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Abstract
We consider a general approach for reduction procedure in chiral gauge mod-

els. We study two types of reductions: Lagrange-Poincaré and Euler-Poincaré
reductions. We show that several interesting systems from Condensed Matter,
like superfluid liquids and nematic liquid crystals also embedded in this general
scheme.
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1 Introduction

In condensed matter physics there are a lot of systems exhibiting common underlying
properties. For example, they are determined by a Ginzburg-Landau equation with a
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multidimensional order parameter. These systems include uniaxial and biaxial nematics
in the theory of liquid crystals, superfluid core in neutron stars, and superfluid helium
3He.

One of the interesting features of this system is the existence of different thermo-
dynamic states. Th approach based on the indification of thermodynamic phases with
orbits of the potential of free energy was developed in Golo and Monastyrsky [1978];
Bogomolov and Monastyrsky [1987].

It is important to point out that, generally, these systems can be obtained by a
reduction procedure developed in Castrillón-López and Ratiu [2003], Ellis, Gay-Balmaz,
Holm, Ratiu [2011], Gay-Balmaz and Tronci [2010]. The goal of this paper is to show
the effectiveness of this method that manages to unify these properties and techniques.

2 Lagrange-Poincaré versus Euler-Poincaré reduc-

tion in field theory

In this section we shall quickly review the general theory of Lagrange-Poincaré and
Euler-Poincaré reduction for field theoretical problems. We shall emphasize the case of
discrete symmetry groups since these appear often in applications.

Geometric setup. We start with a general construction. Let the manifold M be the
parameter space of the theory and let Φ : G ×M → M be a left transitive Lie group
action. Usually, M is a particular orbit of the action of G on a bigger manifold. Selecting
one particular orbit corresponds to choosing a particular phase of the physical system.

Choose an element m0 ∈ M and consider the isotropy subgroup H := Gm0 . We
have the diffeomorphism G/H 3 [g] := gH

∼7−→ gm0 ∈ M , where H acts on G by right
multiplication Rhg := gh for all h ∈ H and g ∈ G. We shall always identify M with
G/H via this diffeomorphism.

Let πX,Σ : Σ := M × X 3 (m,x) 7→ x ∈ X be a trivial fiber bundle over the n-
dimensional oriented manifold X. The theory described below generalizes to arbitrary
locally trivial fiber bundles πX,Σ : Σ→ X but for the examples presented in this paper,
it suffices to consider trivial bundles, where many of the formulas simplify. We shall fix
in what follows a volume form µ on X, i.e., if (x1, . . . , xn) are local coordinates on the
the open set U ⊂ X, then µ = adx1∧ . . .∧ dxn for a smooth nowhere vanishing function
a ∈ C∞(U,R).

In general, a first order field theory is defined on the first jet bundle J1Σ→ Σ of the
tangent bundle TΣ→ Σ of a manifold Σ; as opposed to the tangent bundle TΣ, which is a
vector bundle, the first jet bundle J1Σ is an affine bundle over Σ. However, for the trivial
bundle πX,Σ : Σ → X, we have the identification J1

(m,x)Σ = L(TxX,TmM) of the fibers

over (m,x) ∈M ×X, where L(TxX,TmM) is the vector space of linear maps from TxX
to TmM , i.e., the first jet bundle πM×X,L(TX,TM) : J1Σ = L(TX, TM) → Σ = M × X
coincides, in this case, with the vector bundle of linear bundle maps L(TX, TM) from
TX to TM over the base M ×X, namely, L(TxX,TmM) 3 λ(m,x) 7→ (m,x) ∈ M ×X.
It is important in what follows to regard the jet bundle J1Σ also as a locally trivial fiber

2



bundle over X, namely, πX,L(TX,TM) : L(TX, TM)→ X is given by πX,L(TX,TM)(λx,m) =
πX,Σ(m,x) = x for all (m,x) ∈ Σ = M ×X.

We suppose that the field theory is described by a Lagrangian density Lµ : J1Σ →
ΛnX, where ΛnX is the bundle of n-forms on X, i.e., the sections of the line bundle
ΛnX → X are n-forms whose local expression is fdx1∧ . . .∧dxn for an arbitrary smooth
function f ∈ C∞(U,R), µ is a fixed volume form on X (a basis of the space of sections
of ΛnX → X), and L : J1Σ→ R is a smooth function, i.e., we have

L = L(Txm) = L(mi, ∂jm
k)

for a smooth map m : X → M which in local coordinates is written as (x1, . . . , xn) 7→
(m1(x1, . . . , xn), . . . ,mp(x1, . . . , xn)), p := dimM , and ∂j := ∂/∂xj. Critical sections are
given by solutions of the covariant Euler-Lagrange equations associated to L.

Since the G-action is transitive on M = G/H, any section m : X → M can be
written as m(x) = Φg(x)(m0), where g : X → G, i.e., g is a section of the trivial principal
bundle πX,P : P = X ×G→ X. By inserting this relation into the action functional∫

X

L(Txm)µ,

and using the formula Txm(vx) = (Txg(vx)g(x)−1)M
(
Φg(x)m0

)
, we can write the action

functional in terms of g as∫
X

L
((
Txg(vx)g(x)−1

)
M

(
Φg(x)m0

))
µ.

This suggests the definition of the Lagrangian density Lm0µ : J1P → ΛnX defined by

Lm0(Txg) := L
((
Txg(vx)g(x)−1

)
M

(
Φg(x)m0

))
.

This Lagrangian is Gm0-invariant since

Lm0(TRh ◦ Txg) = Lm0(Txg), for all h ∈ H.

Our goal is to find an explicit the relation between the Euler-Lagrange equations for Lm0

and L as well as to deduce another simpler equivalent formulation of these equations.
To do this, we fix a H-invariant Lagrangian density Lµ defined on J1P and carry

out two reductions processes for L. The first one is a covariant Lagrange-Poincaré
reduction, the second one is a covariant Euler-Poincaré reduction with parameters. This
corresponds to two realizations of the quotient space J1P/H.

Lagrange-Poincaré approach. The Lagrange-Poincaré version corresponds to the
vector bundle isomorphism

βA : L(TX, TG)/H → L(TX, TM)×Σ L(TX, h̃) = L(TX, TM)⊕ L(TX, h̃)

over Σ := P/H = M ×X, where h̃ := G×H h→M is the adjoint bundle. The notation
used above is the standard one. The adjoint bundle G ×H h := (G × h)/H → G/H
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is a Lie algebra bundle with fiber h, where the right H-action on G × h is given by
(g, η) · h := (gh,Adh−1 η) for all h ∈ H, g ∈ G, and η ∈ h. On the right hand side,

L(TX, TM) ×Σ L(TX, h̃) denotes the vector bundle whose fiber at (m,x) ∈ M ×X is

L(TxX,TmM)⊕ L(TxX, h̃m); note that in both factors we have the same (m,x).
This vector bundle isomorphism βA depends on the choice of a principal connection

A ∈ Ω1(P, h) on the principal bundle P = G×X → Σ = P/H = (G/H)×X = M ×X.
Note that we can choose here A as a principal connection on the right principal H-bundle
π : G→M = G/H, i.e., A ∈ Ω1(G, h). Denoting by l(x,g) a linear map in L(TxX,TgG),
the isomorphism restricted to the fiber at (m,x) is given by (see Castrillón-López and
Ratiu [2003], Ellis, Gay-Balmaz, Holm, Ratiu [2011])

βA([l(x,g)]H) :=
(
Tgπ(l(x,g)( )),

[
g,A(l(g,x)( ))

]
H

)
=
(
(l(x,g)( )g−1)M(m),

[
g,A(l(g,x)( ))

]
H

)
∈ L(TxX,TmM)× L(TxX, h̃m), m = π(g).

So, if g : X → G is a given section and m := π ◦ g : X →M , the reduced section reads

βA ([Txg]H) = (Tπ ◦ Txg, [g(x),A(Txg( ))]H) =: (Txm,σ(x))

∈ L(TxX,Tm(x)M)× L(TxX, h̃m(x)).

From the given right H-invariant Lagrangian density Lµ : J1(X × G) → Λn(X),

we get the reduced Lagrangian denisity `µ : L(TX, TM) ×Σ L(TX, h̃) → Λn(X), ` =
`(Txm,σ(x)), obtained via the Lagrange-Poincaré process:

L(Txg) = ` (Tπ ◦ Txg, [g(x),A(Txg( ))]H) . (2.1)

The reduced Euler-Lagrange equations on the Lagrange-Poincaré side have been
derived in Castrillón-López and Ratiu [2003], Ellis, Gay-Balmaz, Holm, Ratiu [2011].
They are obtained by computing the variations δm and δAσ of the reduced variables
m : X → M and the section σ : X → L(TX, h̃). Let g : U ⊂ X → G be defined on
an open subset such that Ū is compact. Recall that the Euler-Lagrange equations are
obtained by the critical action principle

d

dε

∣∣∣∣
ε=0

∫
U

L(Txgε)µ = 0,

for all smooth variations gε : U ⊂ X → G such that g0 = g and gε|∂U = g|∂U .
The variation of m is such that δm|∂U = 0. The variation of σ is given by

δAσ(x) =
DA

Dε

∣∣∣∣
ε=0

[gε(x),A(Txgε( )]H

= ∇Aη(x) + [η(x), σ(x)] +m∗
(
iδmB̃

)
(x) ∈ L

(
TxX, h̃m(x)

)
,

where B̃ ∈ Ω2(M, h̃) is the reduced curvature on the base associated to the connection

A ∈ Ω1(G, h), η(x) = [g(x),A(δg(x))]H ∈ h̃m(x) is arbitrary such that η|∂U = 0, and

[η(x), σ(x)] is the Lie bracket in the fiber h̃m(x) of the adjoint bundle.
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The partial derivatives of the reduced Lagrangian ` : L(TX, TM)×Σ L(TX, h̃)→ R
are denoted by

δ`

δm
(x) ∈ T ∗m(x)M,

δ`

δ Tm
(x) ∈ L

(
T ∗xX,T

∗
m(x)M

)
,

δ`

δσ
(x) ∈ L

(
T ∗xX, h̃

∗
m(x)

)
.

The first two partial derivatives are fiber derivatives, the third one is the horizontal
partial derivative defined with the help of the connection A and a covariant derivative
on M (see Castrillón-López and Ratiu [2003], [Ellis, Gay-Balmaz, Holm, Ratiu, 2011,
equation (3.22)] with a sign change in the first equation because in these papers H acts
on the left whereas here the H-action is on the right). The resulting reduced Euler-
Lagrange equations, i.e., the Lagrange-Poincaré equations, are

divA δ`

δσ
+ ad∗σ

δ`

δσ
= 0,

δ`

δm
− div

δ`

δ Tm
=

〈
δ`

δσ
, iTmB̃

〉
, (2.2)

where divA : Γ
(
πX,L(T ∗X,h̃∗)

)
→ Γ(πX,h̃∗) is the covariant divergence associated to A,

defined as minus the adjoint differential operator to the covariant derivative ∇A, and
div : Γ

(
πX,L(T ∗X,T ∗M)

)
→ Γ(πX,T ∗M) is the divergence operator associated to a covari-

ant derivative on M (see Ellis, Gay-Balmaz, Holm, Ratiu [2011]). Here πX,L(T ∗X,h̃∗) :

L
(
T ∗X, h̃∗

)
→ X, πX,h̃∗ : h̃∗ → X, πX,L(T ∗X,T ∗M) : L(T ∗X,T ∗M) → X, and πX,T ∗M :

T ∗M → X are the locally trivial fiber bundles obtained by composing the locally trivial
bundles given by the total spaces whose natural base is M × X with the projection
M × X → X; Γ of a projection denotes the space of section of that projection. We
summarize the considerations above in the following statement.

Theorem 2.1 Given is a right H-invariant Lagrangian L : J1P → R, where P =
G × X → X is a trivial principal bundle and H is a closed subgroup of G. Define the
reduced Lagrangian ` : L(TX, TM) ×Σ L(TX, h̃) → R obtained by Lagrange-Poincaré
reduction; see (2.1). Then the Euler-Lagrange equations for L are equivalent to the

Lagrange-Poincaré equations (2.2) for ` for a smooth section σ : U ⊂ X → L(TX, h̃)
and a smooth function m : U ⊂ X →M .

Lagrange-Poincaré equations for H discrete. Assume now that H is a closed
discrete subgroup of G. Then h = {0}, h̃ is the vector bundle with zero dimensional fiber
and base M , A = 0, and hence the vector bundle isomorphism βA becomes canonical,
β : L(TX, TG)/H → L(TX, TM), the source and target spaces viewed as a vector
bundles over Σ = M ×X, and it is given by

β([l(x,g)]H) := Tgπ(l(x,g)( )) = (l(x,g)( )g−1)M(m) ∈ L(TxX,TmM).

So, if g : X → G is a given section and m := π ◦ g : X → M , the reduced section
becomes

β ([Txg]H) = Tπ ◦ Txg = Txm ∈ L(TxX,Tm(x)M).

The reduced Lagrangian ` : L(TX, TM) → R yields the Lagrange-Poincaré equations
(2.2) which in this case become

δ`

δm
− div

δ`

δ Tm
= 0. (2.3)
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Remark 2.2 It is instructive to consider in more detail the isomorphism β in the case
of a discrete subgroup. In this case, the kernel of the tangent map is zero, so that at
any g ∈ G we have the isomorphism Tgπ : TgG→ T[g](G/H) which implies that

β : (TG)/H → T (G/H), [vg]H 7→ Tπ(vg)

is a vector bundle isomorphism covering the identity on G/H. Indeed, if Tgπ(vg) =
Tḡπ(wḡ), then necessarily ḡ = gh for h ∈ H, and we can write Tgπ(vg) = Tḡπ(wḡ) =
Tgπ(wḡh

−1), so that vg = wḡh
−1, since kerTgπ = {0}. This proves that [vg]H = [wḡ]H .

The same argument shows that

β : (L(TX, TG))/H → L(TX, T (G/H)), [l(x,g)]H 7→ Tπ ◦ l(x,g)

is a vector bundle isomorphism covering the identity on X × G/H. Indeed, if Tgπ ◦
l(x,g) = Tπ ◦ l(x̄,ḡ), then x̄ = x, ḡ = gh, and Tgπ(l(x,g)(vx)) = Tḡπ(l(x,ḡ)(vx)), for all
vx ∈ TxX. So we can write Tgπ(l(x,g)(vx)) = Tgπ(l(x,ḡ)(vx)h

−1), for all vx ∈ TxX, and
hence l(x,g)(vx) = l(x,ḡ)(vx)h

−1, for all vx ∈ TxX, since kerTgπ = {0}. This proves that
l(x,g) = l(x,ḡ)h

−1 whence [l(x,g)]H = [l(x̄,ḡ)]H . The inverse of β is given by

L(TX, TM) 3 λ(x,m) 7→ [λ(x,g)]H ∈ L(TX, TG)/H,

where λ(x,g) ∈ L(TX, TG) is such that Tπ ◦ λ(x,g) = λ(x,m). �

Euler-Poincaré approach. The Euler-Poincaré version corresponds to the vector
bundle isomorphism

īm0 : L(TX, TG)/H → L(TX, g)×M

over Σ = M ×X, whose restriction to the fibers at (m,x) reads

īm0

(
[l(x,g)]H

)
=
(
TRg−1(l(x,g)( )),Φg(m0)

)
=: (ξx,m) ∈ L(TxX, g)× {m},

where an element m0 ∈ M has been fixed. We refer to Gay-Balmaz and Tronci [2010]
for the corresponding approach in classical mechanics. We note that a connection is not
needed to write this isomorphism. If g : X → G is a given section, the formula for the
reduced section given above becomes

īm0 ([Txg]H) = (TRg(x)−1 ◦ Txg,Φg(x)(m0)) =: (ξ(x),m(x)). (2.4)

Note that by composing the two vector bundle isomorphisms βA and īm0 over Σ =

M × X, we get an isomorphism L(TX, g) × M → L(TX, TM) × L(TX, h̃), whose
restriction to the fiber at (m,x) ∈ Σ reads

L(TxX, g)×{m} 3 (ξx,m) 7→ ((ξx( ))M(m), [g,A(ξx( )g)]H) ∈ L(TxX,TmM)×L(TxX, h̃m),

where g ∈ G is arbitrary such that π(g) = m.
Given a H-invariant Lagrangian L on J1P , the associated reduced Lagrangian l :

L(TX, g)×M → R obtained through the Euler-Poincaré process is

L(Txg) = l
(
Txg( )g(x)−1,Φg(x)m0

)
. (2.5)
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The partial derivatives are

δl

δξ
(x) ∈ L(T ∗xX, g

∗),
δl

δm
(x) ∈ T ∗m(x)M,

where ξ : X → L(TX, g) is a section and m : X →M is a smooth function.
Given smooth variations gε : U ⊂ X → G such that g0 = g and gε|∂U = g|∂U , we get

the following constrained variations for the reduced sections: if c(t) is a smooth curve
such that c(0) = x and d

dt

∣∣
t=0

c(t) = vx, we get

δξ(x)(vx) =
d

dε

∣∣∣∣
ε=0

Txgε(vx)gε(x)−1 =
d

dε

∣∣∣∣
ε=0

d

dt

∣∣∣∣
t=0

gε(c(t))gε(x)−1

=
d

dt

∣∣∣∣
t=0

d

dε

∣∣∣∣
ε=0

gε(c(t))gε(x)−1 =
d

dt

∣∣∣∣
t=0

δg(c(t))g(x)−1 − g(c(t))g(x)−1δg(x)g(x)−1

=
d

dt

∣∣∣∣
t=0

(
δg(c(t))g(c(t))−1 − δg(x)g(c(t))−1 − g(c(t))g(x)−1δg(x)g(x)−1

)
= d(δgg−1)(x)(vx) + [δg(x)g−1(x), Txg(vx)g(x)−1]

δm(x) =
d

dε

∣∣∣∣
ε=0

Φgε(x)(m0) =
(
δg(x)g(x)−1

)
M

(m(x)),

so we get the constrained variations

δξ = dη + [η, ξ], δm = ηM(m),

where η : U ⊂ X → g is arbitrary with η|∂U = 0. We thus get

d

dε

∣∣∣∣
ε=0

∫
U

l(ξε,mε)µ =

∫
U

〈
δl

δξ
,dη + [η, ξ]

〉
+

〈
δl

δm
, ηM(m)

〉
µ

=

∫
U

〈
− div

δl

δξ
− ad∗ξ

δl

δξ
+ J

(
δl

δm

)
, η

〉
,

where the pairings are, respectively, between L(TX, g) and L(T ∗X, g∗), TM and T ∗M ,
g and g∗; J : T ∗M → g∗ is the standard equivariant momentum map of the cotangent
lifted action given by 〈J(αm), ζ〉 = 〈αm, ζM(m)〉 for all αm ∈ T ∗mM , ζ ∈ g.

We thus obtain the following result.

Theorem 2.3 Given is a right H-invariant Lagrangian L : J1P → R, where P =
G × X → X is a trivial principal bundle and H is a closed subgroup of G. Define the
reduced Lagrangian l : L(TX, g) ×M → R obtained by Euler-Poincaré reduction with
parameter; see (2.5). Then the Euler-Lagrange equations for L are equivalent to the
Euler-Poincaré equations for l, namely,

div
δl

δξ
+ ad∗ξ

δl

δξ
= J

(
δl

δm

)
, Tm = ξM(m) (2.6)

for a smooth section ξ : X → L(TX, g) and a smooth function m : X →M .
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The second equation can be explicitly written as

Txm(vx) = (ξ(x)(vx))M (m(x)), for all vx ∈ TX.

If H is closed and discrete, the Euler-Poincaré equations (2.6) for l : L(TX, g)×M →
R do not simplify.

If we have the inclusion of closed subgroups H1 ⊂ H2 then we have G/H2 → G/H1 as
a locally trivial fiber bundle with fiber H2/H1 and structure group NH2(H1)/H1, where
NH2(H1) is the normalizer of H1 inH2. This leads to a sequence of reductions from H2

to H1.
An example of such a sequence is the reduction from biaxial nematics with the group

H1 = Z2 × Z2 to uniaxial nematics with the group H2 = Z2 × SO(2).

3 Applications to condensed matter

As discussed previously, for condensed matter theories the Lagrangian is defined on
L(TX, TM), i.e., on the first jet bundle of a trivial bundle M × X → X, so that
L = L(Txm). The manifold M is assumed to be a homogeneous space, relative to the
transitive action of a Lie group G, with isotropy group H = Gm0 for some preferred
element m0 ∈ M . From L one can construct a Lagrangian L on the trivial principal
bundle P = X ×G→ X, by

L(Txg) := L
(
Tx(Φg( )m0)

)
,

where g : X → G, i.e., g is a section of the trivial principal bundle P = X ×G→ X.
Using the results of §2, we will show that the Euler-Lagrange equations for L are

equivalent to those for L by using Lagrange-Poincaré reduction. Then we use the equiv-
alence with the Euler-Poincaré approach obtained above to write the equations in a
simpler form.

Since L is H-invariant, by fixing a connection A ∈ Ω1(G, h), we get the Lagrange-
Poincaré Lagrangian, that we now compute. Given a map g : U ⊂ X → G, and defining
m := π ◦ g : U ⊂ X →M , we have

` (Txm, [g(x),A(Txg( ))]H) = L(Txg) = L
(
Tx(Φg( )m0)

)
= L(Txm).

This means that ` : L(TX, TM) ×Σ L(TX, h̃) → R does not depend on the second
variable, so δ`

δσ
= 0, and ` = L. Thus, the second group of Lagrange-Poincaré equations

in (2.2) are the Euler-Lagrange equations for L on L(TX, TM).
We now compute the Euler-Poincaré reduced Lagrangian. We have

l(ξ(x),m(x)) = l
(
Txg( )g(x)−1,Φg(x)m0

)
= L(Txg) = L

(
Tx(Φg( )m0)

)
= L(ξ(x)(m(x))M).

From the above results, we know that the Euler-Lagrange equations for L are equivalent
to the Euler-Poincaré equations

div
δl

δξ
+ ad∗ξ

δl

δξ
= J

(
δl

δm

)
, Tm = ξM(m).

We summarize these considerations.
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Corollary 3.1 The following equations are equivalent.

(i) The Euler-Lagrange equations for L : L(TX, TM)→ R, i.e.,

δL

δm
− div

δL

δ Tm
= 0,

where m : X →M .

(ii) The Euler-Poincaré equations for l : L(TX, g)×M → R, i.e.,

div
δl

δξ
+ ad∗ξ

δl

δξ
= J

(
δl

δm

)
, Tm = ξM(m), (3.1)

where ξ : X → L(TX, g) is a smooth section

We shall study next example using the following general approach. We determine
from physical reasons the order parameter of the system. The Lagrangian of the system
depends on A and ∇A and its form depends on the specific system under consideration.
To find a solution of the Euler-Lagrange equations determined by this Lagrangian it is
necessary
• to find thermodynamics phases of an appropriate system
• to determine the different types of textures as solutions of the Ginzburg–Landau (GL)
equations.

To solve the first problem we use the technique of (Golo and Monastyrsky [1978],Bo-
gomolov and Monastyrsky [1987],Monastyrsky [1993]), where thermodynamic phases are
identified with an orbit containing a minimum of the potential of the free energy. To
address the second problem, we fix the phase and so different textures can be found as
solutions of the Ginzburg-Landau equations determined by this phase. It turns out that
on a fixed orbit the GL equations are the Euler-Lagrange equations considered above,
where the Lagrangian function is the gradient term in the GL equation which determines
a metric on the orbit.

In order to show this equivalence we consider the one-dimensional textures in the A-
phases of 3He. Here the orbit MA is isomorphic to the space G/H = SO(3)× S2/Z2

Liquid Helium 3He. (Golo, Monastyrsky, and Novikov [1979], Monastyrsky [1993])
Let G = U(1)× SO(3)L × SO(3)R act on A ∈ gl(3,C) by(

eiϕ, R1, R2

)
· A := eiϕR1AR

−1
2 . (3.2)

The Lagrangian L = L(A,∇A) of the theory is defined on maps A : X → gl(3,C).
Different orbits correspond to different phases. We choose M to be one of these orbits
and find critical points of

∫
X
L(TxA)µ among maps A : X →M (and not X → gl(3,C)).

This Lagrangian density is of the form

L(A,∇A) = Fdip(A) + FH(A) + Fgrad(A,∇A) + U(A),

where Fgrad(A,∇A) + U(A) is the free energy and Fgrad(A,∇A) is its gradient term
whereas U(A) is a potential, Fdip(A) is the dipole energy, and FH(A) is the energy of
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the magnetic field H. The general explicit formulas are (see [Monastyrsky, 1993, §5.2.1,
§5.2.3]

Fgrad(A,∇A) = γ1

(
∂kApi

)
(∂kApi) + γ2

(
∂kApi

)
(∂iApk) + γ3

(
∂kApk

)
(∂iApi)

U(A) = αTr(AA∗) + β1|Tr(AAT )|+ β2 [Tr(AA∗)]2 + β3 Tr
[
(A∗A)(A∗A)

]
+ β4 Tr [(AA∗)]2 + β5 Tr

[
(AA∗)(AA∗)

]2

FH(A) = −1

2
χijHiHj

where α, β1, . . . , β5, γ1, γ2, γ3 are constants and χij are the components of the tensor of
magnetic susceptibility. Here ? means the complex conjugacy and repeated indices imply
summation.

The equilibrium of the superfluid phase is given by the minimum of the potential
U(A) under the condition that Fgrad = 0. In a macroscopic description of textures in
3He, the Lagrangian L, Fgrad, Fdip, and FH each have their own characteristic length
scales L,Lgrad, Ldip, LH . It is possible to study textures at different regimes: L � Ldip
and L � Ldip. It is easy to take into account additional interactions. It leads only
to additional degeneration of the space of a parameter of order. Here we consider less
generate case: L� Ldip with FH = Fdip = 0. The orbit MA is determined by minimizing
U(A) and one finds that this orbit generates by the matrix

A0 =

 0 0 0
0 0 0
1 i 0

 ∈ gl(3,C).

In this case, the subgroup SO(3)L×SO(3)R acts transitively on MA (i.e., the U(1)-part
in (3.2) is conjugated to an element of SO(3)L × SO(3)R. On the orbit MA one takes
only the gradient part of the Lagrangian density, i.e., L(A,∇A) = Fgrad(A,∇A).

The reduced velocity ξ = (∇g)g−1 = TRg(x)−1 ◦ Txg of the general theory (see (2.4))
is given here by ξ = (v, w) : X → so(3), v = (∂zR1)R−1

1 and w = R−1
2 (∂zR2). The

Euler-Poincaré Lagrangian l(ξ,m) of the general theory (see (2.5)), is in this case given
by

l(v, w,A) = Iab(A)wawb + χabvavb

where chiral velocities v, w are: v = i∂xR1R1
−1 and w = i∂xR2R2

−1 in accordance with
[Monastyrsky, 1993, formula (5.133)]. Thus, the Euler-Poincaré equations (3.1) read

∂z
δl

δv
+ ad∗v

δl

δv
= J1

(
δl

δA

)
, ∂z

δl

δv
− ad∗w

δl

δw
= J2

(
δl

δA

)
, (3.3)

where J1 : T ∗M → so∗(3) is the momentum map of the left action and J2 : T ∗M →
so∗(3) is the momentum map of the right action of SO(3) on the orbit M , respectively.

4 Conclusion

The possibility of identifying condensed matter systems with multidimensional order
parameters with different types of of gauge fields reductions opens new opporunities to
find solutions in diverse problems in condensed matter:
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1. One and two-dimensional textures in Liquid crystals and Superfluids,
2. Shapes of interfaces between different phases in Superfluid 3He,
3. Phase transitions between biaxial and uniaxial nematics
4. Vortices in rotating neutron stars (Monastyrsky and Sasorov [2011]).
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