φ(Y (ξ))]dr, ξ, η ∈ S1.(2.3)

where R is the remainder for Y w.r.t. X given by (1.2). Furthermore, there exists
a constant K ≥ 1 such that

(2.4) ‖φ(Y )‖DX ≤ K‖∇φ‖C1‖Y ‖DX (1 + ‖Y ‖DX )(1 + ‖X‖Cν )2.

Moreover, if (Ỹ , Z̃) ∈ DX̃ and

(W̃ , W̃ ′) := (φ(Ỹ ), φ′(Ỹ )Z̃)

then

|W ′ − W̃ ′|Cν + |RW −RW̃ |C2ν
2

+ |W − W̃ |Cν ≤

C(|X − X̃|Cν + |Y ′ − Ỹ ′|Cν + |RY −RỸ |C2ν
2

+ |Y − Ỹ |Cν )
(2.5)

with

(2.6) C = K‖φ‖C3(1 + ‖X‖Cν + ‖X̃‖Cν )3|(1 + ‖Y ‖DX + ‖Ỹ ‖DX̃ )2.

In the case X = X̃ we have

‖φ(Y )− φ(Ỹ )‖DX ≤K‖∇φ‖C2‖Y ‖DX
(1+‖Y ‖DX + ‖Ỹ ‖DX )2(1 + ‖X‖Cν )4‖Y − Ỹ ‖DX .

(2.7)

Proof of Lemma 2.3. See [20], Proposition 4 for all statements of the Lemma, ex-
cept (2.3) (which is actually also proven, though not stated explicitly). Let us show
(2.3). Denote y(r) = Y (ξ) + r(Y (η)− Y (ξ)), r ∈ [0, 1]. Then

φ(y(1))− φ(y(0)) =

1∫
0

φ′(y(r))y′(r)dr(2.8)

=
∑
k

(Y k(η)− Y k(ξ))

1∫
0

∂φ

∂xk
(y(r))dr

=
∑
k

∂φ

∂xk
(Y (ξ))(Y k(η)− Y k(ξ))

+
∑
k

(Y k(η)− Y k(ξ))

1∫
0

[
∂φ

∂xk
(y(r))− ∂φ

∂xk
(Y (ξ))]dr

=
∑
k,l

∂φ

∂xk
(Y (ξ))(Y ′)kl(X l(η)−X l(ξ)) +

∑
k

∂φ

∂xk
(Y (ξ))(RY )k(ξ, η)

+
∑
k

(Y k(η)− Y k(ξ))

1∫
0

[
∂φ

∂xk
(y(r))− ∂φ

∂xk
(Y (ξ))]dr,

and the result follows. �
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Now we will define an integral of a weakly controlled by X path Y w.r.t. to
another weakly controlled by X path Z. For this aim we will need one more
definition.

Definition 2.4. Assume that ν > 1
3 . We say that couple X = (X,X2), X ∈

Cν(S1,R3), X2 ∈ C2ν
2 (L(R3,R3)) is a ν-rough path if the following condition is

satisfied:
(2.9)
X2(ξ, ρ)−X2(ξ, η)−X2(η, ρ) = (X(ξ)−X(η))⊗ (X(η)−X(ρ)), ξ, η, ρ ∈ S1

Remark 2.5. If ν > 1 and X is a ν-rough path, then X is identically pair of constants
(X(0), 0). Indeed, in this caseX is Hölder function with exponent more than 1 i.e.
constant X(0). Hence, X2 = 0.

Remark 2.6. If ν ∈ (12 , 1] then X2, the second component of a ν-rough path X =

(X,X2), is uniquely determined by its first component. Indeed, for i, j = 1, 2, 3,

(2.10) X2,ij(ξ, η) =

η∫
ξ

(Xi
ρ −Xi

η)dX
j
ρ, ξ, η ∈ S1,

where the integral is understood in the sense of Young, see [30]. One can show that
X2 defined by formula (2.10) satisfies conditions of Definition 2.4. Let us show the
uniqueness of X2. Assume that there exists another X2

1 which satisfies definition
2.4. Put G(ξ) = X2(ξ, 0)− X2

1(ξ, 0). Then by condition 2.9

X2(ξ, ρ)− X2
1(ξ, ρ) = G(ξ)−G(ρ),

and, since X2 ∈ C2ν
2 , G is a Hölder function of order bigger than 1. Hence, G = 0.

Therefore, X2
1 = X2.

Note that by identity (2.9) it follows that X2(ξ, ξ) = 0, ξ ∈ S1.

Assumption 2.7. We say that our ν-rough path (X,X2) is an geometric ν-rough
path if there exist a sequence (Xn,X2

n) such that

Xn ∈ C∞(S1,R3),

X2,ij
n (ξ, η) =

η∫
ξ

(Xi
n(ρ)−Xi

n(η))dXj
n(ρ), ξ, η ∈ S1, i, j = 1, 2, 3,

and

(2.11) lim
n→∞

[
|Xn −X|Cν + |X2

n − X2|C2ν
2

]
= 0.

Example 2.8. Let {Bt}t∈[0,1] be the standard 3-dimensional Brownian bridge such
that B0 = B1 = x0 and let B2,ij , i, j = 1, 2, 3, be the area processes defined by

B2,ij(ξ, η) =

η∫
ξ

(Bi
ρ −Bi

η)dB
j
ρ,

where the integral can be understood either in the Stratonovich or in the Itô sense.
Then, the couple (B,B2) is a ν-rough path see [6, p.1849]. Moreover, if the integral
is understood in Stratonovich sense it is geometric ν-rough path. Indeed, it follows
from Theorem 3.1 in [16] that one can approximateX with piecewise linear dyadic
X ′n in the sense of assumption 2.7a.s..



8 Z. BRZEŹNIAK†, M. GUBINELLI‡ AND M. NEKLYUDOV†

From now on we suppose that the geometric ν-rough path X = (X,X2) and the
corresponding Banach space DX are fixed. For a finite partition π = {ξ0 = ξ <
ξ1 < · · · < ξn = η} be of the interval [ξ, η], let d(π) = sup

i
|ξi+1 − ξi| denote the

mesh of the partition π.

Lemma 2.9. Let If Y, Z ∈ DX then the limit

(2.12) lim
d(π)→0

n−1∑
i=0

[Y (ξi)(Z(ξi+1)− Z(ξi)) + Y ′(ξi)Z
′(ξi)X2(ξi+1, ξi)]

exists and is denoted by definition by
η∫
ξ

Y dZ.

Proof of Lemma 2.9. See [20], Theorem 1. �

Remark 2.10. In the case of ν > 1
2 the line integral defined in the Lemma 2.9 is

reduced to the Young definition of the line integral
∫
Y dZ. Indeed, it is enough to

notice that second term in formula (2.12) is of the order O(|ξi+1 − ξi|2ν), 2ν > 1.
Obviously, line integral does not depend upon Y ′, Z ′ in this case.

Lemma 2.11. Assume Y,W ∈ DX , Ỹ , W̃ ∈ DX̃ . Define maps Q, Q̃ : (S1)2 → R
by the following identities
(2.13)

Q(η, ξ) :=

η∫
ξ

Y dW − Y (ξ)(W (η)−W (ξ))− Y ′(ξ)W ′(ξ)X2(η, ξ), η, ξ ∈ S1,

(2.14)

Q̃(η, ξ) :=

η∫
ξ

Ỹ dW̃ − Ỹ (ξ)(W̃ (η)− W̃ (ξ))− Ỹ ′(ξ)W̃ ′(ξ)X̃2(η, ξ), η, ξ ∈ S1.

Then Q, Q̃ ∈ C3ν
2 .

Moreover, there exists constant C = C(ν) > 0 such that for all Y,W ∈ DX
(2.15) ‖Q‖C3ν

2
≤ C(1 + ‖X‖Cν + ‖X2‖C2ν

2
)‖Y ‖DX‖W‖DX .

Furthermore,

(2.16) ‖Q− Q̃‖C3ν
2
≤ C(1 + ‖X‖Cν + ‖X2‖C2ν

2
)

((‖Y ‖DX + ‖Ỹ ‖DX̃ )εW + (‖W‖DX + ‖W̃‖DX̃ )εY + εX).

where
εY = |Y ′ − Ỹ ′|Cν + |RY −RỸ |C2ν

2
+ |Y − Ỹ |Cν ,

εW = |W ′ − W̃ ′|Cν + |RW −RW̃ |C2ν
2

+ |W − W̃ |Cν ,

εX = (‖Y ‖DX + ‖Ỹ ‖DX̃ )(‖W‖DX + ‖W̃‖DX̃ )(|X − X̃|Cν + |X2 − X̃2|C2ν
2

).

Proof of Lemma 2.11. See [20], Theorem 1. For formula (2.16) see [20], p.104,
formula (27). �
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By Lemmata 2.9 and 2.3 for any A ∈ C2(R3, L(R3,R3)), Y ∈ DX we can a
define a map V Y : R3 → R by invoking rough path integral as follows

(2.17) V Y (x) :=

∫
S1

A(x− Y )dY, x ∈ R3.

We have following bounds on its regularity:

Lemma 2.12. Let Y ∈ DX , Ỹ ∈ DX̃ , then there exists C1 = C1(ν), C2 = C2(X)
such that for any integer n ≥ 0,

(2.18) ‖∇nV Y ‖L∞ ≤ 4C1C
3
2‖∇n+1A‖C1‖Y ‖2DX (1 + ‖Y ‖DX )

and

(2.19) ‖∇nV Y −∇nV Ỹ ‖L∞ ≤ C(ν)|A|Cn+3C4
X(1 + ‖Y ‖DX + ‖Ỹ ‖DX̃ )3

(|X − X̃|Cν + |X2 − X̃2|C2ν
2

+ |Y ′ − Ỹ ′|Cν + |RY −RỸ |C2ν
2

+ |Y − Ỹ |Cν ),

where

CX = 1 + |X|Cν + |X̃|Cν + |X2|C2ν
2

+ |X̃2|C2ν
2
.

In the case of X = X̃ , inequality (2.19) can be rewritten as
(2.20)
‖∇nV Y −∇nV Ỹ ‖L∞ ≤ 16C1C

3
2‖∇n+1A‖C2‖Y ‖DX (1+‖Y ‖DX )2‖Y − Ỹ ‖∗DX .

Proof of Lemma 2.12. Inequalities (2.18) and (2.20) were proved in [6], Lemma
7. Now we will show (2.19). It is enough to consider the case of n = 0. By
formulae (2.15) and (2.14) we have

V Y − V Ỹ (x) = A(x− Y (0))(Y (1)− Y (0))

− A(x− Ỹ (0))(Ỹ (1)− Ỹ (0))

+ (A(x− Y ))′(0)Y ′(0)X2(0, 1)

− (A(x− Ỹ ))′(0)Ỹ ′(0)X̃2(0, 1)

+ Qx(0, 1)− Q̃x(0, 1)

where Qx and Q̃x (given by formulae (2.15) and (2.14)) satisfy inequality (2.16)
and we have identified S1 with [0, 1]. Therefore, Y (1) = Y (0), Ỹ (1) = Ỹ (0).
Hence, we have

(2.21)

|V Y−V Ỹ |L∞ ≤ sup
x
|(A(x−Y ))′(0)Y ′(0)X2(0, 1)−(A(x−Ỹ ))′(0)Ỹ ′(0)X̃2(0, 1)|

+ sup
x
|Qx(0, 1)− Q̃x(0, 1)|.
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For the first term on the r.h.s. we have

|(A(x− Y ))′(0)Y ′(0)X2(0, 1)− (A(x− Ỹ ))′(0)Ỹ ′(0)X̃2(0, 1)|
(2.22)

≤ |(dA(x− Y (0))Y ′(0)Y ′(0)− dA(x− Ỹ (0))Ỹ ′(0)Ỹ ′(0))X2(0, 1)|

+ |dA(x− Ỹ (0))Ỹ ′(0)Ỹ ′(0)(X2(0, 1)− X̃2(0, 1))|

≤ |X2|C2ν
2
|dA(x− Y (0))Y ′(0)Y ′(0)− dA(x− Ỹ (0))Ỹ ′(0)Ỹ ′(0)|

+ |A|C2 |Y ′|2L∞ |X2 − X̃2|C2ν
2

≤ |X2|C2ν
2
|Y ′|2L∞ |A|C2 |Y ′ − Ỹ ′|L∞ + |X2|C2ν

2
|A|C1(|Y ′|L∞ + |Ỹ ′|L∞)|Y ′ − Ỹ ′|L∞

+ |A|C2 |Y ′|2L∞ |X2 − X̃2|C2ν
2
.

By (2.16) we can estimate second term as follows

|Qx − Q̃x|C3ν
2
≤ C

[
(‖A(x− Y )‖DX + ‖A(x− Ỹ )‖DX̃ )εY

+ (‖Y ‖DX + ‖Ỹ ‖DX̃ )εA + εX

]
.

where

εY = |Y − Ỹ |Cν + |Y ′ − Ỹ ′|Cν + |RY −RỸ |C2ν
2
,

εA = |A(x− Y )−A(x− Ỹ )|Cν + |A(x− Y )′ −A(x− Ỹ )′|Cν

+ |RA(x−Y ) −RA(x−Ỹ )|C2ν
2
,

εX = (‖A(x− Y )‖DX + ‖A(x− Ỹ )‖DX̃ )

× (‖Y ‖DX + ‖Ỹ ‖DX̃ )(|X − X̃|Cν + |X2 − X̃2|C2ν
2

).

By formula (2.5) we can estimate εA as follows

|εA| ≤ K|A|C3(1 + |X|Cν + |X̃|Cν )3(1 + |Y |DX + |Ỹ |DX̃ )2

× (|X − X̃|Cν + |Y − Ỹ |Cν + |Y ′ − Ỹ ′|Cν + |RY −RỸ |C2ν
2

).(2.23)

By inequality (2.4) we infer that

‖A(x− Y )‖DX ≤ K|A|C2 |Y |DX (1 + |Y |DX )(1 + |X|Cν )2,(2.24)

and similarly,

‖A(x− Ỹ )‖DX̃ ≤ K|A|C2 |Ỹ |DX̃ (1 + |Ỹ |DX̃ )(1 + |X̃|Cν )2.(2.25)

Therefore, combining (2.23) with (2.23), (2.24) and (2.25) we get

(2.26)
|Qx − Q̃x|C3ν

2
≤ C(ν)|A|Cn+3(1 + |X|Cν + |X̃|Cν )4(1 + ‖Y ‖DX + ‖Ỹ ‖DX̃ )3

(|X − X̃|Cν + |X2 − X̃2|C2ν
2

+ |Y ′ − Ỹ ′|Cν + |RY −RỸ |C2ν
2

+ |Y − Ỹ |Cν ).

Hence, the result follows from (2.22) and (2.26). �

We will denote for any Y ∈ DX , Ỹ ∈ DX̃

|Y −Ỹ |D = |X−X̃|Cν +|X2−X̃2|C2ν
2

+|Y ′−Ỹ ′|Cν +|RY −RỸ |C2ν
2

+|Y −Ỹ |Cν .
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3. RANDOM FILAMENTS EVOLUTION PROBLEM

LetDX,T = C([0, T ],DX), where has been defined after (1.1), be a vector space
with the usual supremum norm

(3.1) |F |DX,T = sup
t∈[0,T ]

|F (t)|∗DX .

Obviously DX,T is a Banach space. Assume also that the function φ appeared in
the formula (0.3) satisfies following hypothesis.

Hypothesis 3.1.(i) φ : R3 → R is even function.
(ii) the Fourier transform of φ is real and non-negative function:

φ̂(k) ≥ 0, k ∈ R3

(iii) ∫
R3

(1 + |k|2)2φ̂(k)dk <∞

Example 3.2. The function φ = φµ, µ > 0 defined by

φ(·) =
Γ

(| · |2 + µ2)
1
2

is smooth and satisfies Hypothesis 3.1, see p.6 of [5].

Then the following local existence and uniqueness Theorem for problem (0.1)-
(0.3) has been proved in [6], see Theorem 3,p.1842.

Theorem 3.3. Assume φ ∈ C6(R3,R), ν ∈ (13 , 1), X = (X,X2) is a ν-rough
path, γ0 ∈ DX . Then there exists a time T0 = T0(ν, |φ|C5 ,X) > 0 such that the
problem (0.1)-(0.3) has unique solution in the space Dγ0,T0 ⊂ DX,T0 .

Our aim is to prove global existence of solution of the problem (0.1)-(0.3) under
assumptions of Theorem 3.3 and additional hypothesis 3.1 i.e. we shall prove

Theorem 3.4. Assume that γ0 is a geometric ν-rough path, φ ∈ C6(R3,R) sat-
isfies satisfies Hypothesis 3.1 and ν ∈ (13 , 1). Then for every T > 0, the problem
(0.1)-(0.3) has unique solution in Dγ0,T .

We will need the following definition.

Definition 3.5. Let φ ∈ C4(R3,R), γ ∈ DX . Put

(3.2) HφX(γ) =
1

2

∫
S1

~φγ(γ(ξ)) · d~γ(ξ),

where
~φγ(x) =

∫
S1

φ(x− γ(η))d~γ(η).

HφX(γ) is called the energy of path γ. We will omit φ below.

Remark 3.6. Definition (3.2)-(3.5) is well posed. Indeed, by Lemma 2.12 ~ψγ ∈
C2(R3,R3) and, therefore, it follows by Lemma 2.3 that ~ψγ ◦ γ ∈ DX .
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Remark 3.7. Assume that ν > 1
2 and γ ∈ C1(S1,R3). Then by Remark 2.10 the

line integrals in the definition of energy are understood in the sense of Young and

(3.3) HφX(γ) =
1

2

∫
S1

∫
S1

φ(~γ(ξ)− ~γ(η))(
d~γ

dξ
(ξ),

d~γ

dη
(η))dξdη.

Lemma 3.8. Assume φ ∈ C4(R3,R). Then there exists constant C = C(ν,X)
such that for all γ ∈ DX
(3.4) |HX(γ)| ≤ C|φ|C4 |γ|4DX (1 + |γ|DX )2.

Moreover, the map HX : DX → R is locally Lipshitz i.e. for any R > 0 there
exists C = C(R) such that for any γ, γ̃ ∈ DX , |γ|DX ≤ R, |γ̃|DX ≤ R we have

(3.5) |HX(γ)−HX(γ̃)| ≤ C(R)|γ − γ̃|∗DX .
Furthermore, for any R > 0 there exists C = C(R) such that for any γ ∈ DX ,
γ̃ ∈ DX̃ ,

|γ|DX ≤ R, |γ̃|DX̃ ≤ R,

CX,X̃ = |X|Cν + |X̃|Cν + |X2|C2ν
2

+ |X̃2|C2ν
2
< R

we have
(3.6)
|HX(γ)−HX̃(γ̃)| ≤ C(R)(|X−X̃|Cν+|X2−X̃2|C2ν

2
+|γ−γ̃|Cν+|γ′−γ̃′|Cν+|Rγ−Rγ̃ |C2ν

2
).

Proof of Lemma 3.8. First we will show inequality (3.4). By representation (2.13)
we have

HX(γ) =
1

2
(~ψγ(γ(0))(~γ(1)− ~γ(0)))

+
[
d~ψγ(γ(0))γ′(0)

]
γ′(0)X2(1, 0) +Q(0, 1)

= I + II + III, γ ∈ DX .

Since ~γ(1) = ~γ(0) we infer that I = 0. Concerning the second term by Lemma
2.12 we have the following estimate

|II| ≤ ‖X2‖C2ν
2
‖∇~ψ‖L∞ |γ′|2L∞

≤ C(ν,X)|φ|C3 |γ|4DX (1 + |γ|DX ).(3.7)

For third term we infer from inequality (2.15)

(3.8) |III| ≤ ‖Q‖C3ν
2
≤ C(ν,X)|~ψ(~γ)|DX |~γ|DX .

Then by Lemmas 2.3 and 2.12 we have

|~ψγ(~γ)|DX ≤ C(ν,X)|ψγ |C2 |~γ|DX (1 + |~γ|DX )

≤ C(ν,X)|φ|C4 |~γ|3DX (1 + |~γ|DX )2(3.9)

Combining (3.7), (3.8) and (3.9) we get inequality (3.4).
Now we will prove inequality (3.6). By formula (2.14) we have

HX(γ)−HX̃(γ̃) =
1

2

[
(∇ψγ(γ(0))γ′(0)γ′(0)−∇ψγ̃(γ̃(0))γ̃′(0)γ̃′(0))X2(1, 0)

+∇ψγ̃(γ̃(0))γ̃′(0)γ̃′(0)(X2(1, 0)− X̃2(1, 0)) +Q(0, 1)− Q̃(0, 1)
]

=I+II+III(3.10)
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The first term in (3.10) can be represented as follows

I = (∇ψγ(γ(0))γ′(0)γ′(0)−∇ψγ̃(γ̃(0))γ̃′(0)γ̃′(0))X2(1, 0)

=
[
(∇ψγ(γ(0))−∇ψγ̃(γ̃(0)))γ′(0)γ′(0)

+ ∇ψγ̃(γ̃(0))(γ′(0)− γ̃(0))γ′(0)

+ ∇ψγ̃(γ̃(0))γ̃(0)(γ′(0)− γ̃(0))
]
X2(1, 0) = A+B + C(3.11)

The first term in (3.11) can be estimated as follows

|A| = |(∇ψγ(γ(0))−∇ψγ̃(γ̃(0)))γ′(0)γ′(0)X2(1, 0)|(3.12)

≤ ‖X2‖C2ν
2
|γ|2DX (|∇ψγ(γ(0))

− ∇ψγ(γ̃(0))|+ |∇ψγ(γ̃(0))−∇ψγ̃(γ̃(0))|)
≤ ‖X2‖C2ν

2
|γ|2DX (|ψγ |C2 |γ(0)

− γ̃(0)|+ C4
X |φ|C4(1 + |γ|DX + |γ̃|DX̃ )3|γ − γ̃|D

≤ KC4
X |φ|C4(1 + |γ|DX + |γ̃|DX̃ )3|γ − γ̃|D,

where second inequality follows from inequality (2.19) and third one from inequal-
ity (2.18). For second term we have by inequality (2.18)

|B| ≤ C‖X2‖C2ν
2
|γ|DX |φ|C3 |γ̃|2DX (1 + |γ̃|DX )|γ − γ̃|D

≤ CCX(1 + |γ|DX + |γ̃|DX̃ )3|γ − γ̃|D.(3.13)

Similarly, we have for third term

|C| ≤ C(ν,X, |γ|DX , |γ̃|DX )|γ − γ̃|D.(3.14)

The term II in (3.10) can be estimated as follows

|II| ≤ |∇ψγ̃ |L∞ |γ̃|2DX |γ − γ̃|D
≤ C3

X |φ|C3(1 + |γ|DX + |γ̃|DX̃ )3|γ − γ̃|D.
Thus it remains to estimate third term of equality (3.10). We have by inequality
(2.16)

|Q(0, 1)− Q̃(0, 1)| ≤ ‖Q− Q̃‖C3ν
2

≤ CX
[
(|ψγ̃(γ̃)|DX̃ + |ψγ(γ)|DX )|γ − γ̃|D

+ (|γ̃|DX̃ + |γ̃|DX̃ )|ψγ̃(γ̃)− ψγ(γ)|D
+ (|ψγ̃(γ̃)|DX̃ + |ψγ(γ)|DX )(|γ̃|DX̃ + |γ̃|DX̃ )

× (|X − X̃|Cν + |X2 − X̃2|C2ν
2

)
]

By inequality (2.18), the term |ψγ̃(γ̃)|DX is bounded by the constant C =
C(ν,X, |γ̃|DX ). Therefore, to prove estimate (3.5) it is enough to show that there
exists constant C = C(ν,X, R) such that for γ, γ̃ ∈ DX with |γ|DX , |γ̃|DX ≤ R

(3.15) |ψγ̃(γ̃)− ψγ(γ)|D ≤ C|γ̃ − γ|D.
By the triangle inequality we have

|ψγ̃(γ̃)− ψγ(γ)|D ≤ |ψγ̃(γ̃)− ψγ̃(γ)|D + |ψγ̃(γ)− ψγ(γ)|D
= I + II.(3.16)
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The first term can be estimated by using inequality (2.5) as follows

(3.17) |I| ≤ KC3
X |ψγ̃ |C3(1 + |γ̃|DX̃ + |γ|DX )2|γ̃ − γ|D.

By inequality (2.18) we have

(3.18) |ψγ̃ |C3 ≤ C|φ|C5 |γ̃|2DX (1 + |γ̃|DX )

Combining (3.17) and (3.18) we get necessary estimate for I . It remains to find an
estimate for term II . By inequalities (2.4) and (2.20) we have

II = |ψγ̃(γ)− ψγ(γ)|D
≤ (1 + |X|ν)|ψγ̃(γ)− ψγ(γ)|DX
≤ K|∇ψγ̃ −∇ψγ |C1 |γ|DX (1 + |γ|DX )(1 + |X|ν)3

≤ K|φ|C5C7
X(1 + |γ|DX + |γ̃|DX̃ )5|γ̃ − γ|D.(3.19)

Hence the inequality (3.6) follows. Inequality (3.5) is a consequence of inequality
(3.6). �

Corollary 3.9. Under assumptions of Lemma 3.8 and assumption 2.7 the energy
functionHX : DX → R is continuous. Furthermore, for any γ ∈ DX

0 ≤ HX(γ) <∞.

Proof of Corollary 3.9. We only need to show that HX(γ) ≥ 0, for any γ ∈ DX .
Other statements of the Corollary easily follow from Lemma 3.8. Fix n ∈ N. Let
C(0) = ∪n6

i=1C(ki)
n be a partition of the cube C(0) with center 0 and length n2 on

the cubes C(ki)
n of the length of 1

n with centers ki and nonintersecting interiors.
Define φ̂n(k) = φ̂(ki), k ∈ C(ki)

n and 0 otherwise. Consequently, define

φn(x) =

n6∑
i=1

φ̂(ki)

∫
C(ki)n

ei<k,x>dk, x ∈ R3

Then φ = lim
n→∞

φn in C4
b because of the Assumption 3.1. Consequently,

(3.20) HφX(γ) = lim
n→∞

HφnX (γ).

Now formula

(3.21) HzX(γ) =
1

(2π)3

∫
R3

ẑ(k)
∣∣∣ ∫
S1

ei(k,γs)dγs

∣∣∣2dk, γ ∈ DX .
is correct for z = φn, because φn is a sum of a finite number of Fourier modes.
Therefore,

(3.22) HφnX (γ) ≥ 0.

Thus, the result follows from identity (3.20) and inequality (3.22). �

Now we are going to show that energy is a local integral of motion for problem
(0.1)-(0.3).

Lemma 3.10. Let γ ∈ Dγ0,T0 be a local solution of problem (0.1)-(0.3) (such a
solution exists by Theorem 3.3). Then

dHγ0(γ(s))

ds
= 0, s ∈ [0, T0).
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Proof of Lemma 3.10. Since γ(0) = γ0 ∈ Dγ0 is a geometric rough path there
exist sequence {γn0 }∞n=1 ∈ C∞(S1,R3) such that

|γn0 − γ0|Cν + |γ2 − γ2|C2ν
2
→ 0, n→∞.

Now γn0 ∈ Dγn0 , γ0 ∈ Dγ0 . Thus we can put (γn0 )′ = (γ0)
′ = 1 and Rγ

n
0 = Rγ0 =

0. Hence we deduce that

|γn0 − γ0|D → 0, n→∞.
Denote by γn ∈ C([0,∞),H1(S1,R3)) the global solution of problem (0.1)-(0.3)
with initial condition γn0 . Existence of such solution has been proved in Theorem
2 of [5]. Then according to [5] (Theorem 4, p.1846) we have

lim
n→∞

sup
t∈[0,T0]

|γn(t)− γ(t)|D = 0.

Therefore, by the continuity of the energy functionalHγ0 we have

(3.23) Hγ0(γ(s)) = lim
n→∞

Hγn0 (γn(s)), s ∈ [0, T0].

Furthermore, by Lemma 2 of [5], we have

(3.24) Hγn0 (γn(s)) = Hγn0 (γn0 ), s ∈ [0, T0].

As a result, combining (3.23) and (3.24) we get statement of the Lemma. �

Let us recall the definition (0.3) of the vector field uY generated by a ν-rough
path Y

(3.25) uY (x) =

∫
Y

∇φ(x− y)× dy, Y ∈ DX .

Now we will show that if energy functional of Y is bounded then associated veloc-
ity field is a smooth function. We have

Lemma 3.11 (See Lemma 3 in [5]). For any n ∈ Z, n ≥ 0, we have following
bound

(3.26) ‖∇nuγ‖2L∞ ≤
1

(2π)3

∫
R3

|~k|2(1+n)φ̂(~k)d~k

HX(γ), γ ∈ DX ,

provided that the integral
∫
R3

|~k|2(1+n)φ̂(~k)d~k is finite and φ ∈ Cn+4(R3,R3).

Proof of Lemma 3.11. For a smooth curve γ Lemma 3.11 has been proved in [5],
see Lemma 3. In the general case, when γ ∈ DX , it is enough to notice that
both sides of inequality (3.26) are locally Lipshitz and therefore, continuous w.r.t.
distance d(Y, Ỹ ) := |Y − Ỹ |DX , Y ∈ DX , Ỹ ∈ DX̃ . Indeed, continuity of HX
has been proven in Lemma 3.8 and continuity of ‖∇nuγ‖L∞ follows from Lemma
2.12. �

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. According to Theorem 3.3 there exists unique local solution
of problem (0.1)-(0.3). Then, we can find T ∗ > 0 and a unique maximal local
solution γ : [0, T ∗)→ Dγ0 and

(3.27) lim
t↗T ∗

‖γ(t)‖Dγ0 =∞,
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see e.g. [11]. Notice that we will have

(3.28)
dHγ0(γ(s))

ds
= 0, s ∈ [0, T ∗).

Indeed, by Theorem 3.3 for any t0 ∈ [0, T ∗) there exists unique local solution γ̃ of
problem (0.1), (0.3) with initial condition γ(t0) on segment [t0, t0 + εt0 ] for some
εt0 > 0. Therefore, γ = γ̃ on the segment [t0, t0 + εt0 ]. Hence,

dHγ0(γ(s))

ds
= 0, s ∈ [t0, t0 + εt0 ], t0 ∈ [0, T ∗),

and identity (3.28) follows. We need to show that T ∗ =∞. Therefore, it is enough
to prove

sup
t∈[0,T ∗)

‖γ(t)‖Dγ0 <∞.

Indeed, by contradiction with (3.27), the result will follow. In the rest of the proof
we show such estimate. We recall that

(3.29) γ(t) = γ0 +

t∫
0

uγ(s)(γ(s))ds.

Firstly we have

|γ(t)|L∞ ≤ |γ0|L∞ +

t∫
0

|uγ(s)|L∞ds

≤ |γ0|L∞ + C

t∫
0

Hγ0(γ(s))ds

≤ |γ0|L∞ + CHγ0(γ0)t, t ∈ [0, T ∗).(3.30)

It follows from (3.29) that

(3.31) γ′(t) = γ′0 +

t∫
0

∇uγ(s)(γ(s))γ′(s)ds, t ∈ [0, T ∗).

Therefore, by Lemmas 3.10 and 3.11

|γ′(t)|L∞ ≤ |γ′0|L∞ +

t∫
0

|∇uγ(s)|L∞ |γ′(s)|L∞ds

≤ |γ′0|L∞ +

t∫
0

CH
1
2
γ0(γ(s))|γ′(s)|L∞ds

= |γ′0|L∞ +

t∫
0

CH
1
2
γ0(γ0)|γ′(s)|L∞ds, t ∈ [0, T ∗).(3.32)

Then by the Gronwall inequality we infer our second estimate

(3.33) |γ′(t)|L∞ ≤ |γ′0|L∞eCH
1
2
γ0

(γ0)t, t ∈ [0, T ∗).
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We will need one auxiliary estimate. We have

|γ(t)|Cν ≤ |γ0|Cν +

t∫
0

|uγ(s)(γ(s))|Cν |ds

≤ |γ0|Cν +

t∫
0

|∇uγ(s)|L∞ |γ(s)|Cνds

≤ |γ0|Cν +

t∫
0

CH
1
2
γ0(γ(s))|γ(s)|Cνds

= |γ0|Cν +

t∫
0

CH
1
2
γ0(γ0)|γ(s)|Cνds, t ∈ [0, T ∗).(3.34)

Thus, by the Gronwall inequality we get

(3.35) |γ(t)|Cν ≤ |γ0|CνeCH
1
2
γ0

(γ0)t, t ∈ [0, T ∗).

Now we can estimate Cν norm of γ′. We have

|γ′(t)|Cν ≤ |γ′0|Cν +

t∫
0

|∇uγ(s)(γ(s))γ′(s)|Cνds

≤ |γ′0|Cν +

t∫
0

(|∇uγ(s)|L∞ |γ′(s)|Cν + |γ′(s)|L∞ |∇uγ(s)(γ(s))|Cν )ds

≤ |γ′0|Cν +

t∫
0

(|∇uγ(s)|L∞ |γ′(s)|Cν + |γ′(s)|L∞ |∇2uγ(s)|L∞ |γ(s)|Cν )ds

≤ |γ′0|Cν

+

t∫
0

(CH
1
2
γ0(γ0)(|γ′(s)|Cν + |γ′0|L∞ |γ0|CνeCHγ0 (γ0)s))ds, t ∈ [0, T ∗),

(3.36)

where last inequality follows from Lemmas 3.10 and 3.11. Then by the Gronwall
inequality we get the third estimate

(3.37) |γ′(t)|Cν ≤ (|γ′0|Cν + |γ′0|L∞ |γ0|Cν )eCHγ0 (γ0)t, t ∈ [0, T ∗).

It remains to find an estimate for |Rγ(t)|2ν . We have

(3.38) Rγ(t) = Rγ0 +

t∫
0

Ru
γ(s)(γ(s))ds, t ∈ [0, T ∗).
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By identity (2.3) we have for s ∈ [0, T ∗)

Ru
γ(s)(γ(s))(ξ, η) = ∇uγ(s)(γ(s, ξ))Rγ(s)(ξ, η) +

∑
k

(γk(s, η)− γk(s, ξ))×

1∫
0

[
∂uγ(s)

∂xk
(γ(s, ξ) + r(γ(s, η)− γ(s, ξ)))− ∂uγ(s)

∂xk
(γ(s, ξ))

]
dr.(3.39)

Therefore,
(3.40)

|Ruγ(s)(γ(s))|C̃2ν ≤ |∇uγ(s)|L∞ |Rγ(s)|C̃2ν +
1

2
|γ(s)|2Cν |∇2uγ(s)|L∞ , s ∈ [0, T ∗).

Thus, by inequalities (3.40) and (3.35) we have for t ∈ [0, T ∗)

|Rγ(t)|C̃2ν ≤ |Rγ0 |C̃2ν +

t∫
0

(|∇uγ(s)|L∞ |Rγ(s)|C̃2ν +
1

2
|γ(s)|2Cν |∇2uγ(s)|L∞)ds

≤ |Rγ0 |C̃2ν +

t∫
0

(|∇uγ(s)|L∞ |Rγ(s)|C̃2ν + |γ0|CνeCH
1
2
γ0

(γ0)t|∇2uγ(s)|L∞)ds

≤ |Rγ0 |C̃2ν + C(|γ0|Cν ,Hγ0(γ0))e
CH

1
2
γ0

(γ0)t

+

t∫
0

CH
1
2
γ0(γ0)|Rγ(s)|C̃2νds,

(3.41)

where in the last inequality we used Lemmas 3.10 and 3.11. Hence, by the Gron-
wall Lemma we get
(3.42)

|Rγ(t)|C̃2ν ≤ (|Rγ0 |C̃2ν +C(|γ0|Cν ,Hγ0(γ0))e
CH

1
2
γ0

(γ0)t))eCH
1
2
γ0

(γ0)t, t ∈ [0, T ∗),

and combining estimates (3.30), (3.33), (3.37), and (3.42) we prove following
a’priori estimate

(3.43) |γ(t)|Dγ0 ≤ K(1 +Hγ0(γ0))(1 + |γ0|Dγ0 )|γ0|Dγ0e
CHγ0 (γ0)t, t ∈ [0, T ∗),

and the result follows. �

4. FUTURE DIRECTIONS OF RESEARCH

It would be interesting to consider problem (0.1)-(0.3) with added white noise
i.e. to consider problem

dγ(t) = uγ(t)(γ(t))dt+
√

2νdwt, ν > 0, t ∈ [0, T ](4.1)
γ(0) = γ0,(4.2)

where γ0 is a geometric ν-rough path, vector field of velocity uY is given by (0.2)
and wt is Dγ0–valued Wiener process. This model would correspond to Navier-
Stokes equations rather than Euler equations. There are two possible mathematical
frameworks for the model.
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First one is to make change of variables

α(t) = γ(t)−
√

2νwt, t ∈ [0, T ].

Then we can fix {wt}t≥0 and system (4.1)-(4.2) is reformulated as follows

dα

dt
= uα(t)+

√
2νwt(α(t) +

√
2νwt), ν > 0, t ∈ [0, T ](4.3)

α(0) = γ0.(4.4)

Now the problem (4.3)-(4.4) is ordinary differential equation (ODE) with random
coefficients in Dγ0 and it can be studied by methods of the theory of random dy-
namical systems, see [1] and [15]. This approach works only in the case of additive
noise.

Second approach is to consider problem (4.1)-(4.2) as SDE in Banach space
Dγ0 . Then, we can consider more general system with multiplicative noise:

dγ(t) = uγ(t)(γ(t))dt+
√

2νG(γ)dwt, ν > 0, t ∈ [0, T ](4.5)
γ(0) = γ0.(4.6)

The problem which appear here is to define Stochastic integral in the Banach space
Dγ0 . Stochastic calculus in M-type 2 Banach spaces developed in works [13]-[14],
[8], [10] does not work in this situation. It seems that it is necessary to try to alter
definition of Dγ0 to be able to apply the theory.

Other possible direction of research is the theory of connections on infinite di-
mensional manifolds, see [19], [7], [24]. In [9] the authours claimed, see p. 251
therein, that it is possible to define the topological space of Gawȩdzki’s [19] line
bundle over the set of rough loops in the sense of Lyons [25]. Since the trajectories
of the Brownian loop are almost surely rough paths, this allows us to define the
topological space of Gawȩdzki’s line bundle over the Brownian bridge, because
it is possible to define the integral of a one-form over a rough path. It would be
interesting to write down a complete proof of this claim. The theory presented in
this article could be seen as a first step in realizing such a programme.
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[22] H. Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewe-
gungen entsprechen., Journal für die reine und angewandte Mathematik (Crelles Journal) 1858
(1858), no. 55, 25–55, DOI 10.1515/crll.1858.55.25.

[23] W. Thomson (Lord Kelvin), On vortex motion, Trans. Royal Soc. Edin. 25 (1869), 217–260.
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