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Abstract The Rasch Poisson counts model (RPCM) allows for the analysis of men-
tal speed which represents a basic component of human intelligence. An extended
version of the RPCM, which incorporates covariates in order to explain the diffi-
culty, provides a means for modern rule-based item generation. After a short in-
troduction into the extended RPCM we will develop locally D-optimal calibration
designs for this model. Therefore, the RPCM is embedded in a particular general-
ized linear model. Finally, the robustness of the derived designs will be investigated.

1 Introduction

Reasoning, memory, creativity and mental speed belong to the most important fac-
tors of human intelligence (Jäger, 1984). Mental speed refers to the human ability
to carry out mental processes, required for the solution of a cognitive task, at vari-
able rates or increments of time. Usually, mental speed is measured by elementary
tasks with low cognitive demands in which speed of response is primary. As Rasch
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(1960) already showed in his classical monograph, elementary cognitive tasks can
be analyzed by the so-called Rasch Poisson counts model. Other successful appli-
cations of this model have been published by e. g. Jansen (1997) and Verhelst and
Kamphuis (2009).

Typical items measuring mental speed can be differentiated by task characteris-
tics or rules that correspond to cognitive operations to solve an item. The kind and
amount of task characteristics influences the difficulty of the items. The task char-
acteristics can be used to predict the task difficulty analogously to linear logistic
models for reasoning items (Graßhoff et al., 2010).

2 Poisson model for count data

According to the Rasch Poisson count model the number of correct answers is as-
sumed to follow a Poisson distribution with intensity λ = θσ , where θ is the ability
of the test person and σ is the easiness of the test item. Obviously the (expected)
number of correct answers will increase simultaneously with the ability of the per-
son and the easiness of the task.

In the following we consider the calibration step for the test items, when the
ability of the test person is assumed to be known. The dependence of the easiness of
an item on the rules may then be specified by a Poisson regression (Poisson anova)
model with exponential link.

More formally, the number of correct answers Y (x) is Poisson distributed with
intensity λ (x;β ) = θ exp(f(x)>β ), where x is the experimental setting (“rules”),
which may be chosen from a specific experimental region X , σ = exp(f(x)>β ) is
the easiness of the item, f = ( f1, ..., fp)> is a vector of known regression functions,
and β ∈ Rp the vector of unknown parameters to be estimated.

As rules may be applied or not, we will focus on the situation of a K-way layout
with binary explanatory variables xk, where xk = 1, if the kth rule is applied, and
xk = 0 otherwise. In particular, if xk = 0 for all rules k, a basic item is presented. The
experimental setting is then x = (x1, ...,xk)∈ {0,1}K . As we assume no interactions,
the vector of regression functions is f(x) = (1,x1,x2, ...,xk)>, and the parameter
vector β consists of a constant term β0 and the K main effects βk. Thus p = K + 1
and the expected response equals the intensity λ (x;β ) = θ exp(β0 +∑K

k=1 βk xk).
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3 Information and design

For a single observation the Fisher information is M(x;β ) = λ (x;β ) f(x) f(x)>,
which depends on the particular setting x and additionally on β through the intensity.
Consequently, the normalized information matrix equals M(ξ ;β )= 1

N ∑N
i=1 M(xi;β )

for an exact design ξ consisting of N design points x1, ...,xN . For analytical ease
we will make use of approximate designs ξ with mutually different design points
x1, ...,xn, say, and corresponding (real valued) weights wi = ξ ({xi}) ≥ 0 with
∑n

i=1 wi = 1 in the spirit of Kiefer (1974). This approach seems appropriate, as typ-
ically the number N of items presented may be quite large. The information matrix
is then more generally defined as M(ξ ;β ) = ∑n

i=1 wi λ (xi;β ) f(xi) f(xi)>.

As common in generalized linear models the information matrix and, hence,
optimal designs will depend on the parameter vector β . For measuring the quality
of a design we will use the popular D-criterion. More precisely, a design ξ will
be called locally D-optimal at β if it maximizes the determinant of the information
matrix M(ξ ;β ).

In the present situation the intensity and, hence, the information is proportional
to θ and exp(β0) such that M(ξ ;β ) = θ exp(β0)M0(ξ ;β ), where M0(ξ ;β ) is the
information matrix in the standardized situation θ = 1 and β0 = 0. Thus for a fixed
person only det(M0(ξ ;β )) has to be optimized, and we will assume the standardized
case (θ = 1, β0 = 0) without loss of generality throughout the remainder of the
paper. If more than one test person is involved, then the same optimal design has
to be applied to each of them. Note also that in the case that the choice of the test
persons is at the disposition of the examiner the person with the highest ability
provides the most information.

4 Two way-layout with binary predictors

Before starting the case of a two-way layout we notice that for the situation of only
one rule (K = 1) the D-optimal design assigns equal weights w∗i = 1/2 to the only
two possible settings x1 = 1 of application of the rule and x2 = 0 of the basic item
independently of β , as all (regular) designs are saturated.

Our main focus, however, is on K = 2 binary explanatory variables, where the
number of parameters equals p = 3. Here the four possible settings are x1 = (1,1),
where both rules are applied, x2 = (1,0) and x3 = (0,1), where either only the first
or the second rule is used, respectively, and x4 = (0,0) for the basic item. Hence, any
design ξ is completely determined by the corresponding weights w1, ...,w4. Further
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we denote by λi = λ (xi;β ) the related intensities. Then the information matrix of a
design ξ results in

M(ξ ;β ) =




∑4
i=1 wiλi w1λ1 +w2λ2 w1λ1 +w3λ3

w1λ1 +w2λ2 w1λ1 +w2λ2 w1λ1

w1λ1 +w3λ3 w1λ1 w1λ1 +w3λ3




with a determinant equal to

det(M(ξ ;β )) = w1w2w3λ1λ2λ3 +w1w2w4λ1λ2λ4

+w1w3w4λ1λ3λ4 +w2w3w4λ2λ3λ4 .

Candidates for optimal designs will be either saturated designs on any three of
these settings with corresponding weights wi = 1/3 or “true” four-point designs
with suitable positive weights for all four settings. As we will see later, all these
cases may occur corresponding to the values for the effect sizes β1 and β2 of the
two rules. For the saturated designs denote by ξ i j the uniform three-point design on
the setting (i, j) and its two adjacent settings (i,1− j) and (1− i, j) for i, j = 0,1.
For example ξ00 is then the uniform design on (0,0), (0,1) and (1,0).

For the present application it is reasonable to investigate the case β1 ≤ 0 and
β2 ≤ 0, as it is to be expected that the application of a rule increases the difficulty
and, hence, decreases the easiness of an item. Other parameter constellations can be
treated by symmetry considerations.

Russell et al. (2009) treated the situation of continuous predictors. From their
result we may conclude that in our setting the design ξ00, which avoids the most
difficult item, is locally D-optimal for β1 = β2 = 2.

For other non-positive values of β1 and β2 we can derive that the design ξ00 is
locally D-optimal if and only if λ2λ3λ4 − λ1λ2λ4 − λ1λ3λ4 − λ1λ2λ3 ≥ 0 by the
celebrated equivalence theorem, see e. g. Silvey (1980). This condition is fulfilled if
and only if β2 ≤ log((1− exp(β1))/(1 + exp(β1))) . Otherwise a “true” four-point
design will be optimal.

By considerations of equivariance similar conditions can be derived for the other
sign combinations in β , and we can state that some saturated design is locally D-
optimal if and only if |β2| ≥ log((exp(|β1|)+1)/(exp(|β1|)−1)).

In Figure 1 the parameter regions of β1 and β2 are depicted, where which sat-
urated design is locally D-optimal. From this picture it can be seen that saturated
designs are optimal, if the effect sizes are large, and then that level combination
is avoided, which results in the lowest intensity. Conversely, for the interior dia-
mond shaped region, where |β2| < log((exp(|β1|) + 1)/(exp(|β1|)− 1)), a “true”
four-point design will be locally D-optimal. Similar results have been obtained by
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Fig. 1 Locally D-optimal designs in dependence on (β1,β2)

Yang et al. (2012) for binary response. In the case of vanishing effects, β1 = β2 = 0,
the information matrix coincides with the corresponding linear model of a two-way
layout, and the uniform design is optimal with weights wi = 1/4 on all four level
combinations x1, ...,x4.

Next we will consider two particular parameter constellations, where either one
of the effect sizes vanishes or where both effect sizes are equal: For the first case
we assume β1 = 0. The case β2 = 0 can be treated analogously. In this situation
the intensity λ (x;β ) is constant in the first component, λ1 = λ3 = exp(β2) and
λ2 = λ4 = 1. Hence, according to Theorem 1 in Graßhoff et al. (2004) we obtain
an optimal product-type design ξ ∗ defined by ξ ∗(x) = ξ ∗2 (x2)/2 and the marginal
weight v∗ = ξ ∗2 (1) maximizes v(1− v)(1 +(λ1− 1)v). If additionally also β2 = 0,
then λ1 = 1 and the optimal marginal weight is v∗ = 1/2, form which we recover the
optimality of the uniform four-point design. If β2 6= 0, then λ1 6= 1 and the optimal
weight can be calculated as

v∗ = 1/2 + (τ−2
√

τ2−3)/(6(exp(β2/2)− exp(−β2/2)) ,

where τ = exp(β2/2)+ exp(−β2/2) Note that 1/3 < v∗ < 2/3. Consequently we
get 1/6 < w∗i < 1/3 as w∗1 = w∗3 = v∗/2 and w∗2 = w∗4 = (1− v∗)/2. The left panel
of Figure 2 exhibits these weights as functions of β2. The weights w∗1 = w∗3 for
x1 = (1,1) and x3 = (0,1) decrease, when β2 tends to minus infinity, i. e. if these
items become more difficult. Hence, more observations should be allocated to the
other items x2 = (1,0) and x4 = (0,0) with lower difficulty.

An alternative parameter constellation, where we can explicitly determine the
optimal weights, is the situation of equally sized effect sizes, |β2| = |β1|. In partic-
ular we consider the case β2 = β1 = β , which is relevant for our application. The
case β2 = −β1 can again be treated by symmetry considerations. Here the intensi-
ties are λ1 = exp(2β ), λ2 = λ3 = exp(β ) and λ4 = 1. Due to symmetry considera-
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Fig. 2 Optimal weights w∗1 = w∗3 (solid line) and w∗2 = w∗4 (dashed line) for β1 = 0 (left panel) and
w∗1 (solid line), w∗2 = w∗3 (dashed line) and w∗4 (dashed-dotted line) for β1 = β2 = β (right panel)

tions with respect to swapping the factors we can conclude that the optimal weights
satisfy w∗2 = w∗3. The saturation condition above leads to |β | ≥ log(

√
2 + 1) ≈

0.881. Hence, for β ≤ − log(1 +
√

2) the design ξ00 is locally D-optimal, while
for β ≥ log(1 +

√
2) this is true for the design ξ11. For the intermediate case,

|β |< log(1+
√

2), the determinant is optimized by

w∗2 = w∗3 =
(

4γ +2
√

γ2 +12
)

/
(
3(4− γ2)

)
,

where γ = exp(β )+ exp(−β )−4, and

w∗1,4 = 1/2 − w∗2 ± (exp(β )− exp(−β ))w∗2/4 .

The right panel of Figure 2 presents the weights of the locally D-optimal designs
in dependence on β . The passage from an optimal design with four points to an
optimal saturated design takes place continuously in the weights at the critical values
β = ±log(1+

√
2), and the symmetry properties of the optimal weights become

evident from the picture. Again the uniform four-point design can be recovered to
be optimal for the case of vanishing effects (β = 0).

5 Robustness

Locally D-optimal designs may show a poor performance, if false initial values are
specified for the parameters. Therefore a sensitivity analysis has to be performed,
and we will compare the efficiency of a saturated design with the efficiency of
the uniform four-point design, which is optimal for β1 = β2 = 0. As usual the D-
efficiency of a design ξ is defined by eff(ξ ;β ) = (det(M(ξ ;β ))/det(M(ξ ∗β ;β )))1/p,
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where ξ ∗β denotes the locally D-optimal design at β and p is the dimension of the
parameter vector (here p = 3).

In particular, we consider again the saturated design ξ00. In the left panel of
Figure 3 the efficiency is exhibited for the situation of one vanishing effect (β1 = 0).
The efficiency of the saturated design ξ00 (solid line) tends to 1 for β2 to minus
infinity and tends to 0, if β2 goes to plus infinity. The efficiency of the uniform
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Fig. 3 Efficiencies of the saturated design ξ00 (solid line) and the uniform four-point design
(dashed line) for β1 = 0 (left panel) and for β1 = β2 = β (right panel)

four-point design (dashed line) drops from 1 for β2 = 0, where hi design is locally
optimal, to (27/32)1/3 ≈ 0.945, when |β2| tends to inifinity. In the right panel of
Figure 3 the eficiency is plotted for equal effect sizes (β2 = β1 = β ). The saturated
design ξ00 is locally D-optimal and has, hence, efficiency 1 for β ≤− log(1+

√
2).

If β increases beyond this critical value, the efficiency of ξ00 decreases, and for
β ≥ log(1+

√
2) the efficiency equals exp(−2β )1/3, which finally drops down to 0.

For the efficiency of the uniform four-point design we observe again the value 1 at
β = 0 and a lower bound of 3/4, which is approached for |β | to infinity. Thus the
uniform four-point design seems to be essentially more robust to misspecifications
of the parameter values than the saturated designs.

Finally, we note that the uniform four-point design is maximin efficient for sym-
metric parameter regions, which follows from a corresponding result in Graßhoff
and Schwabe (2008), as this design is the only invariant design with respect to per-
mutations of the levels. Similar arguments may also establish that the uniform four-
point design is also optimal for weighted (“Bayesian”) criteria, when the weight
function is symmetric in the parameters.
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6 Conclusion

In this article we developed locally D-optimal designs for the Rasch Poisson counts
model including two binary explanatory variables. If the effect sizes are large, sat-
urated designs proved to be optimal. However, this condition implies, at least, a
ratio of (1+

√
2)2 ≈ 5.83 between the highest and the lowest intensity. Such a ratio

is quite unrealistic in our applications of the RPCM for rule-based testing mental
speed. Hence, four-point designs will be mostly required for corresponding calibra-
tion studies. For two particular parameter constellations optimal weights have been
derived. For these cases it has been shown that uniform four-point designs are very
robust. Since rule-based tests of mental speed often include more than two task char-
acteristics, we will, as a next step, develop locally D-optimal designs for the RPCM
with K > 2 binary explanatory variables.
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