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COMPUTABLE ERROR BOUNDS FOR FINITE ELEMENT

APPROXIMATION ON NON-POLYGONAL DOMAINS

MARK AINSWORTH AND RICHARD RANKIN

Abstract. Fully computable, guaranteed bounds are obtained on the error in
the finite element approximation which take the effect of the boundary approx-
imation into account. We consider the case of piecewise affine approximation
of the Poisson problem with pure Neumann boundary data, and obtain a fully
computable quantity which is shown to provide a guaranteed upper bound on
the energy norm of the error. The estimator provides, up to a constant and
oscillation terms, local lower bounds on the energy norm of the error.

1. Introduction

Whilst the topic of a posteriori error estimation for finite element approximation
dates back over 50 years, it is only relatively recently that techniques have been
developed that enable the computation of accurate, guaranteed error bounds [2, 4,
9, 12, 13, 15]. All of these works assume that the computational domain is polygonal
and can be meshed exactly using finite elements. Of course, many problems arising
in practical applications are posed on curvilinear domains and a decision has to be
made on how to deal with the meshing. Although approaches are available that
enable the use of curvilinear elements that match the domain exactly, in practice
iso-parametric elements are used to approximate the computational domain. The
approximation of the domain incurs an additional source of error that should be
taken into account in both the a priori convergence analysis, and in the a posteriori
error bounds.

A priori error bounds have been studied by various authors: problems with
pure Dirichlet boundary conditions were considered in [7, 16, 17]; problems with
homogeneous Robin and Dirichlet boundary conditions were considered in [11];
mixed Dirichlet-Neumann boundary conditions are considered in [5] for the Poisson
problem in which Neumann boundary conditions are imposed on curved parts of the
boundary whilst Dirichlet boundary conditions are imposed on straight parts of the
boundary. The case of pure Neumann data is problematic because the compatibility
condition on the Neumann data and the volumetric data is generally lost once
the domain is approximated. The case of pure, homogeneous natural boundary
conditions was considered by Strang and Fix [16], who stop short of dealing with
non-homogenous data and simply assert their confidence in the errors being under
control. Barrett and Elliott [6] considered the case of pure Neumann data and
enforced the compatibility issue through a global perturbation of data.

A posteriori error analysis for curvilinear domains is much less well-developed.
In [10] a posteriori error bounds were obtained for finite element approximation of
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the Poisson problem on non-polygonal domains with pure Dirichlet boundary condi-
tions. In common with many a posteriori error estimators of that period, the bounds
involved multiplicative constants that are unknown meaning that one does not ob-
tain an actual numerical bound on the error. In [8] a posteriori error bounds were
obtained for the finite element approximation of the Poisson problem on polygonal
domains containing non-polygonal holes on which homogeneous Neumann boundary
conditions were imposed, again valid up to multiplicative constants.

The fully computable a posteriori error estimators referred to earlier are derived
under the assumption that the domain is meshed exactly. One may ask whether such
estimators continue to provide an upper bound in the presence of approximation of
the domain. Consider the problem

−∆u =− 2 in Ω =
{
(x, y) : x2 + y2 < 1

}

n · gradu =1 on ∂Ω

with true solution given by u = 1
2

(
x2 + y2

)
. The estimator from [2] has been proved

to provide a guaranteed upper bound on the energy norm of the error |||e|||Ω when
the domain Ω is a polygon. We investigate whether this estimator continues to offer
an upper bound when the domain is curvilinear. The results shown in Table 1 show
that the estimator η0, does not provide an upper bound in this example.

NDOF |||e|||Ω η0 η0/ |||e|||Ω
5 0.7008 0.4714 0.6726
7 0.6172 0.5494 0.8901
9 0.4984 0.4507 0.9043
12 0.4286 0.4050 0.9449
15 0.3748 0.3845 1.0261

Table 1. The performance of the estimator from [2].

This behaviour is not limited to this particular choice of estimator. In fact, as
far as we are aware, there are no computable a posteriori error bounds available
for the case where the domain on which the problem is posed is not a polygon.
The current work seeks to develop fully computable, guaranteed bound on the error
which takes the effect of the boundary approximation into account. We consider the
case of piecewise affine approximation of the Poisson problem with pure Neumann
boundary data, and obtain a fully computable quantity which is shown to provides
a guaranteed upper bound on the energy norm of the error. The estimator provides,
up to a constant and oscillation terms, local lower bounds on the energy norm of
the error.

2. Preliminaries

2.1. Discretisation of the domain. The fact that the domain Ω is allowed to be
curvilinear means that some care must be exercised in constructing a triangulation
on which to approximate the problem. This section is concerned with formulating
a precise set of conditions on the triangulation and establishing some preliminary
consequences that will be needed later. Let P denote a set of nonoverlapping, shape-
regular triangular elements such that the nonempty intersection of a distinct pair of
elements is a single common node or single common edge of both elements. Such a
partition P is locally quasi-uniform in the sense that the ratio of the diameters of any
pair of neighbouring elements is uniformly bounded above and below. Throughout
we shall use C and c to denote positive constants which are independent of the
size of the elements in the mesh. The shape regularity of the elements in the mesh
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means that, for all K ∈ P , the area |K| of the element K satisfies

(2.1) ch2
K ≤ |K| ≤ Ch2

K

where hK denotes the diameter of K. Likewise, if we denote the set containing the
individual edges of K by EK then, for each γ ∈ EK , the length |γ| of the edge γ
satisfies

(2.2) chK ≤ |γ| ≤ ChK

We define a polygonal approximation to the domain Ω to be ΩP =
⋃

K∈P
K. Let

E denote the set of edges of the elements in P . We define the set of interior edges
to be

EI = {γ ∈ E : γ ∈ EK ∩ EK′ for distinct K,K ′ ∈ P}
and the set of boundary edges to be

EB = E \ EI .

We suppose that the partition is constructed so that:

(A1) the endpoints of each edge in EB lie on Γ.

(A2) each element in P has at most one edge in EB.
In light of assumptions (A1) and (A2), we define the approximate domain boundary

ΓP to be
⋃

γ∈EB

γ. We let E0, E+ and E− denote the subsets of edges defined by

E0 = {γ ∈ E : γ ∈ EI or γ ⊂ Γ} ,
E+ =

{
γ ∈ E : γ 6∈ E0 and γ ⊂ Ω

}
,

E− = {γ ∈ E : γ 6∈ E0 ∪ E+ and only the endpoints of γ lie on Γ} .

For simplicity, we assume that the partition is such that

(A3) E = E0 ∪ E+ ∪ E−.
Assumption (A3) means that the boundary of the true domain does not cross the
edge of an element. This can always be achieved by applying suitable refinements
or adjustments to the mesh. Consequently, we can partition P into three disjoint
sets such that P = P+ ∪ P− ∪ P0 where

P+ = {K ∈ P : EK ∩ E+ is non-empty} ,
P− = {K ∈ P : EK ∩ E− is non-empty} ,
P0 = P \ (P+ ∪ P−) .

In general, the triangulated region ΩP differs from the true domain Ω. The
“skin” between these domains is defined by

S = (Ω ∩ Ωc
P) ∪ (ΩP ∩ Ωc)

where ·c denotes the complement in R
2. The skin S is the union of disconnected

subsets which we shall refer to as “slivers”. Each sliver SK is associated with a
unique element K ∈ P for which ∂SK ∩ ∂K = γK ∈ EK . We denote the (curved)
edge of the sliver by ΓK = ∂SK \ γK . Evidently, the slivers are associated with
elements K belonging to the curved portions of the boundary, i.e. elements K ∈
P+ ∪ P−. Moreover,

(2.3) Ω = {SK : K ∈ P+} ∪ΩP \ {SK : K ∈ P−} .

Figure 1 illustrates the two possible types of slivers.



4 MARK AINSWORTH AND RICHARD RANKIN

SK

K

ΓK

γK

(a)

SK

K

ΓK

γK

(b)

Figure 1. Examples of the two types of sliver SK : (a) K ∈ P+

and (b) K ∈ P−.

With each linear triangleK ∈ P , we can associate a (possibly) curvilinear triangle
K∗, with at most one curved edge, as follows:

(2.4) K∗ =






K ∪ SK if K ∈ P+

K \ SK if K ∈ P−
K if K ∈ P0.

The chief motivation behind the foregoing constructions lies in the fact that {K∗ : K ∈ P}
forms a partitioning of the true domain Ω:

(2.5) Ω =
⋃

K∈P
K∗.

We shall need to impose some restrictions on the shape regularity of these curvi-
linear triangles:

(A4) there exists a positive constant C such that, for each K ∈ P+ ∪ P−, there
exists a point x0 ∈ K∗ such that K∗ is star-shaped with respect to the ball
{x ∈ K∗ : |x− x0| < ChK}.

(A5) there exists a positive constant C such that, for each K ∈ P+ ∪ P−,
min
x∈ΓK

n · (x− xΓK ) ≥ ChK where xΓK is the vertex of element K opposite

to the curved edge ΓK .

The partition shown in Figure 2(b) violates (A4) since the K∗ associated with the
element K ∈ P− fails to be star-shaped with respect to a ball in K∗. Likewise
n · (x− xΓK ) = 0 at the points indicated meaning that the partition shown in
Figure 2(b) also violates (A5). Observe that this issue does not go away be merely
carrying out a refinement to obtain the mesh shown in Figure 2(c). However, the
partition shown in Figure 2(d) does satisfy assumptions (A4) and (A5).

Let K ∈ P be any element for which the associated sliver SK is non-empty and
let x ∈ SK . The point may be written uniquely in the form x = x1 + tγK x̂+nγK ŷ
where the vertices x1 and x2 of SK and the unit tangent vector tγK and unit normal
vector nγK to edge γK of SK are labelled and oriented as in Figure 3. Consequently,
we may define a local x̂− ŷ coordinate system on SK with the origin at x1 and the
positive x̂-axis aligned with γK . Our final assumption concerns the smoothness of
the curvilinear triangle edges: for µ = 1 or µ = 2, we assume that

(A6)
µ

ΓK is locally the graph of a function φ, i.e.

ΓK = {(x̂, ŷ) : ŷ = φ (x̂) , x̂ ∈ (0, |γK |)} ,
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Figure 2. (a) Domain Ω and (b)-(d) three possible partitions. In
(d) the elements in the set P0 contain a 0 and the elements in the
sets P± contain a ±

tγK
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ŷ
x

Figure 3. The position of the endpoints x1 and x2 and the la-
belling and orientation of the unit tangent vector tγK and unit
normal vector nγK to edge γK of SK used to define local x̂ − ŷ
coordinate system on SK .
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such that ‖φ‖Hµ(0,|γK |) ≤ C |γK |1/2.

Lemma 2.1. Suppose that assumptions (A1)-(A5) and (A6)
1
hold. Then the

length of the curved edge ΓK satisfies

(2.6) chK ≤ |ΓK | ≤ ChK .

Proof. We have that

|ΓK | =
∫ |γK |

0

√
1 + φ′ (x̂)2 dx̂

≤ |γK |1/2
(∫ |γK |

0

1 + φ′ (x̂)2 dx̂

)1/2

= |γK |1/2
(
|γK |+ ‖φ′‖2L2(0,|γK |)

)1/2
≤ C |γK |

since ‖φ′‖L2(0,|γK |) ≤ ‖φ‖H1(0,|γK |) ≤ C |γK |1/2. Hence, since it is immediate that

|γK | ≤ |ΓK |, the desired result follows. �

Lemma 2.2. Suppose that assumptions (A1)-(A5) and (A6)
2
hold. Then, in

addition to (2.6) holding, the area of the sliver SK satisfies

(2.7) |SK | ≤ Ch3
K

and the curvilinear triangle K∗ satisfies

(2.8) c |K| ≤ |K∗| ≤ C |K|
and

(2.9) chK ≤ hK∗ ≤ ChK .

Proof. Since (A1) implies that φ (0) = φ (|γK |) = 0, integration by parts yields
∫ |γK |

0

1

2
x̂ (x̂− |γK |)φ′′ (x̂) dx̂ =

∫ |γK |

0

φ (x̂) dx̂.

Moreover, assumption (A3) means that φ(x̂) is positive for x̂ ∈ (0, |γK |). Hence,
the area of the sliver satisfies

|SK | =
∫ |γK |

0

φ (x̂) dx̂ ≤
∥∥∥∥
1

2
x̂ (x̂− |γK |)

∥∥∥∥
L2(0,|γK |)

‖φ′′‖L2(0,|γK |) ≤ C |γK |3

since
∥∥ 1
2 x̂ (x̂− |γK |)

∥∥
L2(0,|γK |) =

√
17√
240

|γK |5/2 and ‖φ′′‖L2(0,|γK |) ≤ ‖φ‖H2(0,|γK |) ≤
C |γK |1/2. Consequently, (A6)

2
implies that, in addition to (2.6) holding, (2.7)

holds. In turn, these estimates mean that (2.9) and (2.8) are satisfied. �

2.2. Oscillation of the boundary. Suppose that assumption (A6)µ holds with
µ ≥ 1. We introduce a measure to quantify the notion of the oscillation of ΓK ,
osc (ΓK), as follows:

(2.10) osc (ΓK) =




1

|γK |

∫ |γK |

0

(√
1 + φ′ (x̂)2 − 1

)2

√
1 + φ′ (x̂)2

dx̂




1/2

.

If the boundary segment containing ΓK is linear, then φ = 0 and hence osc (ΓK) =
0. Conversely, if the boundary “wiggles” in the neighbourhood of ΓK , then |φ′| will
be large which, in turn, means the oscillation is large. We present three results which
show how this oscillation measures how well quantities on the curvilinear entities
are approximated by the corresponding quantity on the polygonal approximation.
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Lemma 2.3. Let the partition P satisfy assumptions (A1)-(A5) and (A6)
µ
with

µ ≥ 1. Let K ∈ P+ and let w ∈ H1 (K∗) be such that (w, 1)K∗ = 0. Then

∣∣∣∣
1

|ΓK |

∫

ΓK

w ds− 1

|γK |

∫

γK

w ds

∣∣∣∣

≤ 1

|ΓK |
(
|SK |1/2 +

(
CK∗

ΓK ,K∗ |γK |1/2 + CK∗

γK ,K |ΓK |1/2
)
h
1/2
K∗ osc (ΓK)

)
|||w|||K∗

(2.11)

where CK∗

ΓK ,K∗ and CK∗

γK ,K are the constants in the Poincaré inequality (3.8).

Proof. This lemma is proved in Section 8.1. �

Lemma 2.4. Let the partition P satisfy assumptions (A1)-(A5) and (A6)
µ
with

µ ≥ 1. For K ∈ P+, let w ∈ H1 (K∗), F ∈ L2 (K
∗) and G ∈ L2 (ΓK). Then

(
F,w − 〈w〉γK

)

SK

+
(
G,w − 〈w〉γK

)

ΓK

≤
(
CK∗hK∗ ‖F − 〈F 〉K∗‖L2(SK) +

CK∗

γK ,Kh
1/2
K∗

|γK |1/2
|SK |

∣∣〈F 〉SK

∣∣

+ CK∗

ΓK ,K∗h
1/2
K∗

∥∥G− 〈G〉ΓK

∥∥
L2(ΓK)

+
(
|SK |1/2 +

(
CK∗

ΓK ,K∗ |γK |1/2 + CK∗

γK ,K |ΓK |1/2
)
h
1/2
K∗ osc (ΓK)

) ∣∣〈G〉ΓK

∣∣
)
|||w|||K∗

(2.12)

where CK∗ is the constant in the Poincaré inequality (3.7) and CK∗

γK ,K and CK∗

ΓK ,K∗

are the constants in the Poincaré inequality (3.8).

Proof. This lemma is proved in Section 8.2. �

Lemma 2.5. Let the partition P satisfy assumptions (A1)-(A5) and (A6)
µ
with

µ ≥ 2. Then

(2.13) osc (ΓK) ≤ ChK .

Proof. Since φ (0) = φ (|γK |) = 0, we have for x̂, s ∈ (0, |γK |)

|φ′ (x̂)| =
∣∣∣∣∣φ

′ (x̂)− 1

|γK |

∫ |γK |

0

φ′ (s) ds

∣∣∣∣∣

=
1

|γK |

∣∣∣∣∣

∫ |γK |

0

φ′ (x̂)− φ′ (s) ds

∣∣∣∣∣

=
1

|γK |

∣∣∣∣∣

∫ |γK |

0

∫ x̂

s

φ′′ (t) dt ds

∣∣∣∣∣

≤ 1

|γK |

∫ |γK |

0

∣∣∣∣∣

∫ x̂

s

1 dt

∣∣∣∣∣

1/2 ∣∣∣∣∣

∫ x̂

s

φ′′ (t)2 dt

∣∣∣∣∣

1/2

ds

≤ 1

|γK |

∫ |γK |

0

∣∣∣∣∣

∫ x̂

s

1 dt

∣∣∣∣∣

1/2

ds ‖φ′′‖L2(0,|γK |) .

Moreover,

1

|γK |

∫ |γK |

0

∣∣∣∣∣

∫ x̂

s

1 dt

∣∣∣∣∣

1/2

ds ≤ 1

|γK |1/2

(∫ |γK |

0

|x̂− s| ds

)1/2

.
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Direct computation then leads to the estimate

‖φ′‖L2(0,|γK |) ≤
|γK |√

3
‖φ′′‖L2(0,|γK |) .

Consequently,

osc (ΓK) ≤
(

1

|γK |

∫ |γK |

0

(√
1 + φ′ (x̂)2 − 1

)2

dx̂

)1/2

≤ 1

|γK |1/2
‖φ′‖L2(0,|γK |) ≤

|γK |1/2√
3

‖φ′′‖L2(0,|γK |) ≤ C |γK |

since ‖φ′′‖L2(0,|γK |) ≤ ‖φ‖H2(0,|γK |) ≤ C |γK |1/2. Hence, (2.2) yields (2.13). �

3. Finite element discretisation

3.1. Model problem. Consider the model problem

−∆u = f in Ω,

n · gradu = g on Γ,
(3.1)

where Ω is an open domain in R
2 with piecewise smooth, possibly curvilinear,

boundary Γ = ∂Ω and n is the outward unit normal vector to Γ. We shall use
the notation (·, ·)ω to denote the integral inner product over a region ω. The data
satisfy f ∈ L2 (Ω) and g ∈ L2 (Γ), along with the compatibility condition

(3.2) (f, 1)Ω + (g, 1)Γ = 0,

needed to ensure the existence of a solution to (3.1). We define

H1
\R (Ω) =

{
v ∈ H1 (Ω) : (v, 1)Ω = 0

}

and let the energy norm over a region ω be denoted by

|||·|||ω = (grad ·,grad ·)1/2ω .

The variational form of (3.1) consists of finding u ∈ H1
\R (Ω) such that

(3.3) (gradu,grad v)Ω = (f, v)Ω + (g, v)Γ for all v ∈ H1 (Ω) .

3.2. Finite element approximation. For m ∈ N0, let Pm (ω) denote the space
of polynomials on a region ω of total degree at most m and let Pm (γ) denote the
space of polynomials on an edge γ ∈ E of total degree at most m (with respect
to arc-length). For a triangle K and v ∈ L2 (K), let PKv ∈ P1 (K) denote the
orthogonal projection defined by (v − PKv, p)K = 0 for all p ∈ P1 (K). Likewise,
for an edge γ ∈ E and v ∈ L2 (γ), Pγv ∈ P1 (γ) denotes the orthogonal projection
on the edge. For a two dimensional region ω and v ∈ L2 (ω), let |ω| denote the area
of ω and let 〈v〉ω = 1

|ω| (v, 1)ω. For a one dimensional region τ and v ∈ L2 (τ), let

|τ | denote the length of τ and let 〈v〉τ = 1
|τ | (v, 1)τ .

The finite element space XP of first order on P is defined by

XP =
{
v ∈ C

(
ΩP
)
: v|K ∈ P1 (K) for all K ∈ P

}

along with the subspace

XP
\R =

{
v ∈ XP : (v, 1)ΩP

= 0
}
.

In order to define a finite element approximation of (3.3) we must construct a
suitable approximation on P for each term appearing in (3.3). Moreover, we must
ensure that the analogue of the compatibility condition (3.2) holds for the discrete

scheme. The approximate domain boundary ΓP =
⋃

γ∈EB

γ may be expressed in the
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alternative form ΓP =
∑

K∈P

∑

γ∈EK∩EB

γ which we shall use to discretise the boundary

flux term in (3.3).
We define a finite element approximation uP ∈ XP

\R of the solution u to problem

(3.3) as follows:

(3.4) (grad uP ,grad v)ΩP
= (f, v)ΩP

+
∑

K∈P

∑

γ∈EK∩EB

(gK,γ , v)γ for all v ∈ XP

where the data f has been extended from Ω to Ω ∪ ΩP such that f ∈ L2 (Ω ∪ ΩP)
and the flux data gK,γ ∈ L2 (γ) is chosen so that the discrete compatibility condition

(3.5) (f, 1)ΩP
+
∑

K∈P

∑

γ∈EK∩EB

(gK,γ , 1)γ = 0

is satisfied. This condition does not uniquely determine the fluxes, and several
reasonable choices are possible. We choose to define gK,γ by the rule

(3.6) gK,γ =






Pγg if γ ∈ E0 ∩ EB,

1

|γ|
(
(g, 1)ΓK

+ (f, 1)SK

)
if γ ∈ E+,

1

|γ|
(
(g, 1)ΓK

− (f, 1)SK

)
if γ ∈ E−.

Thanks to (2.3), it follows that

(f, 1)Ω = (f, 1)ΩP
+
∑

K∈P+

(f, 1)SK
−
∑

K∈P−

(f, 1)SK
,

and, as a consequence,

(f, 1)ΩP
+
∑

K∈P

∑

γ∈EK∩EB

(gK,γ , 1)γ = (f, 1)Ω + (g, 1)Γ = 0

and so the compatibility condition (3.5) holds for the choice (3.6). The important
issue of the effect of the choice (3.6) on the accuracy of the resulting finite element
approximation is deferred to Section 4.

The approximation uP is defined on the polygonal domain ΩP . It is desirable to
have an approximation to u over the original domain Ω. To this end, for K ∈ P+,
we extend uP to the sliver SK by requiring uP|K∗ ∈ P1 (K

∗). In other words, we
extend uP from K onto K∗ = K ∪ SK as an affine function by simply using the
same rule used to define uP on K, to define uP on K∗. Adopting this convention
means that the extended finite element approximation, which we again denote by

uP , belongs to the space X̃P defined by

X̃P =
{
v : Ω ∪ ΩP → R, v|ΩP

∈ XP and v|K∗ ∈ P1 (K
∗) for all K ∈ P+

}
.

It will be useful to define an associated subspace X̃P
\R as follows:

X̃P
\R =

{
v ∈ X̃P : (v, 1)Ω = 0

}
.

3.3. Poincaré inequalities. Let ω be any two dimensional region which is star
shaped with respect to a ball and let hω denote the diameter of ω. Then it is
well-known, [20], that, for some appropriate choice of constant Cω ,

(3.7) ‖v − 〈v〉ω‖L2(ω)
≤ Cωhω |||v|||ω .
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In a similar vein, if ω and ω̃ are two dimensional regions which are star-shaped
with respect to a ball and ω ⊂ ω̃ with τ ⊂ ∂ω, then there exists a constant Cω̃

τ,ω

such that

(3.8) ‖v − 〈v〉ω̃‖L2(τ)
≤ Cω̃

τ,ωh
1/2
ω̃ |||v|||ω̃ .

Proofs of these results, along with explicit computable expressions for the con-
stants Cω and Cω̃

τ,ω will be given in Section 7.2 for the cases where ω and ω̃ are
either an element K ∈ P or a curvilinear triangle K∗ associated with K. In par-
ticular, whenever assumptions (A4) and (A5) are satisfied, the expressions for Cω

and Cω̃
τ,ω satisfy Cω ≤ C and Cω̃

τ,ω ≤ C, where C is a positive constant which is
independent of the size of the elements in the mesh.

4. An a priori error estimate

We now return to the issue of the rate of convergence of the finite element approx-
imation resulting from choosing the Neumann data on the approximate boundary
according to the expression in (3.6). For this section only we shall assume that
ΩP ⊂ Ω. Our a priori error estimate stems from the following extension of Cea’s
Lemma:

Lemma 4.1. Let ΩP ⊂ Ω and let the partition be such that assumptions (A1)-(A5)
and (A6)

µ
with µ ≥ 2 are satisfied. Then

|||u− uP |||Ω ≤C

(
inf

p∈X̃P

|||u− p|||Ω + max
K∈P+

hK

+



∑

K∈P+

(
hK |||u|||2SK

+ hK

∥∥g − 〈g〉ΓK

∥∥2
L2(ΓK)

)



1/2)
.

(4.1)

Proof. This lemma is proved in Section 8.3. �

As usual in deriving an a priori rate of convergence estimate, we make an as-
sumption u ∈ H2 (Ω) on the regularity of u on Ω. In addition, to bound the final
term in (4.1), we shall make assumptions on the regularity of the true solution on
the slivers.

Under the assumption that, for all K ∈ P+, gradu ∈ L∞ (SK) and g ∈ H1 (ΓK)
we can say that

|||u|||SK
≤ |SK |1/2 ‖grad u‖L∞(SK) ≤ Ch

3/2
K ‖grad u‖L∞(SK)

by (2.7) and
∥∥g − 〈g〉ΓK

∥∥
L2(ΓK)

≤ C |ΓK | |g|H1(ΓK) ≤ ChK |g|H1(ΓK)

by (2.6). Consequently,




∑

K∈P+

(
hK |||u|||2SK

+ hK

∥∥g − 〈g〉ΓK

∥∥2
L2(ΓK)

)



1/2

≤C

(
max
K∈P+

(
h2
K ‖gradu‖2L∞(SK)

) ∑

K∈P+

h2
K + max

K∈P+

h2
K

∑

K∈P+

|g|2H1(ΓK)

)1/2

≤C max
K∈P+

hK



COMPUTABLE ERROR BOUNDS ON NON-POLYGONAL DOMAINS 11

since
∑

K∈P+

h2
K ≤ C

∑

K∈P+

|K| ≤ C |Ω| ≤ C. Hence,

(4.2) |||u− uP |||Ω ≤ C

(
inf

p∈X̃P

|||u− p|||Ω + max
K∈P+

hK

)
.

Let Πv ∈ X̃P be such that v = Πv at the three vertices of element K. Note
that Πv differs from the standard interpolate in that Πv is taken from the extended
finite element space. In essence, we simply extend the usual interpolate onto the
slivers in the same way that the finite element approximation was extended to Ω
from ΩP . Then

(4.3) inf
p∈X̃P

|||u− p|||2Ω ≤ |||u−Πu|||2Ω =
∑

K∈P0

|||u−Πu|||2K +
∑

K∈P+

|||u−Πu|||2K∗ .

For K ∈ P+, let K̃ be a triangle obtained by extending the element K such that

K∗ ⊂ K̃ with ∂K \ γK ⊂ ∂K̃ and hK̃ ≤ ChK (see Figure 4). From Theorem 5.6

in [20] we know that there exists an extension of u from K∗ ∩ Ω to K̃ such that
|u|H2(K̃) ≤ C |u|H2(K̃∩Ω).

K

SKK̃

x1

x2x3

x̃2x̃3

Figure 4. An example of an element K with vertices x1, x2 and

x3 and the corresponding extended triangle K̃ with vertices x1, x̃2

and x̃3.

Let ΠK̃v ∈ P1

(
K̃
)
be such that v = ΠK̃v at the three vertices of triangle K̃.

Now,

|||u−Πu|||K∗ ≤ |||u|||K∗ + |||Πu|||K∗ ≤ |||u|||K∗ + |||u|||K∗ ≤ C |||u|||K∗ .

Hence, since Π (ΠK̃u) = ΠK̃u on K∗ we can apply the above argument with u
replaced by u−ΠK̃u to get

|||u−Πu|||K∗ ≤ |||u−ΠK̃u|||K∗ ≤ |||u−ΠK̃u|||
K̃

≤ ChK |u|H2(K̃) .

where the final estimate is a standard interpolation estimate. Moreover,

hK̃ |u|H2(K̃) ≤ ChK |u|H2(K̃) ≤ ChK |u|H2(K̃∩Ω) .
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since hK̃ ≤ ChK and |u|H2(K̃) ≤ C |u|H2(K̃∩Ω). Applying this bound, along with

the standard interpolation estimate |||u−Πu|||K ≤ Ch2
K |u|H2(K) for K ∈ P0, to

(4.3) yields

inf
p∈X̃P

|||u− p|||2Ω ≤C



∑

K∈P0

h2
K |u|2H2(K) +

∑

K∈P+

h2
K |u|2H2(K̃∩Ω)




≤Cmax
K∈P

h2
K |u|2H2(Ω) ≤ Cmax

K∈P
h2
K .

(4.4)

Finally, combining (4.4) and (4.2) we obtain the following estimate showing that
our choice of discrete flux gives the optimal rate of convergence:

Theorem 4.2. Let ΩP ⊂ Ω and let u ∈ H2 (Ω). Also, for all K ∈ P+, let
gradu ∈ L∞ (SK) and g ∈ H1 (ΓK). Moreover, let the partition P be such that
assumptions (A1)-(A5) and (A6)µ with µ ≥ 2 are satisfied. Then, there exists a
positive constant C, independent of the error u − uP and the size of the elements
in the mesh such that

(4.5) |||u− uP |||Ω ≤ Cmax
K∈P

hK .

5. A posteriori estimation of the energy norm of the error

Let u ∈ H1 (Ω) be the true solution to (3.3) and uP ∈ XP ⊂ H1 (ΩP) be the
solution to (3.4) extended onto Ω ∪ΩP as described in Section 3. Then the error e
in the extended approximation is given by e = u− uP ∈ H1 (Ω). We now turn our
attention to developing computable bounds for |||e|||Ω.

5.1. Upper bound on the energy norm of the error. Let v ∈ H1 (Ω), then
thanks to (3.3),

(grad e,grad v)Ω = (f, v)Ω + (g, v)Γ − (grad uP ,grad v)Ω

and hence using (2.5) and (2.4):

(grad e,grad v)Ω =
∑

K∈P0


(f, v)K +

∑

γ∈EK∩EB

(g, v)γ − (graduP ,grad v)K




+
∑

K∈P+∪P−

(
(f, v)K∗ + (g, v)ΓK

− (graduP ,grad v)K∗

)
.

(5.1)

For γ ∈ E , we suppose that gK,γ ∈ P1 (γ) are equilibrated fluxes given by (3.6)
on EB, and satisfying

(5.2) gK,γ + gK′,γ = 0 if γ ∈ EK ∩ EK′ for K,K ′ ∈ P ,K 6= K ′

and

(5.3) (f, p)K +
∑

γ∈EK

(gK,γ , p)γ − (graduP ,grad p)K = 0 for all p ∈ P1 (K)

for all K ∈ P . A procedure which can be used to determine fluxes gK,γ satisfying
these conditions will be given in Section 7.1. Now, (3.6) and (5.2) imply that

∑

K∈P0

∑

γ∈EK∩EB

(Pγg, v)γ =
∑

K∈P0

∑

γ∈EK

(gK,γ , v)γ +
∑

K∈P+∪P−

∑

γ∈EK∩EI

(gK,γ , v)γ .
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Consequently,

(grad e,grad v)Ω =

∑

K∈P0


(f, v)K +

∑

γ∈EK

(gK,γ , v)γ +
∑

γ∈EK∩EB

(g − Pγg, v)γ − (grad uP ,grad v)K




+
∑

K∈P+∪P−


(f, v)K∗ +

∑

γ∈EK∩EI

(gK,γ , v)γ + (g, v)ΓK
− (graduP ,grad v)K∗


 .

(5.4)

The decomposition (5.4) consists of a contribution from the elements belonging
to P0 which is precisely the usual expression for the error in the case when there
is no approximation of the domain. However, for the case when the domain is
curvilinear, (5.4) has an additional contribution from the elements in P+ ∪ P−.
Our first task is to estimate the contributions from the elements in P0. This is
familiar territory and our method of choice follows the approach outlined in [2] and
references therein. We briefly outline the idea.

For K ∈ P and γ ∈ EK we define the residuals

(5.5) RK,γ = gK,γ − n
K
γ · graduP|K

where n
K
γ is the outward unit normal vector to edge γ of element K. For K ∈

P+ ∪ P−, we also define the residual

(5.6) RK,Γ = g − n · grad uP|K∗ .

For a triangle K and data RK,γ ∈ P1 (γ) for γ ∈ EK such that

(5.7) (PKf, p)K +
∑

γ∈EK

(RK,γ , p)γ = 0 for all p ∈ P1 (K) ,

let σK ∈ P2 (K)× P2 (K) be any vector field satisfying

(5.8) n
K
γ · σK = RK,γ on K for all γ ∈ EK

and

(5.9) − divσK = PKf in K.

Consequently,

(5.10) (PKf, v)K +
∑

γ∈EK

(RK,γ , v)γ = (σK ,grad v)K .

An explicit construction for a choice of σK satisfying (5.8) and (5.9) which also
minimises ‖σK‖

L2(K) is given in Section 7.3. The following result is by now quite

standard.

Lemma 5.1. Let K ∈ P0. Then
(5.11)

(f, v)K +
∑

γ∈EK

(gK,γ , v)γ +
∑

γ∈EK∩EB

(g − Pγg, v)γ − (grad uP ,grad v)K ≤ ηK |||v|||K

where
(5.12)

ηK = ‖σK‖
L2(K)+CKhK ‖f − PKf‖L2(K) +

∑

γ∈EK∩EB∩E0

CK
γ,Kh

1/2
K ‖g − Pγg‖L2(γ)

.

Proof. Note that

(graduP ,grad v)K =
∑

γ∈EK

(
n

K
γ · grad uP|K , v

)
γ
.
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We choose RK,γ = gK,γ − n
K
γ · grad uP|K in (5.8) and recall property (5.3). The

proof then follows the standard approach for polygonal domains. �

When K ∈ P+ ∪ P−, the treatment of the error on the curvilinear region K∗

is less straightforward but again, use will be made of the lifting σK . We begin by
stating the analogue of Lemma 5.1 for elements K ∈ P−.

Lemma 5.2. Let K ∈ P− and let the partition P be such that assumptions (A1)-
(A5) are satisfied. Then

(5.13) (f, v)K∗ +
∑

γ∈EK∩EI

(gK,γ , v)γ + (g, v)ΓK
− (grad uP ,grad v)K∗ ≤ ηK |||v|||

where

ηK = ‖σK‖
L2(K∗) + CK∗hK∗ ‖f − PKf‖L2(K∗)

+ CK∗

ΓK ,K∗h
1/2
K∗ ‖RK,Γ − n · σK‖L2(ΓK) .

(5.14)

Lemma 5.2 is similar to Lemma 5.1 with the differences being in the oscillation
terms. The case of elements K ∈ P+ is more involved. The analogue of Lemma 5.1
reads as follows:

Lemma 5.3. Let K ∈ P+ and let the partition P be such that assumptions (A1)-
(A5) and (A6)

µ
with µ ≥ 1 are satisfied. Then

(5.15) (f, v)K∗ +
∑

γ∈EK∩EI

(gK,γ , v)γ + (g, v)ΓK
− (grad uP ,grad v)K∗ ≤ ηK |||v|||

where

ηK = ‖σK‖
L2(K) + CKhK ‖f − PKf‖L2(K) + CK∗hK∗ ‖f − 〈f〉K∗‖L2(SK)

+
CK∗

γK ,Kh
1/2
K∗

|γK |1/2
|SK |

∣∣〈f〉SK

∣∣+ CK∗

ΓK ,K∗h
1/2
K∗

∥∥∥RK,Γ − 〈RK,Γ〉ΓK

∥∥∥
L2(ΓK)

+
(
|SK |1/2 +

(
CK∗

ΓK ,K∗ |γK |1/2 + CK∗

γK ,K |ΓK |1/2
)
h
1/2
K∗ osc (ΓK)

) ∣∣∣〈RK,Γ〉ΓK

∣∣∣ .

(5.16)

Proof. The lemma is proved in Section 8.5. �

The result is again similar to Lemma 5.1 but now includes additional terms
measuring the size of the sliver and oscillation of the boundary.

Our main result is the following computable bound on the energy norm of the
error which takes into account the approximation of the boundary:

Theorem 5.4. Let the partition P be such that assumptions (A1)-(A5) and (A6)
µ

with µ ≥ 1 are satisfied. Let ηK be defined by (5.12) when K ∈ P0, (5.16) when
K ∈ P+ and (5.14) when K ∈ P−. Then

(5.17) |||e|||Ω ≤
(
∑

K∈P
η2K

)1/2

.

Proof. Since K ∈ P0 implies K∗ = K, the result follows at once from Lemmas
5.1-5.3 and (2.5). �

5.2. Local lower bounds on the energy norm of the error. The next result
shows that the upper bound in Theorem 5.4 is efficient.

Lemma 5.5. Let the partition P be such that assumptions (A1)-(A5) and (A6)
µ

with µ ≥ 2 are satisfied. Let PV(K) denote the set containing element K and
the elements in P which share a vertex with element K and let EV(K) denote the



COMPUTABLE ERROR BOUNDS ON NON-POLYGONAL DOMAINS 15

set containing the edges in E which have an endpoint at a vertex of element K.
Moreover, let

ΦK′ =
∑

K∈P
V(K′)∩P0

(
|||e|||K + hK ‖f − PKf‖L2(K)

+
∑

γ′∈E
V(K′)∩EB∩E0

h
1/2
K ‖g − Pγ′g‖L2(γ′)

)

+
∑

K∈P
V(K′)∩(P+∪P−)

(
|||e|||K∗ + h

1/2
K

∥∥∥RK,Γ − 〈RK,Γ〉ΓK

∥∥∥
L2(ΓK)

+ hK ‖f − 〈f〉K∗‖L2(K) + h
3/2
K ‖f − 〈f〉K∗‖L2(SK)

)
.

(5.18)

There exists a positive constant C, independent of the error e and the size of the
elements in the mesh, such that

(5.19) ηK ≤ CΦK .

Proof. The lemma is proved in Section 8.6. �

6. Numerical Examples

6.1. Example 1. We consider the problem−∆u = −2 in Ω =
{
(x, y) : x2 + y2 < 1

}

with n · gradu = 1 on Γ, with true solution u = 1
2

(
x2 + y2

)
. The initial mesh is

shown in Figure 5(b). In this, and the following examples, the problem is solved
using local mesh refinement where we used a bulk criterion to refine the mesh on
the smallest number of elements such that the sum of the contributions from these
elements to η2 from Theorem 5.4 exceeded 50% of the value of η2. The results ob-
tained are shown in Figure 6 with adaptively refined meshes being shown in Figure
5. From Table 1 we saw that the estimator from [2] did not provide an upper bound
on |||e|||Ω owing to neglecting approximation of the domain. In contrast, the estima-
tor from Theorem 5.4 takes the domain approximation into account and, as shown
in Figure 6, produces an upper bound on |||e|||Ω on all of the meshes. Asymptotically,
the estimator tends to overestimate the true error by a factor of 1.1. Remarkably,
even starting with an initial mesh such as the one in Figure 5(b) only results in
over-estimation by a factor of at most 4.2.

6.2. Example 2. Consider the problem −∆u = f in Ω where Ω is the domain
shown in Figure 7(a) with n · grad u = g on Γ where f and g are such that the
true solution to this problem is u =

(
r2/3 − r3

)
sin
(
2
3θ
)
. The initial mesh is shown

in Figure 7(b). The results obtained are shown in Figure 8 with adaptively refined
meshes being shown in Figure 7. Figure 8 shows once again that the estimator
provides an upper bound on |||e|||Ω on all of the meshes, with over-estimation by a
factor asymptotically of the order of 1.3. The over-estimation by a factor of up to
7.2 on the initial very coarse mesh stems from the high data oscillation arising from
the source term and the boundary.

6.3. Example 3. Finally, consider −∆u = f in Ω where Ω is the domain shown
in Figure 9(a) with n · grad u = g on Γ where f and g are such that the true
solution to this problem is u = r4 (cos (4θ)− 1) when x ≥ 0 and y ≥ 0 but u =
0 in the remainder of Ω. The problem is of interest because no refinement will
be needed outside the first quadrant. Moreover, the solution grows rapidly near
the outer boundary but near the inner boundary varies slowly. This means that
minimal refinement is expected near the inner boundary beyond controlling domain
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Figure 5. The (a) true domain Ω and (b) initial mesh for Example
1. Adaptively refined meshes for Example 1 containing (c) 648 and
(d) 1110 elements.
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Figure 6. The (a) performance and (b) effectivity indices of the
estimator for Example 1.

approximation. The initial mesh is shown in Figure 9(b). The results obtained are
shown in Figure 10 with adaptively refined meshes being shown in Figure 9. Once
again the estimator performs well both as an error estimator and in terms of guiding
local refinements.
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Figure 7. The (a) true domain Ω and (b) initial mesh for Example
2. Adaptively refined meshes containing (c) 608 and (d) 1050 ele-
ments.
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Figure 8. The (a) performance and (b) effectivity indices of the
estimator for Example 2.

7. Auxiliary results

7.1. Equilibrated fluxes. Let V index the set {xj}j∈V of vertices of the elements

in P . For j ∈ V , let Pj denote the set of elements in P that have a vertex at xj
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Figure 9. The (a) true domain Ω and (b) initial mesh for Example
3. Adaptively refined meshes containing (c) 608 and (d) 1002 ele-
ments.
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Figure 10. The (a) performance and (b) effectivity indices of the
estimator for Example 3.

and let λj denote the function which is piecewise affine on P and vanishes at all
the vertices in P , except xj , where it takes the value one. Also, for γ ∈ E , let V (γ)
denote the subset of V which indexes the endpoints of edge γ.
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The values of the two moments

µ
(i)
K,γ = (gK,γ , λi)γ for i ∈ V (γ)

determine a unique function gK,γ ∈ P1 (γ). Equally well, the flux gK,γ can be

written as a linear combination of the moments µ
(i)
K,γ . We now summarise a com-

putational procedure from [3] which can be used to determine the moments µ
(i)
K,γ

such that conditions (5.2) and (5.3) hold.
Let

AK
γ =

{
1
2n

K
γ ·
(
grad

(
wn|K

)
+ grad

(
wn|K′

))
if γ ∈ EK ∩ EK′ , K 6= K ′,

gK,γ if γ ∈ EK ∩ EB,

where n
K
γ denotes the outward unit normal vector to edge γ of element K. We

solve a system of linear equations for unknowns ξK,i:

(7.1)
1

2

∑

K′∈PK∩Pi

(ξK,i − ξK′,i) +
∑

γ∈EK∩EΓP
∩Ei

ξK,i = ∆K (λi) for all K ∈ Pi

where PK denotes the set of elements that share an edge with element K, Ei denotes
the set of edges that have an endpoint at xi and

∆K (λi) = (graduP ,gradλi)K − (f, λi)K −
∑

γ∈EK

(
AK

γ , λi

)
γ
.

The moments µ
(i)
K,γ are then defined by

(7.2) µ
(i)
K,γ =

{
1
2 (ξK,i − ξK′,i) +

(
AK

γ , λi

)
γ

if γ ∈ EK ∩ EK′ , K 6= K ′,

(gK,γ , λi)γ if γ ∈ EK ∩ EB.

The solvability and uniqueness of solutions of (7.1) is discussed in detail in [3],
where it is also shown that (5.2) and (5.3) will hold. A key requirement of the
fluxes is that they depend continuously on the local error and data oscillation.
The following result extends Theorem 6.2 from [3] to the case when the domain
approximation is taken into account.

Lemma 7.1. Let the mesh be such that assumptions (A1)-(A5) and (A6)µ with
µ ≥ 2 are satisfied. There exists a positive constant C, independent of the error e
and the size of the elements in the mesh, such that

h
1/2
K′ ‖RK′,γ‖L2(γ)

≤C
∑

i∈V(γ)

(
∑

K∈Pi∩P0

(
|||e|||K + hK ‖f − PKf‖L2(K)

+
∑

γ′∈Ei∩EB∩E0

h
1/2
K ‖g − Pγ′g‖L2(γ′)

)

+
∑

K∈Pi∩(P+∪P−)

(
|||e|||K∗ + h

1/2
K

∥∥∥RK,Γ − 〈RK,Γ〉ΓK

∥∥∥
L2(ΓK)

+ hK ‖f − 〈f〉K∗‖L2(K) + h
3/2
K ‖f − 〈f〉K∗‖L2(SK)

)

(7.3)

for γ ∈ EK′ .

Proof. This lemma is proved in Section 8.7. �
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7.2. Explicit computable expressions for the constants in Poincaré in-

equalities. Let ω be any two dimensional region which is star shaped with respect
to a ball. From [14] we have that (3.7) holds with Cω = 1

π if ω is convex. Otherwise,
if ω is star-shaped with respect to a point x0 ∈ ω, from [18] (3.7) holds with

Cω = 2

(
max

(
4
√
6

3

4
(
ρ2 − 1

)
+ 1

ρ2
+

1

2

(
1− 1

ρ2

)
,
ρ2 − 1

2ρ2
ln ρ

))1/2

where

ρ =
max
x∈∂ω

|x− x0|

min
x∈∂ω

|x− x0|
and ∂ω denotes the boundary of ω.

Obviously, for K ∈ P , CK ≤ C and CK∗ ≤ C if K∗ is convex. If K∗ satisfies
assumption (A4) then min

x∈∂K∗
|x− x0| ≥ chK and so ρ ≤ C since (2.9) means that

max
x∈∂K∗

|x− x0| ≤ ChK . Consequently, CK∗ ≤ C when K∗ is star shaped with

respect to a ball.
We also require a bound for the constant in (3.8). We generalise the approach

used in the appendix of [1] to the case of curvilinear triangles. Let ω and ω̃ be
any star-shaped two dimensional regions such that ω ⊂ ω̃. Let τ ⊂ ∂ω and let
θ
ω
τ ∈ L∞ (ω) be such that div θω

τ ∈ L∞ (ω) and n∂ω · θω
τ > 0 on τ and n∂ω · θω

τ = 0
on ∂ω \ τ where n∂ω is the outward unit normal vector to ∂ω. Define

mω
τ = min

x∈τ
n∂ω · θω

τ .

For w ∈ H1 (ω̃), we have that

‖w‖2L2(τ)

≤ 1

mω
τ

∫

τ

n∂ω · θω
τw

2 ds =
1

mω
τ

∫

∂ω

n∂ω · θω
τw

2 ds =
1

mω
τ

∫

ω

div
(
θ
ω
τw

2
)
dx

=
1

mω
τ

((
div (θω

τ ) , w
2
)
ω
+ 2 (wθω

τ ,gradw)ω
)

≤ 1

mω
τ

‖w‖L2(ω)

(
‖div θω

τ ‖L∞(ω) ‖w‖L2(ω) + 2 ‖θω
τ ‖L∞(ω) |||w|||ω

)

≤ 1

mω
τ

‖w‖L2(ω̃)

(
‖div θω

τ ‖L∞(ω) ‖w‖L2(ω̃) + 2 ‖θω
τ ‖L∞(ω) |||w|||ω̃

)
.

Hence, choosing w = v − 〈v〉ω̃ and applying (3.7), we deduce that the constant in
(3.8) may be chosen as

Cω̃
τ,ω =

(
Cω̃

(
‖div θω

τ ‖L∞(ω) Cω̃hω̃ + ‖θω
τ ‖L∞(ω)

))1/2
.

If K is a triangle and γ ∈ EK then, following [1] we take

θ
K
γ =

|γ|
2 |K| (x− xγ) ,

where xγ is the vertex of K which is not an endpoint of γ. It is easy to verify that

θ
K
γ satisfies n∂K · θK

γ = 1 on γ and n∂K · θK
γ = 0 on ∂K \ γ. Hence, in this case

mK
γ = 1. Moreover, we have that

∥∥∥div θK
γ

∥∥∥
L∞(K)

≤ Ch−1
K and

∥∥∥θK
γ

∥∥∥
L∞(K)

≤ C.

Consequently, CK
γ,K ≤ C and CK∗

γ,K ≤ C.
If K ∈ P+ ∪ P−, then in a similar vein, we take

θ
K∗

ΓK
=

|γK |
2 |K| (x− xΓK ) ,
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where xΓK is the vertex of K which is not an endpoint of ΓK . The function again

satisfies n∂K · θK∗

ΓK
= 0 on ∂K∗ \ ΓK . Assumption (A5) then means that mK∗

ΓK
≥

c. Moreover, we have that
∥∥∥div θK∗

ΓK

∥∥∥
L∞(K∗)

≤ Ch−1
K and

∥∥∥θK∗

ΓK

∥∥∥
L∞(K∗)

≤ C.

Consequently, CK∗

ΓK ,K∗ ≤ C.

K

x1

x2

x3

γ1
γ2

γ3

t1

t2

t3

n1

n2

n3

Figure 11. The labelling and orientation of the vertices, edges,
tangent vectors and unit normal vectors of element K.

7.3. An explicit expression for σK . Let K be any element and let the vertices,
edges, tangent vectors and unit normal vectors of elementK be labelled and oriented
as shown in Figure 11, where we emphasise that the tangent vectors are such that
|tk| = |γk|. Also, let λk ∈ P1 (K) be such that λk = 1 at vertex xk of element K
and vanishes at the remaining two vertices.

Lemma 7.2. Let

σ
γ1

K =
1

2 |K|
(
(RK,γ1

, λ2)γ1
((2λ3 − 3λ2 − λ1)λ3t2 + (4λ2 − λ3 − 7λ1)λ2t3)

+ (RK,γ1
, λ3)γ1

((−4λ3 + λ2 + 7λ1)λ3t2 + (−2λ2 + 3λ3 + λ1)λ2t3)
)

with σ
γ2

K and σ
γ3

K being defined by permuting the indices, and

σ
0
K =

1

2 |K| ((λ2λ3 − λ3λ1) t2 + (λ2λ3 − λ1λ2) t3) .

Then

(7.4) σK =

3∑

i=1

σ
γi

K − 1

(σ0
K ,σ0

K)K

3∑

i=1

(
σ

γi

K ,σ0
K

)
K
σ

0
K

satisfies (5.8) and (5.9) and has minimal norm over P2 (K)× P2 (K).

Proof. This lemma is proved in Section 8.8. �

An explicit computable expression for ‖σK‖L2(K) is given in Section 9.4 of [4].

8. Proofs
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8.1. Proof of Lemma 2.3. Since C
(
K∗
)
is dense in H1 (K∗), it suffices to prove

the result for w ∈ C
(
K∗). We first observe that

∣∣∣∣
1

|ΓK |

∫

ΓK

w ds− 1

|γK |

∫

γK

w ds

∣∣∣∣

=

∣∣∣∣
1

|ΓK |

(∫

ΓK

w ds−
∫

γK

w ds

)
+

(
1

|ΓK | −
1

|γK |

)∫

γK

w ds

∣∣∣∣

≤ 1

|ΓK |

∣∣∣∣
∫

ΓK

w ds−
∫

γK

w ds

∣∣∣∣+
|ΓK | − |γK |
|ΓK | |γK |

∣∣∣∣
∫

γK

w ds

∣∣∣∣

(8.1)

By using the mapping and notation introduced at the end of Section 2.1 we can
say that

|ΓK | − |γK | =
∫ |γK |

0

√
1 + φ′ (x̂)2 − 1 dx̂

≤ |γK |1/2 osc (ΓK)

(∫ |γK |

0

√
1 + φ′ (x̂)2 dx̂

)1/2

= |γK |1/2 |ΓK |1/2 osc (ΓK)

on using the Cauchy–Schwarz inequality. Moreover, the Cauchy–Schwarz inequality
and (3.8) give

∣∣∣∣
∫

γK

w ds

∣∣∣∣ ≤ |γK |1/2 ‖w‖L2(γK) ≤ CK∗

γK ,Kh
1/2
K∗ |γK |1/2 |||w|||K∗

on recalling (w, 1)K = 0. Consequently,

|ΓK | − |γK |
|ΓK | |γK |

∣∣∣∣
∫

γK

w ds

∣∣∣∣ ≤
1

|ΓK |C
K∗

γK ,K |ΓK |1/2 h1/2
K∗ osc (ΓK) |||w|||K∗ .(8.2)

Again using the mapping and notation introduced at the end of Section 2.1 we
have that
∣∣∣∣
∫

ΓK

w ds−
∫

γK

w ds

∣∣∣∣

=

∣∣∣∣∣

∫ |γK |

0

ŵ (x̂, φ (x̂))

√
1 + φ′ (x̂)2 dx̂ −

∫ |γK |

0

ŵ (x̂, 0) dx̂

∣∣∣∣∣

=

∣∣∣∣∣

∫ |γK |

0

ŵ (x̂, φ (x̂))− ŵ (x̂, 0) dx̂+

∫ |γK |

0

ŵ (x̂, φ (x̂))

(√
1 + φ′ (x̂)2 − 1

)
dx̂

∣∣∣∣∣

≤
∣∣∣∣∣

∫ |γK |

0

ŵ (x̂, φ (x̂))− ŵ (x̂, 0) dx̂

∣∣∣∣∣+
∣∣∣∣∣

∫ |γK |

0

ŵ (x̂, φ (x̂))

(√
1 + φ′ (x̂)2 − 1

)
dx̂

∣∣∣∣∣ .

Now,
∣∣∣∣∣

∫ |γK |

0

ŵ (x̂, φ (x̂))− ŵ (x̂, 0) dx̂

∣∣∣∣∣ =
∣∣∣∣∣

∫ |γK |

0

∫ φ(x̂)

0

∂

∂ŷ
ŵ (x̂, ŷ) dŷ dx̂

∣∣∣∣∣

≤
(∫ |γK |

0

∫ φ(x̂)

0

1 dŷ dx̂

)1/2(∫ |γK |

0

∫ φ(x̂)

0

(
∂

∂ŷ
ŵ (x̂, ŷ)

)2

dŷ dx̂

)1/2

on applying the Cauchy–Schwarz inequality. Moreover,
∫ |γK |

0

∫ φ(x̂)

0

1 dŷ dx̂ =

∫ |γK |

0

φ (x̂) dx̂ = |SK |
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and (∫ |γK |

0

∫ φ(x̂)

0

(
∂

∂ŷ
ŵ (x̂, ŷ)

)2

dŷ dx̂

)1/2

≤ |||w|||SK
≤ |||w|||K∗ .

Applying the Cauchy–Schwarz inequality also gives
∣∣∣∣∣

∫ |γK |

0

ŵ (x̂, φ (x̂))

(√
1 + φ′ (x̂)2 − 1

)
dx̂

∣∣∣∣∣

≤
(∫ |γK |

0

(ŵ (x̂, φ (x̂)))
2
√
1 + φ′ (x̂)2 dx̂

)1/2

|γK |1/2 osc (ΓK)

= ‖w‖L2(ΓK) |γK |1/2 osc (ΓK) ≤ CK∗

ΓK ,K∗h
1/2
K∗ |γK |1/2 osc (ΓK) |||w|||K∗

on applying (3.8). Consequently,
∣∣∣∣
∫

ΓK

w ds−
∫

γK

w ds

∣∣∣∣

≤
(
|SK |1/2 + CK∗

ΓK ,K∗ |γK |1/2 h1/2
K∗ osc (ΓK)

)
|||w|||K∗ .

(8.3)

The result then follows upon combining (8.1), (8.2) and (8.3).

8.2. Proof of Lemma 2.4. To bound the first term we first write

(8.4)
(
F, v − 〈v〉γK

)

SK

= (F, v − 〈v〉K∗)SK
−
(
F, 〈v〉γK

− 〈v〉K∗

)

SK

.

The first term in (8.4) is then bounded by writing

(F, v − 〈v〉K∗)SK
=(F − 〈F 〉K∗ , v − 〈v〉K∗)SK

≤‖F − 〈F 〉K∗‖L2(SK) ‖v − 〈v〉K∗‖L2(SK)

and since

‖v − 〈v〉K∗‖L2(SK) ≤ ‖v − 〈v〉K∗‖L2(K∗)

we can use (3.7) to conclude that

(8.5) (F, v − 〈v〉K∗)SK
≤ CK∗hK∗ ‖F − 〈F 〉K∗‖L2(SK) |||v|||K∗ .

For the second term in (8.4) we write

−
(
F, 〈v〉γK

− 〈v〉K∗

)

SK

= −
(
F, 〈v − vK∗〉γK

)

SK

= −〈v − vK∗〉γK
〈F 〉SK

|SK |

and

〈v − vK∗〉γK
=

1

|γK |

∫

γK

v − 〈v〉K∗ ds ≤ 1

|γK |1/2
‖v − 〈v〉K∗‖L2(γK)

≤
CK∗

γK ,Kh
1/2
K∗

|γK |1/2
|||v|||K

by (3.8). Hence,

(8.6) −
(
F, 〈v〉γK

− 〈v〉K∗

)

SK

≤
CK∗

γK ,Kh
1/2
K∗

|γK |1/2
|SK |

∣∣〈F 〉SK

∣∣ |||v|||K .

To bound the second term we first write(
G, v − 〈v〉γK

)

ΓK

=
(
G, v − 〈v〉ΓK

)
ΓK

+
(
G, 〈v〉ΓK

− 〈v〉γK

)

ΓK

.

We can then say that
(
G, v − 〈v〉ΓK

)
ΓK

=
(
G− 〈G〉ΓK

, v − 〈v〉ΓK

)
ΓK

≤
∥∥G− 〈G〉ΓK

∥∥
L2(ΓK)

∥∥v − 〈v〉ΓK

∥∥
L2(ΓK)
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and since

(8.7)
∥∥v − 〈v〉ΓK

∥∥
L2(ΓK)

≤ ‖v − 〈v〉K∗‖L2(ΓK)

we can use (3.8) to conclude that

(8.8)
(
G, v − 〈v〉ΓK

)
ΓK

≤ CK∗

ΓK ,K∗h
1/2
K∗

∥∥G− 〈G〉ΓK

∥∥
L2(ΓK)

|||v|||K∗ .

Moreover,
(
G, 〈v〉ΓK

− 〈v〉γK

)

ΓK

=
∣∣∣〈v〉ΓK

− 〈v〉γK

∣∣∣
∣∣〈G〉ΓK

∣∣ |ΓK |

and
∣∣∣〈v〉ΓK

− 〈v〉γK

∣∣∣ =
∣∣∣∣

1

|ΓK |

∫

ΓK

v − 〈v〉K∗ ds− 1

|γK |

∫

γK

v − 〈v〉K∗ ds

∣∣∣∣ .

Hence, on applying (2.11) we have that

(
G, 〈v〉ΓK

− 〈v〉γK

)

ΓK

≤
(
|SK |1/2 +

(
CK∗

ΓK ,K∗ |γK |1/2 + CK∗

γK ,K |ΓK |1/2
)
h
1/2
K∗ osc (ΓK)

) ∣∣〈G〉ΓK

∣∣ |||v|||K∗ .

(8.9)

Consequently, from (8.5), (8.6), (8.8) and (8.9) we have the bound claimed.

8.3. Proof of Lemma 4.1. Following [16] we define ũP ∈ X̃P
\R such that

(8.10) (grad ũP ,grad v)Ω = (f, v)Ω + (g, v)Γ for all v ∈ X̃P .

First observe that

(8.11) |||u− uP |||Ω ≤ |||u− ũP |||Ω + |||ũP − uP |||Ω .

Now, (8.10) means that, for any p ∈ X̃P ,

(grad (u− ũP) ,grad (u− ũP))Ω =(grad (u− ũP) ,grad (u− p))Ω

≤ |||u− ũP |||Ω |||u− p|||Ω
Consequently,

(8.12) |||u− ũP |||Ω ≤ |||u− p|||Ω for any p ∈ X̃P .

Moreover, since grad (ũP − uP) is constant on K∗,

|||ũP − uP |||2SK
= |SK |

∣∣grad
(
ũP|K∗ − uP|K∗

)∣∣2 =
|SK |
|K| |||ũP − uP |||2K

Hence,

|||ũP − uP |||2Ω = |||ũP − uP |||2ΩP
+
∑

K∈P+

|||ũP − uP |||2SK

= |||ũP − uP |||2ΩP
+
∑

K∈P+

|SK |
|K| |||ũP − uP |||2K

≤
(
1 + max

K∈P+

|SK |
|K|

)
|||ũP − uP |||2ΩP

.

(8.13)

Let v ∈ X̃P . Then

(grad (ũP − uP) ,grad v)ΩP

=(grad (ũP − u) ,grad v)ΩP
+ (grad (u− uP) ,grad v)ΩP

.
(8.14)

Now,

(grad (u− uP) ,grad v)ΩP
=(gradu,grad v)Ω − (graduP ,grad v)ΩP

+ (gradu,grad v)ΩP
− (gradu,grad v)Ω
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where

(gradu,grad v)ΩP
− (gradu,grad v)Ω =−

∑

K∈P+

(gradu,grad v)SK

≤
∑

K∈P+

|||u|||SK
|||v|||SK

=
∑

K∈P+

|||u|||SK

|SK |1/2

|K|1/2
|||v|||K

and

(gradu,grad v)Ω − (graduP ,grad v)ΩP

=(f, v)Ω + (g, v)Γ − (f, v)ΩP
−
∑

K∈P

∑

γ∈EK∩EB

(gK,γ , v)γ

=
∑

K∈P+



(f, v)SK
+ (g, v)ΓK

−
∑

γ∈EK∩EB

(gK,γ , v)γK





=
∑

K∈P+

((
f, v − 〈v〉γK

)

SK

+
(
g, v − 〈v〉γK

)

ΓK

)

by (3.6). We can bound this term using Lemma 2.4 and the fact that |||v|||K∗ =
|K∗|1/2
|K|1/2 |||v|||K and

∑

K∈P+

|||v|||2K ≤ |||v|||2ΩP
to conclude that

(8.15) (grad (u− uP) ,grad v)ΩP
≤
∑

K∈P+

ΨK |||v|||K ≤



∑

K∈P+

Ψ2
K




1/2

|||v|||ΩP

where

ΨK =
|K∗|1/2

|K|1/2

(
|SK |
|K|1/2

|||u|||SK
+ CK∗hK∗ ‖f − 〈f〉K∗‖L2(SK)

+
CK∗

γK ,Kh
1/2
K∗

|γK |1/2
|SK |

∣∣〈f〉SK

∣∣+ CK∗

ΓK ,K∗h
1/2
K∗

∥∥g − 〈g〉ΓK

∥∥
L2(ΓK)

+
(
|SK |1/2 +

(
CK∗

ΓK ,K∗ |γK |1/2 + CK∗

γK ,K |ΓK |1/2
)
h
1/2
K∗ osc (ΓK)

) ∣∣〈g〉ΓK

∣∣
)
.

Then, by letting v = ũP − uP in (8.14), applying (8.15) and the Cauchy–Schwarz
inequality, we can conclude that

|||ũP − uP |||2ΩP
≤ |||ũP − u|||ΩP

|||ũP − uP |||ΩP
+




∑

K∈P+

Ψ2
K




1/2

|||ũP − uP |||ΩP

and hence

(8.16) |||ũP − uP |||ΩP
≤ |||ũP − u|||Ω +




∑

K∈P+

Ψ2
K




1/2

since |||ũP − u|||ΩP
≤ |||ũP − u|||Ω.
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Combining (8.11), (8.12), (8.13) and (8.16) then gives, for any p ∈ X̃P ,
(8.17)

|||u− uP |||Ω ≤ |||u− p|||Ω +

(
1 + max

K∈P+

|SK |
|K|

)1/2


|||u− p|||Ω +



∑

K∈P+

Ψ2
K




1/2

 .

Now, (2.1), (2.2), (2.13), (2.7), (2.8), (2.9) and (2.6) imply that

ΨK ≤C

(
h
1/2
K |||u|||SK

+
(
CK∗hK + CK∗

γK ,Kh
3/2
K

)
‖f‖L2(SK)

+ CK∗

ΓK ,K∗h
1/2
K

∥∥g − 〈g〉ΓK

∥∥
L2(ΓK)

+
(
hK +

(
CK∗

ΓK ,K∗ + CK∗

γK ,K

)
h
3/2
K

)
‖g‖L2(ΓK)

)

since
∣∣〈f〉SK

∣∣ ≤ |SK |−1/2 ‖f‖L2(SK),
∣∣〈g〉ΓK

∣∣ ≤ |ΓK |−1/2 ‖g‖L2(ΓK) and ‖f − 〈f〉K∗‖L2(SK) ≤
‖f‖L2(SK). Consequently, owing to the fact that assumptions (A4) and (A5) mean

that CK∗ ≤ C, CK∗

ΓK ,K∗ ≤ C and CK∗

γK ,K ≤ C, we can say that



∑

K∈P+

Ψ2
K




1/2

≤C

(
∑

K∈P+

(
hK |||u|||2SK

+ hK

∥∥g − 〈g〉ΓK

∥∥2
L2(ΓK)

)

+ max
K∈P+

h2
K ‖f‖2L2(Ω) + max

K∈P+

h2
K ‖g‖2L2(Γ)

)1/2

≤C







∑

K∈P+

(
hK |||u|||2SK

+ hK

∥∥g − 〈g〉ΓK

∥∥2
L2(ΓK)

)



1/2

+ max
K∈P+

hK




since h3
K ≤ Ch2

K since Ω is bounded. This also means that

1 + max
K∈P+

|SK |
|K| ≤ 1 + C max

K∈P+

hK ≤ C

by (2.1) and (2.7) and hence by substituting the above inequalities into (8.17) we
arrive at the result claimed.

8.4. Proof of Lemma 5.2. Integration by parts allows us to say that

(f, v)K∗ +
∑

γ∈EK∩EI

(gK,γ , v)γ + (g, v)ΓK
− (graduP ,grad v)K∗

=(f, v)K∗ +
∑

γ∈EK∩EI

(RK,γ , v)γ + (RK,Γ, v)ΓK

where RK,γ is given by (5.5) and RK,Γ is given by (5.6).
Thanks to (5.3) we have that (5.7) holds and so σK satisfies (5.8) and (5.9).

Integration by parts yields

(σK ,grad v)K∗ = (n · σK , v)ΓK
+

∑

γ∈EK∩EI

(
n

K
γ · σK , v

)
γ
− (divσK , v)K∗

and so (5.8) and (5.9) mean that

(PKf, v)K∗ +
∑

γ∈EK∩EI

(RK,γ , v)γ = (σK ,grad v)K∗ − (n · σK , v)ΓK
.
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Therefore,

(f, v)K∗ +
∑

γ∈EK∩EI

(RK,γ , v)γ + (RK,Γ, v)ΓK

=(σK ,grad v)K∗ + (RK,Γ − n · σK , v)ΓK
+ (f − PKf, v)K∗ .

Now, since

(graduP ,grad v)SK
=
(
n

K
γK

· graduP , v
)
γK

− (n · graduP , v)ΓK

we have that

(8.18)
(
n

K
γK

· graduP , 1
)
γK

= (n · graduP , 1)ΓK
.

Moreover, since

(σK ,grad v)SK
=
(
n

K
γK

· σK , v
)
γK

− (n · σK , v)ΓK
− (divσK , v)SK

we have that

(n · σK , 1)ΓK
=
(
n

K
γK

· σK , 1
)
γK

− (divσK , 1)SK
= (RK,γK , 1)γK

+ (PKf, 1)SK

by (5.8) and (5.9). The definitions of RK,γK and PKf then allow us to say that

(n · σK , 1)ΓK
=
(
gK,γK − n

K
γK

· grad uP , 1
)
γK

+ (f, 1)SK
= (g − n · graduP , 1)ΓK

upon using definition (3.6) and (8.18). Consequently, definition (5.6) means that

(8.19) (RK,Γ − n · σK , 1)ΓK
= 0

which allows us to say that

(RK,Γ − n · σK , v)ΓK
= (RK,Γ − n · σK , v − 〈v〉K∗)ΓK

.

Therefore,

(f, v)K∗ +
∑

γ∈EK∩EI

(RK,γ , v)γ + (RK,Γ, v)ΓK

=(σK ,grad v)K∗ + (RK,Γ − n · σK , v − 〈v〉K∗)ΓK
+ (f − PKf, v − 〈v〉K∗)K∗

≤‖σK‖
L2(K∗) |||v|||K∗ + ‖RK,Γ − n · σK‖L2(ΓK) ‖v − 〈v〉K∗‖L2(ΓK)

+ ‖f − PKf‖L2(K∗) ‖v − 〈v〉K∗‖L2(K∗)

≤
(
‖σK‖

L2(K∗) + CK∗

ΓK ,K∗h
1/2
K∗ ‖RK,Γ − n · σK‖L2(ΓK)

+ CK∗hK∗ ‖f − PKf‖L2(K∗)

)
|||v|||K∗

by (3.7) and (3.8) and so we have the bound claimed.

8.5. Proof of Lemma 5.3. Integration by parts allows us to say that

(f, v)K∗ +
∑

γ∈EK∩EI

(gK,γ , v)γ + (g, v)ΓK
− (graduP ,grad v)K∗

=(PKf, v)K +
∑

γ∈EK

(RK,γ , v)γ + (f − PKf, v)K

+ (f, v)SK
− (RK,γK , v)γK

+ (g − n · graduP , v)ΓK

where RK,γ is given by (5.5). Arguing as in the proof of Lemma 5.1 we obtain

(8.20) (PKf, v)K +
∑

γ∈EK

(RK,γ , v)γ = (σK ,grad v)K ≤ ‖σK‖
L2(K) |||v|||K

and that

(8.21) (f − PKf, v)K ≤ CKhK ‖f − PKf‖L2(K) |||v|||K
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by (3.7). It remains to bound the contribution from the sliver. Since,

(graduP ,grad v)SK
= (n · graduP , v)ΓK

−
(
n

K
γK

· grad uP , v
)
γK

and n
K
γK

· graduP is constant on γK we have that

(8.22) − n
K
γK

· graduP = − 1

|γK | (n · grad uP , 1)ΓK
on γK .

Now, (5.5), (3.6) and (8.22) imply

− (RK,γK , v)γK
= −

(
1

|γK |
(
(g − n · graduP , 1)ΓK

+ (f, 1)SK

)
, v

)

γK

and hence

(f, v)SK
+ (g − n · grad uP , v)ΓK

− (RK,γK , v)γK

=
(
f, v − 〈v〉γK

)

SK

+
(
RK,Γ, v − 〈v〉γK

)

ΓK

(8.23)

where RK,Γ is given by (5.6).
Consequently, since |||v|||K ≤ |||v|||K∗ , from (8.20), (8.21) and Lemma 2.4 we have

the bound claimed.

8.6. Proof of Lemma 5.5. Let

Jγ =

{
1
2

(
n

K
γ · grad uP|K + n

K′

γ · graduP|K′

)
if γ ∈ EK ∩ EK′ for distinct K,K ′ ∈ P

gK,γ − n
K
γ · graduP|K if γ ∈ EK ∩ EB for K ∈ P .

Integrating (5.1) by parts allows us to say that

(grad e,grad v)Ω =
∑

K∈P0


(f, v)K +

∑

γ∈EK∩EB

(g − Pγg, v)γ +
∑

γ∈EK

(Jγ , v)γ




+
∑

K∈P+∪P−


(f, v)K∗ + (RK,Γ, v)ΓK

+
∑

γ∈EK∩EI

(Jγ , v)γ




(8.24)

for all v ∈ H1 (Ω). Applying standard “bubble function” arguments [3, 19] yields

(8.25) hK ‖PKf‖L2(K) ≤ C
(
|||e|||K + hK ‖f − PKf‖L2(K)

)

for K ∈ P0 ∪ P+. For γ ∈ EI , let
Pγ = {K ∈ P : γ ∈ EK} .

Applying these “bubble function” arguments but with K∗ in place of K when
K ∈ P+ ∪ P− and ΓK in place of γ when γ ∈ EK ∩ (E+ ∪ E−) yields

(8.26) hK ‖〈f〉K∗‖L2(K∗) ≤ C
(
|||e|||K∗ + hK ‖f − 〈f〉K∗‖L2(K∗)

)

for K ∈ P+ ∪ P−;

h
1/2
K′ ‖Jγ‖L2(γ)

≤C

(
∑

K∈Pγ∩(P0∪P+)

(
|||e|||K + hK ‖f − PKf‖L2(K)

)

+
∑

K∈Pγ∩P−

(
|||e|||K∗ + hK ‖f − 〈f〉K∗‖L2(K∗)

))(8.27)

for γ ∈ EI ;

(8.28) h
1/2
K ‖Jγ‖L2(γ)

≤ C
(
|||e|||K + hK ‖f − PKf‖L2(K) + h

1/2
K ‖g − Pγg‖L2(γ)

)



COMPUTABLE ERROR BOUNDS ON NON-POLYGONAL DOMAINS 29

for K ∈ P0 and γ ∈ EK ∩ EB; and

hK

∣∣∣〈RK,Γ〉ΓK

∣∣∣
L2(ΓK)

≤C

(
|||e|||K∗ + hK ‖f − 〈f〉K∗‖L2(K∗) + h

1/2
K

∥∥∥RK,Γ − 〈RK,Γ〉ΓK

∥∥∥
L2(ΓK)

)(8.29)

for K ∈ P+ ∪ P−.
Observing that

‖σK‖
L2(K) ≤

∥∥∥∥∥∥

∑

γ∈EK

σ
γ
K

∥∥∥∥∥∥
L2(K)

we can apply standard inequalities and scaling arguments to conclude that

‖σK‖
L2(K) ≤ Ch

1/2
K

∑

γ∈EK

‖RK,γ‖L2(γ)
.

Using Lemma 7.1 then gives

(8.30) ‖σK‖
L2(K) ≤ CΦK .

When K ∈ P0, (5.19) then follows by noting that CK ≤ C and CK
γ,K ≤ C and so

CKhK ‖f − PKf‖L2(K) +
∑

γ∈EK∩EΓ∩E0

CK
γ,Kh

1/2
K ‖g − Pγg‖L2(γ)

≤ CΦK .

When K ∈ P+, applying (2.13), (2.7), (2.6) and (8.29) and using the fact that
CK∗

ΓK ,K∗ ≤ C and CK∗

γK ,K ≤ C we have that

(
|SK |1/2 +

(
CK∗

ΓK ,K∗ |γK |1/2 + CK∗

γK ,K |ΓK |1/2
)
h
1/2
K∗ osc (ΓK)

) ∣∣∣〈RK,Γ〉ΓK

∣∣∣

≤C

(
hK |||e|||K∗ + h2

K ‖f − 〈f〉K∗‖L2(K∗) + h
3/2
K

∥∥∥RK,Γ − 〈RK,Γ〉ΓK

∥∥∥
L2(ΓK)

)

≤C

(
|||e|||K∗ + hK ‖f − 〈f〉K∗‖L2(K∗) + h

1/2
K

∥∥∥RK,Γ − 〈RK,Γ〉ΓK

∥∥∥
L2(ΓK)

)
≤ CΦK

(8.31)

since hK must be bounded by the diameter of Ω. Moreover,
∣∣〈f〉SK

∣∣ = 1

|SK |
∣∣∣(〈f〉K∗ + f − 〈f〉K∗ , 1)SK

∣∣∣

≤ 1

|SK |1/2
(
‖〈f〉K∗‖SK

+ ‖f − 〈f〉K∗‖SK

)

≤ 1

|SK |1/2
(
‖〈f〉K∗‖K∗ + ‖f − 〈f〉K∗‖SK

)
.

Hence, applying (2.7), (2.9), (2.6) and (8.29) and using the fact that CK∗

γK ,K ≤ C
we have that

CK∗

γK ,Kh
1/2
K∗

|γK |1/2
|SK |

∣∣〈f〉SK

∣∣ ≤C
(
h
1/2
K |||e|||K∗ + h

3/2
K ‖f − 〈f〉K∗‖L2(K∗)

)

≤C
(
|||e|||K∗ + hK ‖f − 〈f〉K∗‖L2(K∗)

)
≤ CΦK

(8.32)

since hK must be bounded by the diameter of Ω. Consequently, we arrive at (5.19)
when K ∈ P+ by using (8.30), (8.31) and (8.32) and noting that CK ≤ C, CK∗ ≤ C
and CK∗

ΓK ,K∗ ≤ C and so

CKhK ‖f − PKf‖L2(K) + CK∗hK∗ ‖f − 〈f〉K∗‖L2(SK)

+ CK∗

ΓK ,K∗h
1/2
K∗

∥∥∥RK,Γ − 〈RK,Γ〉ΓK

∥∥∥
L2(ΓK)

≤ CΦK
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upon using (2.9).
When K ∈ P−, we have that

‖RK,Γ − nΓ · σK‖L2(ΓK)

≤
∥∥∥RK,Γ − 〈RK,Γ〉ΓK

∥∥∥
L2(ΓK)

+
∥∥∥nΓ · σK − 〈RK,Γ〉ΓK

∥∥∥
L2(ΓK)

.

Now, (8.19) means that
∥∥∥nΓ · σK − 〈RK,Γ〉ΓK

∥∥∥
L2(ΓK)

=
∥∥nΓ · σK − 〈nΓ · σK〉ΓK

∥∥
L2(ΓK)

≤‖nΓ · σK‖L2(ΓK) .

Moreover,

‖nΓ · σK‖L2(ΓK) ≤ ‖σK‖
L2(ΓK) ≤ Ch

−1/2
K∗ ‖σK‖

L2(K∗)

by the equivalence of norms on finite dimensional spaces and scaling arguments.
Consequently, upon using (2.9) and the fact that CK∗

ΓK ,K∗ ≤ C we have that

CK∗

ΓK ,K∗h
1/2
K∗ ‖RK,Γ − nΓ · σK‖L2(ΓK)

≤C

(
‖σK‖

L2(K) + h
1/2
K∗

∥∥∥RK,Γ − 〈RK,Γ〉ΓK

∥∥∥
L2(ΓK)

)
.

(8.33)

Hence, we can arrive at (5.19) when K ∈ P− by observing that ‖σK‖
L2(K∗) ≤

‖σK‖
L2(K) and CK∗hK∗ ‖f − PKf‖L2(K∗) ≤ CΦK and using (8.30) and (8.33).

8.7. Proof of Lemma 7.1. For K ′ ∈ P and γ ∈ EK′ , the definitions of RK′,γ , A
K′

γ

and Jγ mean that

‖RK′,γ‖L2(γ)
=
∥∥∥gK′,γ −AK′

γ − Jγ

∥∥∥
L2(γ)

≤
∥∥∥gK′,γ −AK′

γ

∥∥∥
L2(γ)

+ ‖Jγ‖L2(γ)
.

Since gK′,γ −AK′

γ is affine we can say that

h
1/2
K′

∥∥∥gK′,γ −AK′

γ

∥∥∥
L2(γ)

≤ C
∑

i∈V(γ)

∣∣∣∣
(
gK′,γ −AK′

γ , λi

)

γ

∣∣∣∣

and as in [3] we have that
∣∣∣∣
(
gK′,γ −AK′

γ , λi

)

γ

∣∣∣∣ ≤ C
∑

K∈Pi

|∆K (λi)| .

Now, integration by parts yields

|∆K (λi)|

=

∣∣∣∣∣
∑

γ∈EK

(
n

K
γ · grad uP −AK

γ , λi

)
γ
− (f, λi)K

∣∣∣∣∣

=

∣∣∣∣∣
∑

γ∈EK

(Jγ , λi)γ − (PKf, λi)K

∣∣∣∣∣

≤
∑

γ∈EK∩Ei

‖Jγ‖L2(γ)
‖λi‖L2(γ)

+ ‖PKf‖L2(K) ‖λi‖L2(K)

≤C




∑

γ∈EK∩Ei

h
1/2
K ‖Jγ‖L2(γ)

+ hK ‖PKf‖L2(K)



 .

Now, for K ∈ P+, (3.6) and (8.22) allow us to write

JγK =
1

|γK |
(
(RK,Γ, 1)ΓK

+ (f, 1)SK

)
.
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Similarly for, for K ∈ P−, (3.6) and (8.18) allow us to write

JγK =
1

|γK |
(
(RK,Γ, 1)ΓK

− (f, 1)SK

)
.

Hence, we can say that, for K ∈ P+ ∪ P−,

h
1/2
K ‖Jγ‖L2(γK) ≤C

(
|ΓK |

∣∣∣〈RK,Γ〉ΓK

∣∣∣+ |SK |1/2 ‖f‖L2(SK)

)

≤C
(
hK

∣∣∣〈RK,Γ〉ΓK

∣∣∣+ h
3/2
K ‖f‖L2(SK)

)

by (2.7) and (2.9). Moreover, since the boundedness of the domain Ω means that
h3
K ≤ Ch2

K which in turn means that |SK | ≤ C |K∗|, we can say that

‖f‖L2(SK) ≤‖〈f〉K∗‖L2(SK) + ‖f − 〈f〉K∗‖L2(SK)

≤C ‖〈f〉K∗‖L2(K∗) + ‖f − 〈f〉K∗‖L2(SK)

and similarly, (2.8) means that

‖PKf‖L2(K) ≤ ‖f‖L2(K) ≤ C ‖〈f〉K∗‖L2(K∗) + ‖f − 〈f〉K∗‖L2(K) .

Consequently,

hK′ ‖RK′,γ‖L2(γ)

≤C
∑

i∈V(γ)

(
∑

K∈Pi∩P0


h

1/2
K

∑

γ′∈EK∩Ei

‖Jγ′‖L2(γ′) + hK ‖PKf‖L2(K)




+
∑

K∈Pi∩(P+∪P−)

(
h
1/2
K

∑

γ′∈EK∩Ei∩EI

‖Jγ′‖L2(γ′) + hK

∣∣∣〈RK,Γ〉ΓK

∣∣∣

+ hK ‖〈f〉K∗‖L2(K∗) + hK ‖f − 〈f〉K∗‖L2(K) + h
3/2
K ‖f − 〈f〉K∗‖L2(SK)

))
.

The result then follows upon using (8.25), (8.26), (8.27), (8.28) and (8.29).

8.8. Proof of Lemma 7.2. It is relatively straightforward to show that

nj · σγi

K = RK,γiδij on γj for i, j = 1, 2, 3;

nj · σ0
K = 0 on γj for j = 1, 2, 3;

and

(σγi

K ,grad p)K =
(
σ

0
K ,grad p

)
K

= 0 for all p ∈ P1 (K) for i = 1, 2, 3.

It then follows that

σK =

3∑

i=1

σ
γi

K − 1

(σ0
K ,σ0

K)K

3∑

i=1

(
σ

γk

K ,σ0
K

)
K
σ

0
K

satisfies

ni · σK = RK,γi on γi for i = 1, 2, 3

and

− divσK = PKf in K

as desired. The fact that ‖σK‖
L2(K) is minimised over P2 (K) × P2 (K) follows

upon observing that any function whose normal components vanishes on all of the
edges of K and whose divergence is zero in K must be a multiple of σ0

K and that(
σK ,σ0

K

)
K

= 0.
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