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COMPUTABLE ERROR BOUNDS FOR FINITE ELEMENT
APPROXIMATION ON NON-POLYGONAL DOMAINS

MARK AINSWORTH AND RICHARD RANKIN

ABSTRACT. Fully computable, guaranteed bounds are obtained on the error in
the finite element approximation which take the effect of the boundary approx-
imation into account. We consider the case of piecewise affine approximation
of the Poisson problem with pure Neumann boundary data, and obtain a fully
computable quantity which is shown to provide a guaranteed upper bound on
the energy norm of the error. The estimator provides, up to a constant and
oscillation terms, local lower bounds on the energy norm of the error.

1. INTRODUCTION

Whilst the topic of a posteriori error estimation for finite element approximation
dates back over 50 years, it is only relatively recently that techniques have been
developed that enable the computation of accurate, guaranteed error bounds [2] 4]
0, 12, 13, [15]. All of these works assume that the computational domain is polygonal
and can be meshed exactly using finite elements. Of course, many problems arising
in practical applications are posed on curvilinear domains and a decision has to be
made on how to deal with the meshing. Although approaches are available that
enable the use of curvilinear elements that match the domain exactly, in practice
iso-parametric elements are used to approximate the computational domain. The
approximation of the domain incurs an additional source of error that should be
taken into account in both the a priori convergence analysis, and in the a posteriori
error bounds.

A priori error bounds have been studied by various authors: problems with
pure Dirichlet boundary conditions were considered in [7), [16], [I7]; problems with
homogeneous Robin and Dirichlet boundary conditions were considered in [I1];
mixed Dirichlet-Neumann boundary conditions are considered in [5] for the Poisson
problem in which Neumann boundary conditions are imposed on curved parts of the
boundary whilst Dirichlet boundary conditions are imposed on straight parts of the
boundary. The case of pure Neumann data is problematic because the compatibility
condition on the Neumann data and the volumetric data is generally lost once
the domain is approximated. The case of pure, homogeneous natural boundary
conditions was considered by Strang and Fix [16], who stop short of dealing with
non-homogenous data and simply assert their confidence in the errors being under
control. Barrett and Elliott [6] considered the case of pure Neumann data and
enforced the compatibility issue through a global perturbation of data.

A posteriori error analysis for curvilinear domains is much less well-developed.
In [I0] a posteriori error bounds were obtained for finite element approximation of
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the Poisson problem on non-polygonal domains with pure Dirichlet boundary condi-
tions. In common with many a posteriori error estimators of that period, the bounds
involved multiplicative constants that are unknown meaning that one does not ob-
tain an actual numerical bound on the error. In [§] a posteriori error bounds were
obtained for the finite element approximation of the Poisson problem on polygonal
domains containing non-polygonal holes on which homogeneous Neumann boundary
conditions were imposed, again valid up to multiplicative constants.

The fully computable a posteriori error estimators referred to earlier are derived
under the assumption that the domain is meshed exactly. One may ask whether such
estimators continue to provide an upper bound in the presence of approximation of
the domain. Consider the problem

_Au:—2inQ:{($,y)3$2+y2<1}
n - gradu =1 on 9N

with true solution given by u = % (x2 + y2). The estimator from [2] has been proved
to provide a guaranteed upper bound on the energy norm of the error ||ef, when
the domain 2 is a polygon. We investigate whether this estimator continues to offer
an upper bound when the domain is curvilinear. The results shown in Table 1 show
that the estimator 79, does not provide an upper bound in this example.

NDOF | lellg | m0 | mo/llellg
5 0.7008 | 0.4714 | 0.6726

710.6172 | 0.5494 | 0.8901
910.4984 | 0.4507 | 0.9043
12| 0.4286 | 0.4050 | 0.9449
15| 0.3748 | 0.3845 | 1.0261
TABLE 1. The performance of the estimator from [2].

This behaviour is not limited to this particular choice of estimator. In fact, as
far as we are aware, there are no computable a posteriori error bounds available
for the case where the domain on which the problem is posed is not a polygon.
The current work seeks to develop fully computable, guaranteed bound on the error
which takes the effect of the boundary approximation into account. We consider the
case of piecewise affine approximation of the Poisson problem with pure Neumann
boundary data, and obtain a fully computable quantity which is shown to provides
a guaranteed upper bound on the energy norm of the error. The estimator provides,
up to a constant and oscillation terms, local lower bounds on the energy norm of
the error.

2. PRELIMINARIES

2.1. Discretisation of the domain. The fact that the domain € is allowed to be
curvilinear means that some care must be exercised in constructing a triangulation
on which to approximate the problem. This section is concerned with formulating
a precise set of conditions on the triangulation and establishing some preliminary
consequences that will be needed later. Let P denote a set of nonoverlapping, shape-
regular triangular elements such that the nonempty intersection of a distinct pair of
elements is a single common node or single common edge of both elements. Such a
partition P is locally quasi-uniform in the sense that the ratio of the diameters of any
pair of neighbouring elements is uniformly bounded above and below. Throughout
we shall use C' and ¢ to denote positive constants which are independent of the
size of the elements in the mesh. The shape regularity of the elements in the mesh



COMPUTABLE ERROR BOUNDS ON NON-POLYGONAL DOMAINS 3

means that, for all K € P, the area |K| of the element K satisfies
(2.1) chi < |K| < Ch3

where hg denotes the diameter of K. Likewise, if we denote the set containing the
individual edges of K by &k then, for each v € £k, the length |y| of the edge
satisfies

(22) chk < |v] < Chxk

We define a polygonal approximation to the domain €2 to be Qp = U K. Let

KeP
& denote the set of edges of the elements in P. We define the set of interior edges

to be
Er={ye&: ve&knN&k for distinct K, K' € P}

and the set of boundary edges to be
Es=E\ €.

We suppose that the partition is constructed so that:
(A1) the endpoints of each edge in £ lie on T'.

(A2) each element in P has at most one edge in Ep.

In light of assumptions (A1) and (A2), we define the approximate domain boundary
I'p to be U ~v. We let &, £+ and £_ denote the subsets of edges defined by

V€EB

Co={ye&: ye& oryCT},

5+={7€8: Wgé’oandwcﬁ},

E_={ye€e&: v¢& & UE; and only the endpoints of v lie on T'} .

For simplicity, we assume that the partition is such that
(A3) E=EUELUE_.
Assumption (A3) means that the boundary of the true domain does not cross the
edge of an element. This can always be achieved by applying suitable refinements
or adjustments to the mesh. Consequently, we can partition P into three disjoint
sets such that P = Py UP_ U Py where
Pr={K eP:EkNEy is non-empty},
P_={K eP:EkNE_ is non-empty},
Po=P\ (P UP_).
In general, the triangulated region Qp differs from the true domain €2. The
“skin” between these domains is defined by

S=(QNN%)U(QpNQ°

where - denotes the complement in R%2. The skin S is the union of disconnected
subsets which we shall refer to as “slivers”. Each sliver Sk is associated with a
unique element K € P for which Sk N 0K = vk € Ex. We denote the (curved)
edge of the sliver by I'x = 0Sk \ vx. Evidently, the slivers are associated with
elements K belonging to the curved portions of the boundary, i.e. elements K &
P+ UP_. Moreover,

(2.3) Q:{SKZK€P+}UQ7D\{SK:KE'Pf}.

Figure [ illustrates the two possible types of slivers.
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FIGURE 1. Examples of the two types of sliver Sk: (a) K € Py
and (b) K € P_.

With each linear triangle K € P, we can associate a (possibly) curvilinear triangle
K*, with at most one curved edge, as follows:

KUSk ifKeP,
(2.4) K*={ K\Skx ifKePpP_
K if K € Py.

The chief motivation behind the foregoing constructions lies in the fact that {K* : K € P}
forms a partitioning of the true domain €2:

(25) o= |J K"
KeP
We shall need to impose some restrictions on the shape regularity of these curvi-
linear triangles:

(A4) there exists a positive constant C' such that, for each K € P UP_, there
exists a point &y € K* such that K* is star-shaped with respect to the ball
{:E e K*: |.’1}—.’130| < OhK}

(A5) there exists a positive constant C' such that, for each K € Py U P_,
min n - (x — xr, ) > Chg where ar,. is the vertex of element K opposite
xzecl
to tﬁe curved edge I'k.

The partition shown in Figure violates (A4) since the K* associated with the
element K € P_ fails to be star-shaped with respect to a ball in K*. Likewise
n - (x —xr,) = 0 at the points indicated meaning that the partition shown in
Figure also violates (A5). Observe that this issue does not go away be merely
carrying out a refinement to obtain the mesh shown in Figure However, the
partition shown in Figure does satisfy assumptions (A4) and (A5).

Let K € P be any element for which the associated sliver Sk is non-empty and
let © € Sk. The point may be written uniquely in the form x = @1 + ¢, & + 1. ¥
where the vertices 1 and 2 of Sk and the unit tangent vector ¢, and unit normal
vector N, to edge vk of Sk are labelled and oriented as in Figure[3l Consequently,
we may define a local & — ¢ coordinate system on Sk with the origin at x; and the
positive z-axis aligned with «x. Our final assumption concerns the smoothness of
the curvilinear triangle edges: for 4 =1 or u = 2, we assume that

(A6)" Tk is locally the graph of a function ¢, i.e.
P ={(2,9): 9=0(2), € (0, ||},
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(a) (b)

(©)

FIGURE 2. (a) Domain Q and (b)-(d) three possible partitions. In
(d) the elements in the set Py contain a 0 and the elements in the
sets P+ contain a +

FiGURE 3. The position of the endpoints ;1 and 2 and the la-
belling and orientation of the unit tangent vector t,, and unit
normal vector n,, to edge yx of Sk used to define local £ — g
coordinate system on Sk.
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1/2

such that ||| . < Clye"

0,]vx )

Lemma 2.1. Suppose that assumptions (A1)-(A5) and (A6)" hold. Then the
length of the curved edge I' i satisfies

(26) ChK S |FK| S ChK
Proof. We have that

[vx|
rul = [ ieo @
0
] 1/2
<l (/ L+ (#)° d@)
0

1/2 2 1/2
= el (el 4+ 19 o priey) < €l

since || 1,0, 1vic)) < N0,y < € |7K|1/2. Hence, since it is immediate that
|7k | < |Tk], the desired result follows. O

Lemma 2.2. Suppose that assumptions (A1)-(A5) and (A6)° hold. Then, in
addition to [Z0) holding, the area of the sliver Sk satisfies

(2.7) |Sk| < Chik
and the curvilinear triangle K* satisfies

(2.8) ¢|K| < |K*| < C|K]|
and

(2.9) chg < hg« < Chg.

Proof. Since (A1) implies that ¢ (0) = ¢ (]yx|) = 0, integration by parts yields

[vx| 1. "o o [vx| R R
| gee—twher@ = [ 0@ @i

Moreover, assumption (A3) means that ¢(%) is positive for & € (0,|yx|). Hence,
the area of the sliver satisfies

5= [ 661 dv <[5 6 - )

3
16" 0,1y )y < C k]
L2(0,|vx])

: 1 (a 17 5/2
since [|53 (& — Dl 1, 0.y = \Fm vk [*? and 19" 11300, vy < MOl Er2(0,7sc ) <

C |7K|1/ . Consequently, (A6)® implies that, in addition to (Z8) holding, (1)
holds. In turn, these estimates mean that (Z3) and (Z38) are satisfied. O

2.2. Oscillation of the boundary. Suppose that assumption (A6)" holds with
© > 1. We introduce a measure to quantify the notion of the oscillation of I'k,

osc (T'k), as follows:
2
< 1+¢’(i:)2—1>

1+ ¢/ (2)°

1/2

dz

Ik |
(2.10) osc(T'k) = ﬁ/o

If the boundary segment containing I'k is linear, then ¢ = 0 and hence osc (I'x) =
0. Conversely, if the boundary “wiggles” in the neighbourhood of 'y, then |¢'| will
be large which, in turn, means the oscillation is large. We present three results which
show how this oscillation measures how well quantities on the curvilinear entities
are approximated by the corresponding quantity on the polygonal approximation.
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Lemma 2.3. Let the partition P satisfy assumptions (A1)-(A5) and (A6)" with
p>1. Let K € Py and let w € H' (K*) be such that (w,1);.. =0. Then

(2.11)
1 1
'— w ds — —/ w ds
Tkl Jry Il Sk

1 . .
§—|FK| (ISK|1/2 + (Oﬁ,m vie| 2 + CE k |FK|1/2) hil? osc (FK)) lwll g

where CE . and C,ﬁ: x are the constants in the Poincaré inequality (3.5).

Proof. This lemma is proved in Section [R1] O

Lemma 2.4. Let the partition P satisfy assumptions (A1)-(A5) and (A6)" with
u>1. For K€ Py, letwe H (K*), F € Ly (K*) and G € Ly (T'). Then

(2.12)
(F,w - <w>7K)SK + (G,w - <w>7K>FK <
CK  hil?
<OK*hK* ||F — <F>K*HL2(SK) + %71/2
Ik |

SK| ‘<F>SK‘

1/2

+CE hilZ||G -

<G>FK||L2(FK)
+ (|SK|1/2 + (Off:)K* V2 + Oﬁi:)K |FK|1/2) hil2 osc (FK)) (G)r, | ) Nlw| -

where Cg« 1s the constant in the Poincaré inequality (3.1) and C,ﬁ: & and CI{{K K+
are the constants in the Poincaré inequality (3.8).

Proof. This lemma is proved in Section B2 O

Lemma 2.5. Let the partition P satisfy assumptions (A1)-(A5) and (A6)" with
w>2. Then

(2.13) osc(T'k) < Chg.
Proof. Since ¢ (0) = ¢ (|yx|) = 0, we have for Z, s € (0, |vx|)

A T 1 [vk| . p
|¢" (2)] =|¢' (2) Tl ¢’ (s) ds
x| Jo
1 [vk | o ,
-~ / ¢ (3) = ¢ (5) ds
1 vyl (& "
AR
0 s
N I e I
Sﬁ/ /ldt /¢”(t) dt ds
TK| Jo s s
1 phxl| e M2 .,
Sl A | T

Moreover,

1/2 1/2

1 [y | /z
—_ 1dt
|7k | /0 s

1 el
ds < —7 / |& — s| ds
vk | 0
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Direct computation then leads to the estimate

|'7K|
19 a0, < 5 197 a0, -
Consequently,
1 sl -\ \?
osc(Tk) < —/ (\/1—|—¢’(§3) —1> dz
Ikl Jo
<19 < bl < O]
- |'7K|1/2 L2(0,|vk]) = \/_ La(0,lvk|) = 1K
since ||¢N||L2(O,WK|) < ||¢||H2(0,WKI) < C|”YK|1/2- Hence, ([2.2) yields (2.13). O

3. FINITE ELEMENT DISCRETISATION

3.1. Model problem. Consider the model problem
—Au=fin Q,

(3.1) n-gradu=gonT,

where € is an open domain in R? with piecewise smooth, possibly curvilinear,
boundary I' = 992 and n is the outward unit normal vector to I'.  We shall use
the notation (-,-), to denote the integral inner product over a region w. The data
satisfy f € Lo () and g € Lo (T'), along with the compatibility condition

(32) (fv 1)9 + (ga 1)I‘ = Oa

needed to ensure the existence of a solution to ([BIl). We define
Hy () ={veH () : (v,1), =0}

and let the energy norm over a region w be denoted by

I, = (grad-, grad -)}/?.

The variational form of (B.I]) consists of finding u € H {r (€2) such that
(3.3) (grad u, grad v),, = (f,v), + (g,v)p for all v e H' (Q).

3.2. Finite element approximation. For m € Ny, let P, (w) denote the space
of polynomials on a region w of total degree at most m and let P, () denote the
space of polynomials on an edge v € £ of total degree at most m (with respect
to arc-length). For a triangle K and v € Lo (K), let Pxv € Py (K) denote the
orthogonal projection defined by (v — Pgv,p), = 0 for all p € Py (K). Likewise,
for an edge v € € and v € Lo (), Pyv € P1 () denotes the orthogonal projection
on the edge. For a two dimensional region w and v € Ly (w), let |w| denote the area
of w and let (v) = IWI (v,1),,. For a one dimensional region 7 and v € Ly (1), let

|7| denote the length of 7 and let (v)_ = \71\ (v,1)..
The finite element space X7 of first order on P is defined by
={veC(Qp): vk €P(K) foral K € P}
along with the subspace
Xﬁgz{veXP: (v,1)g —0}

In order to define a finite element approximation of ([B.3]) we must construct a
suitable approximation on P for each term appearing in (3]). Moreover, we must
ensure that the analogue of the compatibility condition ([B:2) holds for the discrete
scheme. The approximate domain boundary I'p = U v may be expressed in the

YEEB
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alternative form I'p = Z Z ~ which we shall use to discretise the boundary
KeP~yeEkNER

flux term in (B3).

We define a finite element approximation up € X Z)R of the solution u to problem

B3) as follows:

(34) (gradup,gradv)g = (f,v)q, + Z Z (9K.~:v).,, forall v € X7
KeP~vyeEkNER

where the data f has been extended from Q to QU Qp such that f € Ly (QU Qp)
and the flux data gx , € Lo (7y) is chosen so that the discrete compatibility condition

(3.5) (fs 1)(17; + Z Z (95 v 1)V =0
KePvyeExN€ép

is satisfied. This condition does not uniquely determine the fluxes, and several
reasonable choices are possible. We choose to define gx , by the rule

P.g ifye&Né&g,

(36) JKy = Wl| ((g’l)FK +(fa1)SK) ityeé&y,

(0, — (FD)s,) e
Thanks to (Z3)), it follows that
(fvl)ﬂ = (fvl)ﬂp + Z (fvl)SK - Z (f71)SK ’

KeP, KeP_

and, as a consequence,

(fvl)ﬂp + Z Z (gK,'yul)y = (fvl)(l+(gvl)F =0

KePyeExN€ép

and so the compatibility condition (&) holds for the choice 8]). The important
issue of the effect of the choice (B) on the accuracy of the resulting finite element
approximation is deferred to Section [l

The approximation up is defined on the polygonal domain Qp. It is desirable to
have an approximation to u over the original domain 2. To this end, for K € P,
we extend up to the sliver Sk by requiring up|x+ € Py (K*). In other words, we
extend up from K onto K* = K U Sk as an affine function by simply using the
same rule used to define up on K, to define up on K*. Adopting this convention
means that the extended finite element approximation, which we again denote by
up, belongs to the space X7 defined by

XP={v: QUQp =R, vjq, € X¥ and vjg. € Py (K*) forall K € P, }.

It will be useful to define an associated subspace )N(& as follows:
XGR: {ve)N(P: (v,l)Q:()}.

3.3. Poincaré inequalities. Let w be any two dimensional region which is star
shaped with respect to a ball and let h, denote the diameter of w. Then it is
well-known, [20], that, for some appropriate choice of constant C,,,

(3.7) v — <U>w||L2(w) < Cuhe |||U|||w .
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In a similar vein, if w and @ are two dimensional regions which are star-shaped
with respect to a ball and w C W with 7 C Jw, then there exists a constant C¥
such that

o 1.1/2
(3.8) o = )zl Loy < CZuhd? Il -

Proofs of these results, along with explicit computable expressions for the con-
stants C,, and ng will be given in Section for the cases where w and @ are
either an element K € P or a curvilinear triangle K* associated with K. In par-
ticular, whenever assumptions (A4) and (A5) are satisfied, the expressions for C,
and ng satisfy C,, < C' and Cf)w < C, where C is a positive constant which is

independent of the size of the elements in the mesh.

4. AN A PRIORI ERROR ESTIMATE

We now return to the issue of the rate of convergence of the finite element approx-
imation resulting from choosing the Neumann data on the approximate boundary
according to the expression in ([B.6]). For this section only we shall assume that
Qp C Q. Our a priori error estimate stems from the following extension of Cea’s
Lemma:

Lemma 4.1. Let Qp C Q and let the partition be such that assumptions (A1)-(AS5)
and (A6)" with u > 2 are satisfied. Then

lu—upllg <C (pél}(fp lu—plq + fgé%’)i hk
(4.1) 1/2
2 2
X (el + i llg = @, I o) )
KePy
Proof. This lemma is proved in Section B3] O

As usual in deriving an a priori rate of convergence estimate, we make an as-
sumption u € H? () on the regularity of u on Q. In addition, to bound the final
term in (@.1]), we shall make assumptions on the regularity of the true solution on
the slivers.

Under the assumption that, for all K € P, gradu € Lo (Sk) and g € H' (T')
we can say that

3/2
lullg, <I[Sk|"?lgradull, s, < Ch3l’ lgradull, s,

by (Z1) and

19 =Dl oy < C Tl ) < Chic gl r,0)

by (Z6]). Consequently,

1/2
2 2
S (b bl + b g~ e e
KePy
1/2
<o g (radulls) 32 s s i 5 )
+ KePy * Kep,

<C max hg

KePy
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since Z h3} <C Z |K| < CQf < C. Hence,
K6P+ K6P+

pe

4.2 - <C| inf Ju— hi |-
(4.2) lu = upllg < <H§P|||u Pllo + pmax K)

Let ITv € X7 be such that v = ITv at the three vertices of element K. Note
that IIv differs from the standard interpolate in that Ilv is taken from the extended
finite element space. In essence, we simply extend the usual interpolate onto the

slivers in the same way that the finite element approximation was extended to 2
from Qp. Then

. 2 2 2 2
(43)  inf Jlu—pllg < flu—ufg = Yo lu—Tullge + > fu—Muf k. .
peX KePo KePy

For K € Py, let K be a triaglgle obtained by extending the element K such that
K* C K with 0K \ vk C 0K and hg < Chk (see Figure d). From Theorem 5.6

in [20] we know that there exists an extension of u from K* N Q to K such that
|“|H2(f<) < C|U|H2(fmsz)'

L1

FIGURE 4. An example of an element K with vertices @1, o and
a3 and the corresponding extended triangle K with vertices @1, T2
and 5.

Let IIzv € P (IN() be such that v = IIzv at the three vertices of triangle K.

Now,
lu = Tull oo < lull e + 1Tull e < llullg- + lullge < Cllullg- -

Hence, since II (IIzu) = IIzu on K* we can apply the above argument with u
replaced by u — Il ;u to get

lu = Tlull . < flu = TMgull . < Jlu—Mgull g < Chi lul e (&) -
where the final estimate is a standard interpolation estimate. Moreover,

hig |ulpe (i) < Chic [ul e () < Ol Jul gz (gag) -
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since hy < Chg and |u|H2(I~<) < C|U|H2(fmﬂ)' Applying this bound, along with
the standard interpolation estimate [Ju — Hul|, < Ch% [ul g2 (g for K € Po, to

@3] yields

. 2 2 2
HLfP llu —pllg <C Z h%{ |u|H2(K) + Z h%{ |U|H2(fmsz)
(4.4)  peX KePo Kep,

<C max h2 |ul? < C max h%.
SCmax x| |H2(Q)— wax vy

Finally, combining (£4)) and (2] we obtain the following estimate showing that
our choice of discrete flux gives the optimal rate of convergence:

Theorem 4.2. Let Qp C Q and let u € H?(Q). Also, for all K € Py, let
gradu € Lo (Sk) and g € H' (T'x). Moreover, let the partition P be such that
assumptions (A1)-(A5) and (A6)" with > 2 are satisfied. Then, there exists a
positive constant C, independent of the error uw — up and the size of the elements
in the mesh such that

: - < :
(4.5) lu = upllg < Cmaxhx

5. A POSTERIORI ESTIMATION OF THE ENERGY NORM OF THE ERROR

Let u € H' () be the true solution to B3) and up € X C H' (Qp) be the
solution to ([B.4]) extended onto QU Qp as described in Section [l Then the error e
in the extended approximation is given by e = u — up € H! (2). We now turn our
attention to developing computable bounds for |le,.

5.1. Upper bound on the energy norm of the error. Let v € H' (Q), then
thanks to (B3,

(grade, gradv),, = (f,v)q + (9,v) — (grad up, grad v),,

and hence using (23] and (Z4):
(5.1)

gradegradvg= 3 (et 3 (0.0), — (gradup,gradu
KePy YEEKNER

+ Z ((f,v) g + (9,v)p,. — (grad up, grad V) e ) -
KePLUP_

For v € &£, we suppose that gx , € P; () are equilibrated fluxes given by (B.6)
on £p, and satisfying

(5.2) 9xy + 9Ky =0if v € Eg N Ex for K,K'e P,K#K'

and

(5.3) (fsp)g + Z (9K.~,p), — (grad up, grad p) , = 0 for all p € Py (K)
YEEK

for all K € P. A procedure which can be used to determine fluxes gx  satisfying
these conditions will be given in Section [[Jl Now, (8.6) and (5.2) imply that

Z Z (P’Yg’v)'y: Z Z (gK='V’v)'v+ Z Z (gK,»y,U),Y-

KePovelxNEp KePovelk KePLUP_ ve€ExkNEr
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Consequently,

(5.4)
(grade,gradv), =

Z (fiv)g + Z (9K.~5v)., + Z (9 — Pyg,v), — (grad up, grad v)

KePy YEEK YyEEKNER

+ Z (f0) e + Z (9K~:v)., +(9,v)p, — (grad up, grad v) ;.
KePLUP_ YEEKNES

The decomposition (5.4]) consists of a contribution from the elements belonging
to Py which is precisely the usual expression for the error in the case when there
is no approximation of the domain. However, for the case when the domain is
curvilinear, (&) has an additional contribution from the elements in P, U P-_.
Our first task is to estimate the contributions from the elements in Py. This is
familiar territory and our method of choice follows the approach outlined in [2] and
references therein. We briefly outline the idea.

For K € P and v € £k we define the residuals

(5.5) Rir=9gr~— nff -grad up| g

where n,ff is the outward unit normal vector to edge v of element K. For K €

Py UP_, we also define the residual

(5.6) Rigr =g—mn-gradupg-.
For a triangle K and data Ry, € P (v) for v € €k such that
(5.7) (Pxfp)k+ Y, (Ri,p), =0 forall p € Py (K),
vEEK
let o € Po (K) X Py (K) be any vector field satisfying
(5.8) nff -0 =Rk, on K for all y € Ex
and
(5.9) —divog = Pxf in K.
Consequently,
(5.10) (Pr f,v) + Z (Ri,y;v)., = (oK, gradv)
VEEK

An explicit construction for a choice of ok satisfying (E8) and (B9) which also
minimises |0 k||, g is given in Section The following result is by now quite
standard.

Lemma 5.1. Let K € Py. Then

(5.11)
g+ Y, (grrv),+ D> (9= Pyg,v), — (gradup, gradv) . < ni vl
vyEEK yeEKNERB
where
(5.12)
1/2
K = ||‘7K||L2(K)+OKhK ||f_PKf||L2(K)+ Z CthK/ ”g_P'ng[Q(»Y)

yeEKNEBNEY

Proof. Note that

(grad up,gradv), = Z (n§~graduP|K,v)7
vEEK



14 MARK AINSWORTH AND RICHARD RANKIN

We choose Rk = gi,y —nX - gradup|x in (G.8) and recall property (5.3). The
proof then follows the standard approach for polygonal domains. O

When K € P UP_, the treatment of the error on the curvilinear region K*
is less straightforward but again, use will be made of the lifting o . We begin by
stating the analogue of Lemma [5.1] for elements K € P_.

Lemma 5.2. Let K € P_ and let the partition P be such that assumptions (A1)-
(A5) are satisfied. Then

(513) (fv)ge+ Y. (9K70), + (9:0)r, — (gradup,gradv) . < nx [v]
yEEKNET
where
nk = lokllp, ey + Cr-hice [If = Pefllp, ke
(5.14) K* 1/2
+CFK,K* n- O'KHL2 FK)'

Lemma is similar to Lemma [5I] with the differences being in the oscillation
terms. The case of elements K € P, is more involved. The analogue of Lemma [5.T]
reads as follows:

Lemma 5.3. Let K € Py and let the partition P be such that assumptions (A1)-
(A5) and (A6)" with pu > 1 are satisfied. Then

(5.15) (f0)g-+ Y (9K40), + (9:0)p, — (gradup,gradv) . < s [v]
~yeEKNET
where
(5.16)
Nk = H0'K||L2(K) + Crchi || f = PKf||L2(K) + Cr-hg- || f = <f>K*||L2(SK)
K* h1/2
v, K'TK*

* 1/2
Sicl| (s, + O we-hil? | Bicr = (Ricrdr, |

|2 L2(T)
- (18kl"? + (CE e Tl 4+ CI e s ) il2 ose (D) ) | (R |

Proof. The lemma is proved in Section O

The result is again similar to Lemma [BEJ] but now includes additional terms
measuring the size of the sliver and oscillation of the boundary.

Our main result is the following computable bound on the energy norm of the
error which takes into account the approximation of the boundary:

Theorem 5.4. Let the partition P be such that assumptions (A1)-(A5) and (A6)"
with p > 1 are satisfied. Let ni be defined by (5.12) when K € Py, (5.I6) when
K € Py and (BI4) when K € P_. Then

1/2
(5.17) lellg < (Z ni) -

KeP

Proof. Since K € Py implies K* = K, the result follows at once from Lemmas

EIE3 and (Z5). O

5.2. Local lower bounds on the energy norm of the error. The next result
shows that the upper bound in Theorem [5.4]is efficient.

Lemma 5.5. Let the partition P be such that assumptions (A1)-(A5) and (A6)"
with p > 2 are satisfied. Lel Pyx) denote the sel containing element K and
the elements in P which share a vertex with element K and let Ey ) denote the
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set containing the edges in € which have an endpoint at a vertex of element K.
Moreover, let

RS <|||e|||K e 15 = Pic g

KGPV(K/)ﬂPo

1/2
+ Z hK/ lg — PV’QHLZ(V/) )

(5 18) ’Y’va(K/)mgBmgo

1/2
PP (“iemth |Rrr = Bacrie ],

KGPV(K/)mUhuP,)
L2(Sk) ) ’

There exists a positive constant C, independent of the error e and the size of the
elements in the mesh, such that

+ i 1 = (P i Ny + 3 F = (P

(519) nNK S C‘I)K
Proof. The lemma is proved in Section O

6. NUMERICAL EXAMPLES

6.1. Example 1. We consider the problem — Au = -2inQ = {(z,y) : 2? + 3> < 1}
with n - gradu = 1 on T, with true solution u = % (2% + y?). The initial mesh is
shown in Figure In this, and the following examples, the problem is solved
using local mesh refinement where we used a bulk criterion to refine the mesh on
the smallest number of elements such that the sum of the contributions from these
elements to n? from Theorem [5.4] exceeded 50% of the value of 2. The results ob-
tained are shown in Figure [l with adaptively refined meshes being shown in Figure
From Table[Ilwe saw that the estimator from [2] did not provide an upper bound
on [le]l, owing to neglecting approximation of the domain. In contrast, the estima-
tor from Theorem [5.4] takes the domain approximation into account and, as shown
in Figure[6] produces an upper bound on | e||, on all of the meshes. Asymptotically,
the estimator tends to overestimate the true error by a factor of 1.1. Remarkably,
even starting with an initial mesh such as the one in Figure Ei(b) only results in
over-estimation by a factor of at most 4.2.

6.2. Example 2. Consider the problem —Awu = f in Q where  is the domain
shown in Figure with n - gradu = g on I' where f and g are such that the
true solution to this problem is u = (r2/3 — r3) sin (%9) The initial mesh is shown
in Figure The results obtained are shown in Figure Bl with adaptively refined
meshes being shown in Figure [l Figure [ shows once again that the estimator
provides an upper bound on [lef|, on all of the meshes, with over-estimation by a
factor asymptotically of the order of 1.3. The over-estimation by a factor of up to
7.2 on the initial very coarse mesh stems from the high data oscillation arising from
the source term and the boundary.

6.3. Example 3. Finally, consider — Au = f in £ where Q is the domain shown
in Figure with n - gradu = g on I' where f and g are such that the true
solution to this problem is u = r* (cos (40) — 1) when x > 0 and y > 0 but u =
0 in the remainder of Q2. The problem is of interest because no refinement will
be needed outside the first quadrant. Moreover, the solution grows rapidly near
the outer boundary but near the inner boundary varies slowly. This means that
minimal refinement is expected near the inner boundary beyond controlling domain
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FIGURE 5. The (a) true domain © and (b) initial mesh for Example
1. Adaptively refined meshes for Example 1 containing (c) 648 and
(d) 1110 elements.
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FIGURE 6. The (a) performance and (b) effectivity indices of the
estimator for Example 1.

approximation. The initial mesh is shown in Figure The results obtained are
shown in Figure [0 with adaptively refined meshes being shown in Figure [@ Once
again the estimator performs well both as an error estimator and in terms of guiding
local refinements.
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FIGURE 7. The (a) true domain © and (b) initial mesh for Example
2. Adaptively refined meshes containing (c) 608 and (d) 1050 ele-
ments.

=9 |ello —*—n/ el
——

Effectivity index

10 10 10° 10° 10 10 10 10 10 10 10° 10° 10* 10° 10f 10
Number of degrees of freedom Number of degrees of freedom

(a) (b)

FIGURE 8. The (a) performance and (b) effectivity indices of the
estimator for Example 2.

7. AUXILIARY RESULTS

7.1. Equilibrated fluxes. Let V index the set {z; }jeV of vertices of the elements
in P. For j € V, let P; denote the set of elements in P that have a vertex at x;
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FIGURE 9. The (a) true domain © and (b) initial mesh for Example
3. Adaptively refined meshes containing (c) 608 and (d) 1002 ele-
ments.
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FIGURE 10. The (a) performance and (b) effectivity indices of the
estimator for Example 3.

and let A; denote the function which is piecewise affine on P and vanishes at all
the vertices in P, except x;, where it takes the value one. Also, for v € £, let V (v)
denote the subset of ¥V which indexes the endpoints of edge 7.
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The values of the two moments
u = (g A, fori €V (v)
determine a unique function gx .~ € Pi (7). Equally well, the flux gx, can be
written as a linear combination of the moments u(lé),y. We now summarise a com-

putational procedure from [3] which can be used to determine the moments u(i)

K,y
such that conditions (5.2]) and (&3] hold.
Let
4K %n,lf - (grad (wn|K) + grad (wn|K/)) ifyelxnNéyg, K#+K',
v 9K~ ifye&xNEg,

where n,If denotes the outward unit normal vector to edge v of element K. We
solve a system of linear equations for unknowns g ;:

(7.1) % Y Cri—tx)t D, xi=Ax(\) forall K € P

K'ePgNP; 'YegKﬂng nE;

where Pg denotes the set of elements that share an edge with element K, £ denotes
the set of edges that have an endpoint at x; and

Ak (Ni) = (grad up,grad \;) - — (f, Xi) g — Z (Af’)\i)v
YEEK

The moments u%)ﬁ are then defined by
1 K .
(7.2) RO (ki — Exri) + (AT, ) ?fv €ExNéx, K #K',
7 (9K, Ai)., if v € Ex NEB.

The solvability and uniqueness of solutions of (TI]) is discussed in detail in [3],
where it is also shown that (B.2) and (53] will hold. A key requirement of the
fluxes is that they depend continuously on the local error and data oscillation.
The following result extends Theorem 6.2 from [3] to the case when the domain
approximation is taken into account.

Lemma 7.1. Let the mesh be such that assumptions (A1)-(A5) and (A6)" with
w > 2 are satisfied. There exists a positive constant C, independent of the error e
and the size of the elements in the mesh, such that

(7.3)
1/2
B Rl <C 3 ( > (memK i = Prcll e
i€V(y) KePiNPo
1/2
+ Z hK/ ||9_Pv’9||L2(7/)>
y'eE;NEBNEy
1/2
DY <|||e|||K* + 03l | Baer = (Breor, |,
KeP;N(PLUP_) 2(Tx)
3/2
+hic || f = (f) g Lo(K) T |l f — <f>K*||L2(5K)>
for v e k.

Proof. This lemma is proved in Section [R.7] O
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7.2. Explicit computable expressions for the constants in Poincaré in-
equalities. Let w be any two dimensional region which is star shaped with respect
to a ball. From [I4] we have that (B.7) holds with C,, = 1 if w is convex. Otherwise,
if w is star-shaped with respect to a point zy € w, from [I8] (B.7) holds with

1/2
4(p*—1)+1 2 -
C, =2 | max 46 (p )+ —|—1 1—i ,p 1lnp
3 p> 22

2 p>
where
max |x — x|
rcow
p="
min |x — x|
rEow

and Ow denotes the boundary of w.
Obviously, for K € P, Cx < C and Cg+~ < C if K* is convex. If K* satisfies
assumption (A4) then 1%1}1} |& — @] > chk and so p < C since ([29) means that
xTe *

max | — x| < Chg. Consequently, Cx+ < C when K* is star shaped with
xc *

respect to a ball.

We also require a bound for the constant in (3.8)). We generalise the approach
used in the appendix of [I] to the case of curvilinear triangles. Let w and & be
any star-shaped two dimensional regions such that w C @. Let 7 C dw and let
0 € L (w) be such that div 8% € Lo, (w) and ng, - 05 > 0 on 7 and ng,, -0; =0
on Jw \ 7 where ny,, is the outward unit normal vector to Ow. Define

w . w
my =minng, - 0.
xTET

For w € H! (©), we have that

2
||w||L2(T)
1 w, 2 1 w, 2 1 : w, 2
<— Moy - X w ds = — Ny, - 07w ds = — dlv(HTw ) dx
mz Jr T JOw mz Jo
=— ((div (6),w?) , + 2 (w8, grad
e (( iv ( 7.),w)w—i— (wO?, gra w)w)
1 . w w
<ol (1 821y 0l + 216215 Tl

1 : w w
L T (o PR P L P

Hence, choosing w = v — (v); and applying ([3.1), we deduce that the constant in
(B:8) may be chosen as

_ o . 1/2
2o = (Ca (Idiv 01|, ) Caha + 1051 ))) -
If K is a triangle and v € £k then, following [I] we take
oK — ol
T 2lK|
where x, is the vertex of K which is not an endpoint of 7. It is easy to verify that
05 satisfies ngk - 05 =1 on v and nyk - 05 =0 on JK \ 7. Hence, in this case

mk = 1. Moreover, we have that |div 05| < Ch and |6 | <C
Lo (K) Lo ()

~

(x —z),

Consequently, C,f x < Cand CfK <C.
If K € P UP_, then in a similar vein, we take

K* k|
Tk — —(m_mFK)7
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where xr, is the vertex of K which is not an endpoint of I'x. The function again
satisfies ngk - O{f =0 on OK*\T'x. Assumption (A5) then means that mffK >

< Chit and [of | < C.

c. Moreover, we have that HleHFKH <
Loo(K*)

Lo (K*)
Consequently, CI{{K g < C.

T3

FIGURE 11. The labelling and orientation of the vertices, edges,
tangent vectors and unit normal vectors of element K.

7.3. An explicit expression for ox. Let K be any element and let the vertices,
edges, tangent vectors and unit normal vectors of element K be labelled and oriented
as shown in Figure [[Il where we emphasise that the tangent vectors are such that
[te| = |vk|. Also, let Ay € P1 (K) be such that A\, = 1 at vertex x) of element K
and vanishes at the remaining two vertices.

Lemma 7.2. Let

1
Y1 o__
7K 91K

+ (Ri 15 A3),, (423 4 X2 + A1) Asta + (=222 + 343 + A1) Aats) )

((RKWI,AQ)VI (223 — 3Aa — A1) Aata + (4ha — A3 — TA1) Aats)

with o2 and o} being defined by permuting the indices, and

U(I)( = m (()\2)\3 — /\3)\1) to + ()\2/\3 — /\1)\2) tg) .

Then

3
(7.4) O'K—ZO' Z O'K,O'K ol

aK’ UK K ;—1
satisfies (L8) and (B9) and has minimal norm over Py (K) x Py (K).

Proof. This lemma is proved in Section B8 O

An explicit computable expression for ||k ||, is given in Section 9.4 of [].

8. PROOFS
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8.1. Proof of Lemma [2.3} Since C (K*) is dense in H' (K*), it suffices to prove
the result for w € C (F) We first observe that

w ds
‘llﬂfd /FK |'7K| i

1 1
8.1 =|— / wds—/ wds)—i—(———)/ w ds
&1 ‘M(FK - Tl Tl L.
1

wds—/ wds‘—l—m/ w ds
YK TK

Tk x|
By using the mapping and notation introduced at the end of Section 2.1 we can

say that
|’YK\
Tl = bl = [ 140 @) - Ldo
0
k| 1/2
< v 2 ose () (/ J1+ ¢ (2) di:)
0

= lyx|"? [T "% osc (T )

on using the Cauchy—Schwarz inequality. Moreover, the Cauchy—Schwarz inequality

and ([3.8) give

/ w ds
VYK

on recalling (w, 1), = 0. Consequently,

/ w ds
YK

Again using the mapping and notation introduced at the end of Section 2] we
have that

/ w ds —/ w ds
T'x YK
|’YK\ /7 \’YK\
= / 1 + ¢/ d:E — / A
0

_ /Ohkw(i,gb(ﬁ;))—w(a},()) dge+/omw(gz,¢(ge))( 1+¢/(£)2_1) di

1/2 1/2

llewll -

1/2
< Pyl ol ey < CR il

Pkl = x|

1/2,1/2
Tl e o7 Ot [Dxel 2 g2 ose (i) [l -

(8.2)

IFI

IN

/Ohkw(i,@é(@))—w(:@,m dz| + /Omw(@,qs(az))( 1+¢'(55)2_1> dzl .

Now,

[vk|

< (/OM/OW) 1 dj d@) (/m/qs(m) (ay " g))z B d;g) 1/2

on applying the Cauchy—Schwarz inequality. Moreover,

vkl ro(2) [vk |
/ / 1dgd£:/ 6() di = |Sk|
0 0 0
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and
1/2

il 6@ 5 N2
[ (o) dd) <ol <ol
0 0 9y

Applying the Cauchy—Schwarz inequality also gives

/Olww(@,qﬁ(@)) ( 1+ ¢ (2)° - 1> di

e 1/2
< (/0 (W (2, ¢ (2)))° Vit (2)° di) |/ osc (Tk)

1/2 * 1/2
=] 0y il 050 (T) < CEL el 1|

1/2
" osc (T ) [Jw]] -

on applying ([B.8). Consequently,

/ w ds —/ w ds
'k YK
1/2

< (18wl + O e Tl 12 ose (D) ) ol
The result then follows upon combining 1), (82) and &3).
8.2. Proof of Lemma 2.4l To bound the first term we first write
B4 (Fo=0),,), =Ev=0g)g, — (Fl), — ),
The first term in (§4) is then bounded by writing

(F,v— <U>K*)SK =(F - <F>K* yU— <U>K*)SK
< F = (F) k-

(8.3)

L(Sk) ||v - <U>K*||L2(5K)

and since

o= (v) k-
we can use ([B3.7) to conclude that
(8.5) (Fov = (v)g)g, < Cr-hi-

L(Sx) < v = (v) k- Lo (K*)

F— <F>K*HL2(SK) loll - -

For the second term in ([84]) we write
_(Fa<v>'yK_<v>K*> :_(F7<U_EK*>’)’K> :_<U_EK*>’)’K <F>SK |SK|
Sk Sk

and
1

vkl

<1} _EK*>’Y LQ(’YK)

1
/ U—<U>K* dS Sil/z||v—<v>K*
VK |"YK|

K hi/?
SWW lvll

(003
by B38). Hence,
CE (chyl?
(86) = (B, — W)k ) < IS (P g, | el
Sx Ik |
To bound the second term we first write

(Gv=t)), =@ =(r )y, + (G ok, —0),,)

We can then say that
(va - <U>FK)FK = (G - <G>I‘K , U — <U>I‘K)FK

< HG - <G>FKHL2(FK) HU - <U>FKHL2(FK)

Tr

23
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and since
(8.7) Hv - <U>FKHL2(FK) <l = <U>K*HL2(FK)
we can use (3.8) to conclude that
B3 (Goo— ) )y, <O b G = @l e Iol
Moreover,

(G Wy = 0)) =@, = @) | 1@, Ik
and

ey = 6| = g [ v b = o [ =G ]

Hence, on applying (ZI1]) we have that
(8.9)

(G-t = 0))

* * 1/2
< (19512 + (CF gee el + 7 e IT]2) il 056 (Ti) ) [(G | ol
Consequently, from (&3], 86), (8S) and (89) we have the bound claimed.

8.3. Proof of Lemma (.1l Following [16] we define up € X’ZDR such that

(8.10) (grad up, gradv), = (f,v), + (g,v)p forallv e X7,
First observe that
(8.11) lu —upllg < llu—upllg + lip — upllg -
Now, (8I0) means that, for any p € )?7),
(grad (u —up),grad (u — up)), = (grad (v — up) , grad (u — p))q,
<llu—upllg llu—plg

Consequently,
(8.12) llu el < lu— pllg for any p € K.

Moreover, since grad (up — up) is constant on K*,

_ 5 _ 2 |Sk| ~ 2
lup — UPmsK = [Sk]| ‘grad (UP\K* - UP|K*) = m lup —upllk
Hence,
@ — uplls, = lar —uplg, + Y lap —uplls,
KePy
- 2 ISk~ 2
(8.13) =l —urlo, + > T lip = urlli
KePy

1Skl = >
<|1 — - .
S R L

Let v € XP. Then
(8.14) (grad (up — up),gradv)q
' = (grad (up — u),gradv)g  + (grad (u — up),gradv), .
Now,
(grad (u — up),gradv)g = (gradu,gradv), — (grad up, grad v), ,

+ (grad u,grad v),, , — (grad u, grad v),,
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where
(grad u, grad v),,  — (grad u,gradv)g, = — Z (grad u,gradv) g
KePy
< Y Mulls, Iolls,
KeP4
Sk
= > lulls, K7 ol
KePy |
and

(grad u,gradv), — (grad up,gradv)g |

:(fav)Q+(gvv)F Z Z gK’Y7

KeP~eEkNER

= Z (f,v ) +(g,v ) - Z (gKﬁvv)»,K

KeP, TEExNED
= % (om0, + om0,

by [B8). We can bound this term using Lemma [2Z4] and the fact that o] . =

K* 1/2 2 2
B oll and > Jolli < ol to conclude that
KeP4
1/2
(8.15) (grad (u—up),gradv)g, < > Uk lole < | Y Wi | [ol,
K€P+ K€P+

where

(K2 [ 1Sk ]

:W W”'“|||SK+CK*hK* f= k- L2(Sk)
CK* 1/2 5 CK* h1/2
+W| K|| SK‘_F T, K+ Ve 9—<9>FK||L2(FK)

+ (15xI"? + (CE, &-

7K|1/2 CK*K Tk |1/2) h%f 0sc (FK)) |<9>FK|>'

Then, by letting v = up — up in [BI4), applying BI5) and the Cauchy—Schwarz
inequality, we can conclude that

1/2
~ 2 ~ ~ ~
i — upll3, < lip — ullg, e —upll, + [ S0 9% | lip - uplg,
KeP4
and hence
1/2
(8.16) lup — up |||Q’p < |lap —ull, + Z ‘I’%(
KePy

since [[up —ullg, < [lup — ullo-
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Combining (81, ®1Y), ®I3) and BIH) then gives, for any p € X7,
(8.17)
1/2

| | 1/2
o= upl < T pl + (14 e TE) (sl + | 3 vk
KePy

Now, 1), (22), @13), 1), 23), (29) and 28) imply that

Uk §O<h}</2 lulls, + (OK*hK + C Vi Kh3/2) 112 (550)

+ (hK + (Cﬁ:)K* + CWK K) 3/2) ||g||L2(FK)>

since | (), | < 1S 1l usieys (D] S IPxIT2 Mgl Ly oy and IS = (Dl sy <
£l 1, (s5)- Consequently, owing to the fact that assumptions (A4) and (A5) mean

that Cx+ < C, CE_ . <C and CE . < C, we can say that

1/2
> vk
KePy
s0< S (hchul, + b o — e, I )
KePy

1/2
2 2
+ e b ||z, o) + max b ||9||L2<r>>
1/2

<O | X (hwlll, + b llg = (o), | 0) |+ max b
KePy +

since h3, < Ch?% since ) is bounded. This also means that

Sk
1+ maxu<1+0maxh;<<0
KE+| | KePy

by 21) and Z1) and hence by substituting the above inequalities into (8I7) we
arrive at the result claimed.

8.4. Proof of Lemma Integratlon by parts allows us to say that

(f0)e+ Y, (9r0), + (9,0)p, — (gradup, grad v) .
yEEKNET

f7 K*+ Z RK’W +(RK,F7U)FK
yEEKNET

where Ry ., is given by (5.5) and Ry r is given by (5.6).
Thanks to (B3] we have that (5.7) holds and so ok satisfies (5.8) and (G.9I).
Integration by parts yields

(oK,gradv)g. = (n-ok,v)r, + Z (nff . UK’v)'y — (divek,v) k-
YyEEKNET
and so (5.8) and (59) mean that
(PKfav)K*+ Z (RK;Y,’U),Y:(O'K,gI'ad’U)K*—(n'O'K,’U)F

YEEKNET

K
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Therefore,
f’ K+ T E : RK’Y? (RK,F,U)FK
~yeEEKNET

= (O'Kagradv)[(* + (RK,F -—n: O'K7U)1"K + (f - PKfuv)K
Now, since
(grad up,gradv)g, = (n,IfK -grad up, v)'YK —(n-gradup,v)p,
we have that
(8.18) (nffK -grad up, 1)w< = (n-gradup,1)p

Moreover, since

(oK,gradv)g = (an -O'K,’U)’YK —(n-oK,v)p, —(diveg,v)g,

we have that

(n-o-K,l)FK = (an 'O'K’l)’YK

by (0.8) and (59). The definitions of Rk ., and Pk f then allow us to say that

_ (le oK, 1)SK = (RK,'ykv 1)’)’K + (PKf, 1)5}(

27

(n "OK, 1)I‘K = (gK,’YK - n'Iy(K ! grad up, 1),),1( + (fa 1)SK = (g —n- gradupa 1)I‘K

upon using definition (3.6 and [BI8]). Consequently, definition (5.6) means that

(819) (RK,F _n'UK’l)FK =0
which allows us to say that

(RK,F —'n,-o'K,v)F = (RK,F -n- oK,V — <U>K*)FK .

K

Therefore,

f7 K*+ Z RKVa (RK,Fav)FK

yeEEKNET
=(ok,gradv),. + (Rkr —n -0k, v— <”>K*)FK +(f = P fyv— (V) ) g
i+ [ Bicr =10l 10 = (0)
T = Pr Sl iy 0= (V) k-

La(Tk)

LQ(K*)
. 1/2
<(Nlo sl pyaeny + CEL s M2 NRicr =1 0l
+ Crchice I = Prcfly ey ) Bl
by B7) and (3.8]) and so we have the bound claimed.

8.5. Proof of Lemma [5.3l Integration by parts allows us to say that

(f0)e+ Y, (9rv), + (9,0)p, — (gradup, grad v) .
~yeEKNET

=(Pxfiv) + Y (Ri,v), + (f = P fiv)g
YEEK

+ (fvv)SK - (RK,’ykv’U)»yK + (g -—n- gradu?vv)f‘;{
where Ry . is given by (5.0)). Arguing as in the proof of Lemma [5.] we obtain

(8.20) (Pefv)+ Y (Rrqv), = (0k,gradv) g < ok, Ivllx
YEEK

and that
(8.21) (f = Picf,v) i < Crchac If = Picfll ) Il



28 MARK AINSWORTH AND RICHARD RANKIN

by B.1). It remains to bound the contribution from the sliver. Since,
(grad up,gradv)g = (n-gradup,v)p — (n,IfK -grad up, U) .
and an -grad up is constant on yx we have that
(8.22) - n,IfK -gradup = —
Now, (&), (3:6) and ®22) imply
- R, =~ (7

|'7K|
and hence

e |(n gradup,1)p  on yk.

((g —n-gradup, )+ (f, 1)SK) ,v>
TK

(fiv)g, + (9 —m-gradup,v)p, — (RKq6,0),,
(8.23) - (fﬂ, _ <U>W<)SK + (RK)F,’U —~ <U>7K)FK

where Ry r is given by (&.0).
Consequently, since [|v]| x < [|v] k-, from §20), @2I) and Lemma 24 we have
the bound claimed.

8.6. Proof of Lemma Let

g, = { % (nf -grad up| g + nfl -gradupu(/) if v € Ex N Ek for distinet K, K’ € P
gKy,Y—nf-gradup‘K ifvyeé&xné&p for K € P.

Integrating (5.1I) by parts allows us to say that

(8.24)

(grade,gradv)g = Y | (fo)g+ D>, (9—Pgv), + Y (J

KePy yeEEKNER YEEK

+ Z (fs0) e + (Rrr,v)p, + Z (Jysv),,

KePyUP_ YEEKNES
for all v € H! (). Applying standard “bubble function” arguments [3, [19] yields
(825) i 1Px fl a0y < © (el +hac 1 = PrcFl,a0)
for K € Py UP4. For v € &;, let
Py={KeP:veék}.

Applying these “bubble function” arguments but with K* in place of K when
K € P UP_ and 'k in place of v when v € Ex N (E4 UE_) yields

826) b 1Dy < € (Rellee + Do I = (P Dpyreny)
for K €e P UP_;

B 1 <c< S (leli+huclf = Picfll)

(8.27) KeP,N(PoUPy)
£ (el el ~ (e *)>
KeP,NP_

for v € &;

(8:28) 12 1My < € (Nellie + e 1 = Pl yiaey + il g = Prgl )
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for K € Py and v € Eg N EpR; and

hK ‘<RK,F>FK ‘LQ(FK)

(8.29)
= (memw hac I = i Dy + 00 || Racr = (R HW)

for K e PLUP_.
Observing that

||UK||L2(K) < Z o

VEEK Lo(K)

we can apply standard inequalities and scaling arguments to conclude that

1/2
o,y < ChL® D7 IRl Ly -
YEEK

Using Lemma [Tl then gives
(830) ||0'K||L2(K) S O(I)K.
When K € Py, (EI9) then follows by noting that Cx < C and CI*; < C and so

1/2
Cchic|f = Peflly + 9 CExhil?lla = Pyl < COK.
yeEKNErN&y

When K € Py, applying @.13), .17), [2.6) and .29) and using the fact that
CIKI:,K* < C and C,ﬁ;K < C we have that

(8.31)
(181" + (G ke byl + C5 g Pk ?) il ose (i) ) [(Rico)y |

<C (hK el g + R 1f = () aee oy aeey + s HRKI - <RK>F>FKHL )
2(Ck)

<0 (b 11 = O e 18 R~ G ) < O

since hx must be bounded by the diameter of 2. Moreover,

D5l =T [(0m- + 7 = s s |

1
ST (1) -

1
S (1) -

Hence, applying 2.7), 29), (Z6) and (829) and using the fact that C,g; k< C
we have that
CK" hil?

san Lo 19l < (hi el + B2 07 = (i)
. TK

s HIF = Dic-llsy)

eI = Dl )

<C (lellye- + e I = (-l -y ) < C®

since hx must be bounded by the diameter of Q2. Consequently, we arrive at (5.19])
when K € Py by using (830), (B31) and (B32) and noting that Cx < C, Cx+ < C
and CE_ . < C and so

Crhi | f = PKf||L2(K) + Crechiee ||f = <f>K*||L2(SK)

Rkr — (Rir)p, H < Cogk

+CK L pi?
I'g,K K LZ(FK)
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upon using (2.9).
When K € P_, we have that

|Rgr —nr-oxllp,r,

< HRK,F - <RK,F>FK‘

+ an oK — <RK1F>FK‘

L2(Tk) L2(T'k) .

Now, (8I9) means that

HnF'U'K— <RK,F>FKH :an~0';<—<np-o-K>FKH

Ly(Tk) L2(Tk)

Moreover,

—1/2
Inr - ol < 1okl < Chic 2 okl p, e

by the equivalence of norms on finite dimensional spaces and scaling arguments.
Consequently, upon using (2.9) and the fact that C{i: x < C we have that

Lg(FK)) '

Hence, we can arrive at (B.I9) when K € P_ by observing that [[ox||y,
f=Prfllp, - < CPx and using (B30) and (E33).

8.7. Proof of Lemmal[7.dl For K’ € P and v € £k, the definitions of Rg -, A,If/
and J, mean that

K* 1/2
Cry b=

RK,F —nr- O'KHLQ(FK)
(8.33) o
<C <||O'K||L2(K) +h)/:

Rigr — <RK,F>FK‘

lokllp, and Ck-hk-

_ K’ K’
1Bl = loxen = 457 = 0 < aws =457 1l

La(vy

. [N
Since g~ — Aff is affine we can say that

La(v) =¢ Z

1€V(7Y)

hil?

o — 4% (o100~ 423 |

and as in [3] we have that
‘(QKW —Aﬁ'w) ‘ <C YAk ).
v KeP;
Now, integration by parts yields

[Ax (M)

Y () -gradup — AX X))~ (fid)g

YEEK

= Y (T ), — (Prfi )k
YEEK

< Y Ml Nill gy + 1P Fll oy 16l
yeEEKNE;

1/2
<C| > mlP Ny + b 1Pkl
yeEKNE;

Now, for K € P4, (3.6) and (822) allow us to write

1
T = o ((Ricr Dy + (1), )
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Similarly for, for K € P_, (3.6) and (818) allow us to write
1
i ((Bes e, = (5D, ).

Hence, we can say that, for K € P, UP_,

J’YK =

1 2
Y2 [Pe (|FK|‘ (Ri.r) FK‘ + Sk ”f”Lg(SK))
3/2
<C (hK } Rkr) FK‘ + hK/ ||f||L2(SK))

by Z71) and 23]). Moreover, since the boundedness of the domain Q means that
h3; < Ch% which in turn means that |Sx| < C'|K*|, we can say that

sy < I D + 1 = e lsi
<O gl yizemy + 1 = (P

and similarly, (2.8]) means that
||PKf||L2(K) < ||f||L2(K) <C ||<f>K*||L2(K*) + ||f - <f>K

Consequently,

L2(Sk)

hi: ||RK'>’Y||L2(»Y)

<OZ< ST md® DT vl + i 1P Flly

i€V(7y) KePiNPy Y eEEKNE,

1/2
+ Y (hK/ S Il + e [(Recrdr |
KG’PJW(’PJFUP?) vy eExNENET

iy TR IF = ()

)

The result then follows upon using (8.29]), [826]), (827), B28)) and ([®29)).

8.8. Proof of Lemma It is relatively straightforward to show that

+ hi ||<f>K*||L2(K*) +hk ”f - <f>K*

n; - o) = Rk ,0;; on; fori,7=1,2,3;

nj~a?< =0ony; for j=1,2,3;
and
(o), gradp), = (a?(,gradp)K =0forallpeP; (K) fori=1,2,3.
It then follows that
3
oK = ZU TTory 2 (ko) ok
UK’UK K ;=1
satisfies
n;-og = Rk, ony; fori=1,2,3
and
—diVO‘K = PKf in K

as desired. The fact that [|o x|y, ) is minimised over P; (K) x Py (K) follows
upon observing that any function whose normal components vanishes on all of the
edges of K and whose divergence is zero in K must be a multiple of % and that

(O'K,O'(I)()K =0.
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