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We consider the expected value for the total curvature of a random closed polygon. Numerical
experiments have suggested that as the number of edges becomes large, the difference between the
expected total curvature of a random closed polygon and a random open polygon with the same
number of turning angles approaches a positive constant. We show that this is true for a natural class
of probability measures on polygons, and give a formula for the constant in terms of the moments of
the edgelength distribution.

We then consider the symmetric measure on closed polygons of fixed total length constructed by
Cantarella, Deguchi, and Shonkwiler. For this measure, we are able to prove that the expected value
of total curvature for a closed n-gon is exactly π

2n + π
4

2n
2n−3 . As a consequence, we show that at

least 1/3 of fixed-length hexagons and 1/11 of fixed-length heptagons in R3 are unknotted.

1. INTRODUCTION

The study of random polygons is a fascinating topic in geometric probability and statistical
physics. Random polygons provide an effective model for long-chain polymers in solution under
“θ-conditions”. There is an essential distinction between open polygonal “arms”, which are easy to
analyze because each edge is sampled independently, and closed polygons, where the closure con-
straint imposes subtle global correlations between edges. The fixed-length open polygons with n
edges in R3 form a manifold which has a codimension 3 submanifold of closed polygons. To study
random polygons, we must first fix a probability measure on open polygons and a corresponding
codimension 3 Hausdorff measure on closed polygons. Given these measures, we can then study
the statistical properties of the geometry and topology of polygons in each space.

In recent work, two of us (Cantarella and Shonkwiler) [2] presented a new measure on the
space of closed n-gons of fixed length constructed using a map from the Stiefel manifold V2(Cn)
of orthonormal 2-frames in complex n-space to the space Pol3(n) of closed n-gons of length 2. We
called this measure the symmetric measure. We computed exact expectations of radius of gyration
and squared chord lengths with respect to the symmetric measure. These are global geometric
invariants of polygons in the sense that they involve edges which are far apart along the polygon.
In this paper, we are interested in the total curvature κ, which is the sum of the turning angles at
each vertex of the polygon. This is a local invariant of polygons, in the sense that it is determined
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by pairs of adjacent edges. Though we will only consider total curvature in the present work,
our methods should also apply to other local geometric invariants such as total torsion, which is
determined by triples of adjacent edges.

If we sample the edges in an open polygonal arm independently according to a spherically
symmetric distribution, it is easy to see that the expected turning angle at a vertex is π

2 . Thus the
expected total curvature of an n-edge arm (which has n − 1 vertices) is π

2 (n − 1). In a closed
polygon, the edges are not independently sampled due to the closure constraint. Since the closure
constraint involves all the edges, it is reasonable to expect that its effect at any given vertex should
become negligible as n → ∞. Hence we expect that in a closed polygon, the expected turning
angle at a vertex should also approach π

2 . This is true, as we will see below.

However, it is not true that limn→∞E(κ,Pol3(n)) − π
2n = 0. In 2007, Plunkett et al. [14]

numerically sampled random closed equilateral polygons of n edges and found that their total
curvatures are equal to π

2n+ α(n), where α(n) tended towards a constant near 1.2 as n→∞. In
2008, one of us (Grosberg) [4] presented an argument to explain why α(n) → 3π

8 = 1.1781 . . .
for equilateral polygons. Numerical experiments [2] suggested that for the symmetric measure
α(n) → π

4 . This raised an interesting question: why is the asymptotic value of α(n) different for
the two measures?

Theorem 1 answers this question. With respect to a probability measure µ satisfying mild
hypotheses, the expected total curvature of a closed n-gon is π

2n + α(n), where α(n) → 3π
8
m2

1
m2

.
Here, m1 and m2 are first and second moments of edgelength. For random polygons sampled
according to the symmetric measure of [2], this theorem shows that α(n)→ π

4 , in agreement with
our previous numerical experiment.

The main result of this paper is that we are able to go much further for the symmetric measure
and obtain an exact formula for the expectation of total curvature on Pol3(n). To do so, we show
in Theorem 2 that the expectation of any scale-invariant function on Pol3(n) in the symmetric
measure is equal to the expectation of that function in a new measure called the Hopf-Gaussian
measure.

The Hopf-Gaussian measure is constructed by applying the Hopf map to a multivariate Gaussian
distribution on quaternionic n-space. Since the coordinatewise Hopf map is a quadratic form on
Hn (cf. Section 3.1), the coordinates of edges of polygons sampled according to this measure are
differences of chi-squared variables. Hence, they have Bessel distributions. Using this fact, we
determine the pdf of the sum of k edges in a random arm in Proposition 17. This enables us to find
in Proposition 22 an explicit pdf for a pair of edges sampled from a random closed polygon. We
then compute the expected value for turning angle by integration in Proposition 24. This gives us
our main result (Theorem 15): the expectation of total curvature κ for a random closed n-gon in
the symmetric measure σ is

E(κ; Pol3(n), σ) =
π

2
n+

π

4

2n

2n− 3
.



3

This calculation gives us some new insight into these polygon spaces. For example, consider
the old question: what fraction of the space of closed n-gons consists of knotted polygons? It has
been proved that the fraction of unknots decreases exponentially quickly to zero in various models
of random polygons [3, 9, 15]. There are also decades of computational experimentation on this
question (cf. [12] for references) which show that for small n, unknots are very common. Few
theorems are known for specific values of n. Our total curvature theorem allows us to prove that,
as measured by the symmetric measure, at least 1/3 of the space of fixed-length hexagons in R3 and
1/11 of the space of fixed-length heptagons in R3 consists of unknotted polygons.

These methods open up a number of new avenues for exploration and experimentation. The
ability to write an explicit pdf for pairs, triplets, or other collections of edges raises the hope
of computing expectations for other interesting scale-invariant functions, such as total torsion or
average crossing number. Numerical integration with respect to these pdfs is also an effective
method for approximating expected values. This can give significantly better results than averaging
over large ensembles of polygons (cf. Section 5). This will aid future research on these polygon
spaces by allowing conjectured expectations to be tested to high accuracy.

2. ASYMPTOTIC EXPECTED TOTAL CURVATURE OF POLYGONS

The purpose of this section is to compute the asymptotic expected total curvature of closed
random polygons under some reasonable hypotheses on the probability measure chosen for polygon
space. We will denote the space of n-edge open polygons (up to translation) in Rd by Ad(n) and
the subspace of n-edge closed polygons in Rd by Pd(n). Here we do not fix the lengths of the
polygons, so Ad(n) consists of vectors of edges (~e1, . . . , ~en) ∈ Rd × · · · × Rd = Rdn and Pd(n)
is the linear codimension d subspace of Armd(n) determined by the closure constraint

∑
~ei = ~0.

We will say that a probability measure µ on Ad(n) is generated by a spherically symmetric pdf
g on Rd when µ is the product measure g × · · · × g. The corresponding probability measure on
Pd(n) is the subspace measure with respect to µ. Equivalently, we say that µ is generated by g if
arms are generated by sampling edges independently from g and closed polygons are generated by
the same algorithm conditioned on closure.

When the pdf g is spherically symmetric, we can write

g(~r) dVol~r =
1

VolSd−1|~r|d−1
f(|~r|) dVol~r (1)

for some non-negative function f(r) so that
∫∞

0 f(r) dr = 1 (and hence
∫
Rd g(~r) dVol~r = 1).

In this case, the radial moments of g are the ordinary moments of f , and both are equal to the
moments of edgelength with respect to µ. We denote these by

mp := E(|~ei|p;µ) = E(|~r|p; g) = E(rp; f). (2)
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A number of standard probability measures on Ad(n) are generated in this way. For instance,
if f(r) = δ(r − 1), the resulting measure is the standard measure on n-edge equilateral arms and
the corresponding measure on Pd(n) is the standard measure on closed equilateral polygons. If
f(r) = N (0, 1), the resulting measure on Ad(n) is the standard measure on Gaussian random arms
and the corresponding measure on Pd(n) is the standard measure on Gaussian random polygons.

If µ is generated by g, it is clear that the expected angle between two edges of a polygon in
Ad(n) sampled according to µ is π2 , since the edges ~ei are independently sampled from a spherically
symmetric pdf on Rd. Thus, the expected value of total curvature on Ad(n) is given by π

2 (n− 1).
Of course, an n-edge closed polygon in Pd(n) has an extra turning angle, so we might guess that
the expectation of total curvature is π

2n instead. In fact, there is a curvature “surplus” in a closed
polygon. We will now modify the argument in [4] to prove

Theorem 1. For d ≥ 2, if µ is a measure on Ad(n) generated by a spherically symmetric pdf g
which is bounded on Rd and has finite radial moments m1, m2, and m3 as in (2) and we take the
corresponding subspace measure on Pd(n), then the expected value of total curvature on Pd(n)

approaches π
2n+ d

d−1
B(d/2,d/2)

B((d−1)/2,(d+1)/2)
m2

1
m2

as n→∞, where B is the Euler beta function.

In particular, when d = 2 and 3 we have

E(κ; P2(n), µ) ' π

2
n+

4

π

m2
1

m2
and E(κ; P3(n), µ) ' π

2
n+

3π

8

m2
1

m2

for large n.

Proof of Theorem 1. We will assume for the duration of the proof that Ad(n) (for any n) has a
fixed probability measure µ generated by a fixed spherically symmetric pdf g on Rd given by
g(~r) = f(|~r|)/VolSd−1|~r|d−1 as in (1), and that Pd(n) has the subspace measure induced by µ.

Let the Green’s function Gk(~r) be the probability density of the end-to-end vector ~r in Ad(k)
with respect to dVol~r. We can write this explicitly as

Gk(~r) =

∫
g(~e1) · · · g(~ek) δ(~e1 + · · ·+ ~ek − ~r) dVol~e1 · · · dVol~ek .

If we consider the joint probability distribution of all edges in a closed polygon, we can treat it
as a conditional probability on a set of edge vectors ~e1, . . . , ~en conditioned on the closure constraint∑
~ei = 0. This conditional probability can then be written as

P (~e1, . . . , ~en) dVol~e1 · · · dVol~en =
g(~e1) · · · g(~en) δ(~e1 + . . .+ ~en)

Cn
dVol~e1 · · · dVol~en ,

where Cn = Gn(~0) is the codimension d Hausdorff measure of the closed polygon space Pd(n).
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Given this joint distribution on all the edges, we can integrate out all but two of the edges to get
the joint probability distribution on two consecutive edges, P (~ei, ~ei+1). Since this is independent
of i, we may as well consider the case i = 1:

P (~e1, ~e2) dVol~e1 dVol~e2 = g(~e1)g(~e2)
Gn−2(−~e1 − ~e2)

Cn
dVol~e1 dVol~e2 . (3)

In other words, in order for the edges ~e1 and ~e2 to come from a closed polygon, the remaining n−2
edges must connect the head of ~e2 to the tail of ~e1.

Finding exact expressions for Gn−2 and Cn is quite challenging in general, but we can approx-
imate both fairly easily by observing that the failure-to-close vector for an element of Ad(k) is
just the sum of the edges. Given that we are sampling edges of our arms independently, that the
third moment of g is finite, and that g is a bounded density on Rd, the vector local limit theorem of
Bikjalis [1] implies that the pdf of the (normalized) failure-to-close distribution converges in sup
norm to the pdf of a normal distribution.

We can recover the parameters of this normal distribution by noting that spherical symmetry
implies that the mean of the failure-to-close distribution is zero, the variance of each coordinate of
an edge vector is m2/d, and the coordinates of an edge vector are uncorrelated. Therefore, the pdf
of 1√

k
Gk(~r) converges in sup norm to the pdf of the d-dimensional normal distribution

N
(
~0, diag (m2/d, . . . ,m2/d)

)
,

where diag(a1, . . . , ak) is the diagonal k × k matrix with entries a1, . . . , ak.

In particular, as n→∞, we have that Gn−2 and Cn = Gn(~0) are asymptotic in sup norm to

Gn−2(~r) '
(

d

2π(n− 2)m2

)d/2
exp

(
−dr2

2(n− 2)m2

)
Cn '

(
d

2π nm2

)d/2
,

where r = |~r|. From (3), then, we see that the pdf P (~e1, ~e2) is sup norm close to the function

P (~e1, ~e2) ' g(~e1)g(~e2)

(
n

n− 2

)d/2
exp

(
−d|~e1 + ~e2|2

2(n− 2)m2

)
. (4)

Let θ(~e1, ~e2) be the angle between ~e1 and ~e2, which is to say the turning angle between the two
edges. We will now prove that E(θ)→ π

2 + d
n(d−1)

B(d/2,d/2)
B((d−1)/2,(d+1)/2)

m2
1

m2
as n→∞.

First, for any ε > 0 we may choose ρ so that the integral of θ(~e1, ~e2)P (~e1, ~e2) over the comple-
ment of the ball B(ρ) of radius ρ centered at the origin obeys∫

R2d−B(ρ)

θ(~e1, ~e2)P (~e1, ~e2) dVol~e1 dVol~e2 < ε. (5)
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To see this, observe that P (~e1, ~e2) is a pdf on R2d, so its improper integral over the entire space
converges. This means that the L1 norm of P on the complement of a ball of radius ρ goes to 0 as
ρ → ∞. But θ is bounded by π so ‖θ(~e1, ~e2)P (~e1, ~e2)‖1 ≤ π‖P (~e1, ~e2)‖1 where the norms are
over the complement of the ballB(ρ). Choosing ρ large enough that the rhs is less than ε yields (5).

Similarly, g(~e1)g(~e2) is the pdf of a two-edge arm, so its improper integral over R2d converges
as well. Since g has finite first and second moments on Rd, this product has finite mixed moments
of order up to 2 on R2d. In particular, for any quadratic polynomial q(r1, r2) with coefficients
bounded by ±λ2 we may choose ρ(λ2) so that we have∫

R2d−B(ρ)

q(r1, r2) g(~e1)g(~e2) dVol~e1 dVol~e2 < ε. (6)

We now turn to the interior of the ball. Since the pair (~e1, ~e2) is in the interior ofB(ρ) in R2d, we
may choose n large enough that |~e1+~e2|2

(n−2)m2
is as close to zero as we like. In particular, we may choose

n large enough that the exponential in (4) is sup norm close to its linear Taylor approximation on the

entire ball. Further, we can approximate
(

n
n−2

)d/2
by 1 + d

n and 1
n−2 by 1

n and we have P (~e1, ~e2)

sup norm close to the following function over the entire ball:

P (~e1, ~e2) ' g(~e1)g(~e2)

[
1 +

d

n
− d|~e1|2

2nm2
− d|~e2|2

2nm2
− d〈~e1, ~e2〉

nm2

]
. (7)

The expected value of θ(~e1, ~e2) is just∫
R2d

θ(~e1, ~e2)P (~e1, ~e2) dVol~e1 dVol~e2

=

∫
B(ρ)

θ(~e1, ~e2)P (~e1, ~e2) dVol~e1 dVol~e2 +

∫
R2d−B(ρ)

θ(~e1, ~e2)P (~e1, ~e2) dVol~e1 dVol~e2 . (8)

By (5), the second integral on the right is small and we can ignore it. Since the ball is a bounded
domain, the fact that P (~e1, ~e2) is sup norm close to the approximation in (7) tells us that the integral
of the bounded function θ against the approximation is close to the first integral on the right.

Consider the approximation (7) to P (~e1, ~e2). For large enough n, the quantity in square brackets
is a quadratic polynomial in r1 and r2 with coefficients between −2 and 2, so the inequality (6)
applies with ρ ≥ ρ(

√
2). Hence, since θ is bounded, its integral against the approximation over

the ball is close to its integral against the approximation over all of R2d. In other words, we can
approximate the first integral on the rhs of (8) by the integral∫

R2d

θ(~e1, ~e2)g(~e1)g(~e2)

[
1 +

d

n
− d|~e1|2

2nm2
− d|~e2|2

2nm2
− d〈~e1, ~e2〉

nm2

]
dVol~e1 dVol~e2 .
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We now evaluate the above integral. We will write ~e1 and ~e2 in spherical coordinates. Since
the integrand is spherically symmetric, we can integrate out the angular coordinates of, say, ~e1

and assume that ~e1 lies along the z-axis. This produces a factor of VolSd−1. Since the rotation
of ~e2 in the (d − 1)-plane perpendicular to the ~e1-axis does not change θ or the approximation
to P (~e1, ~e2), we can integrate out another VolSd−2. Since θ is now the polar angle for ~e2 and
VolSd−2

VolSd−1 = Γ(d/2)√
πΓ((d−1)/2)

, the integral reduces to

Γ (d/2)√
πΓ ((d−1)/2)

π∫
0

∞∫
0

∞∫
0

θ
f(r1)

rd−1
1

f(r2)

rd−1
2

[
1 +

d

n
− dr2

1

2nm2
− dr2

2

2nm2

−dr1r2

nm2
cos θ

]
rd−1

1 rd−1
2 sind−2 θ dr1 dr2 dθ.

Since
∫∞

0 f(ri) dri = 1 and
∫∞

0 rpi f(ri) dri = mp, integrating out r1 and r2 yields

Γ (d/2)√
πΓ ((d−1)/2)

∫ π

0
θ

(
1− dm2

1

nm2
cos θ

)
sind−2 θ dθ =

π

2
+

d

n(d− 1)

B (d/2, d/2)

B ((d−1)/2, (d+1)/2)

m2
1

m2

after integrating by parts.

Since this is the expected value of the turning angle between two edges of the polygon, multi-
plying by n yields the desired expression for expected total curvature.

3. THE SYMMETRIC AND HOPF-GAUSSIAN MEASURES ON POLYGON SPACES

Theorem 1 applies to a broad class of measures on polygon space, but not to certain highly
symmetric measures defined in [2]. These symmetric measures on fixed-length polygons in space
and in the plane are interesting for a number of reasons: they come from a natural geometric con-
struction, expectations and moments of chordlengths and radii of gyration are exactly computable
and scale like the corresponding expectations for equilateral polygons, and there is an algorithm
for direct sampling from these measures which is fast (linear in the number of edges) and easy to
code. Our goal for the rest of the paper is to determine the expected total curvature of polygons
with respect to these measures.

The symmetric measure is most naturally defined on the space of (open or closed) n-gons of
fixed total length 2 in either R3 or R2, which we denote by Armd(n) for open polygons and Pold(n)
for closed polygons in Rd. Of course we can extend the definition to the space of polygons of any
fixed length by scaling. Viewed as a subspace of Ad(n), the space Pold(n) differs from Pd(n) in
that elements satisfy constraints on both closure and total length. Therefore, Theorem 1 does not
apply to the symmetric measure.
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However, since total curvature is a scale-invariant quantity and since Pd(n) is a cone over
Pold(n), the expected total curvature of polygons in Pd(n) – which we can determine asymptot-
ically using Theorem 1 – will be the same as the expected total curvature of polygons in Pold(n)
provided that this expectation is computed with respect to a measure on Pd(n) which is a prod-
uct of some measure on the cone parameter and the symmetric measure on Pold(n). Indeed, in
Section 3.2 we will define the Hopf-Gaussian measure H on Ad(n) and Pd(n) for d = 2, 3 by
applying the Hopf map to the standard multivariate Gaussian measure on Hn. The Hopf-Gaussian
measure on Ad(n) turns out to be the product H = χ2

2d−1n
× σ, where χ2

2d−1n
is the chi-squared

distribution with 2d−1n degrees of freedom on the interval [0,+∞) which parametrizes the cone
direction and σ is the symmetric measure on Armd(n). Likewise, the Hopf-Gaussian measure on
Pd(n) is the product H = χ2

2d−1n
× σ, where now σ is the symmetric measure on Pold(n).

An immediate consequence of this construction is the following theorem, which is the central
message of this section:

Theorem 2. Suppose F : Ad(n)→ R is a scale-invariant function. Then the expected value of F
over Ad(n) with respect to the Hopf-Gaussian measure H is the same as the expected value of F
over Armd(n) with respect to the symmetric measure σ; that is

E(F ; Ad(n),H) = E(F ; Armd(n), σ).

Likewise, if F : Pd(n)→ R is scale-invariant, then

E(F ; Pd(n),H) = E(F ; Pold(n), σ).

As we will see, the Hopf-Gaussian measure satisfies the hypotheses of Theorem 1, so the com-
bination of Theorems 1 and 2 will allow us to determine the expected asymptotic total curvature on
Pold(n) with respect to σ from the first and second moments of edgelength on Ad(n) with respect
to H, which we compute in Section 3.3. These asymptotic total curvature expectations are given
by:

Corollary 3. For d ∈ {2, 3} and large n, the expected total curvature on Pold(n) with respect to
the symmetric measure is

E(κ; Pol2(n), σ) ' π

2
n+

2

π
, E(κ; Pol3(n), σ) ' π

2
n+

π

4
.

The value of π
4 for the total curvature surplus of polygons in R3 agrees with our numerical

experiments in [2].

Of course, Theorem 2 applies to any scale-invariant functional on polygons, not just total cur-
vature. We expect that it will be useful for determining the expected values of other interesting
quantities such as total torsion and average crossing number.
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3.1. Quaternions and the Symmetric Measure on Polygon Spaces

In this subsection we recall the construction of the symmetric measure on Armd(n) and Pold(n)
from [2]. Recall that these are spaces of arms and polygons of fixed total length 2. In principle
everything could be scaled to any desired fixed length, but the choice of length 2 will be the most
convenient. Since the translation of the following definitions and results to any other scale is
straightforward, we will not discuss this scaling further.

Definition 4. For d ∈ {2, 3}, let Armd(n) be the moduli space of n-edge polygonal arms (which
may not be closed) of length 2 up to translation in Rd. An element of Armd(n) is a list of edge
vectors ~e1, . . . , ~en ∈ Rd whose lengths sum to 2.

Consider the Hopf map from the division algebra of quaternions H to the space of imaginary
quaternions (which we identify with R3) given by

Hopf(q) = q̄iq,

where q̄ is the quaternionic conjugate of q. In coordinates, if q = (q0, q1, q2, q3), then

Hopf(q) = (q2
0 + q2

1 − q2
2 − q2

3, 2q1q2 − 2q0q3, 2q0q2 + 2q1q3). (9)

We extend the Hopf map coordinatewise to a map Hopf : Hn → R3n. Then Hopf is a smooth map
from the sphere S4n−1 of radius

√
2 in Hn onto Arm3(n). Specifically, for ~q ∈ S4n−1 the edge set

of the polygon Hopf(~q) is

(~e1, . . . , ~en) := (Hopf(q1), . . . ,Hopf(qn)).

We call S4n−1 the model space for Arm3(n).

Similarly, the restriction of Hopf to the 1 ⊕ j and i ⊕ k planes gives a map to the i ⊕ k plane,
which we identify with C = R2. Specifically,

Hopf(a+ bj) = i(a+ bj)2

Hopf(ai + bk) = i(a+ bj)2.

In other words, if z = a + bj, then Hopf(z) = iz̄2 and Hopf(iz) = iz2. Extending this map
coordinatewise yields a smooth, surjective map Hopf : S2n−1tS2n−1 → Arm2(n); consequently,
the disjoint union S2n−1 t S2n−1 is the model space for Arm2(n).

Definition 5. For d ∈ {2, 3}, let Pold(n) be the moduli space of closed n-gons of length 2 up to
translation in Rd.
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Since Pold(n) ⊂ Armd(n), the inverse image Hopf−1(Pold(n)) is well-defined and will be the
model space for Pold(n). To describe this model space for d = 3 as a subset of S4n−1, the sphere
of radius

√
2 in Hn, it is convenient to write S4n−1 as the join S2n−1 ? S2n−1. In coordinates, the

join map is given by

(~u,~v, θ) 7→
√

2(cos θ~u+ sin θ~vj)

where ~u,~v ∈ Cn lie on the unit sphere and θ ∈ [0, π/2]. The Stiefel manifold V2(Cn) of Hermitian
orthonormal 2-frames (~u,~v) in Cn can be identified with the subspace

{(~u,~v, π/4) : 〈~u,~v〉 = 0} ⊂ S4n−1

and, as Hausmann and Knutson first observed [5], this manifold is precisely the model space for
Pol3(n).

Proposition 6 ([5]). The coordinatewise Hopf map takes V2(Cn) ⊂ Cn×Cn = Hn onto Pol3(n).

The key to proving the above proposition is to note that the Hopf map applied to a quaternion q
can be written more simply by letting q = a+ bj for a, b ∈ C:

Hopf(q) = Hopf(a+ bj) = (|a|2 − |b|2, 2=(ab̄), 2<(ab̄)) = i(|a|2 − |b|2 + 2ab̄j).

Let V2(Rn) be the real Stiefel manifold of orthonormal 2-frames in Rn, which sits naturally in
Rn ⊕ jRn. A result analogous to the above holds for planar polygons:

Proposition 7 ([5]). The coordinatewise Hopf map takes V2(Rn) t iV2(Rn) onto Pol2(n).

With these maps in place, we can define probability measures on the arm and polygon spaces by
pushing forward measures on the model spaces. Since the model spaces are homogeneous spaces,
it is natural to push forward Haar measure on the model spaces, which is what we did in [2]. Since
Haar measure is also the measure defined by the standard Riemannian metrics on these spaces, this
gives the following definition of the symmetric measure σ on Pol3(n):

σ(U) =
1

VolV2(Cn)

∫
Hopf−1(U)

dVolV2(Cn) for U ⊂ Pol3(n).

The symmetric measures on the other arm and polygon spaces are defined analogously.

The space Pold(n) is topologically the union of the spaces of polygons with fixed edgelengths
r1, . . . , rn such that

∑
ri = 2, so any expectation over Pold(n) with respect to the symmetric

measure is a weighted average of the expectations over these spaces. In future work we intend to
determine how the average is weighted and with respect to which measure on the fixed edgelength
spaces. For equilateral polygons the answer is simple and pleasant: the restriction of the symmetric
measure to the subspace of equilateral polygons is just the natural measure on this space, namely
the subspace measure on n-tuples of vectors in the round S2 which sum to zero.
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3.2. The Hopf-Gaussian Measure on Polygon Spaces

We would like to compute the expectation of total curvature over Pold(n) with respect to the
symmetric measure. Unfortunately, since elements of Pold(n) are chosen from Ad(n) by con-
ditioning on the polygon both being closed and having total length 2, we cannot directly apply
Theorem 1. However, since the total curvature κ is scale-invariant and since Pd(n) is a cone over
Pold(n) (with the cone direction parametrized by the length of the polygon), we have that

E(κ; Pd(n), µ) = E(κ; Pold(n), σ)

for any measure µ on Pd(n) such that µ = ρ× σ for some measure ρ on [0,+∞).

At the level of model spaces, the picture is clearer. Hopf maps Hn onto A3(n) and the image
of the sphere of radius r is exactly the copy of Armd(n) consisting of polygonal arms with total
length r2. Moreover, the measure on this scaled copy of Armd(n) is exactly the pushforward of the
standard measure on the sphere of radius r, so it is the symmetric measure defined in the previous
section. Therefore, we can define a measure on A3(n) which is the product of some measure
on [0,+∞) and the symmetric measure on Arm3(n) simply by pushing forward any spherically
symmetric measure on Hn. Of course, if we may choose any spherically symmetric measure,
the obvious choice is the multivariate Gaussian measure: this is both a spherically symmetric
measure and a product measure on the coordinates and we can expect that the fact that the individual
coordinate distributions are Gaussian will simplify our computations considerably.

In the case of planar polygons, the model space for A2(n) is the explicit copy of Cn∪Cn given
by (Rn ⊕ jRn) ∪ (iRn ⊕ kRn), so we will push forward the Gaussian measure on Cn:

Definition 8. If γ4n is the standard Gaussian measure on Hn = R4n, then the Hopf-Gaussian
measure H on A3(n) is defined by

H(U) =

∫
Hopf−1(U)

dγ4n for U ⊂ A3(n).

Likewise, if γ2n is the measure on (Rn ⊕ jRn) ∪ (iRn ⊕ kRn) naturally induced by the standard
Gaussian measure on Cn = R2n, then the Hopf-Gaussian measure H on A2(n) is defined by

H(U) =

∫
Hopf−1(U)

dγ2n for U ⊂ A2(n).

The fact that the multivariate Gaussian is a product measure implies that:
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Proposition 9. The Hopf-Gaussian measure on A3(n) is generated by the pdf

g(~r) =
e−|~r|/2

16π|~r|
and the Hopf-Gaussian measure on A2(n) is generated by the pdf

g(~r) =
e−|~r|/2

4π|~r|
.

Proof. Since γ4n is a product measure on Hn, its restriction to each H1 factor is the standard four-
dimensional Gaussian. In particular, for ~q = (q1, . . . , qn) ∈ Hn sampled according to γ4n, the
qi ∈ H are independent, identically distributed, and spherically symmetric. Therefore, the edges of
the polygon Hopf(~q) = (Hopf(q1), . . . ,Hopf(qn)) are independent, identically distributed, and,
since the Hopf map is SU(2)-equivariant, spherically symmetric. Therefore, the Hopf-Gaussian
measure H on A3(n) is generated by a spherically symmetric distribution on R3, which we now
determine.

The four real components of each qi are themselves Gaussian-distributed. Therefore, since
|Hopf(qi)| = |qi|2, each edgelength of a Hopf-Gaussian polygon is given by the sum of the squares
of four Gaussian real numbers, so these edgelengths follow a chi-squared distribution with four
degrees of freedom. Thus, the pdf of the edgelength distribution is

f(r) =
re−r/2

4
.

But then the pdf g of the spherically symmetric edge distribution is

g(~r) =
1

4π|~r|2
f(|~r|) =

e−|~r|/2

16π|~r|
,

as desired.

The proof in the 2-dimensional case is completely parallel.

To identify the model space for Pd(n), note that, as with the Pold(n) and Armd(n) spaces,
we have that Pd(n) ⊂ Ad(n). Therefore, Hopf−1(Pd(n)) is a well-defined subset of Hn which
will be the model space for Pd(n). We can identify this model space more explicitly as follows.
Focusing on the case d = 3 for the moment, since Hn is the cone over S4n−1 it is convenient to
write Hn as the cone of the join S2n−1 ? S2n−1. In coordinates, the “cone-join” map is given by

(~u,~v, θ, s) 7→ s(cos θ~u+ sin θ~vj)

where ~u,~v ∈ Cn are unit vectors, θ ∈ [0, π/2] and s ∈ [0,+∞). The cone CV2(Cn) over the Stiefel
manifold V2(Cn) can then be identified with the subspace

{(~u,~v, π/4, s) : 〈~u,~v〉 = 0} ⊂ Hn

and the proof of Proposition 6 generalizes to show that CV2(Cn) is the model space for P3(n):
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Proposition 10. The coordinatewise Hopf map takes CV2(Cn) ⊂ Hn onto P3(n).

If CV2(Rn) is the cone over the real Stiefel manifold V2(Rn), then the same reasoning yields
the analogue of Proposition 7:

Proposition 11. The coordinatewise Hopf map takes CV2(Rn) ∪ iCV2(Rn) ⊂ Hn onto P2(n).

Since Pd(n) ⊂ Ad(n), we can define the Hopf-Gaussian measure on Pd(n) as the subspace
measure inherited from the Hopf-Gaussian measure on Ad(n) from Definition 8.

To prove Theorem 2, which says that the expected value of any scale-invariant function on
polygons is the same whether we compute it with respect to the Hopf-Gaussian measure or the
symmetric measure, it suffices to show that the Hopf-Gaussian measure is a product measure:

Proposition 12. Suppose d = 2 or 3. Then the Hopf-Gaussian measure H on Ad(n) is the product
χ2

2d−1n
× σ of the chi-squared distribution with 2d−1n degrees of freedom on the interval [0,+∞)

and the symmetric measure on Armd(n).

Likewise, the Hopf-Gaussian measure on Pd(n) is the product χ2
2d−1n

× σ of the chi-squared
distribution with 2d−1n degrees of freedom on [0,+∞) and the symmetric measure on Pold(n).

Proof. Since the Gaussian measure on Hn = R4n is SO(4n)-equivariant, its restriction to the
sphere S4n−1(r) of radius r is, after normalization, just the uniform probability measure on the
sphere. Since Hopf(S4n−1(r)) is the space of arms of total length r2, this means that the restric-
tion of the Hopf-Gaussian measure on A3(n) to this space is, after normalization, the symmetric
probability measure σ defined in Section 3.1. Likewise, the restriction of the Hopf-Gaussian mea-
sure on A2(n) to planar arms of total length r2 is just the symmetric measure.

Therefore, the measure on Ad(n) is the product ρ × σ for some measure ρ on the interval
[0,+∞), so it suffices to see that ρ is the chi-squared distribution. Since the interval parametrizes
the total length of a polygon, we need to analyze the distribution of total length of polygonal arms.
For ~q = (q1, . . . , qn) ∈ Hn, the arm Hopf(~q) ∈ A3(n) has total length∑

|Hopf(qi)| =
∑
|q̄iiqi| =

∑
|qi|2.

Since each |qi|2 is the sum of the squares of four standard Gaussians, the total length of the polygon
Hopf(~q) follows the standard chi-squared distribution with 4n degrees of freedom. Therefore, the
measure ρ on [0,+∞) is the measure induced by the chi-squared distribution with 4n degrees of
freedom. Likewise, for polygonal arms in the plane, the measure on total length is induced by the
standard chi-squared distribution with 2n degrees of freedom, since in that case each |qi|2 is the
sum of the squares of two standard Gaussians.

The fact that the Hopf-Gaussian measure on Pd(n) is the product of the chi-squared distribution
on [0,+∞) and the symmetric measure on Pold(n) then follows immediately from the definition
of the Hopf-Gaussian measure on Pd(n) ⊂ Ad(n) as the subspace measure and the fact that the
symmetric measure on Pold(n) ⊂ Armd(n) is the subspace measure.



14

Theorem 2 now follows since a scale-invariant function is by definition independent of the first
factor in the product decomposition of the Hopf-Gaussian measure.

3.3. Moments of Edgelength, Expected Chordlengths, and Expected Gyradius

By Proposition 9 the Hopf-Gaussian measure on Ad(n) for d ∈ {2, 3} is generated by the
spherically symmetric pdf

g(~r) =
e−|~r|/2

4d−1π|~r|
.

This is certainly a bounded density with finite first, second, and third moments, so we can use
Theorem 1 to compute the asymptotic expected total curvature on Pd(n) with respect to the Hopf-
Gaussian measure. To do so, we just need to know the first and second moments of edgelength.
In fact, as we saw in the proof of Proposition 9, the edgelength distribution on Ad(n) is the chi-
squared distribution with 2d−1 degrees of freedom, so the moments of edgelength are just the
well-known moments of this distribution:

Proposition 13. The pth moment of edgelength on Ad(n) is given by

E(|ei|p; A2(n),H) = 2pp!, E(|ei|p; A3(n),H) = 2p(p+ 1)!

Note that the expected values of edgelength are

E(|~ei|; A2(n),H) = 2, E(|~ei|; A3(n),H) = 4 (10)

and the expected squared edgelengths are

and E(|~ei|2; A2(n),H) = 8, E(|~ei|2; A3(n),H) = 24. (11)

Using the above values for m1 and m2, Theorem 1 implies that the asymptotic expected total
curvature on Pd(n) is given by

E(κ; P2(n),H) ' π

2
n+

2

π
, E(κ; P3(n),H) ' π

2
n+

π

4
.

Since total curvature is scale-invariant, Theorem 2 implies Corollary 3, which says that for large n

E(κ; Pol2(n), σ) ' π

2
n+

2

π
, E(κ; Pol3(n), σ) ' π

2
n+

π

4
.

Also, we can now compute the expected value of chordlength and radius of gyration for Ad(n)
using results from [2].
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Corollary 14. The expected value of the squared length of a chord skipping k edges on Ad(n) is

E(Chord(k); A2(n),H) = 8k, E(Chord(k); A3(n),H) = 24k.

The expected squared radius of gyration for arms in Ad(n) is

E(Gyradius; A2(n),H) =
4

3

n(n+ 2)

n+ 1
, E(Gyradius; A3(n),H) = 4

n(n+ 2)

n+ 1
.

Proof. Since our measure on Ad(n) is invariant under rearrangement of edges, we can easily com-
pute expected squared chord length and radius of gyration using Propositions 5.3, 6.3, and 6.5
from [2]. Those propositions imply that

E(Chord(k); Ad(n),H) = kE(|~ei|2; Ad(n),H) (12)

and

E(Gyradius; Ad(n),H) =

(
n(n+ 2)

6(n+ 1)

)
E(|~ei|2; Ad(n),H). (13)

Substituting the second moment of edgelength from (11) into (12) and (13) yields the desired
results.

4. EXPECTED TOTAL CURVATURE OF POLYGONS WITH THE SYMMETRIC MEASURE

Corollary 3 gave the asymptotic expected total curvatures with respect to the symmetric mea-
sures as

E(κ; Pol2(n), σ) ' π

2
n+

2

π
, E(κ; Pol3(n), σ) ' π

2
n+

π

4
.

Our aim in this section is to use the special properties of the Hopf-Gaussian measure to carry out the
argument of Theorem 1 for space polygons with no approximations. This will yield the following
exact expectation which holds for any n ≥ 3:

Theorem 15. The expected total curvature with respect to the symmetric measure on Pol3(n) and
the Hopf-Gaussian measure on P3(n) is given by

E(κ; Pol3(n), σ) = E(κ; P3(n),H) =
π

2
n+

π

4

2n

2n− 3
.

Since total curvature is scale-invariant, the first equality is a consequence of Theorem 2; proving
the second equality is the main task of this section. Also, since all triangles have total curvature
2π, Theorem 15 is trivially true for n = 3. Therefore, throughout the rest of the section we will
assume n > 3.

We will shortly be evaluating many definite integrals involving the Bessel function Kν(z); to
do so we will repeatedly avail ourselves of the following:
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Lemma 16. For real µ > |ν| and α > 0,∫ ∞
0

xµ−1e−αxKν(αx) dx =

√
π

2µβµ
Γ(µ+ ν)Γ(µ− ν)

Γ(µ+ 1/2)
(14)

and ∫ ∞
0

xµ−1Kν(αx) dx =

√
π2ν

αµ
Γ(µ− ν)

µ+ ν

Γ(µ/2 + ν/2)

Γ(µ/2 + 1/2)
. (15)

Proof. Both equations follow from the identity [7, 6.621(3)]∫ ∞
0

xµ−1e−αxKν(βx) dx =

√
π(2β)ν

(α+ β)µ+ν

Γ(µ+ ν)Γ(µ− ν)

Γ(µ+ 1/2)
2F1

(
µ+ ν, ν +

1

2
;µ+

1

2
;
α− β
α+ β

)
,

which holds for any complex numbers µ, ν, α, β with <(µ) > |<(ν)| and <(α + β) > 0. The
function 2F1 is Gauss’s hypergeometric function.

To get (14), we simply use the fact that 2F1(a, b; c; 0) = 1 for any a, b, c; to get (15) we use
Kummer’s identity: 2F1(a, b; a− b+ 1;−1) = Γ(a−b+1)Γ(a/2+1)

Γ(a+1)Γ(a/2−b+1) .

4.1. The Sum of k Edges in A3(n)

Since the goal is to carry out the strategy from Section 2 with no approximations, we first need
to explicitly determine the Green’s function Gk:

Proposition 17. The probability distribution of the vector ~r joining the ends of a k-edge sub-arm
of an arm in A3(n) with the Hopf-Gaussian measure is spherically symmetric in R3 and given by
the following explicit formula:

Gk(~r) dVol~r =
rk−3/2Kk−3/2 (r/2)

22k+2π3/2Γ(k)
dVol~r,

where r = |~r|.

Proof. Suppose ~q = (q1, . . . , qn) ∈ Hk is sampled from the standard Gaussian distribution. Writ-
ing qi = ai + bii + cij + dkk for each i = 1, . . . , k, the failure-to-close vector for the k-edge arm
Hopf(~q) ∈ A3(n) is∑

Hopf(qi) =
∑

Hopf(ai+bii+cij+dkk) =
∑

(a2
i +b

2
i−c2

i−d2
i , 2bici−2aidi, 2aici+2bidi).

Again, the fact that this vector follows a spherically symmetric distribution is a consequence of the
fact that the Hopf map is SU(2)-equivariant.



17

Since the ai, bi, ci, di are chosen from standard (real) Gaussian distributions, the distribution of
the projection of the failure-to-close vector onto the first coordinate is clearly the difference of two
chi-squared distributions, each with 2k degrees of freedom. This is known to have a pdf given by
a Bessel function distribution [8, Chapter 12, Section 4.4] in the form

f(y) =
|y|k−1/2

4k
√
πΓ(k)

Kk−1/2 (|y|/2) . (16)

It is worth noting that this pdf was proved by McLeish [11] to be the pdf of a product of a gamma
(k, 2) variable and an independent standard normal. McLeish also works out the moments and
cumulants of the distribution.

Next, we will use a result of Lord [10] which relates the pdf of the projection of a spherically
symmetric distribution to the pdf of the full distribution.

Lemma 18 ([10, Eq. (29)]). Suppose p(~r) is a spherically symmetric distribution on R3 and that
the projection of p(~r) to any radial line through the origin has the pdf p1(r), where r = |~r|. Then
p(~r) is given by

p(~r) = − 1

2πr
p′1(r) dVol~r .

Using the pdf of the projection given in (16), Lemma 18 implies that the failure-to-close distri-
bution is

Gk(~r) dVol~r = − 1

2πr

d

dr

(
rk−1/2

4k
√
πΓ(k)

Kk−1/2 (r/2)

)
dVol~r

This can be re-written using the derivative identity K ′ν(u) = −1
2(Kν−1(u) + Kν+1(u)) and the

recurrence relation Kν(u) = Kν−2(u) + 2(ν−1)
u Kν−1(u) (cf. [6, 10.29.1] for both) to get the

desired expression

Gk(~r) dVol~r =
rk−3/2Kk−3/2 (r/2)

22k+2π3/2Γ(k)
dVol~r

where r = |~r|.

Using the identity K−1/2(z) =
√
π√
2z
e−z (cf. [6, 10.39.2]) and specializing Proposition 17 to the

case k = 1, we see that the distribution of an edge in a Hopf-Gaussian arm is

G1(~r) dVol~r =
e−r/2

16πr
dVol~r .

Note that this is, as it should be, the same distribution for edges that we found in Proposition 9.
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4.2. The pdf of Edges in P3(n)

Proposition 19. The codimension 3 Hausdorff measure of P3(n) in A3(n) is the value Gn(~0),
which is given by

Cn =
Γ(n− 3/2)

64
√
πΓ(n)

Proof. We saw in Proposition 17 that

Gn(~r) =
2−2n−2rn−3/2Kn−3/2(r/2)

π3/2Γ(n)
. (17)

We must be careful evaluating this formula at r = 0, since the Bessel function Kn−3/2 has a pole
at 0. To rewrite (17) in a form which allows us to easily evaluate at r = 0, we use the general
formula for Bessel functions of half-integer order from [16, p. 80, formula (12)]:

Kn+1/2(z) =
( π

2z

)1/2
e−z

n∑
i=0

(n+ i)!

i!(n− i)!(2z)i
.

Writing n− 3/2 = (n− 2) + 1/2, we see that Gn(~r) simplifies to

Gn(~r) =
2−2(n+1)e−r/2

πΓ(n)

n−2∑
i=0

(i+ (n− 2))!

i!((n− 2)− i)!
r(n−2)−i.

In this form, it is clear that the only term in the sum which is nonzero at r = 0 is the i = n − 2
term and

Gn(~0) =
2−2(n+1)(2n− 4)!

πΓ(n)(n− 2)!
=

2−2(n+1)Γ(2n− 3)

πΓ(n)Γ(n− 1)
.

We can simplify this a bit further using the duplication formula for gamma functions [6, 5.5.5]
Γ(2z) = π−1/222z−1Γ(z)Γ(z + 1/2) to get

Cn = Gn(~0) =
Γ(n− 3/2)

64
√
πΓ(n)

. (18)

as desired.

We can use the pdf for sums of edges in A3(n) to write down the pdfs for single edges and pairs
of edges in P3(n).
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Proposition 20. The pdf of a single edge ~ei in P3(n) with respect to dVol~ei is spherically sym-
metric on R3 and given by the following function of ri = |~ei|:

P (~ei) =
n− 1

22n−2πΓ(n− 3/2)
e−

ri/2r
n−7/2
i Kn−5/2 (ri/2) .

Proof. The pdf of a single edge is just

P (~ei) =
1

Cn
g(~ei)Gn−1(−~ei);

i.e., the probability of the ith edge being ~ei and the remaining n − 1 edges summing to −~ei,
conditioned on the assumption that all n edges sum to zero. Since g(~ei) = G1(~ei), we can use
Proposition 17 and Proposition 19 to arrive at the stated expression.

Corollary 21. The moments of edgelength for polygons in P3(n) are

E(|~ei|p; P3(n),H) =
(n− 1)Γ(2n+ p− 3)

2Γ(2n− 4)
B(p+ 2, n− 2).

and hence the expectation of squared chordlength and radius of gyration are

E(Chord(k); P3(n),H) =

(
n− k
n

)
12k(2n− 3)

n+ 1

E(Gyradius; P3(n),H) =

(
n− 1

n

)
(2n− 3).

Proof. Using the pdf from Proposition 20, the expected value of |~ei|p = rpi is∫
R3

rpi P (~ei) dVol~ei =

∫ ∞
0

∫ π

0

∫ 2π

0
rpi P (~ei) r

2
i sinφ dθ dφ dri.

Writing out P (~ei) and integrating with respect to θ and φ gives the pth moment

n− 1

22n−4Γ(n− 3/2)

∫ ∞
0

e−
ri/2r

n+p−3/2
i Kn−5/2 (ri/2) dri

=
n− 1

22n−4Γ(n− 3/2)

√
πΓ(p+ 2)Γ(2n+ p− 3)

Γ(n+ p)

=
(n− 1)Γ(2n+ p− 3)

2Γ(2n− 4)
B(p+ 2, n− 2)

using Lemma 16 and the duplication rule for the gamma function.
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Since the measure on P3(n) is invariant under rearrangement of edges, we can use Proposi-
tions 6.3 and 6.5 from [2] as in Corollary 14. Specifically,

E(Chord(k); P3(n),H) =

(
n− k
n− 1

)
kE(|~ei|2; P3(n),H)

and

E(Gyradius; P3(n),H) =

(
n+ 1

12

)
E(|~ei|2; P3(n),H).

By the first part of the proposition we have that

E(|~ei|2; P3(n),H) =
12(n− 1)(2n− 3)

n(n+ 1)
,

so the given formulas for E(Chord(k); P3(n),H) and E(Gyradius; P3(n),H) are immediate.

Proposition 22. The probability distribution of a pair of edges ~e1 and ~e2 in P3(n) is invariant
under the diagonal action of SO(3) on the pair of edges and invariant under rotations which fix
one edge. Hence, it depends only on the lengths r1 and r2 of the two edges and the angle θ between
them. It is given by the formula

P (r1, r2, θ) dr1 dr2 dθ =
Γ(n)

4
√
πΓ(2n− 4)

r1r2e
− 1

2
(r1+r2)zn−

7
2Kn− 7

2

(z
2

)
sin θ dr1 dr2 dθ, (19)

where z = |~e1 + ~e2| =
√
r2

1 + r2
2 + 2r1r2 cos θ.

Proof. As we saw above, the general form for the probability distribution of a pair of edges in a
closed polygon in P3(n) is

P (~e1, ~e2) dVol~e1 dVol~e2 =
g(~e1)g(~e2)Gn−2(−~e1 − ~e2)

Cn
dVol~e1 dVol~e2 , (20)

that is, the probability of the first two edges being ~e1 and ~e2 and the remaining edges summing
to −~e1 − ~e2 conditioned on the assumption that all n edges sum to zero. We computed Gk(~r) in
Proposition 17 and Cn in Proposition 19. Using the formula for g(~e) from Proposition 9, we get

P (~e1, ~e2) dVol~e1 dVol~e2 =
Γ(n)

32π5/2r1r2Γ(2n− 4)
e−

1/2(r1+r2)zn−
7/2Kn−7/2 (z/2) dVol~e1 dVol~e2 ,

where again z = |~e1 + ~e2| =
√
r2

1 + r2
2 + 2r1r2 cos θ. We can rewrite ~e1 in spherical coordi-

nates ~e1 = (r1, φ1, θ1). For each ~e1, we can fix ~e1 as the z-axis of spherical coordinates for
~e2 = (r2, φ2, θ2). Here θ2 is equal to θ, the angle between ~e1 and ~e2. Observing that we can inte-
grate out φ1 and φ2 immediately to get a factor of 4π2 and θ1 to get a factor of 2, and recording the
volume form in these coordinates as r2

1r
2
2 sin θ dr1 dr2 dθ gives us the formula in the statement of

the proposition.
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Corollary 23. The pairwise distribution of edges ~e1 and ~e2 in P3(n) for n > 3 may also be written
more simply in terms of the variables x = (r1 + r2)/2, y = (r1 − r2)/2, and z = |~e1 + ~e2|. In
these variables, the probability distribution is given by:

P (x, y, z) dx dy dz =
Γ(n)

2
√
πΓ(2n− 4)

e−xzn−
5/2Kn−7/2 (z/2) dx dy dz. (21)

Proof. Computing the Jacobian of the map (r1, r2, θ) 7→ (x, y, z), we see that its inverse determi-
nant is

|J −1| = 2 csc(θ)
√
r2

1 + r2
2 + 2r1r2 cos θ

r1r2

We then multiply the function in Proposition 22 by this determinant and substitute to obtain the
statement of the Corollary.

We now explicitly check that the total integral of the pairwise pdf is equal to 1. This computation
will serve as a warm-up for the more difficult definite integrals ahead.

Since y does not appear in the pdf P (x, y, z) in (21), we will integrate with respect to y first.
The triangle inequality states that r1 ≤ r2 + z, so y ≤ z/2, and similarly r2 ≤ r1 + z, so −z/2 ≤ y.
We will next integrate by x, since x does not appear in a Bessel function. There is no upper bound
on x = (r1 + r2)/2, but since r1 + r2 ≥ z, we know x ≥ z/2. We will integrate with respect to z
last, and here the limits are simply 0 and∞. Thus, we are trying to show that

Γ(n)

2
√
πΓ(2n− 4)

∫ ∞
0

∫ ∞
z/2

∫ z/2

−z/2
e−xzn−

5/2Kn−7/2 (z/2) dy dx dz = 1. (22)

The y and x integrals are simple, and leave us with

Γ(n)

2
√
πΓ(2n− 4)

∫ ∞
0

e−
z/2zn−

3/2Kn−7/2 (z/2) dz = 1 (23)

by Lemma 16. This check gives us confidence that our pairwise pdf is correct so far.

4.3. Expected Turning Angles and Total Curvature

Proposition 24. The expected value of the turning angle θ for a single pair of edges in P3(n) is
given by the formula

E(θ) =
π

2
+
π

4

2

2n− 3
(24)
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Proof. Our overall strategy will be to use the formula for P (x, y, z) from Corollary 23 to write this
expected value as

E(θ) =

∫ ∞
0

∫ ∞
z/2

∫ z/2

−z/2
θ(x, y, z)P (x, y, z) dy dx dz.

We begin by writing the turning angle θ in terms of the x, y, and z variables as

θ(x, y, z) = arccos

(
z2 − 2(x2 + y2)

2(x2 − y2)

)
.

Since P (x, y, z) does not depend on y, the first integral is accomplished by integrating this function
with respect to y. Integrating by parts with dv = 1, we get∫ z/2

−z/2
θ(x, y, z) dy = πz +

∫ z/2

−z/2

2y2
√

4x2 − z2

(y2 − x2)
√
z2 − 4y2

dy.

Now, making the trig substitution y = z
2 sinψ yields

πz+
√

4x2 − z2

∫ π/2

−π/2

sin2 ψ

sin2 ψ − 4x2

z2

dψ = πz+
√

4x2 − z2

∫ π/2

−π/2

(
1− 8x2

8x2 − z2 + z2 cos 2ψ

)
dψ

by using the identity sin2 ψ = 1−cos 2ψ
2 . This is simply

πz + π
√

4x2 − z2 − 2πx

using the indefinite integral identity [7, 2.558(4)]∫
dψ

a+ b cosψ
=

2√
a2 − b2

arctan
(a− b) tan ψ/2√

a2 − b2
.

Since the function P (x, y, z) is in the form e−xf(z), we must now do the pair of integrals

π

∫ ∞
z
2

e−x(z − 2x) dx+ π

∫ ∞
z
2

e−x
√

4x2 − z2 dx.

The first integral is simple and has the value −2πe−z/2. To do the second integral, we make the
change of variables x = (z/2)t to get∫ ∞

z/2
e−x
√

4x2 − z2 dx =
z2

2

∫ ∞
1

e−t
z
2 (t2 − 1)

1
2 dt = zK1 (z/2) ,
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recognizing the last integral as a form of the integral representation for Bessel Kν [6, 10.32.8] that
we have used before. We have now shown that

E(θ) =

√
πΓ(n)

2Γ(2n− 4)

(∫ ∞
0
−2e−

z/2zn−
5/2Kn−7/2 (z/2) dz +

∫ ∞
0

zn−
3/2K1 (z/2)Kn−7/2 (z/2) dz

)
= − n− 1

2n− 5
π +

√
πΓ(n)

2Γ(2n− 4)

∫ ∞
0

zn−
3/2K1 (z/2)Kn−7/2 (z/2) dz (25)

where the integral is, as usual, computed using Lemma 16.

The remaining integral in (25) is more interesting, as it involves a product of Bessel functions.
Making the substitution z = 2u, we can then use the Nicholson integral representation for the
product of Bessel functions [6, 10.32.17] to rewrite the integral as
√
πΓ(n)

2Γ(2n− 4)

∫ ∞
0

zn−
3/2K1 (z/2)Kn−7/2 (z/2) dz =

√
π2n−1/2Γ(n)

Γ(2n− 4)

∫ ∞
0

cosh ((9/2− n)t)

(∫ ∞
0

un−
3/2Kn−5/2(2u cosh t) du

)
dt.

Again, the inner integral is a power of z multiplied by a Bessel function of αz (here α = 2 cosh t)
and can hence be evaluated using Lemma 16. We now have the integral

π2
5/2−n(n− 2)(n− 1)

∫ ∞
0

cosh ((9/2− n) t) sechn−1/2t dt. (26)

We will integrate this using the general integration formula∫ ∞
0

coshαx sechβ x dx =

√
π

2

Γ(β + α)Γ(β − α)P
1/2−β
α−1/2 (0)

Γ(β)
, (27)

where P yx is the associated Legendre function. This is valid when β − α > 0 and β + α > 0. It is
a specialization of [7, 3.5.17]. We set α = 9/2 − n and β = n − 1/2 and see that β − α = 2n − 5
(which is positive since we have assumed n > 3) and β+α = 4. Applying the formula shows that
the integral of (26) is equal to

3π3/223−n(n− 2)(n− 1)P 1−n
4−n (0)Γ(2n− 5)

Γ (n− 1/2)
=

4(n− 2)(n− 1)

(2n− 5)(2n− 3)
π, (28)

where we have used the general formula for the value at zero of associated Legendre functions
given in [6, 14.5.1] and the duplication formula for gamma functions to simplify the form on the
left hand side. Combining (25) and (28), we see that

E(θ) =
n− 1

2n− 3
π =

π

2
+

π

4n− 6
=
π

2
+
π

4

2

2n− 3
, (29)

as desired.
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Theorem 15 now follows by multiplying by n. We get an interesting corollary of this theorem
for n = 6 and n = 7; since the expected value of total curvature is less than 4π, some hexagons
and heptagons must have total curvature less than 4π and hence be unknotted by the Fáry-Milnor
theorem [13].

Corollary 25. If we measure volume using the symmetric measure on polygon space, at least 1/3

of the polygons in Pol3(6) and 1/11 of the polygons in Pol3(7) are unknotted.

Proof. Let x be the fraction of polygons in Pol3(n) with total curvature greater than 4π. By the
Fáry-Milnor theorem, these are the only polygons which may be knotted. We know that any closed
polygon has total curvature at least 2π, so the expected value of total curvature satisfies

E(κ; Pol3(n), σ) > 4πx+ 2π(1− x).

Solving for x and using Theorem 15, we see that

x <
(n− 2)(n− 3)

2(2n− 3)
.

For n > 7, this bound is not an improvement on the trivial bound x ≤ 1, but for n = 6, we get
x < 2/3 and for n = 7, we get x < 10/11, as desired.

If instead we had let x be the fraction of polygons in Pol3(n) with total curvature greater than
2πB, then x < (n−2)(n−3)

(B−1)2(2n−3) and this gives constraints on the fraction of knots with bridge number
B. For example, when n = 8, 9, 10, or 11 this gives us some information on the fraction of
3-bridge knots since there are 3-bridge knots (e.g. 819) with stick number 8.

5. NEW NUMERICAL METHODS FOR RANDOM POLYGONS

In [2], we gave a fast sampling algorithm for random polygons in Pol3(n) which is guaranteed
to sample directly from the symmetric probability measure on this space given a supply of nor-
mal random variates. The ensembles of polygons generated by this algorithm are as good as the
underlying ensembles of normals, so the quality of this sampling algorithm cannot be improved.
However, when one is computing the expected value of a geometric functional on polygon space
such as total curvature, averaging over a large ensemble of sample polygons is simply Monte Carlo
integration over a very high-dimensional space. The numerical accuracy of this method is neces-
sarily limited.

The framework above yields a much better method for computing expected values of functions
like total curvature which are both scale-invariant and sums of quantities that are defined locally
on a given polygon: integrate directly against the pdf for a finite collection of edges in a closed
n-gon in P3(n). Carrying out this method is not trivial if the integrand, like turning angle, has
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a singularity in most coordinate systems. However, the results are worth it. Figure 1 shows the
curvature “surplus” term of total curvature minus π

2n plotted with data from sampling and the
number of correct digits obtained by sampling and by numerical integration.
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FIG. 1: On the left, we see the average total curvature surplus κ − π
2n plotted for ensembles of 5 million

polygons with 5 to 25 edges generated by the direct sampling algorithm of [2] (dots), plotted together with
the exact formula for this surplus of π

4
2n

2n−3 given by Theorem 15 (curve) and the asymptotic value of this
surplus of π

4 given by Theorem 1 (line). The fact that these three computations are in agreement serves
as a useful check on our work above. On the right, we see the number of correct digits in the calculation
of average total curvature by careful numerical integration of turning angle against the pairwise pdf of
Corollary 23 (top line, about 10 correct digits), averaging over ensembles of 5 million polygons (middle
line, about 4 correct digits), and averaging over ensembles of 1 million polygons (bottom line, about 3
correct digits). We can see that we obtain significantly better results by numerical integration.

6. FUTURE DIRECTIONS

It is clear that the methods above have many interesting applications. For instance, we can hope
to compute the expected total curvature for plane polygons as well. In this case Theorem 1 shows
that the expected curvature surplus is 2/π. However, the integral seems somewhat forbidding and
we do not have an explicit conjecture for a closed form.

More promising is the direction of extending our results to other functionals on space polygons.
Since Theorem 2 tells us that the expected value of any scale invariant functional over the space of
Hopf-Gaussian polygons is equal to the expected value over polygons with the symmetric measure,
we can expect to compute a number of other interesting expectations this way. For example, the
argument of Section 2 can certainly be generalized to predict an asymptotic expected total torsion
of π

2n −
π
4 . It would be interesting to find the exact expectation of total torsion. It seems possible

to apply these methods to average crossing number as well, which is certainly a topic for further
investigation!



26

In Corollary 25, we used our expectation for total curvature with respect to the symmetric mea-
sure to bound the fraction of unknotted fixed-length hexagons below by 1/3 and the fraction of
unknotted fixed-length heptagons below by 1/11. Such bounds are clearly too small: numerically
sampling ensembles of 5 million polygons shows the fraction of unknots to be roughly 9999/10,000

for hexagons and 2499/2500 for heptagons1. Our bounds even significantly underestimate the frac-
tion of fixed-length hexagons and heptagons with total curvature less than 4π, which a similar
experiment with 5 million samples reveals to be approximately 91.4% and 63%, respectively. We
could improve our bounds by computing the variance of total curvature, or even by finding an
explicit expression for the total curvature pdf. However, this will involve a more subtle global
analysis of the correlations between turning angles in closed polygons, and we leave this topic for
future work.
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