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1. Introduction

We tend to think of Maxwell’s genius entirely in relation to his creation of electro-
magnetic theory (as summarised by Maxwell’s equations) on the one hand, and to his
seminal development of the kinetic theory of gases (leading to the Maxwell-Boltzmann
distribution, the derivation of transport coefficients like viscosity and thermal diffusiv-
ity for gases and associated validation of the continuum model) on the other. To do
so is perhaps to neglect his extraordinary insights in other directions, notably in the
dynamics of fluids, a field in which his publications were few but nevertheless ground-
breaking in their originality. Some of these insights were not published at the time,
but are now available through the wonderful three-volume publication of The Scientific
Letters and Papers of James Clerk Maxwell (Harman 1990, 1995, 2003) on which I draw
freely in the following discussion. Maxwell’s insights relate to centrifugal instability, to
fluid-dynamical stability both in general and in particular application to the problem of
Saturn’s rings, to Kelvin’s knotted vortices (in relation to which Maxwell played the role
of amused commentator) and to the problem of Lagrangian particle displacement in an
unsteady Eulerian flow, for which he provided perhaps the first explicit example. Fluid-
dynamical thinking was in fact intrinsic to Maxwell’s development of electromagnetic
theory in the 1850s, and provided the initial framework upon which he constructed this
theory, as evidenced by his first major paper in the subject On Faraday’s lines of force.
His endeavours to express observed phenomena in mechanical terms lay at the heart of
his thinking, and may help us to understand the development of a mind of extraordinary
boldness and originality.

2. Centrifugal instability

In Volume II of the Scientific Papers and Letters of James Clerk Maxwell (Harman
1995), one may find the following Draft question on the stability of vortex motion1 as set
by Maxwell, who had been appointed a Moderator (i.e. External Examiner in modern
parlance) for the Cambridge Mathematical Tripos 1866:

A mass M of fluid is running round a circular groove or channel of radius
a with velocity u. An equal mass is running round another channel of
radius b with velocity v. The one channel is made to expand and the other

1This question is number 101 in a collection of problems in Maxwell’s notebook 2, which may be
found in the King’s College London Archives; for a set of solutions to these problems, see Fuller (1986);
see also <http://www.clerkmaxwellfoundation.org/SmithsPrizeSolutions2008 2 14.pdf> for solutions to
a remarkable range of problems set by Maxwell in the Smith’s Prize competition 1879, for which he was
Examiner.
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to contract till their radii are exchanged. Show that the work expended in
effecting the change is

−1

2

(
u2

b2
− v2

a2

)
(a2 − b2)M.

Hence show that the motion of a fluid in a circular whirlpool will be stable
or unstable according as the areas described by particles in equal times
increase or diminish from centre to circumference.

The final sentence of this question (the sting in the tail !) is particularly noteworthy:
readers familiar with the theory of centrifugal instability will recognise that it embodies
what is generally known as Rayleigh’s criterion (Rayleigh 1917), namely that a flow of
an ideal fluid with velocity field u = (0, v(r), 0) in cylindrical polar coordinates (r, θ, z)
is stable or unstable to axisymmetric disturbances according as the circulation k(r) =
2πrv(r) increases or decreases with distance r from the axis. Rayleigh discusses the
problem of stability first through analogy with the simpler problem of the stability of
hydrostatic equilibrium of an incompressible fluid of variable density in which the density
is a function of height. Then, appealing implicitly to the circulation theorem of Kelvin
(1869), he goes on to say:

We may also found our argument upon a direct consideration of the
kinetic energy T of the motion. For T is proportional to

∫
v2r dr, or∫

k2 dr2/r2. Suppose now that two rings of fluid, one with k = k1 and
r = r1 and the other with k = k2 and r = r2 where r2 > r1 and of equal
areas dr21 or dr22 are interchanged. The corresponding increment in T is
represented by

(dr21 = dr22)(k22/r
2
1 + k21/r

2
2 − k21/r21 − k22/r22) = dr2(k22 − k21)(r−21 − r

−2
2 ),

and is positive if k22 > k21; so that a circulation always increasing outwards
makes T a minimum and thus ensures stability.

Here Lord Rayleigh (Nobel Laureate 1904) in effect provides a correct solution to the
problem that had been set by Maxwell for undergraduates taking the Tripos Examination
half a century earlier; he would presumably have been given an α-mark for his answer,
had he provided it then. Actually, Lord Rayleigh (then John William Strutt) had been a
candidate for Mathematical Tripos just one year earlier (1865) and was Senior Wrangler
(i.e. top of the list) in that examination.

When Maxwell set his examination question in 1865, he of course did not have access
to Kelvin’s circulation theorem, proved four years later. He presumably thought in terms
of conservation of the angular momentum of the fluid in his “circular groove”, and this
is equivalent to conservation of circulation for the axisymmetric displacements that he
envisaged. His phrase “the area described by particles . . . ” clearly means the area swept
out by a radial line (z = constant, θ = constant) from the axis of symmetry to the
particle in question, i.e. rv(r)δt in time δt (reminiscent of Kepler’s phrase for planetary
motion “equal areas in equal times”), so again proportional to circulation. Furthermore,
Maxwell posed the question in terms of the “work done” in effecting the displacement,
but since this work done must convert to a corresponding change in the kinetic energy of
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the fluid (assumed incompressible), Maxwell’s criterion for stability is in effect identical
with that of Rayleigh.

Viscosity has a stabilising influence for this problem, as recognised by Rayleigh, so
that for a viscous fluid, the condition that circulation decrease outwards is necessary but
not sufficient for instability to axisymmetric disturbances. The effect of viscosity was
brilliantly analysed and demonstrated experimentally by G.I.Taylor (1923), in a work
that has provided the impetus for a huge body of research on the problem of centrifugal
instability (see for example Stuart 1958, Lin 1966, Drazin & Reid 1981, Koschmieder
1993, Iooss 1994). Maxwell’s 1866 question for the Mathematical Tripos reveals his
seminal insight into this important branch of hydrodynamic stability theory.

3. Stability of steady Euler flows

But now let us go back a bit earlier to 1854 when Maxwell, then aged 23, was himself
subjected to the rigours of the Mathematical Tripos; in this, he came Second Wrangler,
second to E.J.Routh who subsequently distinguished himself as the greatest Cambridge
mathematics tutor of his day. Following the Tripos, Maxwell continued to work as a
graduate student, aiming at a Fellowship of Trinity College, to which he was elected just
one year later.

One of his preoccupations during this formative year of graduate study was the Sta-
bility of Fluid Motion, on which subject he revealed his ideas in a remarkable letter to
William Thomson (later Lord Kelvin) dated 15 May 1855 (article 66 in Harman 1990).
Here Maxwell first considers the steady two-dimensional flow of an ideal incompress-
ible fluid for which the velocity field u is given in terms of a streamfunction ψ(x, y) by
u = (−∂ψ/∂y, ∂ψ/∂x), a notation introduced by Stokes, Lucasian Professor of Mathe-
matics, at whose feet Maxwell must have sat during his undergraduate years. Maxwell
first re-derives the condition for steady flow ∇2ψ = f(ψ) for some function f(·) (Stokes
1842). He then writes:

To determine the stability or instability of this steady motion we must
give it a perfectly general derangement & determine whether it will or
will not tend to return to its original state.

It is difficult to follow Maxwell’s subsequent reasoning, but by physical arguments that
do not bear too close examination he in fact arrives at the correct conclusion, namely
that

f ′(ψ) > 0 is the condition of stability.

This is altogether astonishing, because the result as stated remained unpublished (and
therefore unknown) for more than a century, and was not rediscovered and rigorously
proved until the work of Arnold (1966; see also Moffatt 1986) through consideration
of the second variation of kinetic energy K under ‘isovortical perturbations’, i.e. per-
turbations that transport the vortex lines of the basic flow as though ‘frozen in the
fluid’, in conformity with the constraint of Euler’s equations (Helmholtz 1858). The
first variation of kinetic energy δ1K vanishes for any steady Euler flow uE with vorticity
ωE = ∇ × uE (this much was known to Kelvin), and the second variation under an
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arbitrary volume-preserving isovortical displacement η(x) is given by

δ2K =
1

2

∫
[(η × ωE)2s − (η × ωE)s · ∇ × (η × uE)] dV ,

where the suffix s denotes the ‘solenoidal projection’ of the vector field concerned, and
the integration is over the fluid domain. In the case of two-dimensional perturbations
of a two-dimensional flow with streamfunction ψ satisfying ∇2ψ = f(ψ), this expression
reduces to

δ2K =
1

2

∫
[(η × ωE)2s + (η × uE)2f ′(ψ)]dxdy ,

so that a sufficient condition for δ2K to be positive for all admissible η (and so for the
flow to be stable) is indeed that f ′(ψ) > 0.

So here again, Maxwell demonstrates profound physical insight; although his argument
is obscure to the point of incomprehensibility (perhaps inevitably so because this was well
before Helmholtz’s (1858) recognition of the key role played by vorticity), he nevertheless
arrives at the correct conclusion, as ultimately confirmed more than 100 years later by
Arnold, who was quite unaware of Maxwell’s prior deliberations on this problem.

During this same pivotal year 1855, Maxwell wrote his first major paper on electro-
magnetism On Faraday’s lines of force (Maxwell 1856) in which he develops the analogy
between the lines of force of a magnetic field and the streamlines of the flow of an
incompressible fluid. He introduces this fluid with due caution:

The substance here treated of must not be assumed to possess any of
the properties of ordinary fluids except those of freedom of movement
and resistance to compression. It is not even a hypothetical fluid which
is introduced to explain actual phenomena. It is merely a collection of
imaginary properties which may be employed for establishing certain the-
orems in pure mathematics in a way more intelligible to many minds and
more applicable to physical problems than that in which algebraic symbols
alone are used. The use of the word “Fluid” will not lead us into error,
if we remember that it denotes a purely imaginary substance with the
following property: The portion of fluid which at any instant occupies
a given volume, will at any succeeding instant occupy an equal volume.
This law expresses the incompressibility of the fluid and furnishes us with
a convenient measure of its quantity, namely its volume.

In this way Maxwell leads the reader to conceive of flow in the abstract, a concept that
mathematicians a century later would come to describe in terms of ‘volume-preserving
diffeomorphisms’ (Arnold 1966). Many might still prefer Maxwell’s more primitive ter-
minology! The evolution of Maxwell’s theory of electromagnetism over the years 1855
to 1862 was largely guided by his efforts to express the theory in fluid mechanical terms,
although ultimately the great triumph of the theory was that he was able to discard the
artificial and, as it turned out, irrelevant fluid-mechanical framework.

4. The stability of Saturn’s rings

In October 1856 Maxwell took up his position as Professor of Natural Philosophy at
Marischal College, Aberdeen, and immediately set to work on the problem of the motion
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and stability of Saturn’s rings, the subject that had been posed for the 1857 Adams Prize
at Cambridge University. He was the only candidate to make significant progress on the
problem, and duly won the prize. He continued to work on the vexing problem of the
stability of the rings, and the revised version of this work was published two years later
(Maxwell 1859).

I wish to comment here on only a small portion of this work contained in §23 of
the paper2, in which Maxwell focuses on a model problem: the instability of a uniform
layer of liquid of great extent compared to its thickness, subject only to the effects
of self-gravitation. The best-known example of this type of instability is the ‘Jeans
instability’ of a large extent of compressible fluid subject to self-gravitation (Jeans 1902);
so here again, we have a situation in which Maxwell anticipates by several decades an
instability mechanism of fundamental significance in cosmology, the difference being
that for Maxwell it is the mobility of the free surfaces of the liquid, rather than its
compressibility, that permits effective horizontal compression or dilatation of the liquid
layer. Self-gravitation promotes two effects: the propagation of (stable) gravity waves
on both surfaces of the layer; and the horizontal ‘bunching up’ of the layer which can
decrease gravitational potential energy and is therefore destabilising. Maxwell recognised
the competing influence of these effects and obtained the correct criterion for instability, a
veritable tour de force at that time. If sinusoidal perturbations of the layer of wavelength
2π/m are considered, then it is found by linearised analysis that these perturbations
(assumed symmetric about the central plane of the layer) grow like expσt, where

σ2 = 2πGρ tanhmb [1 + exp(−2mb)− 2mb] ,

in which 2b is the thickness of the layer, ρ the density of the liquid, and G the universal
gravitational constant. This function is positive for 2mb < 1.278, indicating instability
for this range of wave-numbers m. Maxwell gave the value 1.147 here, not very accurate,
but his conclusion that the layer is gravitationally unstable to perturbations of wave-
length λ = 2π/m sufficiently large compared with the layer thickness 2b was certainly
correct. The growth rate of the instability is in fact maximal when mb = 0.294, or
λ/2b = 10.69.

When mb > 1.278, σ2 is negative and the perturbation modes are oscillatory with
frequency ω = iσ; indeed for large mb, the above formula gives ω2 ∼ gm where g(=
4πGρb) is the inward gravitational acceleration at the free surface of the liquid layer.
This is just the familiar dispersion relation for gravity waves on deep water, a result
already well-known to Stokes (1847).

5. Knotted vortices

In 1867, Kelvin published in the Philosophical Magazine his paper On Vortex Atoms,
which must have caused quite a stir in the scientific community. It was in this paper
that he mentions his visit to Peter Guthrie Tait’s laboratory in Edinburgh, where he
witnessed Tait’s demonstration of the production of vortex rings by ejection of air from
an orifice, the rings being visualised by smoke. Kelvin’s subsequent realisation that any
knot in a vortex tube in an ideal fluid would be of permanent form led him to hypothesise

2I am grateful to David Forfar who drew my attention to Maxwell’s ingenious treatment of this
problem.
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that the existence and character of the known elements of the periodic table might be
explained at the atomic level in terms of ‘vortex knots’ of increasingly complex structure
in the ether, an ideal fluid imagined to permeate all space; and that the frequency spectra
associated with these elements might then be explained in terms of the frequencies of
vibration of such vortex knots.

Maxwell refers to this paper with his usual pawky humour in his letter to Tait of 13
November 1867 (Harman 1995, 275):

Thomson has set himself to spin the chains of destiny out of a fluid
plenum . . . and I saw you had put your calculus in it too. May you both
prosper and disentangle your formulae in proportion as you entangle your
worbles. But I fear that the simplest indivisible whorl is either two em-
bracing worbles or a worble embracing itself . . . .

And three weeks later (4 December 1867, Harman 1995, 276), a further letter from
Maxwell to Tait, mainly about the properties of certain plane curves; but he adds, as
if by afterthought, I have amused myself with knotted curves for a day or two. He goes
on to state the formula (due to Gauss, but which Maxwell had evidently here derived
independently – Ricca & Nipoti 2011)3 for the linking number n of two closed curves C
and C ′: ∫

C

∫
C′

(x− x′) · dx× dx′

|x− x′|3
= 4πn.

He points out that although n 6= 0 implies linkage, the condition n = 0 does not necessar-
ily imply that C and C ′ are unlinked, and he gives two examples of nontrivial links with
n = 0 — examples that later became known as the Whitehead link and the Borromean
rings. In the final paragraph of the letter, he gives a number of examples of knotted
curves described in parametric form, and the manner in which the knot type can change
as a parameter is varied. What an astonishing burst of creativity in that day or two of
desultory amusement!

There is no doubt that Maxwell retained an interest in Tait’s development of knot
theory during the 1870s (Ricca & Weber, 2012). It was doubtless the monumental study
of Tait in 1877 (Tait 1898) as much as Kelvin’s knotted vortices that stimulated Maxwell
to compose his “Paradoxical Ode” To [the imaginary philosopher] Hermann Stoffcraft
PhD, the first verse of which reads:

My soul’s an amphicheiral knot
Upon a liquid vortex wrought
By intellect in the unseen residing.
While thou dost like a convict sit
With marlinespike untwisting it
Only to find my knottiness abiding:
Since all the tools for my untying
In four-dimensioned space are lying,
Where playful fancy intersperses
Whole avenues of universes;

3Maxwell used the full Cartesian notation current at the time; here, I use the more compact modern
vector notation.
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Where Klein and Clifford fill the void
With one unbounded finite homaloid,
Whereby the Infinite is hopelessly destroyed.

This poem, Maxwell’s last, was written shortly before his death from cancer in 1879. It
touches on current scientific and philosophical ideas in equal measure; an illuminating
interpretation is provided by Silver (2008). The phrase “whole avenues of universes” has
a certain resonance with recent speculations (see, for example, Carr 2007) concerning
the concept of the ‘multiverse’; playful fancy indeed!

Although Kelvin’s vortex knots held great promise, he was unable to find any steady
stable solutions of the Euler equations having a knotted character, and he was gradu-
ally forced to abandon the theory. If, instead of vortex tubes, he had chosen to focus
on magnetic flux tubes in a perfectly conducting (i.e. ideal) fluid medium, the result
might have been very different, for we know now that stable magnetostatic equilibria
of arbitrarily complex topology do exist, albeit with imbedded tangential discontinu-
ities (Moffatt 1985). All the ingredients for such a ‘complementary’ theory were already
available in the 1870s as a result of Maxwell’s development of electromagnetism; but the
realisation that the magnetic field is frozen in a perfectly conducting fluid (and so its
topology conserved) had to await the development of magnetohydrodynamics in the 20th
century, spearheaded by the work of Alfvén (1942), and the discovery of the conservation
of magnetic helicity and its interpretation as a measure of knottedness of magnetic flux
tubes (Woltjer 1958, Moffatt 1969).

6. Lagrangian particle displacement

In an unsteady fluid flow, the streamline pattern is continuously changing in time, and
the (Lagrangian) trajectory of a fluid particle is quite distinct from the instantaneous
streamline on which it finds itself at any instant. This was recognised by Maxwell, who
provided perhaps the first explicit calculation of the Lagrangian displacement of a fluid
particle in an unsteady flow field. This was the two-dimensional potential flow u = ∇φ
generated by the steady motion of a circular cylinder (with boundary (x−Ut)2+y2 = a2,
say) in a fluid at rest ‘at infinity’. The streamline pattern is that of a virtual dipole at
the centre of the cylinder. The cylinder moves along the x-axis with velocity U , and
each fluid particle follows a trajectory that depends upon its initial distance y from this
axis. Maxwell succeeded in calculating the particle paths in terms of elliptic functions,
and in plotting these out by hand, with the comment The curves thus drawn appear to
be as near the truth as I could get without a much greater amount of labour. The labour
already invested was certainly sufficient to demonstrate quite beautifully the essential
distinction between an unsteady streamline pattern and the resulting field of particle
displacements.

A further example of Maxwell’s originality is to be found in his 1870 paper ‘On hills
and dales’, in which he discusses in effect the topology of the contours of a scalar field in
two dimensions. He does this in the context of the height of land above sea level; but the
arguments are equally valid for any scalar field, for example the streamfunction ψ(x, y)
of any two-dimensional incompressible steady flow. Maxwell’s thinking was topological
in character: flexible, widely adaptable, and of great generality; in this as in other areas
he was decades ahead of his time.
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7. Postscript

While Maxwell’s scientific achievements were truly phenomenal, it must also be recog-
nised that he was not afraid to admit incomprehension in relation to some of the natural
phenomena that he addressed. One of these concerned the origin and evolution of the
Earth’s magnetic field, which he discussed in Part IV, Chapter VIII of his great Trea-
tise on Electricity and Magnetism (Maxwell 1873). Having commented on the secular
variation of the field (by which he meant the slow wandering of the magnetic poles), he
writes with an appropriate sense of wonder:

What cause, whether exterior to the earth or in its inner depths, produces
such enormous changes in the earth’s magnetism, that its magnetic poles
move slowly from one part of the globe to another? When we consider that
the intensity of the magnetisation of the great globe of the earth is quite
comparable with that which we produce with much difficulty in our steel
magnets, these immense changes in so large a body force us to conclude
that we are not yet acquainted with one of the most powerful agents in
nature, the scene of whose activity lies in those inner depths of the earth,
to the knowledge of which we have so few means of access.

The means of access were in due course provided by the penetrating power of seismology
(see for example Bullen & Bolt 1985) which established the liquid-metal character of
the outer core of the Earth, capable of sustaining the electric currents j(x, t) that are
the source of the magnetic field B(x, t) whose variations we observe at the surface.
Gravitational convection and the rotation of the Earth conspire to provide a turbulent (or
at least random) flow u(x, t) in the core with the property of nonzero helicity oppositely
signed in north and south hemispheres, and it is now known that this property alone
(implying a degree of knottedness of the vortex lines of the flow) in a body of fluid
as large as the earth’s outer core is sufficient to guarantee the growth of a large-scale
magnetic field by a dynamo-instability mechanism (Moffatt 1979).

This dynamo instability depends on what are sometimes know as the pre-Maxwell
equations (with displacement current filtered out):

∂B

∂t
= −∇×E, ∇ ·B = 0, j = ∇×B,

coupled with Ohm’s law in a moving medium of conductivity σ:

j = σ(E + u×B).

Maxwell did have these essential ingredients at his disposal, so that this most powerful
agent in nature was already imbedded within the theoretical structure that he provided in
his 1873 treatise. The fact that a full century had to pass before the dynamo mechanism
was finally teased out of this structure may perhaps be seen as yet further indication of
just how far James Clerk Maxwell was ahead of his time.
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