
Improved Witnessing and Local Improvement

Principles for Second-Order Bounded Arithmetic

Arnold Beckmann∗†

Department of Computer Science

Swansea University

Swansea SA2 8PP, UK

a.beckmann@swansea.ac.uk

Samuel R. Buss∗‡

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112, USA

sbuss@math.ucsd.edu

March 10, 2012

Abstract

This paper concerns the second order systems U1

2
and V 1

2
of bounded

arithmetic, which have proof theoretic strengths corresponding to poly-
nomial space and exponential time computation. We formulate im-
proved witnessing theorems for these two theories by using S1

2
as a

base theory for proving the correctness of the polynomial space or ex-
ponential time witnessing functions. We develop the theory of non-
deterministic polynomial space computation in U1

2
. Ko lodziejczyk,

Nguyen, and Thapen have introduced local improvement properties
to characterize the provably total NP functions of these second or-
der theories. We show that the strengths of their local improvement
principles over U1

2
and V 1

2
depend primarily on the topology of the

underlying graph, not the number of rounds in the local improvement
games. The theory U1

2
proves the local improvement principle for linear

graphs even without restricting to logarithmically many rounds. The
local improvement principle for grid graphs with only logarithmically
rounds is complete for the provably total NP search problems of V 1

2
.

Related results are obtained for local improvement principles with one
improvement round, and for local improvement over rectangular grids.

∗The authors thank the John Templeton Foundation for supporting their participation
in the CRM Infinity Project at the Centre de Recerca Matemàtica, Barcelona, Catalonia,
Spain in February 2011, during which this project was instigated.

†This research was partially done while the author was a visiting fellow at the Isaac
Newton Institute for the Mathematical Sciences in the programme “Semantics & Syntax”.

‡Supported in part by NSF grant DMS-1101228 and by a grant from the Simons Foun-
dations (#208717 to Sam Buss).

1

1 Introduction

The theories U1
2 and V 1

2 of bounded arithmetic are well-known to have proof
theoretic strengths corresponding to polynomial space and exponential time
computation. It is a fundamental and famous open question in computer
science whether these two complexity classes are equal, a question which is
related to the P versus NP question. Likewise, it is a fundamental open prob-
lem whether U1

2 and V 1
2 are distinct. The difference in working with bounded

arithmetic theories instead directly with computational classes is that the
theories may possibly be shown to be distinct by combining logical consid-
erations of provability along with computational complexity considerations.
In this paper, we give improved characterizations of the multifunctions and
the total NP search problems which are definable in U1

2 and V 1
2 . Our main

results give improved theorems about the strengths of local improvement
principles in U1

2 and V 1
2 . Along the way, we show that Savitch’s theorem on

non-deterministic polynomial space computation is formalizable in U1
2 , and

we give improved “new-style” witnessing theorems.
A “multifunction” is a function which can have multiple values, namely

a total relation. NP search problems are multifunctions f which have poly-
nomial growth rate and whose graph is polynomial-time recognizable. The
provably total NP search problems of a theory T of bounded arithmetic are
the multifunctions which have polynomial time graph Gf (x, y) such that
T proves (∀x)(∃y)Gf (x, y). If Gf is instead a Σb

i -formula, then f is a Σb
i -

definable multifunction of T . The provably total NP search problems of T
and the Σb

1-definable multifunctions of T are essentially the same, as the
latter can be defined as projections of the former.

There have been a series of recent results giving new characterizations
of the provably total NP search problems for theories of bounded arith-
metic, and more generally the Σb

i -definable multifunctions of these theories.
The most recent work in this direction includes [13, 11, 1, 2, 8]. The first
four of these papers give characterizations of the Σb

i -definable functions of
T k2 for all 1 ≤ i ≤ k. Skelley and Thapen [13] introduced k-round game
principles, GIk, which characterize the provably total NP search problems
of T k2 . Beckmann and Buss [1, 2] used an extension of polynomial local
search (PLS) along with Skolemization techniques to characterize the Σb

i -
definable multifunctions of T k2 for 1 ≤ i ≤ k. Pudlák and Thapen [11] gave
another quite different characterization of the Σb

i -definable multifunctions of
T k2 based on alternating min-max principles. The fifth paper, Ko lodziejczyk,
Nguyen, and Thapen [8], extended the idea of the game principles to a “lo-
cal improvement” principle and applied this to characterize the Σb

1-definable

2

multifunctions of the second order theories U1
2 and V 1

2 .
As we explain below in more detail, the present paper extends the results

of [8] in several ways. The first part of the paper describes U1
2 and V 1

2 and
extends the bootstrapping of U1

2 to show that U1
2 can define nondetermin-

istic polynomial space (NPSPACE) computations and can prove Savitch’s
theorem about the equivalence of deterministic and nondeterministic poly-
nomial space. We then present improved witnessing theorems for U1

2 and V 1
2 .

The final part of the paper improves the results of [8] that characterize the
Σb
1-definable multifunctions in terms of local improvement (LI) and linear

local improvement (LLI) principles. Our new results include that U1
2 can

prove the principle LLI, and that the LIlog principle is (provably) many-one
complete for the total NP search problems of V 1

2 . This improves results from
[8], who had proved weaker versions of these results with LLIlog and LI in
place of LLI and LIlog, respectively. We also characterize the strengths of
the LLI1 principle, and the rectangular local improvement principles, RLI,
RLIlog, and RLI1.

The original witnessing theorems [4] for bounded arithmetic followed
the following general template. These witnessing theorems were formulated
to apply to a theory T , a formula class Φ, and a complexity class C. In
most cases, the complexity class C has complete problems, and the functions
in the complexity class C can be enumerated by specifying an algorithm
for the function that uses specified computational resources. A function
that is specified in such a way is said to be “explicitly C”. The witnessing
theorem then states that if φ ∈ Φ and T ⊢ (∀~x)(∃y)φ(~x, y), then there
is an explicitly-C function f such that (a) T proves the totality of f and
(b) T proves (∀~x)φ(~x, f(~x)). For this, T does not need to have a function
symbol for f , rather there is a formula Gf defining the graph of f , and
condition (a) actually means that T proves (∀~x)(∃y)Gf (~x, y). Likewise,
condition (b) means that T proves (∀~x)(∀y)[Gf (~x, y) ⊃ φ(~x, y)]. Buss [4, 5]
established these kinds of results for the theories Sk2 , T k2 , U1

2 , and V 1
2 , and for

function classes such as polynomial time, levels of the polynomial hierarchy,
polynomial space, and exponential time. Buss and Kraj́ıček [6] proved a
witnessing theorem for T 1

2 and PLS. And, various authors have established
a wide range of additional witnessing theorems; many of these are reported
in a modern form in Cook-Nguyen [7].

In many cases, the witnessing theorem also includes a “uniqueness condi-
tion” that f is a function rather than a multifunction; namely, that T proves
(∀~x)(∃!y)Gf (~x, y). However, there are some notable exceptions, namely
those related to witnessing with PLS and game principles: these include
(among others) [6, 1, 2, 8]. In these cases, the explicitly-C functions are

3

conjectured to be inherently multifunctions rather than functions, so the
(conjectured!) failure of the uniqueness condition is unavoidable.

In nearly every case, the witnessing theorem is accompanied with a con-
verse result stating that every explicitly-C function is provably definable in T
with its graph Gf a formula from Φ.

Some recent witnessing theorems have followed an improved paradigm,
which provides an extension of the template described above. These “new-
style” witnessing theorems were used implicitly in [13] and more explicitly
in [1, 2, 8, 15]. For the improved paradigm, the condition (b) of a witnessing
theorem is replaced with

(b’) S1
2 proves (∀~x)(∀y)[Gf (~x, y) ⊃ φ(~x, y)].

That is, the correctness of the witnessing function f is now proved in the
(weaker) theory S1

2 rather than in T .1 Of course, in these situations, it is
generally conjectured that S1

2 does not necessarily prove the totality of f ;
thus (b’) includes the existence of y = f(~x) as a hypothesis. We shall prove
two such new-style witnessing theorems for U1

2 and V 1
2 in Section 4.

Section 2 reviews quickly the definitions of the theories U1
2 and V 1

2 . We
presume, however, that the reader has basic familiarity with the bounded
arithmetic theories Si2 and T i2 and the syntactic classes Σb

i and Πb
i . This

section also introduces an alternate sequent calculus formulation of U1
2 that

will be useful for establishing normal forms for free-cut free proofs in U1
2 .

Section 3 shows that U1
2 can formalize nondeterministic polynomial space

computations. This is based on a formalization of Savitch’s theorem that
NSPACE(n) is contained in SPACE(n2) and that hence PSPACE equals
NPSPACE. The formalization of Savitch’s theorem in U1

2 is completely
straightforward, but some care must be taken to show that it is possible for
U1
2 to pick out a particular nondeterministic computation path, including,

for instance, the lexicographically first one. This construction is used in a
crucial way for the proof of Theorem 15.

Section 4 establishes the two new-style witnessing theorems of U1
2 and

V 1
2 . Of course, the two theories already have witnessing theorems linking

them to polynomial space and exponential time computation, respectively.
The new witnessing theorems use S1

2 as a base theory as in (b’) above,
or more precisely, a conservative extension of S1

2 to include second order
variables. To formulate the witnessing theorem, we define a notion of what it

1So far, new-style witnessing theorems have been proved only for theories T that con-
tain S1

2 . It should be straightforward to extend these results to use even weaker theories
than S1

2 . No new-style witnessing theorems have been proved yet for theories T ⊆ S1
2 .

4

means for a second order object (or, “predicate”) to “canonically verify” the

truth of a bounded (Σ1,b
0) formula. We then prove two witnessing lemmas,

over the base theory S1
2 , about the witnessing of sequents of Σ1,b

1 formulas
that are provable in U1

2 or V 1
2 , using polynomial space or exponential time

(respectively) computable predicates.
Ko lodziejczyk, Nguyen, and Thapen [8] already proved new-style wit-

nessing theorems for U1
2 and V 1

2 using closure under certain types of iter-
ation. The results of Section 4 use a more straightforward definition for
polynomial space and exponential time computation, along with the notion
of canonical verification. In addition, Theorems 11 and 12 for V 1

2 use S1
2 as

a base theory, rather than the ostensibly stronger theory T 1
2 which was used

by [8]. This improvement of using S1
2 as the base theory will be crucial later

for the proof of Theorem 16. (Since S1
2 is conservative over PV, we could

equally well use PV as the base theory.)
Section 5 discusses the local improvement principles of [8]. Loosely

speaking, a local improvement principle uses a directed acyclic graph G:
the vertices in the graph G are assigned labels with scores. Initially all la-
bels have score value equal to zero, but a mechanism is provided to make
local updates to labels which increment scores by one. This local update
proceeds by sweeping across the graph, and is well-defined since the graph
is acyclic. In essence, the local improvement principle states that the scores
can be incremented for a certain number, c, of rounds. (The actual formu-
lation of the local improvement principles will be as a set of contradictory
assertions, which yields an NP search problem.)

There are two kinds of local improvement principles: the principle LI
has underlying graph G on N vertices with constantly bounded in- and out-
degrees, and LLI uses a linearly ordered set of N points as its underlying
graph. (The value N will be first order, but not a length.) The principles
LI and LLI both use c = NO(1) many rounds of score increases. Limiting
the number of rounds to instead be c = O(logN) gives the LIlog and LLIlog
principles. When using exactly c = 1 rounds, the principles are called LI1
and LLI1.

Prior work [8] proved, for T the theory U1
2 (respectively, V 1

2), that the
LLIlog principle (respectively, the LI principle) is provable in T , and is many
one complete for the provably total NP search problems of T , provably in S1

2 .
Section 5 concludes with new improved results; namely, that U1

2 proves the
LLI principle, and that the LIlog principle is many-one complete for the
provably total functions of V 1

2 , provably in S1
2 . In fact, it follows that LLI

and LLIlog are equivalent over S1
2 , and that LI and LIlog are equivalent

5

over S1
2 . Consequently, the strength of these local improvement principles

depends on the underlying topology of the directed graph G, not on whether
the number c of rounds is logarithmic or polynomial.2

The rectangular local improvement principles, RLI, are the versions of
LI where the graph G is a grid graph. We prove that the RLI and RLIlog
principles are equivalent to each other and to LI and LIlog, over S1

2 . For
local improvement principles with two rounds, we prove that, over S1

2 , the
LI1 principle is equivalent to the last four mentioned principles, and that
RLI1 is equivalent to LLI and LLIlog. However, the strength of RLIk for
constant k ≥ 2 remains an open question.

Sections 5.2 through 5.4 present the proofs of our results on the local
improvement properties.

We thank Leszek Ko lodziejczyk and Neil Thapen for useful discussions,
comments, and corrections.

2 Preliminaries for U
1
2 and V

1
2

We assume the reader is familiar with the essentials of bounded arithmetic,
for which see [4, 9]; however, we give a quick review to establish notation.
Most of the paper is concerned with second order theories in the form defined
in Chapter 9 of [4]. Since these second order theories are less well-known,
we describe them below in a bit more detail. Our theories all use the non-
logical language 0, S,+, ·, |·|, ⌊·/2⌋,#,≤. Quantifiers of the form (∃x ≤ t)
and (∀x ≤ t) are called bounded quantifiers. If the term t is of the form
|s|, the quantifier is sharply bounded. The classes Σb

i and Πb
i are defined

by counting alternations of bounded quantifiers, ignoring sharply bounded
quantifiers. The theories Si2 are axiomatized with a set, BASIC, of open
axioms defining the non-logical symbols plus the Σb

i -PIND induction, namely
polynomial induction, or equivalently, length induction. The theories T i2
are axiomatized with the axioms of BASIC plus Σb

i -IND, namely the usual
induction axioms. Restricting to the case of i = 1, the main witnessing
theorems for S1

2 and T 1
2 state that S1

2 can Σb
1-define precisely the polynomial

time functions [4], and that T 1
2 can Σb

1-define precisely the PLS (polynomial
local search) multifunctions [6].

Second order theories of bounded arithmetic extend the first order the-
ories by adding second order variables, X,Y,Z, . . ., intended to range over
sets, also called “predicates”. The membership ∈ symbol is added to the
language as well; the formula t ∈ X denotes that t is in X. We often write

2Again, by conservativity, the same results hold over the base theory PV.

6

X(t) instead of t ∈ X. It is convenient to now let the classes Σb
i and Πb

i in-
volve free second order variables (but no quantified second order variables).
Thus, a bounded quantifier is a bounded, first order quantifier; a bounded
formula is a formula with no unbounded first order quantifiers and no sec-
ond order quantifiers. We also let Si2 and T i2 now be defined with second
order variables allowed to appear in formulas, including as free variables in
induction axioms. But again, second order quantifiers are not allowed in
induction formulas for Si2 and T i2. (Sometimes these extensions of Si2 and T i2
to second order logic are denoted Si+2 and T i+2 , but since there is no chance
of confusion, we prefer to omit the superscript “+”. Likewise, we eschew
the notations Σb+

i and Πb+
i .)

We reserve lower-case letters a, b, c, . . . and z, y, x, . . . for first order vari-
ables, and upper-case letters A,B,C, . . . and Z, Y,X, . . . for second order
variables. Occasionally, we use Greek letters α, β, γ for second order vari-
ables as well. We use φ, ψ, and χ for formulas.

Second order bounded formulas are classified with the classes Σ1,b
i and

Π1,b
i by counting the alternations of second order quantifiers, ignoring any

first order quantifiers. The class Σ1,b
0 is the set of bounded formulas, namely

the set of formulas with no second order quantifiers but with arbitrary (first

order) bounded quantifiers. The class Σ1,b
1 is the set of formulas with all sec-

ond order quantifiers essentially existential (that is, existential after nega-
tions are pushed inward), and arbitrary bounded first order quantifiers.

The theories U1
2 and V 1

2 both contain all of T2, plus the Σ1,b
0 -comprehen-

sion axioms, namely

(∀~x)(∀ ~X)(∃Z)(∀y ≤ t)[y ∈ Z ↔ φ(y, ~x, ~X)] (1)

for every bounded formula φ and term t. This axiom states that any set
(on a bounded domain) defined by a bounded formula φ with parameters is
coded by some second order object Z.3 The theory U1

2 has in addition the

Σ1,b
1 -PIND axioms. The theory V 1

2 has instead the Σ1,b
1 -IND axioms. It is

known that V 1
2 ⊢ U1

2 .

Note that the Σ1,b
0 -comprehension axiom above is a Π1,b

2 -sentence; or,

3The original definition [4] of U1
2 used an unbounded version of the comprehension

axiom; namely, the bounded quantifier (∀y ≤ t) was replaced with the unbounded quan-
tifier (∀y). In the present paper, we are interested in only Σ1,b

i -consequences of U1
2 , and,

by Parikh’s theorem, the unbounded version of comprehension gives no additional Σ1,b
i -

consequences. See alternately the discussion of the theories U1
2 (BD) and U1

2 (BD) in [4].
At any rate, subsequent authors have preferred the bounded versions of comprehension
(e.g., [7, 9, 10]), perhaps because it is better behaved model-theoretically.

7

stripping off leading universal quantifiers, it is a Σ1,b
1 -formula, in fact a strict

Σ1.b
1 -formula, as will be defined momentarily.

As a side remark, we note that the second order systems can be con-
servatively extended to include second order function variables which range
over functions with a specified polynomial growth rate. Then, the Σ1,b

0 -

comprehension implies the following Σ1,b
0 function comprehension axiom for

a function symbol δ with growth rate bounded by the term s:

(∀~x)(∀ ~X)(∃δ)(∀y ≤ t)[(∃z ≤ s)φ(y, z, ~x, ~X) ⊃ δ(y)≤s ∧ φ(y, δ(y), ~x, ~X)]

where φ is a Σ1,b
0 -formula [4, p. 164]. The Σ1,b

0 function comprehension axiom

is effectively subsumed by Σ1,b
0 -comprehension, since Σ1,b

0 -comprehension can
define the bit graph of δ so that δ(y) equals the least z ≤ s satisfying
φ(y, z, ~x, ~X), if any such z exists.

However, for simplicity and without loss of generality, we formulate U1
2

and V 1
2 with only second order predicate symbols and without second order

function symbols.4

A function f(~x) is said to be Σ1,b
1 -defined by a theory T provided that

T proves (∀~x)(∃y)φ(~x, y) where φ(~x, y) defines the graph of f and φ ∈ Σ1,b
1 .

The original witnessing theorems of [4, Ch.10] for U1
2 and V 1

2 characterize

their Σ1,b
1 -defined functions in terms of computational complexity. Namely,

U1
2 can Σ1,b

1 -define precisely the polynomial growth rate functions which are

computable by polynomial space Turing machines, and V 1
2 can Σ1,b

1 -define
precisely the polynomial growth rate functions which are computable in
exponential time (that is, time 2n

O(1)
). A formula ψ(~x, ~X) is said to be

∆1,b
1 -definable by T provided that T proves ψ is equivalent to both a Σ1,b

1 -

formula and a Π1,b
1 -formula. A corollary to the witnessing theorems for U1

2

and V 1
2 states that the ∆1,b

1 -predicates of U1
2 (respectively, V 1

2) are precisely
the polynomial space predicates (respectively, the exponential time predi-

cates). In addition, U1
2 can prove the ∆1,b

1 -IND and ∆1,b
1 -MIN principles

(see Theorem 16 of Chapter 9 of [4]). This means that U1
2 can use polyno-

mial space predicates and functions freely for induction and minimization.
In short, U1

2 can carry out a range of arguments about polynomial space
predicates and functions.

We now define the notion of “strict” Σ1,b
1 -formula in analogy with similar

notions for bounded formulas. A Σ1,b
1 -formula is strict provided that it

contains at most one second order existential quantifier, and this quantifier

4Theorem 5 of Chapter 9 of [4] proves the conservativity between the theories with and
without function symbols.

8

is the outermost connective. That is, a formula is strict Σ1,b
1 provided either

it is either a bounded formula, or it has the form (∃X)φ where φ is bounded.

By comparison, a non-strict Σ1,b
1 -formula may have connectives and bounded

quantifiers in front of the second order quantifiers. We shall sometimes use
the notation sΣ1,b

1 to denote the class of strict Σ1,b
1 -formulas.

It is useful to restrict proofs to contain only strict Σ1,b
1 -formulas as this

will considerably simplify the proofs of the new-style witnessing theorems of
Section 4. Both U1

2 and V 1
2 can prove that any Σ1,b

1 -formula is equivalent to a

strict Σ1,b
1 -formula by using Σ1,b

1 -replacement principles, which are theorems
of both U1

2 and V 1
2 (see Theorem 16 of Chapter 9 of [4]). Thus it is reasonable

to assume that any free-cut free U1
2 - or V 1

2 -proof of a strict Σ1,b
1 formula could

be restricted to contain only strict Σ1,b
1 -formulas.

For V 1
2 this works readily. It is easy to check that V 1

2 can prove the Σ1,b
1 -

replacement principles, and more generally prove the equivalence of any
given Σ1,b

1 -formula to a strict Σ1,b
1 formula, while using induction only on

strict Σ1,b
1 formulas. Thus, the usual free-cut elimination theorem (c.f., [3])

gives the following.

Theorem 1 Suppose V 1
2 proves a sequent Γ −→ ∆ of strict Σ1,b

1 -formulas.

Then there is a V 1
2 -proof of Γ −→ ∆ in which every formula is strict Σ1,b

1 .

For U1
2 , the situation is less simple. The known proof in U1

2 that every

Σ1,b
1 -formula is equivalent to a strict Σ1,b

1 -formula uses induction on non-

strict Σ1,b
1 -formulas.5 Thus, free-cut elimination seemingly cannot be used

with the usual formulation of U1
2 to obtain proofs containing only strict

Σ1,b
1 -formulas as cut formulas.

We can instead use a trick, and work with a slightly reformulated version
of the theory U1

2 called U1∗
2 .

Definition An sΣ1,b
1 -repl-∀ inference is an inference of the form

a ≤ t,Γ −→ ∆, (∃X)φ(X, a)

Γ −→ ∆, (∃Y)(∀x ≤ t)φ({z}Y (〈x, z〉), x)

where φ is a Σ1,b
0 -formula, a is an eigenvariable, and 〈x, z〉 is the usual pairing

function used for bounded arithmetic. The notation {z}Y (〈x, z〉) denotes
an abstract in the sense of Takeuti [14]. An abstract is akin to a lambda
term but is not a syntactic part of the language; instead it is removed by the

5The proof of Σ1,b
1 -replacement in U1

2 given for Theorem 16 of Chapter 9 of [4] uses a
doubling trick that seems to depend essentially on the use of non-strict Σ1,b

1 -formulas.

9

process of substitution. Namely, φ({z}Y (〈x, z〉), x) is the formula obtained
from φ(X, a) by replacing every occurrence of the variable a with x, and
every occurrence of any subformula X(s) with Y (〈x, s〉).

Definition The theory U1∗
2 is defined to be U1

2 , but with sΣ1,b
1 -PIND instead

of Σ1,b
1 -PIND, and with sΣ1,b

1 -repl-∀ as an additional rule of inference.

It is clear that the sΣ1,b
1 -repl-∀ inference is a derived rule of inference for U1

2 ,

although proving this in U1
2 involves a cut on a non-strict Σ1,b

1 -formula.
Therefore, U1

2 proves all theorems of U1∗
2 .

Theorem 2 In U1∗
2 , every Σ1,b

1 -formula can be proved equivalent to a strict

Σ1,b
1 -formula.

The theorem is straightforward to prove. The proof is by induction on the
complexity of formulas and uses the sΣ1,b

1 -repl-∀ rule to handle the hard case
of moving a bounded quantifier past a second order quantifier.

As a corollary, U1∗
2 admits PIND induction on all Σ1,b

1 -formulas. This
immediately implies the equivalence of U1

2 and U1∗
2 .

Corollary 3 U1
2 and U1∗

2 have the same consequences.

The difference between U1
2 and U1∗

2 is only that they have different formal-
izations for sequent calculus proofs. The sequent calculus is formalized in a
standard way. It uses conventional rules for weak inferences, for cut, and for
first order connectives. In place of induction axioms, it uses induction rules
with side formulas. The theory U1∗

2 admits the sΣ1,b
1 -repl-∀ rule of inference.

The comprehension axiom (1) becomes the initial sequents

−→ (∃Z)(∀y ≤ t)[y ∈ Z ↔ φ(y, ~x, ~X)].

This allows the second order ∃:right and ∀:right axioms to be formulated
with only second order variables (instead of the more general substitution
of abstracts). Namely, the two rules for second order existential quantifiers
are:

Γ −→ ∆, φ(A)
∃:right

Γ −→ ∆, (∃X)φ(X)
and

φ(A),Γ −→ ∆
∃:left

(∃X)φ(X),Γ −→ ∆

where, for the ∃:left rule, the second order variable A is a eigenvariable and
does not appear in the lower sequent of the inference. Dual rules are used
for second order universal quantifiers. (However, second order universal
quantifiers are never needed in our free-cut free proofs.)

Eliminating free-cuts from U1∗
2 -proofs gives the following theorem.

10

Theorem 4 Suppose U1
2 proves a sequent Γ −→ ∆ of strict Σ1,b

1 -formulas.

Then there is a U1∗
2 -proof of Γ −→ ∆ in which every formula is strict Σ1,b

1 .

It will be convenient to work with U1∗
2 instead of U1

2 for our witnessing con-

structions in Section 4. The downside of having sΣ1,b
1 -repl-∀ as an additional

inference is more than offset by the convenience of working with only strict
Σ1,b
1 -formulas in the proof of the witnessing lemmas.

3 Nondeterministic polynomial space in U
1
2

We next formalize, in U1
2 , Savitch’s theorem [12] that nondeterministic poly-

nomial space is equal to polynomial space. An important consequence for
us is that this means that U1

2 can use induction (IND) and minimization
(MIN) on NPSPACE predicates. It turns out that Savitch’s argument can
be carried out inside U1

2 without complications; nonetheless, it is useful to
check the details of exactly how it is formalized.

Figure 1 shows the usual algorithm behind Savitch’s theorem. We as-
sume that M is a nondeterministic Turing machine, running on input w,
with explicit polynomial space bound p(n) where n = |w|. For convenience,
we use the convention that the input w is written on a read only input tape.
A configuration of M(w) is a complete description of M ’s tape contents,
head positions, and current state at a given instant of time.

Let Cinit be the initial configuration of M(w). We may assume without
loss of generality that if there is an accepting computation for M(w), then
it ends with a known configuration Cend after a known number of steps tend.
Then, to determine if M(w) has an accepting computation, one merely in-
vokes

Reachable(w, Cinit, 0, Cend, tend). (2)

It is well-known that Savitch’s algorithm uses only polynomial space. In fact,
it is straightforward to formalize Savitch’s algorithm in U1

2 as an explicitly
polynomial space bounded computation.

With efficient coding, a configuration of M(w) can be written out with
d·p(n) many bits; thus a configuration can be coded by a number C < 2d·p(n).
For convenience, we shall use BdM (n) to denote the term d · p(n) bounding
the lengths of codes of configurations of M . It is not particularly important
how configurations C are coded, but it is important that it be done in a
straightforward matter so that information about the tape contents, tape
head positions, current state, etc., can be extracted by polynomial functions
of C, and so that our base theory S1

2 can prove elementary properties about

11

Reachable(w, C1, t1, C2, t2)

// C1 and C2 are configurations, and t1 < t2.
if t2 = t1 + 1 then

if (C2 follows from C1 by one step of M) then

return TRUE

else

return FALSE

end if

else

set t := ⌊(t1 + t2)/2⌋
set C := 0

loop while C < 2BdM (|w|)

if (C codes a valid configuration of M(w)
and Reachable(w, C1, t1, C, t)
and Reachable(w, C, t, C2, t2))

Mark C as the identified configuration for time t.
return TRUE

end if

set C := C + 1
end loop

return FALSE

end if

Figure 1: Savitch’s algorithm is a recursively invoked procedure that does
a depth first, divide-and-conquer, search for an accepting computation. It
determines whether, starting in configuration C1 at time t1, the Turing
machine M with input string w can reach configuration C2 at time t2 > t1
by some nondeterministic computation.

12

configurations, including whether one configuration succeeds another, or
what the possible next moves are from a given configuration.

Note that the algorithm in Figure 1 has a line for marking a configu-
ration C as being “identified” as the time t configuration. It can certainly
happen that more than one configuration C is identified for a particular
time t. Indeed, suppose a recursive call Reachable(w,C1, t1, C, t) returns
true. Then certainly some configuration is identified for each time t′ ∈ (t1, t).
If, however, the next call Reachable(w,C, t, C2, t2) returns false, then the
Savitch algorithm proceeds to the next value of C, and retries the calls with
the new value for C. This of course, can cause new configurations to be
identified for the times t′ ∈ (t1, t), etc.

Accordingly, when a particular call (2) to Reachable returns TRUE, we
are interested in the last configuration that is identified as the time t con-
figuration. Let C[t] denote this last such configuration. We claim that the
sequence of configurations C[0], C[1], C[2], . . . , C[tend] is in fact an accepting
computation for the Turing machine M on input w, where C[0] and C[tend]
are Cinit and Cend. We shall call this sequence of configurations the “Savitch
computation” of M(w).

A computation of M(w) consists of tend + 1 many configurations, each
coded by a string of d · p(n) bits. Accordingly, the entire computation can
be coded by (tend + 1) · d · p(n) many bits, where n = |w|. Since tend is
exponentially bounded in n, an entire computation of M(w) can be coded,
in U1

2 , by a second order object X. Namely, by letting X(i) have truth value
equal to the i-th bit of the computation, for i < (tend + 1) · d · p(n).

The claim is that U1
2 can prove that if Reachable(w,Cinit, 0, Cend, tend)

returns TRUE, then there is an X coding the entire Savitch computation
of M(w). A sketch of the proof is as follows. First note that there must
be some second order object Z coding the entire computation of the call to
Reachable. Consequently, C[t] is computable in polynomial space (from
w and t), namely by examining Z. (In fact, w.l.o.g., C[t] is computable
in polynomial time from Z.) The execution of Reachable as coded by Z
contains many invocations of Reachable(w,C1, t1, C2, t2). Using either
IND on the depth of the recursive calls, or PIND on the values t2− t1, it can
be proved that for any such invocation Reachable(w,C1, t1, C2, t2) which
returns TRUE, the sequence C1, C[t1+1], . . ., C[t2−1], C2 identified during
the invocation is a valid computation for M(w) starting in configuration C1

and ending at C2. The base case of the induction argument is trivial, and
the induction step is immediate.

By this argument, we get the following theorem.

13

Theorem 5 Let M be an explicitly polynomial space nondeterministic Tur-
ing machine. Then U1

2 proves: “If there is a Y coding an accepting com-
putation of M(w), then Reachable(w,Cinit, 0, Cend, tend) returns TRUE.
Conversely, if Reachable(w,Cinit, 0, Cend, tend) returns TRUE, then there
exists an X coding the entire Savitch computation, and this is an accepting
computation of M(w).”

The first part of the theorem is proved by noting that the Reachable

algorithm cannot fail to accept when it reaches the computation coded by Y .
Theorem 5 implies further that U1

2 can prove natural properties about
the existence of nondeterministic polynomial space computations. An ex-
ample of this is that U1

2 can prove it is possible to concatenate two partial
computations. To formalize this, we can extend the notion of a Savitch
computation to talk about the Savitch computation that starts at config-
uration C1 at time t1 and ends at configuration C2 at time t2. Then, we
claim that U1

2 can prove that if there are Savitch computations X and Y ,
one from C1 at time t1 to C2 at time t2 and the other from C2 at time t2
to C3 at time t3, then there is a Savitch computation from C1 at time t1 to
C3 at time t3. Of course, the two computations X and Y cannot be merely
concatenated to give a Savitch computation, since they may have different
lengths, so their divide-and-conquer splitting points do not line up. Instead,
however, their concatenation does give a (non-Savitch) computation, and
then Theorem 5 implies the existence of the desired Savitch computation
from C1 to C3.

Savitch computations provide a kind of canonical accepting computation;
that is, if there is some accepting computation, then the Savitch computa-
tion exists and is unique. However, Savitch computations are a bit unnatural
since they depend on the divide-and-conquer algorithm. An arguably more
natural notion of canonical computation is a “lex-first” computation, which
is defined as follows. We assume that each configuration has exactly two
possible successor computations that can be reached in a single step. These
two successors can be called the 0-successor and the 1-successor, say accord-
ing to the order they appear in the transition relation table. In other words,
we think of a nondeterministic algorithm of choosing exactly one random
bit in each step, and moving according to that bit. A string Z of tend many
bits then fully specifies a computation. A lex-first accepting computation is
defined to be the computation that arises from the lexicographically first Z
that gives an accepting computation. Note that the string Z is exponentially
long, and thus is represented in U1

2 by the values of a second order object.
Of course the property that Z gives rise to a lex-first computation can

14

be expressed as a Π1,b
1 -property since it states that there does not exist

a Z ′ lexicographically preceding Z which specifies an accepting computation.
However, U1

2 can also express this as a ∆1,b
1 -property. To see this, let CZ [i]

be the configuration reached after making i steps according to Z, and let
C ′
Z [i] be the computation reached after making i − 1 steps according to Z

but making the i-step with the choice opposite to Z. Then Z gives rise to
a lex-first computation if and only if, for each value i such that Z(i) = 1,
there is no computation from C ′

Z [i] to the accepting configuration. The
last condition is an coNPSPACE property, hence PSPACE; so the entire
condition is ∆1,b

1 .

Theorem 6 Let M be an explicitly polynomial space nondeterministic Tur-
ing machine. Then U1

2 proves: “If there is a Y coding an accepting computa-
tion of M(w), then there exists a lex-first accepting computation of M(w).”

The idea of the proof of Theorem 6 is the following: The Turing machine M ,
including its nondeterministic choices, is simulated step-by-step by a deter-
ministic PSPACE algorithm M ′. At each step, M ′ invokes a PSPACE algo-
rithm to check whether there exists an accepting computation starting from
the 0-successor of the current configuration. If so, M ′ selects the 0-successor
as the next configuration of M . Otherwise, the 1-successor is selected. It is
obvious that M ′ selects the lex-first accepting computation of M if there is
any accepting computation. It is furthermore straightforward to show U1

2

proves this.

4 Improved witnessing theorems for U
1
2 and V

1
2

This section states and proves the improved, new-style witnessing theorems
for U1

2 and V 1
2 . First, we need to define what it means for a polynomial

space or exponential time computation to output either a first order or
second order object. Second, in Section 4.1, we define what it means for
a (polynomial space) computation to “canonically evaluate” the truth of

a Σ1,b
0 - or Σ1,b

1 -formula. The intuition behind this is simple: in order to
canonically verify the truth of such a formula, the PSPACE algorithm does
a brute force evaluation by considering all possible values for the first order
quantified variables. However, the unexpected aspect is that all this must
be formalizable in the weak base theory S1

2 , since the new-style witnessing
theorems use S1

2 as the base theory.
Sections 4.2 and 4.3 then state and prove the two new witnessing theo-

rems and their associated witnessing lemmas.

15

We first establish some further conventions on how Turing machine com-
putations are coded by second order objects and how they produce outputs.
The previous section already discussed how configurations and complete
computations are coded for polynomial space computations. This notion
needs to be extended to handle exponential time computations. Suppose
that M is a Turing machine, with input w of length n, and that M is either
explicitly polynomial space or explicitly exponential time. The running time
of M is bounded by a term tend with value tend < 2q(n) for some polynomial q.
Configurations of M(w) are to be coded in some straightforward way by a
string of length ≤ BdM (w). For M in PSPACE, BdM (w) equals p′(n) for
some polynomial p′. For M exponential time, BdM (w) equals 2p

′(n), again
for p′ a polynomial. For a polynomial space computation, a configuration
of M(w) could be coded by a first order object C < 2p

′(x). For exponential
time machines however, a configuration is too large and must be coded as
a second order object C, where C(i) gives the i-th bit of the configuration.
In either case, an entire computation of M can be coded by a string of
BdM (w) · (tend + 1) bits using a second order object X. The object X can
code the computation by merely concatenating the codes C[0], . . . , C[tend].
As before, the exact details of the encoding are not important, however,
S1
2 must be able to define polynomial time functions that extract informa-

tion about the states, tape head positions, and tape contents at any given
time. Furthermore S1

2 must be able to express other combinatorial prop-
erties about the computation; in particular, the condition that X codes a
correct computation must be expressible by a Πb

1-predicate in S1
2 .

If X codes a complete computation, out(X) denotes the first order object
output by the computation (if any). By encoding the computation of M in X
appropriately, we can ensure that out(X) is computable in polynomial time
relative to X. We sometimes allow a polynomial space or exponential time
Turing machine M to also output a second order object, and use Out(X) to
denote the second order object output (if any). The encoding X must allow
the second order object Out(X) to be polynomial time computable, in that
the value of Out(X)(i) is computable in polynomial time relative to X. For
an exponential time machine, which has exponentially large configurations,
this can be done by using a separate output tape for the second order output.
For a polynomial space machine, this can be done by requiring M to write
each value Out(X)(i) at a special tape location at a prespecified time that
is easily computed from i. This permits configurations of M to be coded
by first order objects in spite of the fact that M outputs an exponentially
large second order object. It also permits Out(X)(i) to be computed in
polynomial time relative to X.

16

4.1 Canonical evaluation and canonical verification

We now define the notion of how a second order object α can “canonically
evaluate” or “canonically verify” a bounded formula. It is important for
later developments that these notions make sense over the base theory S1

2 .
Let φ(~x, ~X) be a first order bounded formula with all free variables in-

dicated. Without loss of generality, the formula φ is in prenex form and,
for notational convenience, we also assume that the quantifiers are alter-
nating existential and universal, and that they all use the same bounding
term t(~x). (These assumptions can be made without loss of generality in
any event since we are only concerned that formulas are bounded, but not
concerned about what Σb

i or Πb
i class they are in.) Thus, we can assume φ

has the form

(∃y1 ≤ t)(∀y2 ≤ t)(∃y3 ≤ t) · · · (Qkyk ≤ t)ψ(~y, ~x, ~X),

with ψ quantifier-free. Here we are temporarily adopting the notation that,
for i ≤ k, Qi is “∃” if k is odd, and “∀” otherwise. We next define what it
means for α to canonically evaluate φ(~x, ~X). An input to α will be inter-
preted as a tuple of the form 〈a1, a2, . . . , aℓ〉 where 0 < ℓ ≤ k+ 1 and where
0 ≤ ai ≤ t for each i. Any standard sequence encoding may be used for
coding tuples.

The intuition is that if ℓ ≤ k then α(〈a1, . . . , aℓ, t〉) is true if and only if

(Qℓ+1yℓ+1 ≤ t) · · · (Qkyk ≤ t)ψ(a1, . . . , aℓ, yℓ+1, . . . , yk, ~x, ~X)

is true. Note the final value in the tuple is t. However, more generally, the
intuition is that if ℓ < k, then α(〈a1, . . . , aℓ, aℓ+1〉) is true if and only if

(Qℓ+1yℓ+1 ≤ aℓ+1)(Qℓ+2yℓ+2 ≤ t) · · · (Qkyk ≤ t)ψ(a1, . . . , aℓ, yℓ+1, . . . , yk, ~x, ~X)

is true. We make these intuitions formal by setting the following conditions
on α.

(a) For all a1, . . . , ak, b ≤ t, we have

α(〈~a, b〉) ↔ ψ(~a, ~x, ~X).

Note that the value b is just a placeholder and is not actually used.

(b) For all odd ℓ ≤ k and all a1, . . . , aℓ ≤ t,

α(〈~a〉) ↔ [(aℓ > 0 ∧ α(〈a1, . . . , aℓ−1, aℓ−1〉)) ∨ α(〈~a, t〉)].

17

(c) For all even ℓ ≤ k and all a1, . . . , aℓ ≤ t,

α(〈~a〉) ↔ [(aℓ > 0 ⊃ α(〈a1, . . . , aℓ−1, aℓ−1〉)) ∧ α(〈~a, t〉)].

Definition The second order object α canonically evaluates φ(~x, ~X) pro-
vided that all the conditions (a)-(c) above hold. And, α canonically verifies
φ(~x, ~X) provided that α canonically evaluates φ(~x, ~X) and α(〈t〉) is true.

Note that “α canonically evaluates φ(~x, ~X)” and “α canonically verifies
φ(~x, ~X)” are expressible as Πb

1 formulas.
We extend the definitions of canonical evaluation and verification to

Σ1,b
1 -formulas as follows.

Definition Let φ be a strict Σ1,b
1 -formula of the form (∃Y)C(~x, ~X, Y), and

let β be a second order object. Then α canonically verifies that β witnesses φ
if and only α canonically verifies C(~x, ~X, β).

Theorem 7 For φ(~x, ~X) a Σ1,b
0 -formula, S1

2 proves

“If α canonically verifies φ(~x, ~X), then φ(~x, ~X) is true.”

For φ(~x, ~X) a strict Σ1,b
1 -formula (∃Z)ψ(~x, ~X,Z), S1

2 proves

“If α canonically verifies that β witnesses φ(~x, ~X), then ψ(~x, ~X, β) is true.”

Proof (Sketch) This is proved using induction (outside S1
2) on the number

of quantifiers k. For k = 0, it is immediate by condition (a). For k > 0,
suppose α(〈t〉) holds. Arguing in S1

2 , use binary search or ∆b
1-minimization

to find the least a1 ≤ t such that α(〈a1〉) holds. By (b), this implies α(〈a1, t〉)
holds. By the (dual of the) induction hypothesis, applied to the negations of
α and the negation of (∀y2 ≤ t) · · · (Qkyk ≤ t)ψ(a1, ~y, ~x, ~X), we have φ(~x, ~X)
is true with y1 set equal to a1. 2

We shall also need second order objects to canonically evaluate or canon-
ically verify formulas φ that are not in prenex form. (In particular, such
formulas seem to be unavoidable in the comprehension axioms.) For this,
suppose φ is a non-prenex formula; for the next theorem, we use φ∗ to de-
note any prenex form of φ; that is, φ∗ is obtained from φ by pulling out
quantifiers using prenex operations. We claim that S1

2 is able to prove that
the canonical verifications give the same results no matter what prenex form
is used. The following theorem partially formalizes this claim.

18

Theorem 8 Let φ and ψ be in prenex form with canonical evaluations given
by α and β. Suppose γ is a canonical evaluation of (φ∧ψ)∗, or of (φ∨ψ)∗,
or of (¬φ)∗. Then γ canonically verifies the truth of the formula if and only
α and β canonically verify φ and ψ, or one of α or β canonically verifies φ
or ψ, or α does not canonically verify φ (respectively).

Furthermore, for any fixed choice of formulas, this statement is provable
in S1

2 .

The proof of the theorem is straightforward, as the canonical verification γ
is expressible in terms of α and β in a very explicit way, based on the order
in which prenex operations were applied. We omit the details.

4.2 The new-style witnessing theorems

Theorem 9 (Witnessing Theorem for U1
2 .)

a. Suppose U1
2 proves (∃y)φ(y,~a, ~A) for φ a Σ1,b

0 -formula. Then there is a
PSPACE oracle Turing machine M such that S1

2 proves “If Y encodes

a complete computation of M
~A(~a), then φ(out(Y),~a, ~A) is true.”

b. Suppose U1
2 proves (∃Z)φ(Z,~a, ~A) for φ a Σ1,b

0 -formula. Then there is a
PSPACE oracle Turing machine M such that S1

2 proves “If W encodes

a complete computation of M
~A(~a), then Out(W) = 〈Y, Y ′〉 where Y

canonically verifies that Y ′ witnesses ∃Zφ(x,Z,X) is true.”

The notation M
~A(~a) denotes that the machine M has as inputs the first

order objects ~a, and has oracle access to the second order objects ~A. The
notation W = 〈Y, Y ′〉 is the ordinary pairing on second order objects, namely
it means that W (i) is true precisely for those i’s of the form 〈0, y〉 with y ∈ Y
or of the form 〈1, y′〉 such that y′ ∈ Y ′.

The proof of Theorem 9 is based on the following witnessing lemma.

Theorem 10 (Witnessing Lemma for U1
2 .) Suppose U1∗

2 proves a sequent

Γ −→ ∆ of strict Σ1,b
1 -formulas with free variables ~a, ~A. Let Γ be φ1, . . . , φk

and ∆ be ψ1, . . . , ψℓ with each φi equal to (∃Yi)φ
′
i(~a,

~A, Yi) and each ψi equal

to (∃Zi)ψ
′
i(~a,

~A,Zi). (Some of the quantifiers may be omitted.) Then there
is a PSPACE oracle machine M such that S1

2 proves:

“If Ui canonically verifies that Yi is a witness for φi for i =

1, . . . , k, and ifW encodes a complete computation ofM
~U,~Y , ~A(~a),

then this computation of M outputs a first order j = out(W) ∈

19

{1, . . . , ℓ} and encodes a second order output Out(W) = 〈V,Zj〉
such that V canonically verifies that Zj is a witness for Ψj.”

Theorem 9 is an immediate consequence of Theorems 4, 7, and 10. The proof
of Theorem 10, given in Section 4.3 below, uses induction on the number of
lines in a U1∗

2 sequent calculus proof which contains only strict Σ1,b
1 -formulas.

The witnessing theorem and lemma for V 1
2 are completely analogous to

those for U1
2 .

Theorem 11 (Witnessing Theorem for V 1
2 .)

a. Suppose V 1
2 proves (∃y)φ(y,~a, ~A) for φ a Σ1,b

0 -formula. Then there is an
exponential time oracle Turing machine M such that S1

2 proves “If

Y encodes a complete computation of M
~A(~a), then φ(out(Y),~a, ~A) is

true.”

b. Suppose V 1
2 proves (∃Z)φ(Z,~a, ~A) for φ a Σ1,b

0 -formula. Then there is
an exponential time oracle Turing machine M such that S1

2 proves “If

W encodes a complete computation of M
~A(~a), then Out(W) = 〈Y, Y ′〉

where Y canonically verifies that Y ′ witnesses ∃Zφ(x,Z,X) is true.”

Theorem 12 (Witnessing Lemma for V 1
2 .) Suppose V 1

2 proves a sequent

Γ −→ ∆ of strict Σ1,b
1 -formulas with free variables ~a, ~A. Let Γ be φ1, . . . , φk

and ∆ be ψ1, . . . , ψℓ with each φi equal to (∃Yi)φ
′
i(~a,

~A, Yi) and each ψi equal

to (∃Zi)ψ
′
i(~a,

~A,Zi). (Some of the quantifiers may be omitted.) Then there
is an exponential time oracle machine M such that S1

2 proves:

“If Ui canonically verifies that Yi is a witness for φi for i =

1, . . . , k, and ifW encodes a complete computation ofM
~U,~Y , ~A(~a),

then this computation of M outputs a first order j = out(W) ∈
{1, . . . , ℓ} and encodes a second order output Out(W) = 〈V,Zj〉
such that V canonically verifies that Zj is a witness for Ψj.”

Theorem 11 follows from Theorems 7 and 12. Theorem 12 is proved in
Section 4.3 below.

4.3 Proofs of the witnessing lemmas for U
1
2 and V

1
2

We now prove Theorem 10. Assume P is a U1∗
2 -proof containing only strict

Σ1,b
1 -formulas. The proof of Theorem 10 uses induction on the number of

steps in the proof P , and splits into cases depending on the final inference

20

of P . There are two base cases where P consists a single sequent, with no
inferences. The first is where P is a single initial sequent of the form A −→ A
where, w.l.o.g., A is atomic. This case is completely trivial of course. The
second base case is when P consists of a single Σ1,b

0 -comprehension axiom of
the form

−→ (∃Z)(∀y ≤ t(~x))[y ∈ Z ↔ φ(y, ~x, ~X)]. (3)

for φ bounded. We must describe a polynomial space Turing machine M
that computes Z and a second order object V that canonically verifies that
Z witnesses the truth of the comprehension axiom. We shall use informal
arguments to describe M , but it will be clear that S1

2 can formalize them
in the sense that S1

2 can prove that if a second order object encoding a
complete computation of M is given, then the outputs out(M) and Out(M)
correctly provide a canonical verification of the sequent (3). There is only a
single formula, so ℓ = 1 and of course out(M) = 1. The deterministic poly-
nomial space algorithm for M is straightforward: for each value y < t(~x),

M
~X(~x) computes the predicate Vy such that Vy canonically evaluates the

truth of φ(y, ~x, ~X). If Vy indicates φ(y, ~x, ~X) is true, then Z(y) is determined
to be true; otherwise, Z(y) is determined to be false. For each fixed value y,
the Vy can be straightforwardly converted into a canonical verification (of a

prenex form) of y ∈ Z ↔ φ(y, ~x, ~X). Combining all these gives a canonical
verification of (3).

The cases where the final inference of P is a weakening inference or
an exchange inference are trivial. The cases where the final inference is a
propositional inference are also rather trivial, but we do the case of ∧:right
to illustrate this. Suppose the final inference of P is

φ1, . . . , φk −→ ψ1, . . . , ψℓ−1, ψ
′
ℓ φ1, . . . , φk −→ ψ1, . . . , ψℓ−1, ψ

′′
ℓ

φ1, . . . , φk −→ ψ1, . . . , ψℓ−1, ψ
′
ℓ ∧ ψ

′′
ℓ

Note there are no second order quantifiers in ψ′
ℓ or ψ′′

ℓ since P is free-cut free

and thus all formulas in the proof are strict Σ1,b
1 . The induction hypothesis

gives two Turing machines M ′ and M ′′ which satisfy Theorem 10 for the
two upper sequents. We describe how to form a Turing machine M that
fulfills the same condition for the lower sequent. The machine M has first
order inputs ~a and uses oracles ~U, ~Y , ~A. The machine M starts by forming
a canonical evaluation of a prenex form of ψ′

ℓ ∧ ψ
′′
ℓ : this uses only inputs

~y and ~A, and involves looping through all possible values for the bounded
quantifiers in this formula, and uses polynomial space. If the canonical eval-
uation shows that ψ′

ℓ ∧ψ
′′
ℓ is true, M halts outputting the first order value ℓ

21

indicating the ℓth formula of the antecedent is true, and also outputting a
second order object Z that canonically verifies ψ′

ℓ∧ψ
′′
ℓ . Otherwise, M canon-

ically evaluates both ψ′
ℓ and ψ′′

ℓ . By Theorem 8, at least one of these two
formulas will be found to be false. Suppose, w.l.o.g., that ψ′

ℓ is false. In
this case, M simulates M ′ and outputs whatever it outputs. Note that M ′

cannot report that ψ′
ℓ is true, so it must instead output some j < ℓ, some

Zj , and some V which canonically verifies that Zj is a witness for ψj . It
is clear that S1

2 can simulate this argument sufficiently well so as to prove
that, if a complete computation of M is given as a second order object W ,
then it gives a canonical verification either for ψ′

ℓ ∧ ψ
′′
ℓ or for some ψj with

j < ℓ.
Now suppose the final inference of P is a bounded first order ∃:right

inference:

Γ −→ ∆, ψ(s)

s ≤ t,Γ −→ ∆, (∃x ≤ t)ψ(x)

Note that ψ again has no second order quantifiers. The proof idea is some-
what similar to the case of ∧:right just done. The induction hypothesis
gives a Turing machine M ′ satisfying the witnessing conditions for the up-
per sequent. The desired Turing machine M acts as follows. It first builds
a canonical evaluation for (∃x ≤ t)ψ(x). If this finds the formula to be true,
it outputs this fact along with the canonical verification. (As an alternate
construction, it would also be enough to do this only if ψ(s) is true. It must
be the case that s ≤ t since the input to M includes a canonical evaluation of
this atomic formula.) Otherwise, M continues to simulate M ′. The output
of M ′ must produce an index j for a formula in ∆ along with a Zj and a V
which together witness and canonically verify the truth of the jth formula
of ∆. Again, S1

2 can prove that a complete computation by M produces the
desired output.

Suppose the final inference of P is a bounded first order ∃:left inference:

a0 ≤ t, φ0(a0),Γ −→ ∆

(∃x ≤ t)φ0(x),Γ −→ ∆

Here a0 is an eigenvariable and does not occur in the lower sequent. Of
course, φ0 does not have any second order quantifiers. Let M ′ be given
by the induction hypothesis. The desired machine M has among its inputs
a canonical verification U0 of the formula (∃x ≤ t)φ0(x). M starts by
extracting the least value for x for which U0 has found that φ(x) is true,
and sets a0 equal to this value. (M can readily find a0 either a polynomial

22

space linear search through all values of x, or by a polynomial time binary
search as in the proof of Theorem 7.) Once a value for a0 is determined,
M continues by simulating M ′ and using its outputs.

The case where the final inference of P is a bounded first order ∀:right
inference

a0 ≤ t,Γ −→ ∆, ψ(a0)

Γ −→ ∆, (∀x ≤ t)ψ(x)

is similar to the previous two cases. Namely, the Turning machine M for
the lower sequent starts by forming a canonical evaluation of (∀x ≤ t)ψ(x).
If this is found to be true, this is output by M . Otherwise, M finds a
value for a0 ≤ t that makes ψ(a0) false, and M continues by simulating the
machine M ′ for the upper sequent with this value for a0.

Suppose the final inference of P is a bounded first order ∀:left inference

φ0(s),Γ −→ ∆

s ≤ t, (∀x ≤ t)φ0(x),Γ −→ ∆

The Turing machine M for the lower sequent is given among its inputs a
second order object U0 (an oracle) that canonically evaluates (∀x ≤ t)φ0(x).
It is easy to extract from U0 another second order object U ′

0 that canonically
evaluates φ0(s). This is because s ≤ t must be true, and since we can define
U ′
0(〈a1, . . . , aj〉) to equal U0(〈s, a1, . . . , aj〉). Let M ′ be the polynomial space

Turing machine given by the induction hypothesis. The machine M acts by
simulating M ′ using U ′

0 as the canonical verification for φ0(s).
Suppose the final inference of P is a second order ∃:right inference

Γ −→ ∆, ψ(A)

Γ −→ ∆, (∃Z)ψ(Z)

The second order variable A is not an eigenvariable, and so, w.l.o.g., appears
in the lower sequent. Thus the desired machineM for the lower sequent takes
the same inputs as the polynomial space machine M ′ given by the induction
hypothesis for the upper sequent. The machine M ′ will output a canonical
verification either of a formula in ∆ or of ψ(A). In the former case, M gives
the same output as M ′. In the latter case, M sets Z equal to A and outputs
the canonical verification of ψ(Z).

Suppose the final inference of P is a second order ∃:left

φ(A),Γ −→ ∆

(∃Y)ψ(Y),Γ −→ ∆

23

where now A is an eigenvariable and does not appear in the lower sequent.
Let M ′ be the polynomial space machine given by the induction hypothesis;
we must define the machine M for the lower sequent. One of the inputs
to M is a second order Y along with a canonical verification U of φ(Y). The
machine M runs by letting this Y be the value of the input A to M ′, using
U as the canonical verification of φ(A), and then just running M ′.

Now suppose the final inference of P is an sΣ1,b
1 -repl-∀ inference,

a ≤ t,Γ −→ ∆, (∃X)ψ(X, a)

Γ −→ ∆, (∃Z)(∀x ≤ t)ψ({z}Z(〈x, z〉), x)

where a is an eigenvariable and may not occur in the lower sequent. The
induction hypothesis gives a polynomial space Turing machine M ′ for the
upper sequent. We form a new machine M which has the same inputs as
M ′ except that a is not an input to M . The machine M runs as follows: it
loops through all values of a ≤ t, and simulates M ′ with each of these values
for a. If, for any value a, M ′ indicates that a formula ψj in ∆ is true and
gives a witness Zj and a canonical verification V for ψj, then M halts and
outputs the same values j, Zj and V . Otherwise, for each value of a, M ′

produces a second order Xa and a canonical verification Va showing that Xa

witnesses (∃X)ψ(X, a). When this happens for all values of a, the second
order Xa’s can be combined into a single second order Z defined so that
Z(a, z) holds iff Xa(z) holds; furthermore, the canonical verifications Va can
be straightforwardly combined to give a canonical verification that Z is a
witness for (∃Z)(∀x ≤ t)ψ({z}Z(〈x, z〉), x). It is clear that M is polynomial
space bounded, since M ′ is.

Suppose the final inference of P is a cut inference,

Γ −→ ∆, χ χ,Γ −→ ∆

Γ −→ ∆

Let M1 and M2 be the Turing machines given by the induction hypothesis
for the left and right upper sequents, respectively. The machine M for the
lower sequent is constructed as follows. It begins by running machine M1,
which takes the identical inputs as M . If M1 finishes with a witness for one
of the formulas in ∆, then M halts producing the same first- and second
order outputs as M1. Otherwise, M1 outputs a pair of second order objects
V and Zℓ+1 such that V canonically verifies that Zℓ+1 is a witness for χ. In
this case, M then invokes M2 with the intent of using V and Zℓ+1 as inputs
to M2 that provide a witness and a canonical verification for the occurrence
of χ in the antecedent of the upper right sequent. The only catch is that

24

M is allowed to use only polynomial space, and this is not sufficient space for
M to save the exponentially long values of V and Zℓ+1. Instead, as M sim-
ulates M2, it recomputes the values of V and Zℓ+1 as needed by running
machine M1 again. Since M1 is deterministic, this always yields consistent
values for V and Zℓ+1. This allows M to use only polynomial space as, at
any given point in time, M needs to remember only one configuration of M1

and one configuration of M2.
Finally, suppose the last inference of P is an sΣ1,b

1 -LIND induction,

χ(a0),Γ −→ ∆, χ(a0 + 1)

χ(0),Γ −→ ∆, χ(|t|)

(It is slightly more convenient to use LIND instead of PIND, but the ar-
gument is essentially the same either way.) Let M ′ be the Turing machine
given by the induction hypothesis for the upper sequent. The intuition is
that we handle the induction hypothesis by treating it as |t| − 1 many cuts,
on the formulas χ(1), χ(2), . . ., χ(|t| − 1). This means that M is iterating
computations of M ′; however, the iterations are nested only to a depth |t|,
so M needs to remember at most |t| many configurations of M ′ at any given
point in time. Since |t| is polynomially bounded in terms of the lengths of
the first order free variables, this means M uses only polynomial space.

For a bit more detail, let ∆ have ℓ− 1 formulas. M starts by computing
M ′ with a0 set equal to 0, which we denote M ′[a0 := 0], and potentially
continues for a0 = 1, 2, . . . , |t|−1. If M ′[a0 := i] yields a first order output
< ℓ, a witness of a formula in ∆ has been obtained, and M can output this.
Otherwise, M ′[a0 := i] outputs first order output ℓ along with a witness
for χ(|t|). If this happens with i = |t|, then the desired output has been
obtained. For i < |t| − 1, M must instead invoke M ′[a0 := i+1] using the
output of M ′[a0 := i] as the second order witness and canonical verification
for χ(i). As in the case of cut, the output of M ′[a0 := i] is exponentially
large, and cannot be written out in polynomial space. Instead, whenever,
M ′[a0 := i+1] queries its second order inputs for χ(i), M interrupts the
computation of M ′[a0 := i+1] and re-simulates the entire computation of
M ′[a0 := i]. These recomputations must be carried out recursively, but only
to a depth of |t|. At any given point in time, M needs to remember at most
configurations for one invocation of each of M ′[a0 := i], for i = 0, . . . , |t|. It
is straightforward to show that S1

2 proves that a complete computation the
algorithm M gives the correct output.

The above completes the proof of Theorem 10. The proof of Theo-
rem 12 is mostly identical. The various cases, based on the final inference of

25

V 1
2 -proof P , are essentially identical to the cases described above for Theo-

rem 10. The cases of cut and induction merit more discussion however. In
the setting of V 1

2 , the exponential time machine M is allowed to use expo-
nential space and this allows a simplification to be made in the construction
of M . For the case where the final inference of P is cut, the output of the
machine M1 can be written down completely in M ’s memory as this requires
‘only’ exponential time and space. It is thus unnecessary to redo the com-
putation of M1 every time M2 needs a value of M1’s second order output.
Similar considerations apply to the case where the final inference of the V 1

2

is an IND induction inference. M now needs to do an exponentially long
iteration; however, instead of recomputing values, M can just store them all
in memory.

5 Local improvement principles

5.1 Definitions and theorems

The local improvement principles were defined by Ko lodziejczyk, Nguyen,
and Thapen [8] as an extension of the game principles of Skelley and Thapen [13].
The local improvement principle is specified by a set of contradictory condi-
tions, so the local improvement principle states that it is always possible to
find a counterexample to one of the conditions. Our definition of the local
improvement principles below includes a minor, inessential change to the
definition of [8] so as to make the score values a function of a single label
instead of a function of the labels in a neighborhood.

Definition An instance of the local improvement principle consists of a
specification of a directed acyclic graphG with domain [a] := {0, 1, 2, . . . , a−1}
and polynomial time computable edges, an upper bound b > 0 on labels, an
upper bound c > 0 on scores, an initial labeling function E, a wellformed-
ness predicate wf, and a local improvement function I. These satisfy the
following conditions.

a. The directed graph G is consistent with the usual <-ordering of its do-
main [a], and has in- and out-degrees bounded by a fixed constant.
The edges of G are specified by a polynomial time neighborhood func-
tion f . For each vertex x ∈ [a], f(x) outputs a set of vertices y ∈ [a]:
the vertices y < x (respectively, y > x) are the predecessors (respec-
tively, the successors) of the vertex x. (The function f is constrained
to output a valid of set predecessors and successors including respect-
ing the degree bound, say by taking x to be an isolated point whenever

26

f(x) gives an invalid output.) The neighborhood of x is the set con-
taining x together with its successors and predecessors. The extended
neighborhood of x is the union of the neighborhoods of the neighbors
of x.

b. Vertices in G will be assigned a series of labels. A label is in the range
[0, b) and includes a score value s in the range [0, c]. The score value
associated with the label on vertex x is polynomial time computable
as a function of the label on x.6 The polynomial time predicate wf de-
termines whether a labeling of a neighborhood of x is wellformed. The
inputs to the predicate wf are the vertices in the neighborhood and
their labels. A labeling of vertices is extended-wellformed around x if
it is wellformed on the neighborhood of every vertex y in the neigh-
borhood of x.

c. The two functions E and I provide methods of assigning labels to ver-
tices. To initialize the labels, the polynomial time function E(x) as-
signs labels to vertices x with score 0 so that all neighborhoods have
wellformed labelings. The improvement function I provides a method
to replace a label with a label with a higher score value: I takes as
input a vertex x and a wellformed labeling of the neighborhood of x,
and provides a new label for x. Specifically, suppose s is even and that
every predecessor of x has a label with score s+1 and that x and every
successor of x has a label with score s; then I provides a new label for x
with score s+1. Dually, suppose s is odd and that every successor of x
has a label with score s+ 1 and that x and every predecessor of x has
a label with score s; then I provides a new label for x with score s+1.
In other cases, the I function is undefined. Furthermore, whenever I
is defined and the labeling is extended-wellformed around x, then the
labeling obtained by replacing the label on x with the the new label
given by I is still extended-wellformed around x.

The intuition behind the local improvement function is that it provides
labels with higher score values. Initially, all labels have score 0, but then
sweeping forward through G allows scores to increase from even to odd
values, and sweeping backwards allows scores to increase from odd to even
values. The preservation of the extended-wellformed properties implies that

6This is slightly different from the convention of [8] which makes the score value a
function of the labels in the neighborhood of x. They let the score value equal “∗” if
the labels do not constitute a wellformed local labeling. The difference in how scores are
defined makes no difference to the complexity of the local improvement principle.

27

scores can increase without bound. This, however, contradicts the property
that score values are ≤ c. Thus, the local improvement conditions listed
above are contradictory.

Definition A solution to an instance of the local improvement property
consists of either: (a) An extended-wellformed labeling of a vertex x and its
extended neighborhood where the local improvement function is defined but
fails to provide a new label for x with the correct score value that preserves
the extended-wellformed property, or (b) a neighborhood of a vertex x where
the initialization function E fails to provide an extended-wellformed labeling
with scores all equal to zero.

Note that any solution to the local improvement property is polynomial
time checkable.

Definition An instance of the local improvement principle is formalized
in bounded arithmetic by a constant (finite) degree bound for G, by first
order values a, b, and c, and by explicitly polynomial time functions which
describe G and compute the functions s, E, I and wf: it consists of the Σb

1

formula (with free variables a, b and c) that asserts that a solution exists.
The notation LI denotes the set of Σb

1-formulas obtained from all instances
of the local improvement principle. We use LIlog to denote instances LI
where c is a length, that is where c = |c′| for some term c′. And, LIk denotes
instances of LI where c = k.

The linear local improvement principles LLI, LLIlog and LLIk are defined
in the same way, but with G restricted to be a linear graph. That is, G has
vertices [a], and the edges of G are the directed edges (i−1, i), for 0 < i < a.

It is also useful to define “rectangular” local improvement principles.
These are instances of LI or LIlog where the underlying graph G has domain
[a] × [a], each vertex (i, j) has up to four incoming edges, namely from the
vertices (i− 1, j), (i− 1, j − 1), (i, j − 1), and (i+ 1, j − 1). Thus, the edges
involving (i, j) are as pictured:

j − 1

j

j + 1

i− 1 i i+ 1

28

except that any edges that would involve vertices outside the domain ofG are
omitted. We shall call instances of LI and LIlog based on these rectangular
graphs RLI and RLIlog. (These rectangular graphs were used by [8], although
they did not use this terminology.)

Definition An NP search problem Q is specified by a first order sentence
(∀x)(∃y ≤ t)φ(y, x) with φ a ∆b

1-formula w.r.t. S1
2 . A solution to Q(x) is a

value y ≤ t such that φ(y, x) holds. We denote this condition by y = Q(x);
note there may be multiple solutions y for a single input x.

The NP search problem Q is total provided that every x has at least one
solution. It is provably total in a theory T provided T ⊢ (∀x)(∃y ≤ t)φ(y, x).

Any instance of the local improvement principle has a solution. This
fact can be expressed as a ∀Σb

1-formula, and any solution can be verified in
polynomial time. Thus the local improvement principles are total NP search
problems.

Definition Suppose that (∀x)(∃y ≤ t)φ(y, x) and (∀x)(∃y ≤ s)ψ(y, x)
specify NP search problems, denoted Qφ and Qψ. A many-one reduction
from Qφ to Qψ consists of a pair of polynomial time functions g and h such
that whenever y = Qψ(g(x)), we have h(y, x) = Qφ(x). We write Qφ ≤m Qψ
to denote that there is a many-one reduction from Qφ to Qψ.

A theory proves that Qφ ≤m Qψ provided that it proves

(∀x)(∀y)[y = Qψ(g(x)) ⊃ h(y, x) = Qφ(x)].

We can now state the results of [8] about the local improvement principles
and the provably total NP search problems of U1

2 and V 1
2 .

Theorem 13 ([8]) U1
2 proves the linear, logarithmic local improvement prin-

ciple LLIlog. Furthermore, LLIlog is many-one complete, provably in S1
2 , for

the provably total NP search problems of U1
2 ; namely, if Q is a provably total

NP search problem of U1
2 , then S1

2 can prove that Q is many-one reducible
to an NP search problem in LLIlog.

Theorem 14 ([8]) V 1
2 proves the local improvement principle LI. Further-

more, LI is many-one complete, provably in S1
2 , for the provably total NP

search problems of V 1
2 ; namely, if Q is a provably total NP search problem

of V 1
2 , then S1

2 can prove that Q is many-one reducible to an NP search
problem in LI.

The same results hold for RLI in place of LI.

29

We shall improve these results below by proving the following two the-
orems. The first theorem states that U1

2 can also prove the LLI formulas.
This is a somewhat surprising and unexpected result, since the straightfor-
ward algorithmic way to prove the local improvement principle LLI would
be to iteratively define labels with increasing score values by sweeping back
and forth across the linear graph G. If this is done deterministically, this
could simulate c steps of a Turing machine computation, that is to say, it
could simulate exponential time algorithms. This is (conjecturally) beyond
the power of U1

2 which can only define polynomial space predicates. How-
ever, as we shall see in Section 5.2, the LLI principle can instead be proved
using only (nondeterministic) polynomial space computations.

Theorem 15 U1
2 proves the linear local improvement principle LLI. Fur-

thermore, LLI is many-one complete, provably in S1
2 , for the provably total

NP search problems of U1
2 ; namely, if Q is a provably total NP search prob-

lem of U1
2 , then S

1
2 can prove that Q is many-one reducible to an NP search

problem in LLI.

The second part of Theorem 15 follows already from Theorem 13 since LLI
contains LLIlog as a special case. The proof of first part of Theorem 15 is
given in Section 5.2 below.

Our new result for V 1
2 states that LIlog is already strong enough to be

many-one complete for the set of provably total NP search problems of V 1
2 ,

and that the many-one completeness is provable over the base theory S1
2 .

Theorem 16 V 1
2 proves the local improvement principle LIlog. Further-

more, LIlog is many-one complete, provably in S1
2 , for the provably total NP

search problems of V 1
2 ; namely, if Q is a provably total NP search problem

of V 1
2 , then S1

2 can prove that Q is many-one reducible to an NP search
problem in LIlog.

The same results hold for RLIlog in place of LIlog.

Theorem 16 will be proved in Section 5.4, using the rectangular local im-
provement principle RLIlog for the many-one completeness. Of course, the
first part of Theorem 16 follows already from Theorem 14.

It is interesting to observe that scores can be restricted further to a
constant, for the price that the underlying graph structure will be more
general than the linear structure in case of U1

2 , or than the rectangular
structure in case of V 1

2 . The best bound which we can obtain on scores is
c = 1, namely with one round of improvement.

30

G

G−1

G

0 a 2a 3a (c+ 1)a0

a

2a

3a

(c+ 1)a

Figure 2: Structure of LI1 game simulating an RLI game.

Theorem 17 (a) LI1 is many-one complete, provably in S1
2 , for the prov-

able total NP search problems of V 1
2 ; in particular, if Q is a provably

total NP search problem of V 1
2 , then S

1
2 can prove that Q is many-one

reducible to an NP search problem in LI1.

(b) RLI1 is many-one complete, provably in S1
2 , for the provable total NP

search problems of U1
2 ; namely, U1

2 proves RLI1, and if Q is a provably
total NP search problem of U1

2 , then S
1
2 can prove that Q is many-one

reducible to an NP search problem in RLI1.

Proof For part (a), using Theorem 14, it suffices to describe how to turn
an RLI problem into an equivalent LI1 problem. Let an RLI problem be
given by a, b, c, s(·),wf, E(·), I(·), that is, the underlying graph G has domain
[a] × [a], and each vertex (i, j) has up to four incoming edges, namely from
the vertices (i−1, j), (i−1, j−1), (i, j−1), and (i+1, j−1). We think of G
aligned in a way that the origin (0, 0) is at the lower left corner. A simulating
LI1-problem can be constructed as follows: Let G−1 be formed from G by
reversing the direction of all edges in G, and rotating the resulting graph
180 degrees. The lower left corner (0, 0) of G becomes the upper right corner
of G−1, and the edges are again pointing upwards and (mostly) rightwards.
We create c+ 1 many copies G1, . . . , Gc+1, alternating between G and G−1,
starting with G, and place them in ascending order on the diagonal of a
[a · (c+1)] × [a · (c+1)] grid as shown in Figure 2.

The idea of the simulation is that instead of computing initial wellformed
labels of score 0, and then sweeping back and forth to compute new well-

31

G2k

j−1

j

j+1

i−1ii+1

G2k+1

j−1

j

j+1

i−1 i i+1

Figure 3: Structure of additional edges between G2k and G2k+1 in LI1 game
which simulates an RLI game. Edges inside G2k+1 are unchanged.

formed labels of higher scores using I, we will just sweep once over the grid
and produce a wellformed labeling so that Gk gets labels that encode the
score k labels of the original RLI problem. For G1 we use the initial labeling
given by E, together with one round of local improvement under I. The
initial labels for the graphs Gk with k ≥ 1 may just be set to equal 0, where
w.l.o.g. the label 0 is used only for these initial labels.

The LI1 local improvement function replaces the initial labels 0 in the
graph Gk+1 with labels of score 1 which encode score k+1 labels as assigned
in the instance of RLI. For this purpose, there are new edges added between
Gk and Gk+1 as shown in Figures 3 and 4, so that each node in Gk+1 has new
predecessors in Gk. The new local improvement function I for the instance
of LI1 will compute labels for nodes in Gk+1 by simulating the (old) local
improvement function from the instance of RLI using already computed
labels of neighboring nodes from both Gk and Gk+1.

The additional edges between Gk and Gk+1 are called new edges, and
predecessors and successors based on them are called new predecessors, resp.
new successors. Notions based on existing edges are dubbed old.

For setting labels in G2k+1, see Figure 3. Suppose that every old pre-
decessor of (i, j) in G2k+1, that is (i − 1, j − 1), (i, j − 1), (i + 1, j − 1),

32

G2k−1

j+1

j

j−1

i+1ii−1

G2k

j+1

j

j−1

i+1 i i−1

Figure 4: Structure of additional edges between G2k−1 and G2k in LI1 game
which simulates an RLI game. Edges inside G2k have been reversed for the
instance of LI1.

and (i − 1, j) in G2k+1, has a label with score 2k + 1, and that every new
predecessor of (i, j) in G2k+1, that is (i, j), (i+ 1, j), (i− 1, j + 1), (i, j + 1),
and (i+ 1, j + 1) in G2k, has a label with score 2k. Then I provides a new
label for (i, j) in G2k+1 with score 2k+ 1. Thus, the neighborhood on which
I bases its computation, is formed from (i−1, j−1), (i, j−1), (i+ 1, j−1),
(i− 1, j) in G2k+1, and (i, j), (i+ 1, j), (i− 1, j + 1), (i, j + 1), (i+ 1, j + 1)
in G2k.

Labels in G2k are set dually; see in Figure 4. Consider a node (i, j) in
G2k. Suppose that every predecessor of (i, j) in the same graph G2k, that
is (i + 1, j + 1), (i, j + 1), (i − 1, j + 1), and (i + 1, j) in G2k, has a label
with score 2k — these are nodes that were (old) successors of (i, j) in the
instance of RLI, but have become (new) predecessors of (i, j) in the instance
of LI1. Also suppose that every new predecessor of (i, j) in G2k, that is (i, j),
(i − 1, j), (i + 1, j − 1), (i, j − 1), and (i − 1, j − 1) in G2k−1, has a label
with score 2k − 1. Then I provides a new label for (i, j) in G2k with score
2k. Here, the neighborhood on which I bases its computation, consists of
(i + 1, j + 1), (i, j + 1), (i − 1, j + 1), (i + 1, j) in G2k, and (i, j), (i− 1, j),
(i+ 1, j − 1), (i, j − 1), (i− 1, j − 1) in G2k−1.

33

The wellformedness predicate wf for the new LI1 problem is defined with
the aid of the predicate wf for the instance of RLI. On G1 we use wf directly
based just on old edges. Consider a vertex (i, j) in G2k+1; we call this
vertex x. The vertex x has the nine incoming edges as shown in Figure 3,
namely, one from (i, j) in G2k plus eight additional edges. In addition, there
are the corresponding nine outgoing edges. If any of the predecessors of x
have label 0, then the neighborhood of x is defined to be wellformed provided
that x, and all of its successors also have label 0. Otherwise, the predecessors
of x all have labels different from 0. Then, if x itself has label 0, then the
neighborhood of x is wellformed provided that the labels on the vertex (i, j)
in G2k and the eight other predecessors of x are wellformed according to
the criteria of the RLI instance. On the other hand, if x does not have
label 0, then the neighborhood of x is wellformed provided that the labels
on x and its eight predecessors are wellformed according to the criteria of the
RLI instance. The wellformedness predicate is defined similarly for vertices
in G2k.

It is not hard to verify in S1
2 that the above gives a faithful translation

from the RLI problem to an LI1 problem.

We now turn to part (b). By Theorem 19 proved below, RLI1 is provable
in U1

2 . For the completeness of RLI1 under many-one reductions, in light of
Theorem 13, it suffices to describe how to turn an LLI problem into an equiv-
alent RLI1 problem. Let an LLI problem be given by a, b, c, s(·),wf, E(·), I(·),
that is, the underlying graph G has vertices [a], and the edges of G are the
directed edges (i−1, i) for 0 < i < a. We think of G as a horizontal line with
0 to the left, and edges pointing to the right. A simulating RLI1 problem
can be constructed as follows: Let G−1 be the inverse of G, that is 0 is now
to the right and edges are pointing to the left.

The main idea is to again create c+ 1 many copies alternating between
G and G−1, and stack them vertically to form a [a] × [c + 1] rectangular
grid. Instead of computing initial wellformed labels of score 0, and then
sweeping back and forth on G to compute new wellformed labels of higher
scores using I, we want to just sweep once over the grid and produce a
wellformed labeling so that the k-th copy of G is given labels that encode
the score k labels of the LLI problem. However, as we alternate between the
stacked copies of G and G−1, we need, between any two alternations, a− 1
many additional lines which allow us to invert the positions of previously
computed labels. Thus, the resulting graph has dimension [a] × [1 + a · c].

The idea for inverting label positions using additional lines is as follows
– see Figure 5 for an example. We can think of the original line of label

34

Line

0 0 1 2 3 4 5 6

1
0 1 2

3
4 5 6

2
0 1

234
5 6

3
0 1

234
5 6

4
0

12345
6

5
0
12345

6

6 0123456

Figure 5: Inverting a line with 7 label positions using 6 additional lines.

35

positions as a rope stretching out horizontally in the plane. We transform
the rope to first form a little “s” in the middle. Then, keeping the position
of the middle point of the rope fixed, we stretch the two curves of the “s”
horizontally to the sides, until eventually the rope is stretched out again,
this time in the opposite direction.

During this process, a vertical line at an arbitrary horizontal position
will intersect the rope at most three times. Thus, the labels at additional
lines in our game graph, when imitating the just described transformation,
will have to store at most 3 pieces of label information: one for those labels
who have found their new position; one for those who are moving left to
right, and one for those who are moving right to left. In addition, it is
convenient to store a score value which measures how far the inversion has
progressed.

It is obvious that a rectangular structure on the new [a]× [1+a ·c] grid is
sufficient to imitate the above described process. It is then straightforward
to define wf, E(·) and I(·) which exactly describe this process – details are
left to the reader. 2

Corollary 18 Over the base theory S1
2 ,

(a) The principles LLI, LLIlog and RLI1 are equivalent.

(b) The principles LI, LIlog, LI1, RLI, and RLIlog are equivalent.

Proof Part (a) is an immediate consequence of Theorems 13, 15, and 19,
due to the fact that the LLI conditions are NP search problems. Part (b) is
likewise an immediate consequence of Theorems 14, 16, and 17 and the fact
that only RLIlog will be used for the proof of Theorem 16. 2

5.2 Proof of Theorem 15

The intuition behind the proof of LLI is based on the following exponential
time algorithm: First set all vertices x ∈ [a] in the linear directed graph to
have the initial labels with score zero given by E(x). Then, sweep back-and-
forth through the vertices in linear order, alternating scans in left-to-right
order (from 0 to a − 1) with scans in right-to-left order (from a − 1 to 0).
Each time a vertex x is processed, its prior label, with score s, is replaced
by a new label, with score s + 1. For even values of s, this occurs while
sweeping left-to-right and for odd values of s, it occurs while sweeping from
right-to-left. Up to c scans are performed, by which time a contradiction to
the local improvement conditions must be found; namely, either by reaching

36

a point where the improvement function I fails to produce an appropriate
value or by obtaining a score value > c.

This algorithm calculates a values of E(x) and invokes the improvement
function a · c times. Since a and c are arbitrary first order objects (not
lengths), this takes exponential time. Worse, the algorithm stores the cur-
rent label values for all x ∈ [a] and this requires exponential space. Thus,
the algorithm is in exponential time but not in polynomial space, and the
theory U1

2 cannot formalize the algorithm directly, unless PSPACE equals
exponential time. To circumvent this barrier, we will use a non-deterministic
polynomial space algorithm instead. The idea behind the NPSPACE algo-
rithm is simple: rather than storing the labels on all vertices x ∈ [a], it
merely nondeterministically guesses them as needed. This of course does
not give the “correct” labels; nonetheless, it will be sufficient to prove the
theorem.

We start by describing the NPSPACE algorithm M . The algorithm M
sweeps alternately from left-to-right and right-to-left setting labels on ver-
tices x. When M is about to process the vertex numbered x, during a
left-to-right sweep, it knows labels for the vertices x − 2, x − 1, x, x + 1,
and x + 2 with score values s + 1, s + 1, s, s, and s respectively. Since
it is a left-to-right sweep, the value s is even. In addition, the five known
labels are wellformed around the three vertices x− 1, x, and x+ 1; namely,
according to the predicate wf, the labels are wellformed in the neighborhood
of x− 1, in the neighborhood of x, and in the neighborhood of x+ 1. Since
the graph is linear, each neighborhood contains three vertices; for example,
the neighborhood of x − 1 contains the vertices x−2, x−1, x. M uses the
local improvement function I to obtain a new label for vertex x with score
value s + 1. If I produces a label with score value unequal to s + 1 or if
the new label for x causes any of the three vertices x − 1, x, and x + 1
to no longer have neighborhoods with wellformed labels, then M halts in a
rejecting state. Otherwise, M needs to step one vertex rightward, and for
this M discards (forgets) the label for x− 2 and needs to set a label value
for x + 3. If s = 0, the label for x + 3 is set to equal E(x + 3). For s > 0,
M merely non-deterministically guesses a label for x+ 3 with score value s.
If this label for x + 3 does not have score value s, or it makes the labels of
the vertices x+1, x+2, x+3 in the neighborhood of x+ 2 not be wellformed,
then M halts in a rejecting state.7 Otherwise, M has finished processing
vertex x and it proceeds to x+1, now with labels for x−1, x, x+1, x+2, and

7As we shall see, this is the “bad” case that we are trying to avoid. It would not happen
if M remembered labels from the previous scan instead of just guessing them.

37

x+3.
The algorithm for sweeping right-to-left is entirely dual. In this case, s is

odd. When updating the label for vertex x, M knows labels for the vertices
x−2, x−1, x, x+1, and x+2 with score values s, s, s, s+1, and s+1. In the
next step, to update the label for vertex x−1, M forgets the label for x+2
and has nondeterministically chosen a label for x−3.

At the ends of the linear order, the obvious modifications are made. If
x = a− 1 is the rightmost vertex, then there is no vertex x+1 or x+2. Or
if x = a−2, there is no vertex x+2. Likewise at x = 0, there is no vertex
x−2 or x−1, and at x = 1, no vertex x−2. These missing vertices cause no
problem: there are fewer neighborhoods in which labels must be wellformed,
and their labels are not needed by the improvement function. When reaching
x = a−2 in a left-to-right scan, M acts purely deterministically as there is no
new vertex x+3 which needs a label. When reaching x = a−1, M initially
knows labels for a−3, a−2, and a−1 with score values s+1, s+1, and s.
It updates the label on vertex a−1 to have score s+1 (unless it rejects),
and switches the scan order to right-to-left while staying at the same vertex
x = a−1. In the next step, as the first step in the right-to-left scan, it
invokes I to update the label of a−1 to have score value s+2, or rejects if
I fails to provide such a label. M then rejects if s+2 > c. Otherwise it
nondeterministically chooses a label for a−4: if this has the wrong score
or fails the wellformedness property, M rejects; otherwise, it proceeds one
vertex leftward to update the label on vertex x = a−2.

The vertices x = 0 and x = 1 at the end of right-to-left scan are handled
dually.

As defined, any execution of M leads to rejection. There are three pos-
sible reasons for rejection: (a) The local improvement function I or the
initialization function E may give a label with an incorrect score value or
which violates the wellformedness property. (b) The nondeterministic guess
of the next vertex’s label (on vertex x+3 or x−3 for rightward or leftward
scans, resp.) may give an incorrect score or violate the wellformedness prop-
erty. (c) A score value may increase to > c. In either case (a) or (c) occurs,
then M has found a point where the LLI conditions are falsified; that is,
it has found a solution to the LLI problem. In case (b), no such solution
is found. Our goal, thus, is to prove (arguing in U1

2) that M has some
computation that fails for reason (a) or (c).

The steps of a (nondeterministic) computation of M can be indexed
with pairs 〈x, s〉, where x is the vertex number and s the score value. The
evenness/oddness of s determines if the sweep is currently left-to-right or
right-to-left. A pair 〈x, s〉 is M -reachable if there is some computation of M

38

that reaches the point where it is considering 〈x, s〉 and trying to find a
new label for x with score s + 1. The property of 〈x, s〉 being reachable is
an NPSPACE, and thus a PSPACE, property. By induction (IND) on the
PSPACE property of reachability, there must be some maximum value s0
such that some 〈x, s0〉 is reachable. If s0 = 0 or s0 = c, then M rejects at
this step for one of the reasons (a) or (c). So we may assume 0 < s0 < c.
Without loss of generality, s0 is odd, so M is currently scanning right-to-
left. Again using IND induction, there must be some minimum x0 such that
〈x0, s0〉 is reachable.

Any computation of M that reaches 〈x0, s0〉 ends up with labels for
x0−2, x0−1, x0, x0+1, x0+2 with scores s0, s0, s0, s0+1, s0+1. By choice
of 〈x0, s0〉, M rejects while executing this step. If this happens because the
improvement function fails to produce a new label for x0 with score s0+1
which satisfies the wellformedness properties, then it is the desired failure of
type (a). Otherwise, M successfully finds a new label for x with score s+1
and with the necessary wellformedness properties, but there is no possible
value for a label on x− 3 with score s such that the labeling around x − 2
is wellformed. We need to prove that this latter case, (b), can be avoided.

Definition We continue to assume s0 is odd. A (non-deterministic) com-
putation of M is s0-consistent at x provided that during the computation
of M , there are label values u and v for vertices x− 2 and x− 1 such that
u and v both have score s0, and such that the vertices x− 2 and x− 1 have
the score s0 labels u and v at both step 〈x, s0−1〉 and step 〈x, s0〉.

In other words, the same labels u and v are used for x − 2 and x − 1
in the right-to-left scan that raises score values from s0 to s0+1 as in the
previous left-to-right scan that raised scores from s0−1 to s0.

Clearly, any computation of M that reaches the s0 scan is s0-consistent
at x = a−1, since the labels on a−2 and a−3 do not change when switching
over from a left-to-right scan to a right-to-left scan.

For a given vertex x, the question of whether there exists a computation
of M which is s0-consistent at x can be answered by an NPSPACE, hence a
PSPACE, algorithm. Thus, by induction (IND), there is a minimum value
x1 such that there is a computation U of M which is s0-consistent at x1. If
the computation U rejects because of reason (a) at step 〈x1, s0〉, then we are
done. Otherwise, we claim that M can continue with the computation U for
an additional step so as to be s0-consistent at x1−1. Namely, after obtaining
an appropriate new label for x1 with score s+1, M existentially chooses the
label on x1−3 to be exactly the same label as in the previous scan (except

39

this is not done if x1 < 3). By choice of x1, the vertices x1−2 and x1−1
already have the same label as in the previous scan, thus the labels in the
neighborhood of x1−2 are again well formed since they were well formed
in the previous scan. This contradicts the choice of x1, and completes the
proof of Theorem 15.

5.3 RLI1 is provable in U
1
2

A similar argument to the one given above shows that RLI1 is provable
in U1

2 .

Theorem 19 U1
2 ⊢ RLI1.

Proof (Sketch) The idea for the NPSPACE algorithm solving RLI1 is to do
a similar thing as for LLI, where row numbers in RLI1 now play the role of
scores in LLI. The algorithm M sweeps always left-to-right: it starts setting
labels in the first row from left to right, then in the second row from left to
right, etc. It always guesses all necessary “previously computed” labels from
the previous rows. Thus, when M is about to process vertex 〈x, y〉, it knows
labels for vertices 〈x−2, y〉, 〈x−1, y〉, 〈x−2, y−1〉, 〈x−1, y−1〉, 〈x, y−1〉,
〈x+1, y−1〉, 〈x+2, y−1〉, 〈x−2, y−2〉, 〈x−1, y−2〉, 〈x, y−2〉, 〈x+1, y−2〉, and
〈x+2, y−2〉, all with score 1. These labels together with the labels of score 0
given by E for the other vertices in the extended neighborhood of 〈x, y〉 are
extended wellformed. M uses the local improvement function I to obtain
a new label for vertex 〈x, y〉 with score 1. If I produces a label with score
value unequal to 1 or if the new label for x causes the labels of the extended
neighborhood of 〈x, y〉 to not be extended wellformed, then M halts in a
rejecting state. Otherwise, M needs to step to the next vertex, either one
vertex to the right, or to the leftmost vertex of the next row. In the former
case, i.e. when x+1 < a, M discards (forgets) labels for 〈x−2, y〉, 〈x−2, y−1〉
and 〈x−2, y−2〉, and guesses labels for 〈x+3, y−1〉 and 〈x+3, y−2〉. In the
latter case, M discards (forgets) all labels and guesses labels for 〈0, y〉, 〈1, y〉,
〈2, y〉, 〈0, y−1〉, 〈1, y−1〉, and 〈2, y−1〉. If any of these labels do not have
score 1, or they make the labels in the neighborhood of 〈x + 1, y〉 in the
former case, resp. the neighborhoods of 〈0, y + 1〉 in the latter case, not be
extended wellformed, M halts in a rejecting state.

The notion of 〈x, y〉 being M -reachable is defined as before. A compu-
tation being consistent at 〈x, y〉 is also defined similarly; namely, the labels
that are used when setting the label on vertex 〈x, y〉 must coincide with
the labels that were guessed or computed when setting labels in row y − 1.

40

Then a similar argument as before shows that this computation leads to a
rejection according to (a) or (c), provably in U1

2 . 2

We have not been able to characterize the strength of RLI2 or, more
generally, the strength of RLIk for constant k ≥ 2. In particular, we do
not know if they are provable in U1

2 , nor if they are many-one complete for
the provably total NP search problems of V 1

2 . It is also possible they are
intermediate in strength.

5.4 Proof of Theorem 16

Our proof of Theorem 16 is based on the constructions of [8], but avoids
using T 1

2 as a base theory, and correspondingly avoids a detour through
polynomial local search (PLS) problems. We use instead the Witnessing
Theorem 11 which has S1

2 as a base theory and thus use a polynomial time
computation in place of a PLS computation.

We need to prove that RLIlog is many-one complete for the provably
total NP search problems of V 1

2 . We will prove this in the following strong
form, that applies to “type-2” NP search problems that have a second order
input X in addition to a first order input x.

Theorem 20 Suppose φ is ∆b
0 and (∀x)(∀X)(∃y)φ(y, x,X) is provable in

V 1
2 . Then, there is a many-one reduction from the NP search problem de-

fined by (∃y)φ(y, x,X) to an instance of RLIlog. Furthermore, the many-one
reduction is provably correct in S1

2 .

Proof Theorem 11 implies that there is an exponential time oracle Turing
machine M such that S1

2 proves:

(A) If Y encodes a complete computation of MX(x), then φ(out(Y), x,X)
is true.

We make some simplifying assumptions about how MX(x) runs; namely, we
assume that M uses a single tape, and that this tape contains three “tracks”:
the first track is read-only and holds the input x padded with blanks, the
second track is also read-only and holds the input X, and the third track is
read-write, initially blank. (Equivalently, M has three tapes, but the three
tape heads move in lockstep.) Also w.l.o.g., Y encodes the computation in
some simple, direct fashion; namely, Y can be taken to be the bit-graph of
the function H that maps a pair 〈p, t〉 to the tape contents at position p at
time t, the head position at time t, and the state of the machine at time t.
With these conventions, writing (A) out in more detail gives that S1

2 proves

41

(B) φ(out(Y), x,X) ∨ (“∃ a place in Y where Y fails to satisfy the local
conditions of being a correct computation of MX(x)”).

Or even more explicitly, S1
2 proves

(B’) (∃y)(y = out(Y) ∧ φ(y, x,X)), or

(∃p)(∃t)[the values given by Y for H(p, t+ 1), H(p− 1, t), H(p, t),
and H(p+ 1, t) do not code consistent information for the
computation], or

(∃p)[H(p, 0) does not equal valid initial tape contents and state for
position p at time 0].

Therefore, by the relativized witnessing theorem for S1
2 , there is a poly-

nomial time function f , which takes x as input and uses X and Y as oracles,
and produces values for y, p and t satisfying one of the disjuncts of (B’).
Without loss of generality, the function f is computed by a clocked Tur-
ing machine, so S1

2 proves its runtime is polynomially bounded. Because
of the assumption that Y codes the bit-graph of H, we can view f as ask-
ing queries to the function H. That is, rather than querying truth values
of Y (i), f makes queries q = 〈p, t〉 to H and receives for an answer the value
r = H(p, t) giving the tape contents at position p at time t, the state at
time t, and the tape head position at time t. W.l.o.g., S1

2 proves that if
f outputs values p, t satisfying (B’), then f has actually queried the four
values H(p, t+1), H(p−1, t), H(p, t), and H(p+1, t), and that if it outputs
a value p, then it has queried H(p, 0).

We will use the computation of fX,Y (x) to set up an instance of RLIlog.
We are particularly interested in tracking the queries that f makes to H. For
fixed x,X, let qi = 〈pi, ti〉 be the i-th query made during the computation
of fX,Y (x) and ri = H(pi, ti) be the answer received. Since f is polynomial
time, w.l.o.g., i = 1, 2, . . . , p(|x|) for some polynomial p. Note that p(|x|)
counts only queries to Y , and we do not count the queries made to X.

We next define the instance of RLIlog. The intent is that, provably
in S1

2 , any solution to the RLIlog problem will give a computation of f
satisfying (B’). S1

2 will be able to prove that there are no witnesses p, t or p
satisfying the second or third disjunct of (B’); hence, the only possibility for
a solution is a value y such that φ(y, x,X) holds. This will suffice to prove
Theorem 16.

Our proof uses an amalgamation of techniques from [8]. Set c := 2p(|x|)+1
equal to one more than twice the number of queries f makes to H. Let P be
the space used by MX(x), and T the time. The directed graph G will be the

42

rectangular graph [P]× [T]. The edges of G are as described earlier, namely,
the up to four edges incoming to (p, t) come from the vertices (p − 1, t),
(p − 1, t− 1), (p, t− 1), and (p + 1, t− 1).

The vertices of G will be labeled with sequences. The initialization
function E labels with each vertex (p, t) with the empty sequence 〈〉. This
has score value 0. The empty sequence is the only label with score 0. The
valid labels for a vertex (p, t) with odd score 2s+1 are sequences of the form

〈βp,t, q1, r1, q2, r2, . . . , qs, ?〉

and
〈βp,t, q1, r1, q2, r2, . . . , qs, rs〉.

Here the first entry βp,t is intended to equal the value of H(p, t). The qi
values are intended to be queries to H, so qi = 〈pi, ti〉; the ri values are
intended to be answers to the queries, except the special symbol ? indicates
that ri is not known yet. Note that in general pi and ti are unequal to p
and t.

The valid labels for (p, t) with even score 2s have the form

〈βp,t, q1, r1, q2, r2, . . . , qs〉.

Note that the score associated with a label is always the length of the se-
quence coded by the label. The score values are ≤ 2p(|x|) + 1 and the sizes
of the intended entries in the sequences are polynomially bounded, hence
there is a term b = b(x) bounding the values of labels.

The wellformedness property, wf, applies to labels in the neighborhoodN
of a vertex (p0, t0). In order to be wellformed, the following four sets of
conditions must be satisfied.

First the labels in the neighborhood N must agree on qj and rj values,
and each qj must be the j-th query that is made during the computation
fX,Y (x) when the rj’s are the query responses. Specifically, if a non-? value
for rj appears in a label, then there cannot be a different non-? value for rj
in any label in N . Since the values of ri are the same in all labels in N , the
values of qi must also be the same in all labels in N . This is because the
qi values are determined by the computation of fX,Y (x) when queries to H
are answered with the values ri.

Second, the qj, rj values must be consistent with the βp,t values in the
following way: if a vertex in the neighborhood N has coordinates 〈p′, t′〉 and
thus its label has first entry βp′,t′ , and if some (possibly different) vertex x =
〈p′′, t′′〉 in N has an entry qj = 〈p′, t′〉 then, if rj is present in x’s label, it
must satisfy:

43

• If rj is the last entry of x’s label, and if there is no path in the directed
graph G from (p′, t′) to (p′′, t′′), then rj equals ?.

• Otherwise rj must equal βp′,t′ .

Third, the βp,t values should, at least locally, behave like valid values for
H(p, t); that is to say, the βp,t values must be consistent with some potential
computation of MX(x). Except for labels with score zero, all nine vertices
in the neighborhood have βp,t values, and these values must represent some
locally consistent computation of M : in particular, they should contain the
correct values in the x- and X-tracks of the tape, and the values for the tape
head position, the current state, and the contents of the third tape track
must be consistent with the transition relation of the Turing machine M .

Fourth, the wellformedness property wf requires a somewhat subtle re-
striction on the values ri that prevents them from recording a solution to the
second or third disjunct of (B’). Namely, there must not be any qi = 〈p, 0〉
where ri does not equal the correct value H(p, 0) describing the initial tape
configuration at position p at time 0. In addition, there must not be four
query values qi1 = 〈p − 1, t − 1〉, qi2 = 〈p, t − 1〉, qi3 = 〈p + 1, t − 1〉, and
qi4 = 〈p, t〉 such that ri1 , ri2 , ri3 , and ri4 , when interpreted as values for
H(p − 1, t − 1), H(p, t − 1), H(p + 1, t − 1), and H(p, t), give values that
would witness the second conjunct of (B’).

This completes the definition of the wellformedness condition wf. Note
that wf is a polynomial time computable function of the (up to) nine labels
in a neighborhood, the values of p0 and t0 and the input x, using X as an
oracle.

We next define the local improvement function I. There are four cases
to consider. First, when increasing scores from 0 to 1, the function I must
compute the value βp,t. For t greater than zero, this is determined from
βp−1,t−1, βp,t−1, βp+1,t−1 by M ’s transition relation. For t equal to zero, βp,t
is just the initial configuration of M for tape cell p; the appropriate values
for the read-only tracks are computed by using the input x or the oracle X.
Second, consider the case where scores are raised from an even value 2s > 0
to an odd value 2s + 1. This represents the case where we are trying to
load the answer rs to the query qs = 〈ps, ts〉. If (p, t) is not reachable from
(ps, ts) in the directed graph G, then I just sets rs equal to ?, leaving the
rest of the entries in the label unchanged. If (p, t) = (ps, ts), I sets rs to
equal βp,t. Otherwise, rs is merely copied from a non-? rs value of (p− 1, t)
or (p + 1, t − 1); by wellformedness, these two values will agree if they are
both present and not equal to ?. Third, when increasing a score value from
an odd value 2s − 1 to an even value with p < P or t < T , the function I

44

is merely propagating a query value qs backwards through G: the value qs
for the label on (p, t) is just copied from the qs value of either (p + 1, t) or
(p− 1, t+ 1). Fourth, and finally, we define the local improvement function
for updating the upper right vertex (P−1, T−1) from an odd value 2s − 1
to 2s. For this vertex, the local improvement function I simulates fX,Y (x):
Whenever f makes its i-th query to H(p, t) with i < s, this query equals qi,
and the value ri is used as the query answer. If there is an s-th query 〈p, t〉,
then I sets the new qs value equal to 〈p, t〉 leaving the rest of the label entries
for (P−1, T−1) unchanged. This qs value will be propagated back and forth
across G in the next scans in order to find the answer to the query. On
the other hand, if fX,Y (x) halts without making any new query to H, then
the local improvement function gives the invalid answer b: this constitutes
a solution to the instance of RLIlog.

It should be clear that the local improvement function I is polynomial
time in all cases. It uses the oracle X when increasing scores from 0 to 1,
and also when increasing the score for (P−1, T−1) to 2s while simulating
the function fX,Y (x) querying X.

This completes the definition of the RLIlog instance. Suppose (still argu-
ing in S1

2) that we have a solution to this instance. There are three possible
ways to have a solution: (1) The initialization function could produce a value
giving a non-wellformed neighborhood; (2) The local improvement function
could produce a value giving a non-wellformed neighborhood; or (3) a score
value could exceed c = 2p(|x|) + 1. Option (3) is impossible since this can
happen only at the vertex (P−1, T−1), and the function f is constrained to
ask fewer than p(|x|) queries to H. Option (1) is likewise impossible, just
from the definition of the function E. Likewise, from the definition of the
function I, the only way option (2) can occur is at vertex (P−1, T−1) for
the function fX,Y (x) to successfully halt.

This means that the only possible answer is a place where fX,Y (x) halted
successfully while the improvement function I was attempting to update the
label on vertex (P−1, T−1). Because of the fourth wellformedness condition,
this can happen only if fX,Y (x) outputs a value y which satisfies φ(y, x,X).
Q.E.D. Theorems 20 and 16. 2

References

[1] A. Beckmann and S. R. Buss, Polynomial local search in the poly-
nomial hierarchy and witnessing in fragments of bounded arithmetic,
Journal of Mathematical Logic, 9 (2009), pp. 103–138.

45

[2] , Characterization of Definable Search Problems in Bounded Arith-
metic via Proof Notations, Ontos Verlag, 2010, pp. 65–134.

[3] , Corrected upper bounds for free-cut elimination, Theoretical
Computer Science, 412 (2011), pp. 5433–5445.

[4] S. R. Buss, Bounded Arithmetic, Bibliopolis, 1986. Revision of 1985
Princeton University Ph.D. thesis.

[5] , Axiomatizations and conservation results for fragments of
bounded arithmetic, in Logic and Computation, proceedings of a Work-
shop held Carnegie-Mellon University, 1987, vol. 106 of Contemporary
Mathematics, American Mathematical Society, 1990, pp. 57–84.

[6] S. R. Buss and J. Kraj́ıček, An application of Boolean complexity to
separation problems in bounded arithmetic, Proc. London Math. Society,
69 (1994), pp. 1–21.

[7] S. A. Cook and P. Nguyen, Foundations of Proof Complexity:
Bounded Arithmetic and Propositional Translations, ASL and Cam-
bridge University Press, 2010. 496 pages.

[8] L. A. Ko lodziejczyk, P. Nguyen, and N. Thapen, The provably
total NP search problems of weak second-order bounded arithmetic, An-
nals of Pure and Applied Logic, 162 (2011).

[9] J. Kraj́ıček, Bounded Arithmetic, Propositional Calculus and Com-
plexity Theory, Cambridge University Press, Heidelberg, 1995.

[10] , Forcing with Random Variables and Proof Complexity, Cam-
braidge University Press, 2011.

[11] P. Pudlák and N. Thapen, Alternating minima and maxima, Nash
equilibria and bounded arithmetic, Annals of Pure and Applied Logic,
163 (2012), pp. 604–614.

[12] W. J. Savitch, Relationships between nondeterministic and determin-
istic tape complexities, Journal of Computer and System Sciences, 4
(1970), p. 177192.

[13] A. Skelley and N. Thapen, The provably total search problems of
bounded arithmetic, Proceedings of the London Mathematical Society,
103 (2011), pp. 106–138.

46

[14] G. Takeuti, Proof Theory, North-Holland, Amsterdam, 2nd ed., 1987.

[15] N. Thapen, Higher complexity search problems for bounded arithmetic
and a formalized no-gap theorem, Archive for Mathematical Logic, 50
(2011), pp. 665–680.

47

