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ABSTRACT. We say that a family {xi | i ∈ [m]} of vectors in a Banach space
X satisfies the k-collapsing condition if ‖∑i∈I xi‖ ≤ 1 for all k-element subsets
I ⊆ {1,2, . . . ,m}. Let C (k,d) denote the maximum cardinality of a k-collapsing
family of unit vectors in a d-dimensional Banach space, where the maximum
is taken over all spaces of dimension d. Similarly, let C B(k,d) denote the
maximum cardinality if we require in addition that ∑

m
i=1xi = o. The case k =

2 was considered by Füredi, Lagarias and Morgan (1991). These conditions
originate in a theorem of Lawlor and Morgan (1994) on geometric shortest
networks in smooth finite-dimensional Banach spaces. We show that C B(k,d) =
max{k+1,2d} for all k,d ≥ 2. The behaviour of C (k,d) is not as simple, and
we derive various upper and lower bounds for different ranges of k and d. These
include the exact values C (k,d) = max{k+1,2d} in various cases.

We use a variety of tools from graph theory, convexity and linear algebra in
the proofs: in particular the Hajnal-Szemerédi Theorem, the Brunn-Minkowski
inequality, lower bounds for the rank of a perturbation of the identity matrix.
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1. INTRODUCTION

Let [n] denote the set {1,2 . . . ,n} and
(S

k

)
the set {A⊆ S | |A|= k}. Let d ≥ 2

and m > k ≥ 2 be integers. Let X = Xd denote a d-dimensional real Banach space
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with norm ‖·‖. Throughout the paper we use the term Minkowski space for finite-
dimensional real Banach space.

Definition 1. A family {xi | i ∈ [m]} of m (not necessarily distinct) vectors in some
Minkowski space X satisfies the k-collapsing condition if∥∥∥∑

i∈I
xi

∥∥∥≤ 1 for all I ∈
(
[m]

k

)
,

the full collapsing condition∥∥∥∑
i∈I

xi

∥∥∥≤ 1 for all I ⊆ [m],

the strong balancing condition if
m

∑
i=1

xi = o,

and the weak balancing condition if

o is in the relative interior of conv{xi | i ∈ [m]} .

In this paper we study the k-collapsing condition with or without the strong
balancing condition. In previous work by Füredi, Lagarias, Morgan, Lawlor and the
present author [13, 24, 32, 33] the full collapsing condition and the 2-collapsing con-
dition with or without the strong or the weak balancing condition were considered.
In Section 1.1 below we survey these previous results in order to sketch a context
for the work presented in this paper. New results are summarised in Section 1.2.
The remainder of this paper is then given an overview in Section 1.3.

Notation. Denote the closed ball with centre c and radius r by

B(c,r) = {x ∈ X |‖x−c‖ ≤ r} .

The unit ball of X is BX := B(o,1). Denote the dual of X by X∗. The elements of
X∗ are the (continuous) linear functionals over X , that is, linear functions

x∗ : X → R, x 7→ 〈x∗,x〉 ,

with norm
‖x∗‖∗ := sup{〈x∗,x〉 |x ∈ BX} .

Any x ∈ X \{o} has a dual unit vector: a functional x∗ ∈ X∗ such that ‖x∗‖∗ = 1
and 〈x∗,x〉= ‖x‖. It is well-known that if the norm of a finite-dimensional X is
smooth, that is, if ‖·‖ is differentiable on X \{o}, then X∗ is strictly convex, that is,
the boundary of BX∗ does not contain a line segment. Also, if X is strictly convex,
then X∗ is smooth. Recall that a space is smooth iff any x ∈ X \{o} has a unique
dual unit vector.

Let p ∈ (1,∞). The space Rd with the norm

‖(x1,x2, . . . ,xd)‖p :=
( d

∑
i=1
|xi|p

)1/p
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is denoted by `d
p and the space Rd with the norm

‖(x1,x2, . . . ,xd)‖∞
:= max{|xi| | i ∈ [d]}

by `d
∞.

1.1. Previous work. The conditions in Definition 1 occur in a theorem of Lawlor
and Morgan [24] on geometric shortest networks in smooth Minkowski spaces.

Given a family N = {pi | i ∈ [n]} of points in a Minkowski space X , a Steiner tree
is a (finite) tree T = (V,E) such that N ⊆V ⊂ X . The points in V \N (if any) are
called the Steiner points of T . The length `(T ) of a tree is the sum ∑xy∈E ‖x−y‖
of the edge lengths. A Steiner minimal tree of N is a Steiner tree of N that minimises
`(T ). By a compactness argument [8] any finite family of points in a Minkowski
space has at least one Steiner minimal tree. The following theorem characterises
the edges that are incident to a Steiner point of a Steiner minimal tree when the
underlying Minkowski space is smooth.

Theorem 2 (Lawlor and Morgan [24]). Let N = {pi | i ∈ [n]} be a family of points,
all different from the origin o, in a smooth Minkowski space X. Let p∗i be the dual
unit vector of pi, i ∈ [n]. Then the Steiner tree that joins o to each pi by straight-line
segments is a Steiner minimal tree of N if and only if the family {p∗i | i ∈ [n]} satisfies
the full collapsing condition and the strong balancing condition in the dual space
X∗.

Since the dual of a smooth Minkowski space is strictly convex, a natural problem
suggested by Theorem 2 is to find an upper bound on the cardinality of a family
of unit vectors satisfying the full collapsing and strong balancing conditions in a
strictly convex Minkowski space.

Theorem 3 (Lawlor and Morgan [24]). Let N = {xi | i ∈ [n]} be a family of unit
vectors satisfying the full collapsing condition and the strong balancing condition
in a d-dimensional strictly convex Minkowski space. Then n≤ d +1.

Combined with Theorem 2 this implies that the degree of a Steiner point in any
Steiner minimal tree in a d-dimensional smooth Minkowski space is bounded above
by d +1.

The following theorem characterises the edges incident to an arbitrary point
of a Steiner minimal tree in a smooth Minkowski space. Observe that if p is a
Steiner point of a Steiner minimal tree T = (V,E) of the point family N, then T is
still a Steiner minimal tree of N ∪{p} (but with p not a Steiner point anymore).
Therefore, the condition in this characterisation should be logically weaker than
the characterisation appearing in Theorem 2, and it turns out that the full balancing
condition has to be dropped.

Theorem 4 ([33]). Let N = {pi | i ∈ [n]} be a family of points, all different from
the origin o, in a smooth Minkowski space X. Let p∗i be the dual unit vector of pi,
i ∈ [n]. Then the Steiner tree that joins o to each pi by straight-line segments is a
Steiner minimal tree of N ∪{o} if and only if the family {p∗i | i ∈ [n]} satisfies the
full collapsing condition in the dual space X∗.
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The following is a strengthening of Theorem 3:

Theorem 5 ([33]). Let N = {xi | i ∈ [n]} be a family of unit vectors in a d-dimen-
sional strictly convex Minkowski space satisfying the strong collapsing condition.
Then n≤ d +1.

Therefore, all points in Steiner minimal tree in a smooth d-dimensional Minkow-
ski space have degree at most d +1. Generalising Theorems 2 and 4 to non-smooth
Minkowski spaces is much more involved. There the degrees of Steiner points
can be as large as 2d; see [36] for a further discussion. We now leave the original
motivation of Steiner minimal trees behind and continue to survey previous work
on the various collapsing and balancing conditions.

After the paper of Lawlor and Morgan [24], Füredi, Lagarias and Morgan [13]
used classical combinatorial convexity to study these conditions. They showed the
following.

Theorem 6 (Füredi, Lagarias and Morgan [13]). Let N = {xi | i ∈ [n]} be a family
of unit vectors in a d-dimensional Minkowski space X satisfying the 2-collapsing
and weak balancing conditions. Then n≤ 2d, with equality only if N consists of a
basis of X and its negative.

They also mention without proof that if N is a family of 2d unit vectors in
a d-dimensional Minkowski space satisfying the full collapsing and the strong
balancing condition, then the space is isometric to `d

∞. We extend the above theorem
to the k-collapsing condition, but with the strong balancing condition instead of the
weak one (Theorem 17), and with a completely different proof.

For strictly convex norms Füredi, Lagarias and Morgan [13] obtained the follow-
ing stronger conclusion (thus weakening the hypotheses of Theorem 3 in a different
way from Theorem 5).

Theorem 7 (Füredi, Lagarias and Morgan [13]). Let N = {xi | i ∈ [n]} be a family
of unit vectors in a d-dimensional strictly convex Minkowski space satisfying the
2-collapsing condition and the weak balancing condition. Then n≤ d +1.

Without any balancing condition or condition on the norm, they showed the
following:

Theorem 8 (Füredi, Lagarias and Morgan [13]). Let N = {xi | i ∈ [n]} be a family
of unit vectors in a d-dimensional Minkowski space X satisfying the 2-collapsing
condition. Then n≤ 3d−1.

This exponential behaviour for the 2-collapsing condition without any balancing
condition is necessary:

Theorem 9 (Füredi, Lagarias and Morgan [13]). For each sufficiently large d ∈ N
there exists a strictly convex and smooth d-dimensional Minkowski space with a
family N of at least 1.02d unit vectors that satisfies the following strengthened
2-collapsing condition: ‖x+y‖< 1 for all {x,y} ∈

(N
2

)
.

We construct similar exponential lower bounds for the k-collapsing condition
(Theorem 29).
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Using the Brunn-Minkowski inequality we improved the upper bound of Theo-
rem 8 as follows.

Theorem 10 ([32]). Let N = {xi | i ∈ [n]} be a family of unit vectors in a d-dimen-
sional Minkowski space X satisfying the 2-collapsing condition. Then n≤ 2d+1 +1.

In this paper we combine the Brunn-Minkowski inequality with the Hajnal-
Szemerédi Theorem from graph theory to extend the above theorem to the k-
collapsing condition (Theorem 27). In [13] it was asked whether there is an upper
bound polynomial in d for the size of a collection of unit vectors in a d-dimensional
Minkowski space satisfying the strong collapsing condition without any balancing
condition. This was subsequently answered as follows:

Theorem 11 ([32]). Let N = {xi | i ∈ [n]} be a family of unit vectors in a d-di-
mensional Minkowski space X satisfying the strong collapsing condition. Then
n≤ 2d, with equality if and only if X is isometric to `d

∞, with N corresponding to
{±ei | i ∈ [d]} under any isometry.

The analogous theorem for the strictly convex case is as follows:

Theorem 12 ([33]). Let N = {xi | i ∈ [n]} be a family of unit vectors in a d-dimen-
sional strictly convex Minkowski space X satisfying the full collapsing condition.
Then n≤ d +1. If, in addition, the balancing condition is not satisfied then n≤ d.

The full collapsing condition is closely connected to certain notions from the
local theory of Banach spaces. The absolutely summing constant or the 1-summing
constant π1(X) of a Minkowski space X is defined to be the infimum of all c > 0
satisfying

m

∑
i=1
‖xi‖ ≤ c max

εi=±1

∥∥∥ m

∑
i=1

εixi

∥∥∥
where x1, . . . ,xm ∈ X . It is clear that 2π1(X) is an upper bound to the number of
unit vectors that satisfy the full collapsing condition. Deschaseaux [10] showed
that π1(X)≤ d with equality iff X is isometric to `d

∞. This gives another proof of
Theorem 11, apart from the characterisation of N. Franchetti and Votruba [12]
showed that if X is 2-dimensional then 2π1(X) equals the perimeter of the unit
circle. By a result of Gołąb [26], the perimeter of the unit circle is less than 4 unless
X is isometric to `2

∞. This implies the 2-dimensional case of Deschaseaux’s theorem.
For q≥ 2, the cotype q constant κq(X) of a Minkowski space X is defined to be

the infimum of all c > 0 such that( m

∑
i=1
‖xi‖q

)1/q
≤ c avg

εi=±1

(∥∥∥ m

∑
i=1

εixi

∥∥∥2)1/2

where x1, . . . ,xm ∈ X . It is again straightforward that (2κq(X))q is an upper bound
for the number of vectors satisfying the full collapsing condition. For instance,
bounds on the cotype 2 constants for `d

p (essentially consequences of the Khinchin
inequalities) gives upper bounds independent on the dimension for fixed p ∈ [1,∞).
Details may be found in [33].
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A more general question was asked by Sidorenko and Stechkin [30, 31] and
Katona and others [18, 19, 20, 21, 22], where the ‘≤ 1’ in the collapsing conditions
is replaced by ‘≤ δ ’ or ‘< δ ’. In this direction work was done in the previously
cited papers as well as [34]. We do not pursue this generalisation here, instead
leaving it for a later investigation, as it will be seen that the arguments in this paper
are already quite involved.

1.2. Overview of new results. In this paper we only consider the k-collapsing
condition and strong balancing condition.

Definition 13. For any k ≥ 2, define Ck(X) to be the largest m such that a family
of m vectors in X of norm at least 1 exist satisfying the k-collapsing condition.
Also, define C Bk(X) to be the largest m such that a family of m vectors in X of
norm at least 1 exist satisfying the k-collapsing condition and the strong balancing
condition.

Next define the numbers

C (k,d) := max
{

Ck(Xd)
∣∣Xd is a d-dimensional Minkowski space

}
,

C (k,d) := min
{

Ck(Xd)
∣∣Xd is a d-dimensional Minkowski space

}
,

C B(k,d) := max
{

C Bk(Xd)
∣∣Xd is a d-dimensional Minkowski space

}
,

C B(k,d) := min
{

C Bk(Xd)
∣∣Xd is a d-dimensional Minkowski space

}
.

It is not difficult to see that C (k,d) and C B(k,d) are always finite. Although the
vectors occurring in Theorems 2 to 12 are unit vectors, we weaken this to vectors
of norm at least 1 in the above definition. Indeed it turns out that the quantities
C (k,d) and C B(k,d) stay exactly the same whether we require the vectors to be
unit vectors or of norm ≥ 1. See Corollary 38 in Section 5 for this non-trivial fact.

Since we have assumed d ≥ 2, as already mentioned, it follows that for any value
of k ≥ 2 there exist k+1 unit vectors that satisfy the strong balancing condition,
hence also the k-collapsing condition. Therefore, Ck(Xd)≥ C Bk(Xd)≥ k+1 for
any d-dimensional Xd , as long as k ≥ 2 and d ≥ 2. In Section 2 we show that these
inequalities cannot be improved in general:

Proposition 14. Ck(`
d
2) = C Bk(`

d
2) = k+1 for any k ≥ 2 and d ≥ 2.

Consequently,

Corollary 15. C (k,d) = C B(k,d) = k+1 for all k,d ≥ 2.

The family of d unit vectors and their negatives {±e1, . . . ,±ed} shows that

Ck(`
d
∞)≥ C Bk(`

d
∞)≥ 2d

for all d ≥ 2 and k ≥ 2. Therefore, C (k,d) ≥ C (k,d) ≥ max{k+1,2d}. In Sec-
tion 2 we show the following:

Proposition 16. For any k ≥ 2 and d ≥ 2,

Ck(`
d
∞) = C Bk(`

d
∞) = max{k+1,2d} .
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It turns out that this is the extremal case for the quantity C B(k,d).

Theorem 17. For any k ≥ 2 and d ≥ 2,

C B(k,d) = max{k+1,2d} .

For each d ≥ 3 and k ≤ 2d−2 there exist infinitely many d-dimensional Xd such
that C Bk(Xd) = 2d. (For d = 2 and k = 2, the only space satisfying CB2(X2) = 4
is X2 = `2

∞ up to isometry.)
If d ≥ 2, 2≤ k ≤ 2d−2 and C Bk(Xd) = 2d, then any set of 2d vectors of norm

at least 1 satisfying the k-collapsing and strong balancing conditions are necessarily
unit vectors consisting of a basis of Xd and its negative.

The proof uses a reduction to m×m matrices which are in a weak sense pertur-
bations of the identity matrix, together with results on lower bounds of the ranks of
such matrices [1, 4]. In order to apply these lower bounds we also have to solve a
certain convex optimization problem.

Conjecture 18. If Xd is a strictly convex d-dimensional Minkowski space then

C Bk(Xd)≤max{k+1,d +1} .

This conjecture is true for k = 2 [13]. Also, for each d ≥ 2 there exists a strictly
convex d-dimensional space with d +1 unit vectors satisfying the strong collapsing
condition. Thus this conjecture would give the best possible estimate if true.

Question 19. Can the strong balancing condition in Theorem 17 be replaced by
the weak balancing condition?

Again, we know that the answer is yes when k = 2 [13].
Estimating C (k,d) is much harder. The same proof techniques work up to a

certain extent and the details become much trickier.

Theorem 20. For k ≥ 2 let γk be the unique (positive) solution to

(1+ x)1/x
(

1+
1
x

)
= k2.

Then e/k2 < γk < e/(k2− e) and

C (k,d)< 1.33k2γkd+2.

If k <
√

d then

C (k,d)<
k√
d

k2γkd+2.

In particular, if k = c
√

d with c < 1, then C (k,d) = O(d1+e/c2
) as d→ ∞.

See Table 1 for the first few values of γk. The next theorem gives a slightly
sharper result for k a small multiple of

√
d. See also the lower bound of Theorem 30

below.
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k γk k2γkd (1+ 2
k )

d
(

1+ 1
2(2k+1)2

)d

2 1 4d 2d 1.02d

3 0.3541686 2.178d 1.667d 1.0102d

4 0.1854203 1.672d 1.5d 1.0062d

5 0.1149225 1.448d 1.4d 1.0041d

6 0.0784510 1.325d 1.334d 1.0029d

7 0.0570503 1.249d 1.286d 1.0022d

8 0.0433914 1.198d 1.25d 1.0017d

9 0.0341301 1.162d 1.223d 1.0013d

TABLE 1. Values of γk with upper bounds of Theorems 20 and 27
and the lower bound of Theorem 29. The values of γk are rounded
to the nearest decimal, of k2γk and 1+2/k are rounded up and of
1+1/(2(2k+1)2) are rounded down.

Theorem 21. For any ε > 0 and p ∈ N, p≥ 2 there exists d0 and c > 0 such that
for all d > d0, if (

(p!)−1/(2p)+ ε

)√
d < k ≤

√
d

then C (k,d)< cdp.

For larger k we obtain almost optimal results. In particular, we obtain the exact
result C (k,d) = 2d for (

√
6−2)d +O(1)< k < 2d−

√
d/2.

Theorem 22. Let k ≥ 3 and d ≥ 2.

(1) If
√

d < k ≤ d+1
2 then C (k,d)≤ 2d(k−1)2

k2−d = 2d
(

1+ d−2k+1
k2−d

)
.

(2) If −2d +
√

6d2 +3d +1≤ k ≤ 2d−
√

d/2 then C (k,d) = 2d.
(3) If d ≥ 3 and k > 2d−

√
d/2 then C (k,d)≤ k+ 1+

√
2d−3
2 .

For values of d up to 7 as k→ ∞ the same methods as used in proving Theo-
rems 17, 20, 21 and 22 give the following exact values.

Theorem 23. C (k,d) = max{k+1,2d} in the following cases:
(1) d = 2 and k ≥ 2,
(2) d ∈ {3,4,5} and k ≥ 3,
(3) d = 6 and k ∈ {3, . . . ,10}∪{17, . . .},
(4) d = 7 and k ∈ {3, . . . ,12}∪{41, . . .}.

The proof method used for the above theorem gives no information for d ≥ 8 and
k large. (The estimate C (2,3)≤ 9 is also obtained in the proof.) For arbitrary d, as
long as k is large, we obtain the following using a completely different technique.

Theorem 24. If k� dd+2 then C (k,d) = k+1.

The proof of this theorem uses geometric tools from convexity, in particular
the Brunn-Minkowski inequality and the theorem of Carathéodory. The estimate
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Ω(dd+2) is most likely not best possible, but we need at least k ≥ 2d− 1 for the
conclusion of this theorem to hold, as shown by the example of k ≤ 2d−2 and the
family {±ei | i ∈ [d]} in `d

∞.

Conjecture 25. C (k,d) = k+1 whenever k ≥ 2d−1.

By Theorem 23 the above conjecture holds for d ≤ 5. The next conjecture has
non-empty content for d ≥ 8.

Conjecture 26. C (k,d) = 2d if 2d−
√

d/2≤ k ≤ 2d−2.

Since Theorem 22 gives C (k,d) = 2d for (
√

6−2)d +O(1)< k < 2d−
√

d/2,
it is likely that the bound in Conjecture 26 already holds for some range of k <
0.45d. On the other hand, as implied by Theorem 30 below, we need at least
k > (1

2 +o(1))
√

d.
We show the following upper bound using a method closely related to the proof

of Theorem 24. We still use the Brunn-Minkowski inequality, but combine it the
Hajnal-Szemerédi theorem from graph theory:

Theorem 27. For any k,d ≥ 2, C (k,d)≤ k(1+ 2
k )

d + k−1.

Asymptotically for fixed k as d→ ∞, this bound is better when k ≤ 5 while for
k≥ 6 Theorem 20 is better. See Table 1 for a comparison between the upper bounds
given by Theorem 20 and Theorem 27 for k = 2, . . . ,8.

Related to Proposition 14 is the following result on spaces that are close to
Euclidean space. Denote the (multiplicative) Banach-Mazur distance between two
Minkowski spaces X and Y of the same dimension by dBM(X ,Y ).

Proposition 28. Let D = dBM(Xd , `d
2). Then for any k > D2,

Ck(Xd)≤ k2−D2

k−D2 = k+D2 +
D4−D2

k−D2 .

Its proof is at the end of Section 2. By John’s theorem (see [15] for a modern
account), dBM(Xd , `d

2)≤
√

d, from which follows Ck(Xd)≤ k+d + d2−d
k−d if k > d.

This estimate is worse, however, than the estimates of Theorems 22 and 23 for all
k > d. On the other hand, if D= dBM(X , `d

2) is sufficiently small, then Proposition 28
may give bounds better than Theorems 22. In particular, Proposition 28 is better

than Theorem 22 in the case d < k ≤ 2d−
√

d/2 if dBM(X , `d
2)≤

√
(2d−k)k

2d−1 , and in

the case k > 2d−
√

d/2 if dBM(X , `d
2)≤ (d/2)1/4.

We now turn to lower bounds. The first, generalising Theorem 9, uses a simple
greedy construction of sets of Euclidean unit vectors that are almost orthogonal.

Theorem 29. For all k ≥ 2 and sufficiently large d depending on k, there exists a
strictly convex and smooth d-dimensional Minkowski space Xd such that

Ck(Xd)≥
(

1+
1

2(2k+1)2

)d

.
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The proof will in fact give a norm that is C∞ away from the origin. This lower
bound for C (k,d) almost matches the upper bound from Theorem 20 asymptotically
in the sense that as k→ ∞ and d≫ logk it implies that C (k,d)1/d − 1� 1/k2,
while Theorem 20 implies that C (k,d)1/d−1� (logk)/k2. See the last column in
Table 1. (Note that since C (k,d)≥ k+1, we need d to grow with k in order to have
limk→∞ C (k,d) = 1, and in fact limk→∞(k+1)1/d = 1 iff d≫ logk.)

The second lower bound uses an algebraic construction of almost orthogonal
Euclidean vectors.

Theorem 30. For any d ∈ N let q = qd be the largest prime power such that
d ≥ q2− q+ 1. (By the Prime Number Theorem, qd ∼

√
d as d → ∞.) Then for

each c ∈ N and k ≥ 2 satisfying c≤ q−2 and

k ≤ q−1
2c
− 1

2

(
∼
√

d
2c

)
there exists a d-dimensional Minkowski space Xd such that

Ck(Xd)≥ qc+2 (∼ d1+c/2 as d→ ∞).

In particular, when k ≤ (1
2 + o(1))

√
d as d → ∞ we have C k(d)� d3/2. The

lower bound of Theorem 30 is better than that of Theorem 29 when k�
√

d/ logd.
For k a small multiple of

√
d, Theorems 20 and 21 give an upper bound polynomial

in d while Theorem 30 gives a lower bound polynomial in d, but with a gap between
the degrees of the polynomials. Nevertheless, Theorem 30 matches the bound in
Theorem 20 in a similar sense as in the discussion after Theorem 29, in that it
implies that C (k,d)1/d−1� (logk)/(ck2) as k→ ∞ and k ∼

√
d/(2c), c ∈ N.

1.3. Organisation of the paper. In Section 2 we use elementary combinatorial
arguments involving coordinates and inner products to prove Proposition 16 on
`d

∞, Proposition 14 on `d
2 and Proposition 28 on spaces close to `d

2 . In Section 3
we use the Brunn-Minkowski inequality and the Hajnal-Szemerédi Theorem to
prove Theorem 27. This is followed in Section 4 by a proof of Theorem 24
which is along similar lines. In addition to the Brunn-Minkowski inequality it
uses a metric consequence of Carathéodory’s Theorem that may be of independent
interest (Lemma 34). Then in Section 5 we reformulate the notion of a k-collapsing
collection of vectors in terms of matrices. There we also prove a sharp version of a
well-known result that bounds the rank of a matrix from below (Lemma 39). These
results are applied in Section 6, where Theorem 17 is proved, and Section 7 where
Theorems 22 and 23 are proved. These proofs are all very technical and involve
an application of Lemma 39 combined with convex optimisation. In Section 8
Theorems 20 and 21 are proved. The arguments are similar as in Sections 6 and 7
and use in addition a well-known bound on the rank of an integer Hadamard power
of a matrix (Lemma 42). In Section 9 we derive the lower bounds of Theorems 29
and 30.
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2. THE SUP-NORM AND EUCLIDEAN NORM

Proposition 31. If S = {xi | i ∈ [m]} ⊂ `d
∞ is a k-collapsing collection of m > k+

1 vectors of norm at least 1, then m ≤ 2d. If furthermore m = 2d, then S =
{±e1, . . . ,±ed}.

Proof. Suppose that there exist a coordinate j ∈ [d] and two distinct indices i ∈ [m]
such that xi( j) ≥ 1. Without loss of generality, xm−1(1),xm(1) ≥ 1. By the k-
collapsing condition, for any I ∈

([m−2]
k−2

)
,

∑
i∈I

xi(1)≤−2+ ∑
i∈I∪{m−1,m}

xi(1)≤−2+
∥∥∥∥ ∑

i∈I∪{m−1,m}
xi

∥∥∥∥
∞

≤−1.

Fix a J ∈
([m−2]

k

)
(note that k ≤ m−2). It follows that(
k−1
k−3

)
∑
i∈J

xi(1) = ∑
I∈( J

k−2)
∑
i∈I

xi(1)≤−
(

k
k−2

)
,

which gives

∑
i∈J

xi(1)≤−
(

k
k−2

)
/

(
k−1
k−2

)
=−k/(k−2)<−1

and ‖∑i∈J xi‖∞
> 1, contradicting the k-collapsing condition for the set J. Therefore,

for each coordinate j ∈ [d] there is at most one index i ∈ [m] such that xi( j) ≥ 1.
Similarly, there is at most one i ∈ [m] such that xi( j) ≤ −1. Therefore, there are
at most 2d pairs (i, j) ∈ [m]× [d] such that |xi( j)| ≥ 1. On the other hand, since
‖xi‖∞

≥ 1 for each i ∈ [m], there are at least m such pairs, which gives m≤ 2d.
If we now assume that m = 2d, then for each j ∈ [d] there is exactly one i ∈ [m]

such that xi( j)≥ 1, and exactly one i ∈ [m] such that xi( j)≤−1. It follows that
we may renumber the xi such that x2i−1(i) ≥ 1 and x2i(i) ≤ −1 for each i ∈ [d].
By the k-collapsing condition we have for any J ∈

([m−2]
k−1

)
that

∑
i∈J

xi(d)+1≤ ∑
i∈J∪{2d−1}

xi(d)≤
∥∥∥∥ ∑

i∈J∪{2d−1}
xi

∥∥∥∥
∞

≤ 1,

hence ∑i∈J xi(d) ≤ 0. Similarly, ∑i∈J xi(d) ≥ 0. Therefore, ∑i∈J xi(d) = 0 for
each J ∈

([m−2]
k−1

)
. Since k−1 < m−2, it follows that xi(d) = 0 for all i ∈ [m−2].

Similarly, xi( j) = 0 for all i, j such that i /∈ {2 j−1,2 j}. We conclude that x2i−1 =
ei and x2i =−ei for all i ∈ [d]. �

Proof of Proposition 16. We have already observed that

Ck(`
d
∞)≥ C Bk(`

d
∞)≥max{k+1,2d} .

Proposition 31 implies that Ck(`
d
∞)≤max{k+1,2d}. �

The next lemma occurs in an equivalent form in [18, Lemma 5].
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Lemma 32. Let k ≥ 2 be an integer and λ ∈ (0,
√

k). Let x1, . . . ,xm be vectors in
any inner product space such that ‖xi‖ ≥ 1 for all i ∈ [m] and∥∥∥∑

i∈I
xi

∥∥∥≤ λ for all I ∈
(
[m]

k

)
. (1)

Then

m≤ k2−λ 2

k−λ 2 .

Proof. Square (1) and sum over all I ∈
([m]

k

)
to obtain(

m
k

)
λ

2 ≥
(

m−1
k−1

) m

∑
i=1
‖xi‖2 +

(
m−2
k−2

) m

∑
{i, j}∈([m]

2 )

2
〈
xi,x j

〉
=

((
m−1
k−1

)
−
(

m−2
k−2

)) m

∑
i=1
‖xi‖2 +

∥∥∥ m

∑
i=1

xi

∥∥∥2

≥
((

m−1
k−1

)
−
(

m−2
k−2

))
m+0,

which simplifies to the conclusion of the theorem. �

Proof of Proposition 14. For the upper bound, set λ = 1 in Lemma 32. For the
lower bound, note that since d ≥ 2 there exist k+1 unit vectors that sum to o. �

Proof of Proposition 28. By the definition of Banach-Mazur distance there exist
coordinates such that

‖x‖2 ≤ ‖x‖ ≤ D‖x‖2 for all x ∈ Xd .

Then the conclusion follows immediately from Lemma 32 with λ = D. �

3. THE BRUNN-MINKOWSKI INEQUALITY AND GRAPH COLOURINGS

The proofs of Theorems 24 and 27 are very similar, but that of Theorem 27 is
somewhat more straightforward and we consider it first. We first discuss the three
main tools used in its proof. The first is the dimension-independent version of the
Brunn-Minkowski inequality (see Ball [5].) Denote the volume (or d-dimensional
Lebesgue measure) of a measurable set A⊆ Rd by vol(A).

Brunn-Minkowski inequality. If A,B⊂Rd are compact sets and 0 < λ < 1, then

vol(λA+(1−λ )B)≥ vol(A)λ vol(B)1−λ .

Induction immediately gives the following version for k sets:

k-fold Brunn-Minkowski inequality. Let A1,A2, . . . ,Ak ⊂ Rd be compact and
λ1,λ2, . . . ,λk > 0 such that ∑

k
i=1 λi = 1. Then

vol(λ1A1 +λ2A2 + · · ·+λkAk)≥
k

∏
i=1

vol(Ai)
λi .
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The second tool is the Hajnal-Szemerédi Theorem. A k-colouring of a graph
G = (V,E) is a function f : V → [k] such that f (x) 6= f (y) whenever xy ∈ E. The
k-colouring partitions the vertex set V into colour classes f−1(i), i ∈ [k]. A k-
colouring of a graph on m vertices is called equitable if each colour class has size
bm/kc or dm/ke. The following result was originally a conjecture of Erdős [11].
Although the original proof [16] was quite complicated and long, there is now a
relatively simple, compact proof, due to Kierstead and Kostochka [23].

Hajnal-Szemerédi theorem. Let G be a graph with m vertices and maximum
degree ∆ . Then for any k > ∆ , G has an equitable k-colouring.

The third tool is the following simple consequence of the triangle inequality.

Lemma 33. Let x1, . . . ,xk be vectors of norm at least 1 in a normed space such
that ∥∥∥ k

∑
i=1

xi

∥∥∥≤ 1.

Then for each i ∈ [k] there exists j ∈ [k]\{i} such that
∥∥xi−x j

∥∥≥ 1.

Proof. Note that

kxi =
k

∑
j=1

x j +
k

∑
j=1
j 6=i

(xi−x j).

Take norms and apply the triangle inequality and the hypotheses:

k ≤ ‖kxi‖ ≤
∥∥∥ k

∑
j=1

x j

∥∥∥+ k

∑
j=1
j 6=i

∥∥xi−x j
∥∥

≤ 1+
k

∑
j=1
j 6=i

∥∥xi−x j
∥∥ .

Thus we have a lower bound for the average distance between xi and the other
points:

1≤ 1
k−1

k

∑
j=1
j 6=i

∥∥xi−x j
∥∥ ,

which gives 1≤
∥∥xi−x j

∥∥ for some j 6= i. �

Proof of Theorem 27. Let V = {xi | i ∈ [m]} ⊂ Xd be a k-collapsing family with
each ‖xi‖ ≥ 1. Define a graph G on V by joining xi and x j if

∥∥xi−x j
∥∥< 1. By

Lemma 33, the maximum degree ∆ of G is at most k−2. By the Hajnal-Szemerédi
Theorem, G has an equitable k-colouring. This gives a partition I1, . . . , Ik of [m]
such that each |It | ∈ {q,q+1}, where q := bm/kc, and such that

∥∥xi−x j
∥∥ ≥ 1

whenever i, j are distinct elements from the same It . For each t ∈ [k] let

St =
⋃
j∈It

B
(
x j,1/2

)
.
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Then
vol(St) = (1/2)d |It |vol(B) . (2)

By the k-collapsing property,

1
k
(S1 + · · ·+Sk)⊆ B

(
o,

1
k
+

1
2

)
. (3)

Substitute (2) and (3) into the k-fold Brunn-Minkowski inequality

k

∏
t=1

vol(St)
1/k ≤ vol

(1
k
(S1 + · · ·+Sk)

)
,

to obtain ( k

∏
t=1
|It |
)1/k

≤
(

1+
2
k

)d

.

Set r = m− kq. Then there are r sets It of cardinality q+1 and k− r of cardinality
q. Therefore, ((m− r

k
+1
)r(m− r

k

)k−r
)1/k

≤
(

1+
2
k

)d

. (4)

Instead of minimising the left-hand side over all r ∈ {0,1, . . . ,k−1}, we just use
the weakening

m− r
k
≤
(

1+
2
k

)d

to obtain

m≤ k
(

1+
2
k

)d

+ r ≤ k
(

1+
2
k

)d

+ k−1. �

By taking more care in minimising the left-hand side of (4) it is possible to find a
slightly better upper bound. However, the inequality C (k,d)≤ k

(
1+ 2

k

)d cannot
be obtained from (4). For example, the values d = 4, m = 19, k = 6 satisfy (4), but
not m≤ k

(
1+ 2

k

)d . (Of course C (6,4) = 8 by Theorem 23.)

4. THE BRUNN-MINKOWSKI INEQUALITY AND CARATHÉODORY’S THEOREM

In this section we consider k-collapsing sets when k≫ d as d→ ∞. We use the
Brunn-Minkowski inequality in much the same way as before, but now coupled
with Carathéodory’s theorem from combinatorial convexity.

Carathéodory’s Theorem. Let p be in the convex hull of a family {xi | i ∈ I} of
points in Rd . Then p ∈ conv{xi | i ∈ J} for some J ⊆ I with |J| ≤ d +1.

Carathéodory’s theorem is used to prove the following auxiliary result. The tech-
nique is very similar to an argument in [37] that bounds the number of vertices of
an edge-antipodal polytope.
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Lemma 34. Let d ≥ 2, n ≥ 1 and {xi | i ∈ [n]} ⊂ Xd such that ‖xi‖ ≥ 1 for each
i ∈ [n] and

diam{xi | i ∈ [n]}< 1+1/d. (5)
Then ∥∥∥1

n

n

∑
i=1

xi

∥∥∥> 1/d2. (6)

Proof. Let P := conv{xi | i ∈ [n]}. By convexity the centroid 1
n ∑

n
i=1xi ∈ P. Choose

p ∈ P of minimum norm. It is sufficient to prove that ‖p‖ > 1/d2. Suppose that
p= o. Then by Carathéodory’s Theorem, o is a convex combination of a subfamily
of at most d +1 of the xi, that is, o= ∑i∈J λixi where J ⊆ [n], |J| ≤ d +1, λi ≥ 0
for each i ∈ J, and ∑i∈J λi = 1. Note that |J| ≥ 2. For any j ∈ J,

−x j = ∑
i∈J\{ j}

λi(xi−x j)

and by the triangle inequality,

1≤ ∑
i∈J\{ j}

λi
∥∥xi−x j

∥∥≤ ∑
i∈J\{ j}

λi diamP = (1−λ j)diamP.

Summing over j ∈ J, we obtain |J| ≤ (|J|− 1)diamP and diamP ≥ |J|
|J|−1 ≥

d+1
d .

However,
diamP = diam{xi | i ∈ [n]}< 1+1/d

by assumption, a contradiction. It follows that p 6= o. Thus p is on some facet of P.
We now apply Carathéodory’s Theorem to the affine span of this facet, of dimension
< d:

p= ∑
i∈J

λixi where J ⊆ [n], |J| ≤ d, λi ≥ 0 for each i ∈ J, and ∑
i∈J

λi = 1.

If |J| = 1 then p = xi for some i ∈ [n] and ‖p‖ ≥ 1 > 1/d2. Without loss of
generality we may then assume that |J| ≥ 2. It follows that for each j ∈ J,

p−x j = ∑
i∈J\{ j}

λi(xi−x j)

and as before,

1−‖p‖ ≤
∥∥x j

∥∥−‖p‖ ≤ ∥∥p−x j
∥∥≤ ∑

i∈J\{ j}
λi
∥∥xi−x j

∥∥
≤ ∑

i∈J\{ j}
λi diamP = (1−λ j)diamP.

Sum over j ∈ J to obtain (since |J| ≥ 2) that

(1−‖p‖) |J| ≤ (|J|−1)diamP < (|J|−1)(1+1/d)

and

1−‖p‖< |J|−1
|J|

(1+1/d)≤ d−1
d

(1+1/d) = 1−1/d2.

It follows that ‖p‖> 1/d2. �
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The right-hand side of (6), while perhaps not the best possible function of d, is at
least of the right order as shown by the following example. Let ε > 0 be small and
fixed and let d ≥ 3. Let e1,e2, . . . ,ed be the standard unit basis of `d

1 and set

xi =

(
d +1

2d
− (d−2)ε

d−1

)
ei−

(
d−1

2d(d−2)
+

ε

d−1

) d

∑
j=1

e j for i ∈ [d].

Then it is easily checked that {xi | i ∈ [d]} satisfies the hypotheses of Lemma 34:
‖xi‖1 = 1 for all i ∈ [d] and

diam{xi}= 1+
1
d
− 2(d−2)

d−1
ε < 1+

1
d

.

On the other hand, ∥∥∥∥∥1
d

d

∑
i=1

xi

∥∥∥∥∥
1

=
1

d(d−2)
+2ε ,

which is within O(1/d2) of 1/d2.
A slight modification of this example also shows that the right-hand side of (5)

cannot be increased: There exist d-dimensional Minkowski spaces with d +1 unit
vectors x1, . . . ,xd+1 such that diam{xi}= 1+1/d although ∑

d+1
i=1 xi = o. Indeed,

let e1, . . . ,ed+1 be the standard unit basis of `d+1
1 and consider the subspace

X =

{
(α1, . . . ,αd+1)

∣∣∣∣∣ d+1

∑
i=1

αi = 0

}
.

Let

xi =
d +1

2d
ei−

1
2d

d+1

∑
j=1

e j (i ∈ [d +1]).

It is again easy to see that the xi are unit vectors in X ,
∥∥xi−x j

∥∥
1 = 1+1/d for

distinct i, j ∈ [d +1], and ∑
d+1
i=1 xi = o. It may seem strange that the centroid of the

vectors can jump from the origin to a point bounded away from the origin by 1/d2

when the diameter decreases from 1+1/d. However, a similar phenomenon can
be demonstrated even in Euclidean space. Consider a regular simplex inscribed
in the unit sphere of `d

2 . Then it is not possible to continuously move the d + 1
vertices an arbitrarily small distance while remaining on the sphere so as to reduce
the diameter of the simplex. The diameter will increase at first and when it has
eventually decreased below the diameter of the original equilateral simplex, the
centroid will be bounded away from the origin.

Proof of Theorem 24. Suppose that Ck(Xd)≥ k+2. Let {xi | i ∈ [k+2]} ⊂ Xd be
a k-collapsing collection of vectors of norm at least 1. Our aim is to show that
k = O(dd+2).

Let s := ∑
k+2
i=1 xi. The k-collapsing condition gives an upper bound to the norm

of s as follows: Since

∑
S∈([k+2]

k )
∑
i∈S

xi =

(
k+1
k−1

) k+2

∑
i=1

xi =

(
k+1
k−1

)
s,
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the triangle inequality gives(
k+1
k−1

)
‖s‖ ≤ ∑

S∈([k+2]
k )

∥∥∥∑
i∈S

xi

∥∥∥≤ (k+2
k

)
,

and

‖s‖ ≤
(

k+2
k

)
/

(
k+1
k−1

)
= 1+2/k. (7)

Without loss of generality some ‖xi‖= 1. For each j ∈ [k+2]\{i} the k-collapsing
condition implies that

∥∥(s−xi)−x j
∥∥≤ 1, and again by the triangle inequality,∥∥x j

∥∥≤ 1+‖s‖+‖xi‖ ≤ 3+2/k. (8)

Let ε > 0 (to be fixed later). Define a graph G on [k+2] by joining i and j whenever∥∥xi−x j
∥∥ < ε . Let C ⊆ [k+ 2] be the set of all isolated vertices of G. Suppose

for the moment that |C| ≥ 2. Partition C into two parts as equally as possible:
C =C1∪C2 with C1∩C2 =∅, ||C1|− |C2|| ≤ 1. Let

St =
⋃
j∈Ct

B(x j,ε/2) for t = 1,2.

Then

vol(St) = |Ct |(ε/2)d vol(B) .

Also, S1 +S2 ⊆ B(s,1+ ε), which gives

vol
(

1
2

S1 +
1
2

S2

)
≤
(

1+ ε

2

)d

vol(B) .

By the Brunn-Minkowski inequality,

vol
(

1
2

S1 +
1
2

S2

)
≥ vol(S1)

1/2 vol(S2)
1/2 =

√
|C1| · |C2|

(
ε

2

)d
vol(B) .

It follows that
|C|−1

2
<
√
|C1| · |C2| ≤

(
1+

1
ε

)d

and

|C|< 2
(

1+
1
ε

)d

+1. (9)

This bound clearly also holds if |C|< 2.
Next consider the complement C′ := [k+2]\C, consisting of the vertices of G of

degree at least 1. For each i∈C′ there exists i′ ∈ [k+2]\{i} such that ‖xi−xi′‖< ε .
We claim that

diam
{
xi
∣∣ i ∈C′

}
< 1+ ε . (10)
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Consider distinct i, j ∈C′. There exist i′, j′ ∈C′ such that i′ 6= i, j′ 6= j, ‖xi−xi′‖<
ε and

∥∥x j−x j′
∥∥< ε . Then by the triangle inequality and the k-collapsing condi-

tion,∥∥2xi−2x j
∥∥= ∥∥xi−xi′+xi +xi′−s+s−x j−x j′+x j′−x j

∥∥
≤ ‖xi−xi′‖+‖xi +xi′−s‖+

∥∥s−x j−x j′
∥∥+∥∥x j′−x j

∥∥
< ε +1+1+ ε ,

which shows (10). In order to apply Lemma 34 to {xi | i ∈C′} we set ε = 1/d and
obtain that ∥∥∥∑

i∈C′
xi

∥∥∥> |C′|
d2 =

k+2−|C|
d2 . (11)

On the other hand, by (7) and (8),∥∥∥∑
i∈C′

xi

∥∥∥= ∥∥∥s−∑
i∈C

xi

∥∥∥≤ ‖s‖+∑
i∈C
‖xi‖

≤ 1+
2
k
+ |C|

(
3+

2
k

)
.

By (9) and the choice of ε , |C| ≤ 2(d +1)d . It follows that

k+2
d2 < 1+

2
k
+ |C|

(
3+

2
k
+

1
d2

)
= O(dd). �

5. REFORMULATION IN TERMS OF MATRICES

We now reduce the existence of a d-dimensional Minkowski space admitting
vectors satisfying the k-collapsing condition and strong balancing condition to the
existence of a matrix of rank at least d satisfying certain properties.

Definition 35. An m×m matrix A = [ai j] is called k-collapsing if the following
conditions all hold:

ai,i ≥ 1 for all i ∈ [m], (12)∣∣ai, j
∣∣≤ a j, j for all i, j ∈ [m], (13)

and
∣∣∣∑

j∈I
ai, j

∣∣∣≤ 1 for all I ∈
(
[m]

k

)
and i ∈ [m]. (14)

The matrix A is called balancing if
m

∑
j=1

ai, j = 0 for all i ∈ [m]. (15)

We say that A is normalised if ai,i = 1 for all i ∈ [m].
Suppose that A does not have a 0 on its main diagonal. Then we define the

normalisation of A as the normalised matrix Ã = [ai, j/ai,i] obtained by dividing row
i of A = [ai, j] by ai,i for each i ∈ [m].
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Note that the normalisation Ã is normalised and has the same rank as A. If A is
balancing, then its normalisation is also balancing. However, it is not clear whether
the normalisation is k-collapsing if A is k-collapsing. The next lemma shows that
this is the case if k ≤ m−2.

Lemma 36. Let 2≤ k ≤ m−2. If A = [ai, j] is an m×m k-collapsing matrix, then
so is its normalisation Ã = [ai, j/ai,i].

Proof. It is clear that conditions (12), (14) and (15) stay valid when row i is divided
by ai,i. We show that (13) also remains valid by proving that any k-collapsing matrix
A already satisfies the stronger inequality∣∣ai, j

∣∣≤ 1 for all distinct i, j ∈ [m]. (16)

Fix distinct i, j ∈ [m], and choose any I,J ∈
([m]

k

)
such that I \J = {i} and J \ I = { j}.

By (14), ∑s∈I ai,s ≤ 1 and ∑s∈J ai,s ≥−1. Subtract these two inequalities to obtain
ai,i−ai, j ≤ 2, hence

ai, j ≥ ai,i−2≥ 1−2 =−1.
Before proving that ai, j ≤ 1, we first show that

Si := {s ∈ [m] |ai,s > 0}

contains at most k− 1 elements. Suppose this is false. Then choose any I ∈
(Si

k

)
such that i ∈ I. By (14), ∑s∈I ai,s ≤ 1, from which follows ∑s∈I\{i} ai,s ≤ 1−ai,i ≤ 0,
a contradiction. Thus

|[m]\ (Si∪{ j})| ≥ m− k ≥ 2,

and we may choose two distinct indices i′, j′ ∈ [m] \ {i, j} such that ai,i′ ≤ 0 and
ai, j′ ≤ 0. Choose any I, I′ ∈

([m]
k

)
such that I \ I′ = {i, j} and I′ \ I = {i′, j′}. By (14),

∑s∈I ai,s ≤ 1 and ∑s∈I′ ai,s ≥ −1. Subtract these inequalities to obtain ai,i +ai, j−
ai,i′−ai, j′ ≤ 2. Therefore,

ai, j ≤ 2−ai,i +ai,i′+ai, j′ ≤ 2−1+0+0. �

Lemma 36 does not hold if k = m−1 and m≥ 5. For example, the matrix

1 2 −ε −ε · · · −ε

1 2 −ε −ε · · · −ε

0 0 1 0 · · · 0

0 0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · · · · 0 1


with ε = 2/(m− 3) is an (m− 1)-collapsing m×m matrix, but its normalisation
is not (m− 1)-collapsing. However, for k = 2 = m− 1 and k = 3 = m− 1 the
normalisation of an m×m k-collapsing matrix is still k-collapsing. This can be
shown easily as in the proof of Lemma 36.

The next lemma is the promised reduction from Minkowski spaces to matrices.

Lemma 37. Let 2≤ k < m and d ≥ 2. The following two statements are equivalent:
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(1) There exist a d-dimensional Minkowski space X and x1, . . . ,xm ∈ X with
‖xi‖ ≥ 1 for all i ∈ [m] satisfying the k-collapsing condition [and strong
balancing condition].

(2) There exists an m×m k-collapsing [and balancing] matrix of rank at most
d.

The following two statements are also equivalent:

(1) There exist a d-dimensional Minkowski space X and x1, . . . ,xm ∈ X with
‖xi‖ = 1 for all i ∈ [m] satisfying the k-collapsing condition [and strong
balancing condition].

(2) There exists a normalised m×m k-collapsing [and balancing] matrix of
rank at most d.

Proof. We only prove the first statement as the proof of the second statement only
requires minor modifications.

(=⇒) Let a d-dimensional X be given with vectors x1, . . . ,xm satisfying ‖xi‖≥ 1
for all i ∈ [m] and the k-collapsing condition. Choose a dual unit vector x∗i for
each xi. Then for each i ∈ [m], yi = [〈x∗1,xi〉 , . . . ,〈x∗m,xi〉]T is a vector in `m

∞ of
norm ‖yi‖∞

= 〈x∗i ,xi〉= ‖xi‖ ≥ 1, and {y1, . . . ,ym} also satisfies the k-collapsing
condition. In other words, in the m×m matrix [

〈
x∗i ,x j

〉
] the value of each diagonal

entry is at least 1 (giving (12)); the value of each entry is dominated by the diagonal
entry in its column (giving (13)); and the sum of any k entries in the same row lies
in the interval [−1,1] (giving (14)). In addition, if {x1, . . . ,xk} satisfies the strong
balancing condition, the matrix [

〈
x∗i ,x j

〉
] will clearly also satisfy the balancing

condition.
Since we have the factorisation

[
〈
x∗i ,x j

〉
]i, j∈[m] = [x∗1, . . . ,x

∗
m]

T[x1, . . . ,xm]

into matrices of rank at most d, [
〈
x∗i ,x j

〉
] has rank at most d.

(⇐=) Conversely, if we start off with an m×m k-collapsing [and balancing]
matrix A with rank at most d, then its columns are m vectors of norm at least 1 in
`m

∞ satisfying the k-collapsing condition [and balancing condition]. Since they span
a subspace of `m

∞ of dimension at most d, we may take any d-dimensional subspace
of `m

∞ that contains the column space of A. �

Corollary 38. Let 2≤ k < m and d ≥ 2. There exists a d-dimensional Minkowski
space that contains a k-collapsing [and balancing] set of m vectors of norm ≥ 1
iff there exists a d-dimensional Minkowski space that contains a k-collapsing [and
balancing] set of m unit vectors.

Proof. The case k = m−1 is trivial, as there exist k+1 unit vectors that sum to o if
d ≥ 2. The case k ≤ m−2 follows from Lemma 36 and 37. �

The following result gives a lower bound for the rank of a square matrix in terms
of its Frobenius norm and trace. This bound is usually productive if the matrix has
relatively large positive entries on the diagonal.
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Lemma 39. Let A = [ai j] be any n×n matrix with complex entries. Then∣∣∣ n

∑
i=1

aii

∣∣∣2 ≤ rank(A)
( n

∑
i=1

n

∑
j=1

∣∣ai j
∣∣2). (17)

Equality holds in (17) if and only if A is a normal matrix and all its non-zero
eigenvalues are equal. If A is a real matrix then equality holds in (17) if and only if
A is symmetric and all its non-zero eigenvalues are equal.

The case when A is real and symmetric is an exercise in Bellman [7, p. 137].
Various combinatorial and geometric applications may be found in [1, 2, 3, 4, 6, 28].
If A is not symmetric, it can be replaced by A+AT, of rank at most 2rank(A),
without decreasing |∑i aii|2 /∑i, j

∣∣ai j
∣∣2. Thus assuming the validity of (17) only for

real symmetric matrices gives a lower bound for the rank of A which is weaker by a
factor of 2. This weakening is usually of no concern in applications. However, we
do need the sharp estimate (17) for general (real) matrices, in order to obtain the
sharp and almost sharp estimates in Theorems 17, 22 and 23.

Proof of Lemma 39. Let the non-zero eigenvalues of A be λ1, . . . ,λr. Since the
result is trivial if tr(A) = ∑

n
i=1 ai,i = 0, we may assume without loss of generality

that r ≥ 1. By the Schur decomposition of a square matrix with complex entries
[29] (see also [17, Theorem 2.3.1]) there exists an n×n unitary matrix U such that
C = [ci j] := U∗AU is upper triangular. In particular, the eigenvalues of A are the
diagonal entries of C, and

r ≤ rank(C) = rank(A). (18)

Also, ∣∣∣ n

∑
i=1

ai,i

∣∣∣= |tr(A)|= ∣∣∣ r

∑
i=1

λi

∣∣∣≤ r

∑
i=1
|λi| , (19)

and
n

∑
i=1

n

∑
j=1

∣∣ai, j
∣∣2 = tr(A∗A) = tr(C∗C) =

n

∑
i=1

n

∑
j=1

∣∣ci j
∣∣2 ≥ r

∑
i=1
|λi|2 . (20)

(This inequality ∑i |λi|2 ≤ ∑i, j
∣∣ai, j

∣∣2 was deduced by Schur in [29] using his de-
composition.) Finally, by the Cauchy-Schwarz inequality,( r

∑
i=1
|λi|
)2
≤ r

r

∑
i=1
|λi|2 , (21)

and (17) follows from (18), (19), (20) and (21).
Suppose equality holds in (17). This gives equality in (18)–(21). Equality in (21)

gives that all |λi| are equal. Equality in (19) gives that all λi are positive multiples
of each other. Therefore, all λi are equal. Equality in (20) gives that C is a diagonal
matrix, hence A is normal. If A is real we furthermore obtain that the λi are real,
since they are equal and their sum is the real number tr(A). Then C = C∗, hence
AT = A∗ = A and A is symmetric.
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Conversely, if A is normal, then C is diagonal, and equality holds in (18) and
(20). If all the non-zero eigenvalues of A are equal, equality holds in (19) and (21),
and we obtain equality in (17). �

6. A TIGHT UPPER BOUND FOR C Bk(X)

In this section we prove Theorem 17. To show that C Bk(X)≤max{k+1,2d}
for all d-dimensional Xd , it is sufficient by Lemmas 36 and 37 to prove that for any
m×m normalised k-collapsing and balancing matrix A = [ai, j] of rank at most d
we have that m ≤ 2d as long as k ≤ m−2. By Lemma 39 it is sufficient to show
that |∑i ai,i|/∑i, j

∣∣ai, j
∣∣2 ≥m/2. Since ∑i ai,i = m, this is equivalent to ∑i, j a2

i, j ≤ 2m.
Since ai,i = 1, it will be sufficient to show that for any i,

m

∑
j=1
j 6=i

a2
i, j ≤ 1.

This is implied by the next lemma, which solves a convex maximisation problem
with linear constraints.

Lemma 40. Let k,m ∈ N such that k ≥ 2 and 2k ≤ m. Then

max

{
m−1

∑
i=1

x2
i

∣∣∣∣∣m−1

∑
i=1

xi =−1,∑
i∈I

xi ≤ 0 for all I ∈
(
[m−1]
k−1

)}
= 1.

The maximum value ∑
m−1
i=1 x2

i = 1 is attained under these constraints only if for some
j ∈ [m−1], x j =−1 and xi = 0 for all i ∈ [m−1]\{ j}.

Proof. The objective function f (x) := ∑
m−1
i=1 x2

i , as well as the constraints

∑
i∈I

xi ≤ 0 for all I ∈
(
[m−1]
k−1

)
(22)

and
m−1

∑
i=1

xi =−1 (23)

are symmetric in the variables x1, . . . ,xm−1. Thus we may assume without loss of
generality that

x1 ≥ x2 ≥ ·· · ≥ xm−1. (24)
Then (22) becomes equivalent to the single inequality

k−1

∑
i=1

xi ≤ 0. (25)

The m−1 linear inequalities in (24) and (25) define a polytope P in the hyperplane
H of Rm−1 defined by (23). Since the objective function f is convex, it attains its
maximum on P at a vertex of P. Since the point in Rm−1 with coordinates

xi =
−2i

m(m−1)
, i ∈ [m−1]
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satisfies (24) and (25) with strict inequalities (as well as (23)), P has non-empty
interior in H. It follows that P is an (m−2)-dimensional simplex, and it is easy to
calculate its m−1 vertices, as follows.

Case I. If x1 = · · ·= xm−1 then

x=
( −1

m−1
, . . . ,

−1
m−1︸ ︷︷ ︸

m−1 times

)
and f (x) = 1/(m−1)< 1.

Case II. If x1 = · · ·= xt and xt+1 = · · ·= xm−1 for some t ∈ [m−2], and ∑
k−1
i=1 xi = 0,

we distinguish between two subcases:

Subcase II.i. t ≤ k−1. Then

x=
(k−1− t

t(m− k)
, . . . ,

k−1− t
t(m− k)︸ ︷︷ ︸

t times

,
−1

m− k
, . . . ,

−1
m− k︸ ︷︷ ︸

m−1− t times

)

and

f (x) =
(k−1− t)2

t(m− k)2 +
m−1− t
(m− k)2 .

It is easy to check using the assumption m≥ 2k that this expression is strictly less
than 1 for all t ∈ [k−1].

Subcase II.ii. t ≥ k. Then

x=
(

0, . . . ,0︸ ︷︷ ︸
t times

,
−1

m−1− t
, . . . ,

−1
m−1− t︸ ︷︷ ︸

m−1− t times

)
and

f (x) =
1

m−1− t
≤ 1

with equality if and only if t = m−2, and then

x= (0, . . . ,0,−1).

This shows that the maximum of f on P is 1, attained at only one point if the
coordinates are in decreasing order. �

Proof of Theorem 17. By Corollary 16, C Bk(`
d
∞) = max{k+1,2d}. In fact, if

k ≤ 2d, for any norm with unit vector basis {e1, . . . ,ed}, the family {±ei | i ∈ [d]}
is k-collapsing if ∑i∈I ei is contained in the unit ball for all I ⊆ [d] with |I| ≤ k.
When d ≥ 3, any o-symmetric convex body C that satisfies

Pk := conv

{
±∑

i∈I
ei

∣∣∣∣∣ I ⊆ [d], |I| ≤ k

}
⊆C ⊆ [−1,1]d

is the unit ball of a norm ‖·‖C such that {±ei | i ∈ [d]} is k′-collapsing in the norm
‖·‖C for all k′ = 2, . . . ,k, with ‖ei‖C = 1.
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It remains to show that if Xd contains a family of m≥ k+2 vectors of norm at
least 1 satisfying the k-collapsing condition and strong balancing condition, then
m≤ 2d, and equality implies that the m = 2d vectors are made up of a basis and its
negative. (Note that this also takes care of the statement that CB2(X2) = 4 only if
X2 = `2

∞ up to isometry.) By the strong balancing condition we may assume without
loss of generality that k ≤ m/2.

Thus let x1, . . . ,xm ∈ X be a k-collapsing, strongly balancing family of vectors
of norm at least 1. For each xi, let x∗i ∈ X∗ be a dual unit vector. By Proposition 37,
A = [ai j] := [

〈
x∗i ,x j

〉
] is an m×m k-collapsing and balancing matrix. We will

show that the rank of this matrix is at most m/2, with equality implying that, after a
permutation of the xi,

A =



1 −1 0 0 0 · · · 0 0 0
−1 1 0 0 0 · · · 0 0 0

0 0 1 −1 0 · · · 0 0 0
0 0 −1 1 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · 0 1 −1
0 0 0 0 0 · · · 0 −1 1


. (26)

By Lemma 36 the normalisation Ã = [ãi, j] := [ai, j/ai,i] is also k-collapsing and
balancing. We want to show that ∑

m
j=1 ã2

i, j ≤ 2 for all i ∈ [m]. Consider without loss
of generality the last row

ãm,1 ãm,2 . . . ãm,m−1 1.

Let xi = ãm,i for i ∈ [m− 1]. By the balancing condition, ∑
m−1
i=1 xi = −1. By the

k-collapsing condition, for all I ∈
([m−1]

k−1

)
,∣∣∣1+∑

i∈I
xi

∣∣∣≤ 1,

hence ∑i∈I xi ≤ 0. Lemma 40 now gives ∑
m−1
i=1 x2

i ≤ 1. It follows that ∑
m
j=1 ã2

i, j ≤ 2
for each i ∈ [m], and by Lemma 39,

d ≥ rank(A) = rank(Ã)≥ m2

2m
=

m
2
.

This shows that m ≤ 2d. Suppose now that m = 2d. Again by Lemmas 39 and
40, rank(A) = rank(Ã) = d, Ã is a symmetric 2d× 2d matrix, and each row of Ã
has a 1 on the diagonal, a −1 at some non-diagonal entry, and 0s everywhere
else. Thus Ã = I−P, where P is a symmetric permutation matrix. The associated
permutation must be an involution. It follows that after some permutation of the
coordinates, Ã is as in (26). Since Ã has an off-diagonal entry of absolute value
1 in each column, A is already normalised, hence ‖xi‖ = 1 for all i ∈ [m]. Since
A = [x∗1 . . .x

∗
2d ]

T[x1 . . .x2d ] and the submatrix of A consisting of odd rows and
columns is the d×d identity matrix, it follows that {x1,x3, . . . ,x2d−1} is a basis of
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X and
{
x∗1,x

∗
3, . . . ,x

∗
2d−1

}
is a basis of X∗. Since 〈x∗i ,x1〉 = 〈x∗i ,x2〉 = 0 for all

i≥ 3, it follows that

x1,x2 ∈
⋂

j=2,...,d

kerx∗2 j−1,

which is a one-dimensional subspace of X . Therefore, x1 = −x2. Similarly,
x2 j−1 =−x2 j for all j ∈ [d]. This proves the final statement of the theorem. �

7. TIGHT AND ALMOST TIGHT UPPER BOUNDS FOR Ck(X)

We now consider the k-collapsing condition without any balancing condition. As
in the previous section we solve a convex optimisation problem. This case is more
complicated and our results are only partial.

Recall (Lemma 37) that the existence of a d-dimensional Minkowski space that
contains m vectors of norm ≥ 1 that satisfy the k-collapsing condition is equivalent
to the existence of a normalised m×m k-collapsing matrix A = [ai, j] of rank at most
d. Thus A has to satisfy

ai,i = 1 ∀i ∈ [m], (27)∣∣ai, j
∣∣≤ 1 ∀i, j ∈ [m], (28)

and −1≤∑
j∈I

ai, j ≤ 1 ∀i ∈ [m],∀I ∈
(
[m]

k

)
. (29)

We would like to determine max∑
m
i, j=1 a2

i, j as a function of k and m where 2≤ k ≤
m−2, given the constraints (27), (28) and (29). The constraints on each row of A
are independent from each other. Consider then without loss of generality the last
row

am,1 am,2 . . . am,m−1 1.

Write xi = am,i for i ∈ [m− 1]. Because of symmetry in the objective function
∑

m−1
i=1 x2

i and in the constraints (27) to (29), we assume without loss of generality
that

x1 ≥ x2 ≥ ·· · ≥ xm−1. (30)

Then (28) becomes

−1≤ xi ≤ 1 ∀i ∈ [m−1] (31)

and (29) becomes the four inequalities

x1 + x2 + · · ·+ xk ≤ 1 (32)
−1≤ xm−k + xm−k+1 + · · ·+ xm−1 (33)

x1 + x2 + . . .xk−1 ≤ 0 (34)
−2≤ xm−k+1 + xm−k+2 + · · ·+ xm−1 (35)

We next show that in the collection of inequalities (30)–(35), the inequalities (31),
(32) and (35) are redundant.
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First note that (31) and (34) together imply (32); and (31) and (33) together imply
(35). Next, (30), (33) and (34) together imply (31) as follows. By (30) and (34),
xk+1 ≤ xk ≤ xk−1 ≤ 0. By (30) and (33), and since k ≤ m−2,

−1≤ xm−k + · · ·+ xm−1 ≤ x2 + · · ·+ xk+1,

hence

−x2−·· ·− xk−1 ≤ 1+ xk + xk+1 ≤ 1.

Add this to (34) to obtain x1 ≤ 1, which by (30) is equivalent to the inequality on
the right in (31). By (33), (30) and (34),

−1≤ (xm−k + xm−k+1 + · · ·+ xm−2)+ xm−1

≤ (x1 + · · ·+ xk−1)+ xm−1

≤ xm−1,

which by (30) is equivalent to the inequality on the left in (31).

Lemma 41. Let k,m ∈ N such that 2≤ k ≤ m−2. Then

max

{
m−1

∑
i=1

x2
i

∣∣∣∣∣−1≤∑
i∈I

xi ≤ 1 for all I ∈
(
[m]

k

)
,

−2≤∑
i∈I

xi ≤ 0 for all I ∈
(
[m−1]
k−1

)}


= max
{

m−1
k2 ,1,

(k−2)2 +m−2
k2

}
if k < 2m/3,

≤max
{

m−1
k2 ,1,

(k−2)2 +m−2
k2 ,

(k−1)2

4(m− k−1)(2k−m)(m− k)

}
if k ≥ 2m/3,

= max
{

m−1
4

,1
}

if k = 2,

=
(k−2)2 +m−2

k2 if 3≤ k ≤ m+2
4 ,

= 1 if m+2
4 ≤ k < 2m

3 , k ≥ 3,

≤max
{

1,
(k−1)2

4(m− k−1)(2k−m)(m− k)

}
if k ≥ 2m/3, k ≥ 3.

Proof. Because of symmetry in the objective function f (x) = ∑
m−1
i=1 x2

i and in the
constraints in the lemma, we may assume without loss of generality that (30) holds.
By the discussion before the lemma, the constraints are equivalent to (30), (33)
and (34). Thus we have to find the maximum of f (x) over the set ∆ of points
(x1, . . . ,xm−1) that satisfy (30), (33) and (34). By the discussion before the lemma,
(31) automatically holds, hence ∆ is a polytope. Setting xi =−i/km for i ∈ [m−1],



SETS OF UNIT VECTORS WITH SMALL SUBSET SUMS 27

we see that (30) and (34) are obviously satisfied with strict inequalities, and

m−1

∑
i=m−k

xi =
−1
km

m−1

∑
i=m−k

i =
−1
km

k

∑
i=1

(m− i) =−1+
k(k+1)

2km
>−1.

It follows that (
−1
km

,
−2
km

, . . . ,
−(m−1)

km

)
∈ Rm−1

is an interior point of ∆ . Since (30), (33) and (34) are m inequalities in total, it
follows that ∆ is a simplex. Since f (x) = ∑

m−1
i=1 x2

i is a convex function on Rm−1, it
attains its maximum at a vertex of ∆ . Next we calculate the m vertices of ∆ . We
distinguish between the following three cases:

Case I. Equality in (30) and (33):

x1 = · · ·= xm−1 and −1 = xm−k + · · ·+ xm−1.

The vertex is

x=
(−1

k
, . . . ,

−1
k︸ ︷︷ ︸

m−1 times

)
,

and

f (x) =
m−1

k2 .

Case II. Equality in (30) and (34):

x1 = · · ·= xm−1 and x1 + · · ·+ xk−1 = 0.

Then x= o and f (x) = 0 < (m−1)/k2.

Case III. For some t ∈ [m−2],

x1 = · · ·= xt =: a and xt+1 = · · ·= xm−1 =: b

and equality in (33) and (34): Equality in (33) gives that

if m− k ≥ t +1 then b =
−1
k

; (33a)

if m− k ≤ t then (k−m+1+ t)a+(m−1− t)b =−1. (33b)

Independent of these two cases equality in (34) gives that

if k−1≤ t then a = 0; (34a)

if k−1≥ t +1 then ta+(k−1− t)b = 0. (34b)

This gives us the following four subcases:
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Subcase III.i. If k−1≤ t ≤ m− k−1, then by (33a) and (34a),

x=
(

0, . . . ,0︸ ︷︷ ︸
t times

,
−1
k
, . . . ,

−1
k︸ ︷︷ ︸

m−1− t times

)
and

f (x) =
m−1− t

k2 ≤ m− k
k2 <

m−1
k2 .

This case occurs only if 2k ≤ m.

Subcase III.ii. If max{k−1,m− k} ≤ t, then by (33b) and (34a),

x=
(

0, . . . ,0︸ ︷︷ ︸
t times

,
−1

m−1− t
, . . . ,

−1
m−1− t︸ ︷︷ ︸

m−1− t times

)
and

f (x) =
1

m−1− t
≤ 1,

with equality if t = m−2. This case always occurs.

Subcase III.iii. If t ≤min{k−2,m− k−1} (which occurs only if k ≥ 3), then by
(33a) and (34b),

x=
(k−1− t

kt
, . . . ,

k−1− t
kt︸ ︷︷ ︸

t times

,
−1
k
, . . . ,

−1
k︸ ︷︷ ︸

m−1− t times

)
and

f (x) =
1
k2

(
(k−1)2

t
−2k+1+m

)
≤ 1

k2

(
(k−1)2−2k+1+m

)
=

(k−2)2 +m−2
k2 =: g(k,m).

Note that g(k,m)≥ m−1
k2 (equality iff k = 3). Also, g(k,m)≤ 1 iff k ≥ (m+2)/4.

Subcase III.iv. If m− k ≤ t ≤ k−2 (which occurs only if 2k ≥ m+2 and k ≥ 4),
then we solve (33b) and (34b) to obtain

a =
k−1− t

t +(m−1− k)(k−1)
and b =

−t
t +(m−1− k)(k−1)

.

This gives the vertex as

x=
( k−1− t

t +(m−1− k)(k−1)︸ ︷︷ ︸
t times

,
−t

t +(m−1− k)(k−1)︸ ︷︷ ︸
m−1− t times

)

and

f (x) =
(m−2k+1)t2 +(k−1)2t
(t +(m−1− k)(k−1))2 =: sk,m(t).

We now determine

h(k,m) := max
{

sk,m(t)
∣∣ t ∈ [m− k,k−2]

}
.
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Since this maximum could occur in the interior of the interval [m− k,k−2], and
the value of t where the maximum occurs might not be integral, we settle for
determining the maximum of sk,m(t) over all real values of t ∈ [m− k,k−2]. Thus
h(k,m) will only be an upper bound for the maximum of f (x) on the vertices of ∆

falling under this subcase. A calculation shows that s′k,m(t)≥ 0 iff

t ≤ (k−1)2(m− k−1)
2(2k−m−1)(m− k−1)+ k−1

=: t0.

We next show that m− k ≤ t0 unless k = 4 and m = 6. A calculation shows that

m− k ≤ t0 ⇐⇒ (k−1)2 ≤
(

1
2

k2− k+2
(

m− 3
2

k
)2
)
(m− k).

If m 6= 3k/2 then (m−3k/2)2 ≥ 1/4, and since m− k ≥ 2 we obtain(
1
2

k2− k+2
(

m− 3
2

k
)2
)
(m− k)

≥
(

1
2

k2− k+
1
2

)
·2 = (k−1)2,

which gives m− k ≤ t0. Otherwise, m = 3k/2 and

m− k ≤ t0 ⇐⇒ (k−1)2 ≤
(

1
2

k2− k
)

k
2

.

This holds if k ≥ 5, but not if k = 4. However, in that case (k,m) = (4,6) and
m− k = k−2.

Next we show that if k ≥ 2m/3 then t0 < k−2, and if k < 2m/3 then t0 > k−2.
A calculation gives

t0 ≤ k−2 ⇐⇒ 0≤ (k−2)(m− k)(3k−2m)+2k−m−1.

Since 2k−m−1 > 0, we obtain t0 < k−2 if k ≥ 2m/3. Otherwise 3k−2m≤−1,
and

(k−2)(m− k)(3k−2m)+2k−m−1

≤−(k−2)(m− k)+2k−m−1 =−(k−1)(m− k−1)< 0.

It follows that t0 > k−2 if k < 2m/3.
In summary,

h(k,m) =

{
sk,m(t0) if k ≥ 2m/3 and (k,m) 6= (4,6),
sk,m(k−2) if k < 2m/3 or (k,m) = (4,6).

We next show that sk,m(k−2)< 1, which means that this subcase is only relevant
when k ≥ 2m/3 and (k,m) 6= (4,6). Since

sk,m(k−2) =
(m−2k+1)(k−2)2 +(k−1)2(k−2)

(k−2+(m−1− k)(k−1))2 ,

a calculation shows that

sk,m(k−2)< 1 ⇐⇒ m−2k < (k−1)2 ((m− k)(m− k−1)−1) ,
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which holds since m−2k < 0 and m− k ≥ 2. Finally we calculate

sk,m(t0) =
(k−1)2

4(m− k−1)(2k−m)(m− k)
.

This concludes estimating f at the vertices of ∆ . To summarise the above case
analysis, we have obtained that

max
x∈∆

f (x) = max
{

m−1
k2 ,1,

(k−2)2 +m−2
k2

}
if k < 2m/3,

and

max
x∈∆

f (x)

≤max
{

m−1
k2 ,1,

(k−2)2 +m−2
k2 ,

(k−1)2

4(m− k−1)(2k−m)(m− k)

}
if k ≥ 2m/3. The remaining claim of the lemma is now easily checked. �

Proof of Theorem 22. (1) Let
√

d < k ≤ (d + 1)/2. Suppose that there exist
m > 2d(1+ d−2k+1

k2−d ) vectors of norm ≥ 1 satisfying the k-collapsing condition;
equivalently, an m×m matrix A of rank ≤ d satisfying the k-collapsing condition.
Since m > 2d we have k < (m+ 2)/4. Therefore, by Lemma 41 the sum of the
squares of the entries in any row of A is ≤ 1 + (k−2)2+m−2

k2 = 2 + m−4k+2
k2 . By

Lemma 39,

d ≥ rank(A)≥ m2

m
(
2+ m−4k+2

k2

) = mk2

2k2 +m−4k+2
.

Solving for m (and taking note that k >
√

d) we obtain

m≤ 2d(k−1)2

k2−d
,

contradicting the assumption on m. This shows that C (k,d)≤ 2d(k−1)2

k2−d .

(2) In particular we obtain that C (k,d)≤ 2d if

2d(k−1)2

k2−d
< 2d +1,

which is equivalent to k≥−2d+
√

6d2 +3d +1. It remains to show that C (k,d)≤
2d if (d +1)/2 < k ≤ 2d−

√
d/2. Suppose that there exists an m×m matrix A of

rank ≤ d satisfying the k-collapsing condition, where m = 2d +1. It then follows
from k > (d+1)/2 that k > (m+2)/4. If furthermore k < 2m/3 then by Lemmas 39
and 41, d ≥ rank(A)≥ m2

m(1+1) and m≤ 2d, a contradiction. Therefore, k ≥ 2m/3.
We next show that

(k−1)2

4(m− k−1)(2k−m)(m− k)
< 1, (36)

which again gives the contradiction m≤ 2d by Lemmas 39 and 41.
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Consider f (x) = (m− x−1)(2x−m)(m− x), 2m/3≤ x≤ m−2. Then f ′(x) =
(4m− 6x)(m− x− 1)− 2x+m < 0, and it follows that the left-hand side of (36)
increases with k. It is therefore sufficient to prove (36) for k = 2d−

√
d/2, that is

(2d−
√

d/2−1)2

4
√

d/2(2d−2
√

d/2−1)(
√

d/2+1)
< 1.

This is equivalent to 8d
√

d/2−5d/2−6
√

d/2−1 > 0, which is easily seen to be
true.

(3) Let d ≥ 3 and k > 2d−
√

d/2. Suppose that there exists a k-collapsing m×
m matrix of rank ≤ d, where m > k + 1+

√
2d−3
2 . As before, we aim to find a

contradiction using Lemmas 39 and 41.
Writing t =m−k, we have t > 1+

√
2d−3
2 > 1. It follows that d < 2t2−2t+2< 2t2,

hence k > 2d−
√

d/2 > 2d− t and m = k+ t ≥ 2d +1.
Since we may assume without loss of generality that

m =

⌊
k+

1+
√

2d−3
2

⌋
+1,

we have m < k+2+
√

d/2. We may conclude that m < 4k−2 if 3k > 4+
√

d/2,
which follows from k > 2d−

√
d/2. Therefore, k > (m+2)/4. By Lemma 41, if

k < 2m/3 or
(k−1)2

4(m− k−1)(2k−m)(m− k)
≤ 1,

then Lemma 39 would give d ≥ m2

m(1+1) and m ≤ 2d, a contradiction. Therefore,
without loss of generality, k ≥ 2m/3 and

(k−1)2

4(m− k−1)(2k−m)(m− k)
> 1.

Lemma 39 now gives

d ≥ m2

m
(

1+
(k−1)2

4(m− k−1)(m− k)(m−2k)

) =
m(

1+
(k−1)2

4(t−1)t(k− t)

) ,

which implies

k+ t = m≤
(

1+
(k−1)2

4(t−1)t(k− t)

)
d. (37)

If we set f (x) =
(

1+ (x−1)2

4(t−1)t(x−t)

)
d− (x+ t) for x ≥ 2d− t +1, it follows (since

d < 2t2 and t ≥ 2) that

f ′(x) =
d

4(t−1)t

(
1−
( t−1

x− t

)2
)
−1

<
2t2

4(t−1)t
−1 =

2− t
2(t−1)

≤ 0,
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and f is strictly decreasing. It follows that since (37) holds for some k ≥ 2d− t +1,
it remains true if we substitute 2d− t +1 into k, that is,

2d +1≤
(

1+
(2d− t)2

4(t−1)t(2d−2t +1)

)
d, (38)

which is equivalent to

4(d +1)(t−1)t(2d−2t +1)≤ (2d− t)2d. (39)

We next show that the opposite inequality holds, which gives the required contradic-
tion. Since t = m− k = b1+

√
2d−3
2 c+1,

t−1≤ 1+
√

2d−3
2

< t,

or equivalently,
2t2−6t +6≤ d ≤ 2t2−2t +1. (40)

Note that

4(d +1)(t−1)t(2d−2t +1)− (2d− t)2d

= (t−1)3(6t +4)+(t−1)2−1

+(2t2−2t +1−d)
(
(2d− t−2)2 +12d−4t2−4t

)
.

(41)

By (40), since t ≥ 2,

12d−4t2−4t ≥ 12(2t2−6t +6)−4t2−4t = (5t−9)(4t−8)≥ 0,

hence
(2t2−2t +1−d)((2d− t−2)2 +12d−4t2−4t)≥ 0.

Substitute this into (41) to obtain

4(d +1)(t−1)t(2d−2t +1)− (2d− t)2d

≥ (t−1)3(6t +4)+(t−1)2−1
> 0,

which contradicts (39). �

Proof of Theorem 23. Suppose that there exists an m×m k-collapsing matrix of
rank ≤ d. We first treat the case k = 2. By Lemmas 39 and 41,

m2

m(1+max{1,(m−1)/4})
≤ d.

If the maximum in the denominator equals 1 then m≤ 2d. Otherwise, m≤ (1+(m−
1)/4)d and it follows that (1−d/4)m ≤ 3d/4. If d < 4 then m ≤ 3d/(4−d). In
particular, if d = 2 then m≤ 3, and if d = 3 then m≤ 9. This shows that C (2,2) = 4
and C (2,3)≤ 9.

Next assume that k≥ 3. Without loss of generality, m = k+2 > 2d. We aim for a
contradiction. Clearly, k = m−2 > (m+2)/4. If the maximum in Lemma 41 equals



SETS OF UNIT VECTORS WITH SMALL SUBSET SUMS 33

1, Lemma 39 gives m≤ 2d, a contradiction. Therefore, k ≥ 2m/3, the maximum in
Lemma 41 equals

(k−1)2

4(m− k−1)(2k−m)(m− k)
=

(m−3)2

8(m−4)
> 1, (42)

and by Lemma 39,

m2

m
(

1+ (m−3)2

8(m−4)

) ≤ d. (43)

By (42), m≥ 10 and k ≥ 8. Solving for m in (43) gives

m≤ d +16+2
√

6d2−38d +64
8−d

if we assume d < 8. Since k = m−2, we obtain

k ≤ 3d +2
√

6d2−38d +64
8−d

.

Keeping in mind that m = k+ 2 > 2d and m ≥ 10, we obtain a contradiction if
d ≤ 5 (and k ≥ 3); or if d = 6 and k ≥ 17; or if d = 7 and k ≥ 41. This proves the
theorem. �

8. UPPER BOUNDS USING THE RANKS OF HADAMARD POWERS OF A MATRIX

The following lemma, used by Alon in [1, 2], bounds the ranks of the integral
Hadamard powers of a square matrix from above in terms of the rank of the matrix.
It can be used to change a matrix to one that is sufficiently close to the identity
matrix so that Lemma 39 can give a good bound.

Lemma 42 (Alon [1, Lemma 9.2]). Let A = [ai, j] be an n×n matrix of rank d (over
any field), and let p≥ 1 be an integer. Then the rank of the p-th Hadamard power
A�p satisfies

rank(A�p) = rank([ap
i, j])≤

(
p+d−1

p

)
.

In order to use the above lemma in combination with Lemma 39 as before, we
need to maximise ∑i x2p

i on the simplex ∆ from the proof of Lemma 41. Here
we restrict the range of k to avoid the difficulties in Case III.iv in the proof of
Lemma 41.
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Lemma 43. Let p,k,m ∈ N such that 2≤ k ≤ (m+1)/2. Then

max

{
m−1

∑
i=1

x2p
i

∣∣∣∣∣−1≤∑
i∈I

xi ≤ 1 for all I ∈
(
[m]

k

)
,

−2≤∑
i∈I

xi ≤ 0 for all I ∈
(
[m−1]
k−1

)}

=


max

{
1,

m−1
k2p

}
if k = 2,

max
{

1,
(k−2)2p +m−2

k2p

}
if k ≥ 3.

Proof. As in the proof of Lemma 41 we have to maximise the new objective function
fp(x) = ∑

m−1
i=1 x2p

i over the same simplex ∆ defined by (30), (33) and (34) as before.
Since fp is convex, it is again sufficient to calculate the values of fp on the vertices
of ∆ . Using the same case numbering as in the proof of Lemma 41, we obtain the
following values:

Case I. fp(x) =
m−1
k2p .

Case II. fp(x) = 0 <
m−1
k2p .

Subcase III.i. fp(x) =
m−1−t

k2p ≤ m−k
k2p < m−1

k2p .

Subcase III.ii. fp(x) =
1

(m−1−t)2p−1 ≤ 1 with equality iff t = m−2.

Subcase III.iii.

fp(x) =
1

k2p

(
t
(( k−1

t −1
)2p−1

)
+m−1

)
=: gp(t)

≤ gp(1) =
1

k2p

(
(k−2)2p +m−2

)
since gp(t) is decreasing for 0 < t < k−1. This case occurs only if k ≥ 3.

Subcase III.iv. The case m− k ≤ t ≤ k−2 occurs only if 2k ≥ m+2, which we
have assumed to be false. �

Lemma 44. If p ∈ N and k >
(d+p−1

p

) 1
2p then

C (k,d)< max

{
2k2p

(d+p−1
p

)
k2p−

(d+p−1
p

) ,2k−1

}
.

Proof. Suppose that there exists a k-collapsing m×m matrix A = [ai, j] of rank at
most d, where m = C (k,d). Without loss of generality, m≥ 2k−1. By Lemma 43,
for any row i ∈ [m] of A�2p,

m

∑
j=1

a2p
i, j < 2+

m
k2p
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and by Lemmas 39 and 42,(
p+d−1

p

)
≥ rank([a2p

i, j ])>
m2

m
(
2+ m

k2p

) ,

from which follows

m <
2k2p

(d+p−1
p

)
k2p−

(d+p−1
p

) . �

Proof of Theorem 21. This is just a calculation from Lemma 44. Since

k2p(d+p−1
p

) > ((p!)−1/2p + ε)2pdp(d+p−1
p

) d→∞−−−→ (1+(p!)1/2p
ε)2p > 1+2p(p!)1/2p

ε ,

it follows that if d is sufficiently large depending on p and ε , then

k2p(d+p−1
p

) > 1+ p(p!)1/2p
ε =: 1+δ ,

where δ > 0 depends only on p and ε . Then(
d + p−1

p

)−1

− k−2p >

(
1− 1

1+δ

)(
d + p−1

p

)
,

and by Lemma 44, (since C (k,d)≥ 2d ≥ 2k2 > 2k−1)

C (k,d)<
2(d+p−1

p

)−1− k−2p
<

2
(d+p−1

p

)
1− (1+δ )−1 <

2(2d)p

(1− (1+δ )−1)p!

if we assume d > p. �

Lemma 45. Let n > k ≥ 1 be integers and ε = k/n. Then(
n
k

)
<

(ε−ε(1− ε)−(1−ε))n√
2πε(1− ε)n

.

Proof. Substitute the Stirling formula in the form m! = eδm(m
e )

m
√

2πm, where
1

12m+1 < δm < 1
12m [27] into n!

k!(n−k)! to obtain(
n
k

)
<

(ε−ε(1− ε)−(1−ε))n√
2πε(1− ε)n

e
1

12n−
1

12k+1−
1

12(n−k)+1 .

It is easily seen that 1
a+b < 1

a+1 +
1

b+1 for all a,b≥ 1. In particular, 1
12n < 1

12k+1 +
1

12(n−k)+1 and the lemma follows. �

Proof of Theorem 20. The function f (x) = (1+x)1/x(1+1/x) is strictly decreasing
on (0,1] with limx→0+ f (x) = ∞ and f (1) = 4. Therefore, γ2 = 1 and (γk) is strictly
decreasing. Since f (x)< e ·(1+1/x), we have f (e/(k2−e))< k2 and γk < e/(k2−
e). Also, since

x
x+1

= 1− 1
x+1

< e−1/(x+1),
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it follows that (1+ 1/x)x+1 > e. Set x = k2/e to obtain that f (e/k2) > k2 and
e/k2 < γk.

Let p := dγkde and γ := p/d. Then γ ≥ γk and it follows that

(1+ γ)1/γ

(
1+

1
γ

)
≤ k2. (44)

We estimate
(p+d−1

p

)
as follows:(

p+d−1
p

)
=

(
(1+ γ)d−1

γd

)
=

1
1+ γ

(
(1+ γ)d

γd

)
<

(
(1+1/γ)γ(1+ γ)

)d√
2πγ(1+ γ)d

by Lemma 45

≤ k2γd√
2πγ(1+ γ)d

by (44)

=
k2p√

2πγ(1+ γ)d
.

In particular,
(p+d−1

p

)
< k2p since√

2πγ(1+ γ)d >
√

2πγd =
√

2π p≥
√

2π > 1.

By Lemma 44, either C (k,d)< 2k−1 or

C (k,d)<
2k2pk2p√

2πγ(1+ γ)d

(
k2p− k2p√

2πγ(1+ γ)d

)

=
2k2p√

2πγ(1+ γ)d−1
.

This gives

C (k,d)< max
{

2√
2π−1

k2p,2k−1
}
< 1.33k2γkd+2.

We now assume that k <
√

d. Then C (k,d)≥ 2d > 2k−2 and

C (k,d)<
2k2p√

2πγ(1+ γ)d−1

<
2k2γk+2√
2πγkd−1

<
2k2γk+2√

2π(e/k2)d−1
.

Since
√

2πe > 3 and d/k2 > 1, it follows that
√

2π(e/k2)d− 1 > 2
√

d/k2 and
C (k,d)< k3+2γkd/

√
d. �
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9. LOWER BOUNDS

Lemma 46. Let k ≥ 2. Suppose there exist at least m unit vectors ui ∈ `d−1
2 such

that ∣∣〈ui,u j
〉∣∣≤ 1

2k+1
for all distinct i, j.

Then there exists a d-dimensional Minkowski space Xd such that Ck(Xd)≥ m. If
k ≥ 3 or if k = 2 and −1/5 ≤

〈
ui,u j

〉
< 1/5 for all distinct i, j, then Xd can be

chosen to be strictly convex and C∞.

Proof. The construction is similar to the construction in [13] of a strictly convex
d-dimensional space Xd such that C2(Xd)≥ 1.02d . The main difference is that we
define the unit ball as an intersection of half spaces instead of a convex hull of a
finite set of points.

Consider `d−1
2 to be a hyperplane of `d

2 with unit normal e. Let xi = ui +e and
yi = (1+ 1

2k )ui− 1
2ke for each i ∈ [m]. Let

B :=
{
x ∈ `d

2
∣∣ |〈x,yi〉| ≤ 1 for all i ∈ [m]

}
.

If span({yi}) = Rd then B is bounded and the unit ball of some norm ‖·‖B. Other-
wise {yi} spans a hyperplane with normal e′, say. In this case B as defined above is
unbounded, so we have to modify it. Before doing that, we show that xi ∈ ∂B and

∑
i∈I

xi ∈ B for all I ∈
(
[m]

k

)
.

Let i, j ∈ [m]. Then 〈
xi,y j

〉
=
(

1+
1
2k

)〈
ui,u j

〉
− 1

2k
. (45)

In particular, 〈xi,yi〉= 1, and since

− 1
2k+1

≤
〈
ui,u j

〉
≤ 1

2k+1
for distinct i, j, (46)

we obtain −1 <−1
k ≤

〈
xi,y j

〉
≤ 0 < 1, and it follows that xi ∈ ∂B.

Next let I ∈
([m]

k

)
and i ∈ [m]. We distinguish between two cases, depending on

whether i ∈ I or not.
If i /∈ I, then by (45),〈

∑
j∈I

x j,yi

〉
=
(

1+
1
2k

)
∑
j∈I

〈
ui,u j

〉
− 1

2
,

and by (46),

−1 <
−1
2k
− 1

2
≤
〈
∑
j∈I

x j,yi

〉
≤ 1

2k
− 1

2
< 0.

If i ∈ I, then again by (45),〈
∑
j∈I

x j,yi

〉
=
(

1+
1
2k

)
∑

j∈I\i

〈
ui,u j

〉
+

1
2
+

1
2k

,
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and by (46),

0 <
1
k
≤
〈
∑
j∈I

x j,yi

〉
≤ 1.

In both cases we have
∣∣〈∑ j∈I x j,yi

〉∣∣≤ 1 for all i, and it follows that ∑ j∈I x j ∈ B
for all I. If span({yi}) = Rd , then we have shown that B is the unit ball of a norm
‖·‖B such that {xi} is a k-collapsing family of unit vectors in Rd ,‖·‖B). In the case
where span({yi}) is a hyperplane with normal e′, we choose λ > 0 sufficiently
large so that |〈xi,e

′〉|< λ for all i and |〈∑i∈I xi,e
′〉|< λ for all I ∈

([m]
k

)
, and define

the required unit ball to be

B :=
{
x ∈ `d

2
∣∣ |〈x,yi〉| ≤ 1 for all i ∈ [m] and

∣∣〈x,e′〉∣∣≤ λ

}
.

If k ≥ 3 or if k = 2 and
〈
ui,u j

〉
< 1/5 for distinct i, j, then

∣∣〈∑ j∈I x j,yi
〉∣∣< 1 for

all i. Therefore, ∑ j∈I x j ∈ intB for all I. Also note that no x j, j 6= i is on any of the
hyperplanes {

x ∈ `d
2
∣∣〈x,yi〉=±1

}
or
{
x ∈ `d

2
∣∣〈x,e′〉=±λ

}
.

Then a strictly convex and C∞ norm can be found with unit ball between conv{xi}
and B [14]. �

For a detailed proof of the following lemma, see [35]. It uses a greedy construc-
tion.

Lemma 47. Let δ > 0. For sufficiently large d depending on δ , there exist m ≥(
1+ δ 2

2

)d
unit vectors ui in `d−1

2 such that
∣∣〈ui,u j

〉∣∣< δ for all distinct i, j.

Proof of Theorem 29. This theorem follows immediately from Lemmas 46 and
47. �

The following construction was explained to the author by Noga Alon (personal
communication).

Lemma 48. Let q be a prime power and s ∈ N with s < q. Then there exist qs+1

unit vectors in `q2−q
2 such that the inner product of any two vectors is in the interval

[− 1
q−1 ,

s−1
q−1 ].

Proof. Let Ps be the collection of polynomials over the field of q elements of
degree at most s:

Ps =
{

p ∈ Fq[x]
∣∣deg(p)≤ s

}
.

Then |Ps|= qs+1. For each p ∈Ps define a real q×q matrix M(p) by

M(p)i, j =

{
1 if p(i) = j,
− 1

q−1 if p(i) 6= j.

These matrices are in the q2-dimensional vector space of all real q×q matrices with
inner product 〈A,B〉= ∑

q
i=1 ∑

q
j=1 ai, jbi, j.
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Note that M(p1) = M(p2) iff p1(x) = p2(x) for all x ∈ Fq. It follows that if
s < q then all M(p) (p ∈Ps) are distinct. Otherwise M(p1) = M(p2) for some
p1, p2 ∈ Fq[x] with p1 6= p2, and then p1− p2 would have q > s ≥ deg(p1− p2)
roots, implying that p1− p2 is the zero polynomial. This also shows that two distinct
polynomials from Ps are equal at at most s points.

Let p1, p2 ∈Ps with p1 and p2 not necessarily distinct. Let c denote the number
of points where p1 and p2 coincide. Then

〈M(p1),M(p2)〉= c−2(q− c)
1

q−1
+(q2−2q+ c)

1
(q−1)2

= (c−1)
(

q
q−1

)2

.

If p1 6= p2, then 0≤ c≤ s and

−
(

q
q−1

)2

≤ 〈M(p1),M(p2)〉 ≤ (s−1)
(

q
q−1

)2

.

On the other hand, since a polynomial coincides with itself at exactly q points,
〈M(p),M(p)〉= q2

q−1 . Thus
√

q−1
q M(p) has norm 1, and inner products of distinct

√
q−1
q M(p) lie in [ −1

q−1 ,
s−1
q−1 ]. Since each column of each M(p) sums to 0, the M(p)

lie in a (q2−q)-dimensional subspace of the space of q×q matrices. �

Proof of Theorem 30. Set s = c+1 in Lemma 48 and then apply Lemma 46. �
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