
GEOMETRIC HIGHER GROUPOIDS AND CATEGORIES

KAI BEHREND AND EZRA GETZLER

ABSTRACT. In an enriched setting, we show that higher groupoids and higher categories form categories of
fibrant objects, and that the nerve of a differential graded algebra is a higher category in the category of algebraic
varieties.

This paper develops a general theory of higher groupoids in a category V . We consider a small category
V of spaces, together with a subcategory of covers, satisfying the following axioms:

(D1) V has finite limits;
(D2) the pullback of a cover is a cover;
(D3) if f is a cover and gf is a cover, then g is a cover.

These axioms are reminiscent of those for a category of smooth morphisms P of Toën and Vezzosi ([24],
Assumption 1.3.2.11). A topos satisfies these axioms, with epimorphisms as covers; so do the category of
schemes, with surjective étale morphisms, smooth epimorphisms, or faithfully flat morphisms as covers, and
the category of Banach analytic spaces, with surjective submersions as covers. We call a category satisfying
these axioms a descent category. We call a simplicial object in a descent category a simplicial space.

A finite simplicial set is a simplicial set with a finite number of degenerate simplices. Given a simplicial
space X and a finite simplicial set T , let

Hom(T,X)

be the space of simplicial morphisms from T to X; it is a finite limit in V , and its existence is guaranteed by
(D1).

Let Λni ⊂ ∆n be the horn, consisting of the union of all but the ith face of the n-simplex:

Λni =
⋃
j 6=i

∂j∆
n.

A simplicial set X is the nerve of a groupoid precisely when the induced morphism

Xn → Hom(Λni , X)

is an isomorphism for n > 1.
On the other hand, given a simplicial abelian group A, the associated complex of normalized chains

vanishes above degree k if and only if the morphism An → Hom(Λni , A) is an isomorphism for n > k.
Motivated by these examples, Duskin defined a k-groupoid to be a simplicial set X such that the morphism
Xn → Hom(Λni , X) is surjective for n > 0 and bijective for n > k. (See Duskin [10] and Glenn [15]. In
their work, k-groupoids are called “k-dimensional hypergroupoids.”)

We are grateful to Nick Roszenblyum for remarking that the path space of a quasi-category X is Hom(�1, X), and to Jesse
Wolfson for many helpful discussions. The first author thanks Imperial College for its hospitality during the period when this paper
was begun. The second author thanks the University of Geneva for its hospitality during the period when it was completed, and the
Simons Foundation for support under a Collaboration Grant for Mathematicians.
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In this paper, we generalize Duskin’s theory of k-groupoids to descent categories: Pridham takes a similar
approach in [21].

Definition. Let k be a natural number. A simplicial space X in a descent category V is a k-groupoid if, for
each 0 ≤ i ≤ n, the morphism

Xn
// Hom(Λni , X)

is a cover for n > 0, and an isomorphism for n > k.

Denote by skV the category of k-groupoids, with morphisms the simplicial morphisms of the underlying
simplicial spaces. Thus, the category s0V of 0-groupoids is equivalent to V , while the category s1V of
1-groupoids is equivalent to the category of Lie groupoids in V , that is, groupoids such that the source and
target maps are covers. (The equivalence is induced by mapping a Lie groupoid to its nerve.)

Definition. A morphism f : X → Y between k-groupoids is a fibration if, for each n > 0 and 0 ≤ i ≤ n,
the morphism

Xn
// Hom(Λni , X)×Hom(Λn

i ,Y ) Yn

is a cover. It is a hypercover if, for each n ≥ 0, the morphism

Xn
// Hom(∂∆n, X)×Hom(∂∆n,Y ) Yn

is a cover. It is a weak equivalence if there is a k-groupoid P and hypercovers p : P → X and q : P → Y

such that f = qs, where s is a section of p.

Every k-groupoid is fibrant: that is, the unique morphism with target the terminal object e is a fibration.
Every hypercover is a fibration.

The following is the first main result of this paper: for the definition of a category of fibrant objects, see
Definition 1.1.

Theorem. The category of k-groupoids skV is a category of fibrant objects.

We will prove the following more direct characterization of weak equivalences in Section 5.

Theorem. A morphism f : X → Y between k-groupoids is a weak equivalence if and only if, for each
n ≥ 0, the morphisms

Xn ×Yn Yn+1
// Hom(∂∆n, X)×Hom(∂∆n,Y ) Hom(Λn+1

n+1, Y )

are covers.

Parallel to the theory of k-groupoids, there is a theory of k-categories, modeled on the theory of com-
plete Segal spaces (Rezk [22]). In the case where V is the category of sets, these are truncated weak Kan
complexes in the sense of Boardman and Vogt [3]. Weak Kan complexes were studied further by Joyal [17],
who calls them quasi-categories, and by Lurie [19], who calls them∞-categories.

The thick n-simplex is the simplicial set �n = cosk0 ∆n. Just as ∆n is the nerve of the category with
objects {0, . . . , n} and a single morphism from i to j if i ≤ j, �n is the nerve of the groupoid [[n]] with
objects {0, . . . , n} and a single morphism from i to j for all i and j. In other words, just as the k-simplices
of the n-simplex are monotone functions from {0, . . . , k} to {0, . . . , n}, the k-simplices of the thick simplex
are all functions from {0, . . . , k} to {0, . . . , n}. What we call the thick simplex goes under several names
in the literature: Rezk [22] denotes it E(n), while Joyal and Tierney [18] use the notation ∆′[n].
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Definition. Let k be a positive integer. A simplicial space X in a descent category V is a k-category if for
each 0 < i < n, the morphism

Xn → Hom(Λni , X),

is a cover for n > 1 and an isomorphism for n > k, and the morphism

Hom(�1, X)→ X0

induced by the inclusion of a vertex ∆0 ↪→ �1 is a cover.

In a topos, where all epimorphisms are covers, the last condition is automatic, since these morphisms
have the section X0 → Hom(�1, X) induced by the projection from �1 to ∆0.

Associated to a k-category X is the simplicial space G(X), defined by

G(X)n = Hom(�n, X).

The formation of G(X)n, while appearing to involve an infinite limit, is actually isomorphic to a finite limit,
since (see Lemma 6.2)

Hom(�n, X) ∼= coskk+1Xn = Hom(skk+1 �
n, X),

and skk+1 �
n, the (k + 1)-skeleton of �n, is a finite simplicial complex.

The following theorem is useful in constructing examples of k-groupoids.

Theorem. If X is a k-category, G(X) is a k-groupoid.

In fact, k-categories also form a category of fibrant objects.

Definition. A morphism f : X → Y of k-categories is a quasi-fibration if for 0 < i < n, the morphism

Xn → Hom(Λni , X)×Hom(Λn
i ,Y ) Yn

is a cover, and the morphism
Hom(�1, X)→ X0 ×Y0 Hom(�1, Y )

induced by the inclusion of a vertex ∆0 ↪→ �1 is a cover. It is a hypercover if, for each n ≥ 0, the morphism

Xn
// Hom(∂∆n, X)×Hom(∂∆n,Y ) Yn

is a cover. (This is the same definition as for k-groupoids, except that now X and Y are k-categories.) It is a
weak equivalence if there is a k-category P and hypercovers p : P → X and q : P → Y such that f = qs,
where s is a section of p.

Theorem.
i) The category of k-categories is a category of fibrant objects.

ii) The functor G is an exact functor: it takes quasi-fibrations to fibrations, pullbacks of quasi-fibrations
to pullbacks, and hypercovers to hypercovers.

We also have the following more direct characterization of weak equivalences between k-categories,
proved in Section 6. Recall that if S and T are simplicial sets, then their join K ? L is the simplicial set

(S ? T )k = Sk t Tk t
k−1⊔
j=0

Sj × Tk−j−1
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Theorem. A morphism f : X → Y of k-categories is a weak equivalence if and only if the morphism

X0 ×Y0 Hom(�1, Y ) // Y0

is a cover, and the morphisms

Xn ×Yn Hom(�1 ?∆n−1, Y )

// Hom(∂∆n, X)×Hom(∂∆n,Y ) Hom(�1 ? ∂∆n−1 ∪ �1
0 ?∆n−1, Y )

are covers for n > 0.

In a finite-dimensional algebra or a Banach algebra, invertibility is an open condition. To formulate this
property in our general setting, we need the notion of a regular descent category.

A morphism in a category is an effective epimorphism if it equals its own coimage. (We recall the
definition of the coimage of a morphism in Section 2.)

Definition. A subcanonical descent category is a descent category such that every cover is an effective
epimorphism.

Definition. A regular descent category is a subcanonical descent category with a subcategory of regular
morphisms, satisfying the following axioms:

(R1) every cover is regular;
(R2) the pullback of a regular morphism is regular;
(R3) every regular morphism has a coimage, and its coimage is a cover.

All of the descent categories that we consider are regular. In the case of a topos, we take all of the
morphisms to be regular. When V is the category of schemes with covers the surjective étale (respectively
smooth or flat) morphisms, the regular morphisms are the the étale (respectively smooth or flat) morphisms.
When V is the category of Banach analytic spaces with covers the surjective submersions, the regular mor-
phisms are the submersions.

Definition. A k-category in a regular descent category V is regular if the morphism

Hom(�1, X)→ Hom(∆1, X) = X1

is regular.

Theorem. Let V be a regular descent category, and let X be a regular k-category in V . Then for all n ≥ 0,
the morphism

Hom(�n, X)→ Hom(∆n, X) = Xn

is regular. Let G(X)n be the image of this morphism (that is, the codomain of its coimage). Then the spaces
G(X) form a simplicial space, this simplicial space is a k-groupoid, and the induced morphism

G(X)→ G(X)

is a hypercover.

In fact, as shown by Joyal (Corollary 1.5, [17]), G(X)n is the space of n-simplices of X such that for
each inclusion ∆1 ↪→ ∆n, the induced 1-simplex lies in G(X)1. The simplices of G(X)1 are called quasi-
invertible.

4



In the case where V is the category of sets, this theorem relates two different k-groupoids associated to
a k-category: the k-groupoid G(X) was introduced by Rezk [22] and further studied by Joyal and Tierney
[18], while the k-groupoid G(X) was introduced by Joyal [17].

In the last section of this paper, we construct examples of k-groupoids associated to differential graded
algebras over a field. Let A be a differential graded algebra such that Ai is finite-dimensional for all i. The
Maurer-Cartan locus MC(A) of A is the affine variety

MC(A) = Z(da+ a2) ⊂ A1.

If K is a finite simplicial set, let C•(K) be the differential graded algebra of normalized simplicial cochains
on K. The nerve of A is the simplicial scheme

NnA = MC(C•(∆)⊗A).

This simplicial scheme has also been discussed by Lurie [19].

Theorem. Let A be a differential graded algebra finite-dimensional in each degree and vanishing in degree
−k and below. The nerve N•A of A is a regular k-category in the descent category of schemes (with
surjective submersions as covers).

The k-groupoid N•A = G(NA) is the simplicial scheme

NnA = MC(C•(�n)⊗A).

We see that N•A and G(N•A) are k-groupoids, and that the simplicial morphism

N•A→ G(N•A)

is a hypercover. The statement that G(N•A) is a k-groupoid has also been proved by Benzeghli [2].
This theorem has an evident generalization to differential graded categories. It may also be generalized

to differential graded Banach algebras, in which case the nerve is a k-category in the descent category of
Banach analytic spaces. There is also a more refined version of the theorem in which the Maurer-Cartan
locus is taken in the category of derived schemes; this will be the topic of a sequel to this paper.

1. CATEGORIES OF FIBRANT OBJECTS

Definition 1.1. A category with weak equivalences is a category V together with a subcategoryW ⊂ V
containing all isomorphisms, such that whenever f and g are composable morphisms such that gf is a weak
equivalence, then f is a weak equivalence if and only if g is.

Associated to a small category with weak equivalences is its simplicial localization L(V,W). This is a
category enriched in simplicial sets, with the same objects as V , which refines the usual localization. (In
fact, the morphisms of the localization are the components of the simplicial sets of morphisms of L(V,W).)
The simplicial localization was introduced by Dwyer and Kan [11, 12], and studied further in Dwyer and
Kan [13], Weiss [25], and Cisinski [6]: one may even say that abstract homotopy theory is the study of
simplicial localizations. The simplicial category of k-stacks is the simplicial localization of the category of
k-groupoids.

Categories of fibrant objects, introduced by Brown [4], form a class of categories with weak equivalences
for which the simplicial localization is quite tractable: the simplicial sets of morphisms between objects
may be realized as nerves of certain categories of diagrams.
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Definition 1.2. A category of fibrant objects V is a small category with weak equivalences W together
with a subcategory F ⊂ V of fibrations, satisfying the following axioms. Here, we refer to morphisms
which are both fibrations and weak equivalences as trivial fibrations.

(F1) There exists a terminal object e in V , and any morphism with target e is a fibration.
(F2) Pullbacks of fibrations are fibrations.
(F3) Pullbacks of trivial fibrations are trivial fibrations.
(F4) Every morphism f : X → Y has a factorization

X Y
f

//

P

X

55r
P

Y

q

))

where r is a weak equivalence and q is a fibration.

An object X such that the morphism X → e is a fibration is called fibrant: Axiom (F1) states that every
object is fibrant.

The reason for the importance of categories of fibrant objects is that they allow a simple realization of the
simplicial localization L(V,W) solely in terms of the trivial fibrations. Namely, by a theorem of Cisinski
[6, Proposition 3.23], the simplicial Hom-set Hom(X,Y ) of morphisms from X to Y in the simplicial
localization of a category of fibrant objects is the nerve of the category whose objects are the spans

X Y

P

X

f

{{

P

Y

g

##

where f is a trivial fibration, and whose morphisms are commuting diagrams

X Y

P0

X

f0

��

P0

Y

g0

��

P0

P1

h

��

X

P1

__

f1

X YY

P1

??

g1

(In the examples considered in this paper, in which the factorizations in the category of fibrant objects are
functorial, this result already follows from the papers [11, 12].)

The following lemma is due to Brown; the idea behind the proof goes back to Serre’s thesis (Chapître IV,
Proposition 4 [23]).

Lemma 1.3. The weak equivalences of a category of fibrant objects are determined by the trivial fibrations:
a morphism f is a weak equivalence if and only if it factorizes as a composition qs, where q is a trivial
fibration and s is a section of a trivial fibration.

Proof. Let Y be an object of V . The diagonal Y → Y × Y has a factorization into a weak equivalence
followed by a fibration:

Y PY
s

// PY Y × Y .
∂0×∂1

//

The object PY is called a path space of Y .
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Since Y is fibrant, the two projections from Y × Y to Y are fibrations, since they are pullbacks of the
fibration Y → e: it follows that the morphisms

∂0, ∂1 : PY // Y

are fibrations as well. Since they are weak equivalences (by saturation of weak equivalences), they are
actually trivial fibrations.

Given a morphism f : X → Y , form the pullback

X Y
f

//

P (f)

X

p(f)

��

P (f) PY
π

// PY

Y

∂0

��

We see that the projection p(f) : P (f) → X is a trivial fibration, with section s(f) : X → P (f) induced
by the morphisms s : Y → PY and f : X → Y .

We may also express P (f) as a pullback

X × Y Y × Y
f×1Y

//

P (f)

X × Y

p(f)×q(f)

��

P (f) PY
π

// PY

Y × Y

∂0×∂1

��

This shows that p(f)× q(f) is a fibration. Composing with the projection X ×Y → Y , which is a fibration
since X is fibrant, it follows that q(f) : P (f) → Y is a fibration. In this way, we obtain the desired
factorization of f :

X Y
f

//

P (f)

X

77

s(f)

P (f)

Y

q(f)

''
�

The proof of this lemma shows that Axiom (F4) is implied by the following special case:

(F4∗) Each diagonal morphism f : X → X ×X has a factorization

X X ×X
f

//

P

X

55r
P

X ×X

q

))

where r is a weak equivalence and q is a fibration.

2. DESCENT CATEGORIES

Recall the axioms for a descent category, which we stated in the introduction.

(D1) V has finite limits;
(D2) the pullback of a cover is a cover;
(D3) if f is a cover and gf is a cover, then g is a cover.
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The covers in a descent category form a pre-topology on V (Grothendieck and Verdier [1]) with the special
property that every cover consists of a single morphism: this class of pre-topologies will be sufficient for
our purposes. Axiom (D3), which has no counterpart in the usual theory of Grothendieck topologies, plays
a key role in this article.

The above axioms hold in the category of Kan complexes, with the trivial fibrations as covers. In the
study of higher stacks, an additional axiom is sometimes assumed, that covers are closed under formation
of retracts (c.f. Henriques [16]); we will not need this axiom here.

Example 2.1.
a) The category of schemes is a descent category, with surjective étale, smooth or flat morphisms as

the covers.
b) The category of analytic spaces is a descent category, with surjective submersions as covers. A

morphism f : X → Y of analytic spaces is a submersion if for every point x ∈ X , there is a
neighbourhood U of x, a neighbourhood V of f(x), and an isomorphism of analytic spaces U ∼=
B × V for which f is identified with projection to V , where B is an open ball in a complex vector
space.

c) More generally, by Douady [7], the category of Banach analytic spaces is a descent category, again
with surjective submersions as covers.

Example 2.2. A C∞-ring (Dubuc [8]) is a real vector space R with operations

ρn : A(n)×Rn → R, n ≥ 0,

where A(n) = C∞(Rn,R). For every natural number n and n-tuple (m1, . . . ,mn), the following diagram
must commute:

A(m1 + · · ·+mn)×Rm1 × · · · ×Rmn R
ρm1+···+mn

//

A(n)×A(m1)× · · · ×A(mn)×Rm1 × · · · ×Rmn

A(m1 + · · ·+mn)×Rm1 × · · · ×Rmn

��

A(n)×A(m1)× · · · ×A(mn)×Rm1 × · · · ×Rmn A(n)×Rn
A(n)×ρm1×···×ρmn

// A(n)×Rn

R

ρn

��

The category of C∞-schemes is the opposite of the category of C∞-rings. This category has finite limits,
and contains the category of differentiable manifolds as a full subcategory. It is also a descent category,
with covers the surjective submersions. The category of Lie groupoids in the category of C∞-schemes is a
natural generalization of the category of Lie groupoids in the usual sense: one of the results of this paper is
that it is a category of fibrant objects.

The kernel pair of a morphism f : X → Y in a category with finite limits is the diagram

X ×Y X X
//

X ×Y X X//

The coequalizer p of the kernel pair of f , if it exists, is called the coimage of f :

X ×Y X X
//

X ×Y X X// X Z
p
// Z Y

i
//X Y

f

##

The image of f is the morphism i : Z → Y .
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A morphism f : X → Y in a category V is an effective epimorphism if p equals f , in the sense that i is
an isomorphism. One of the reasons for the importance of effective epimorphisms is that pullback along an
effective epimorphism is conservative (reflects isomorphisms).

Definition 2.3. A descent category is subcanonical if covers are effective epimorphisms.

All of the descent categories which we have defined above have this property.
In the study of categories, regular categories play a special role: these are categories with finite limits in

which pullbacks of effective epimorphisms are effective epimorphisms, and kernel pairs have coequalizers.
Such categories share some basic properties with the category of sets: in particular, every morphism fac-
tors into an effective epimorphism followed by a monomorphism, and such a factorization is unique up to
isomorphism.

Recall from the introduction that a regular descent category is a subcanonical descent category V together
with a subcategory of regular morphisms satisfying the following axioms.

(R1) every cover is regular;
(R2) the pullback of a regular morphism is regular;
(R3) every regular morphisms has a coimage, and its coimage is a cover.

The following lemma is an example of the way in which a number of properties of regular categories,
suitably reformulated, extend to regular descent categories.

Lemma 2.4. Let V be a regular descent category, and consider the factorization of a regular morphism
f : X → Y into a cover p : X → Z followed by a morphism i : Z → Y . Then i is a monomorphism.

Proof. The morphism
p×Y p : X ×Y X → Z ×Y Z

is the composition of a pair of covers

X ×Y X
X×Y p

//X ×Y Z
p×Y Z

// Z ×Y Z,

hence itself a cover. The two compositions π1 ◦ (p×Y p) and π2 ◦ (p×Y p) from X ×Y X to Z are equal.
Since p ×Y p is a cover, it is an effective epimorphism, hence π1 = π2 : Z ×Y Z → Z. This implies that
i : Z → Y is a monomorphism. �

3. k-GROUPOIDS

Fix a descent category V . We refer to simplicial objects taking values in V as simplicial spaces. Denote
the category of simplicial spaces by sV .

Definition 3.1. Let T be a finite simplicial set, and let S ↪→ T be a simplicial subset. If f : X → Y is a
morphism of simplicial spaces, define the space

Hom(S ↪→ T, f) = Hom(S,X)×Hom(S,Y ) Hom(T, Y ).

This space parametrizes simplicial maps from T to Y with a lift to X along S.

Let n ≥ 0 be a natural number. The matching space Hom(∂∆n, X) of a simplicial space X (also de-
noted Mn(X)) is the finite limit Hom(∂∆n, X), which represents simplicial morphisms from the boundary
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∂∆n of the n-simplex ∆n to X . More generally, the matching space of a simplicial morphism f : X → Y

between simplicial spaces is the finite limit

Hom(∂∆n ↪→ ∆n, f) = Hom(∂∆n, X)×Hom(∂∆n,Y ) Yn.

Definition 3.2. A simplicial morphism f : X → Y in sV is a hypercover if for all n ≥ 0 the morphism

Xn
// Hom(∂∆n ↪→ ∆n, f)

is a cover.

Lemma 3.3. Let T be a finite simplicial set, and let S ↪→ T be a simplicial subset. If f : X → Y is a
hypercover, then the induced morphism

Hom(T,X) // Hom(S ↪→ T, f)

is a cover.

Proof. There is a finite filtration of T

S = F−1T ⊂ F0T ⊂ F1T ⊂ · · · ⊂ T

satisfying the following conditions:

a) T =
⋃
` F`T ;

b) there is a weakly monotone sequence n`, ` ≥ 0, and maps x` : ∂∆n` //F`T and y` : ∂∆n` //F`−1T

such that the following diagram is a pushout:

∆n` F`Tx`
//

∂∆n`

∆n`

��

∂∆n` F`−1T
y`

// F`−1T

F`T
��

The morphism
Hom(F`T,X)→ Hom(F`−1T ↪→ F`T, f)

is a cover, since it is a pullback of the cover Xn`
→ Hom(∂∆n` ↪→ ∆n` , f). �

Definition 3.4. Let k be a natural number. A simplicial space is a k-groupoid if the morphism

Xn
// Hom(Λni , X)

is a cover for all n > 0 and 0 ≤ i ≤ n, and an isomorphism when n > k. Denote the category of
k-groupoids by skV .

Definition 3.5. A simplicial map f : X → Y in sV is a fibration if the morphism

Xn
// Hom(Λni ↪→ ∆n, f)

is a cover for all n > 0 and 0 ≤ i ≤ n.

Our goal in the remainder of this section is to show that the k-groupoids in a descent category form a
category of fibrant objects.

Theorem 3.6. With fibrations and hypercovers as fibrations and trivial fibrations, the category of k-groupoids
skV is a category of fibrant objects.

10



The proof of Theorem 3.6 will consist of a sequence of lemmas; we also take the opportunity to derive
some additional useful properties of fibrations and hypercovers along the way. Axiom (F1) is clear.

Definition 3.7. Let m > 0. An m-expansion S ↪→ T (expansion, if m = 1) is a map of simplicial sets
such that there exists a filtration

S = F−1T ⊂ F0T ⊂ F1T ⊂ · · · ⊂ T

satisfying the following conditions:

a) T =
⋃
` F`T ;

b) there is a weakly monotone sequence n` ≥ m, ` ≥ 0, a sequence 0 ≤ i` ≤ n`, and maps x` :

∆n` // F`T and y` : Λn`
i`

// F`−1T such that the following diagram is a pushout:

∆n` F`Tx`
//

Λn`
i`

∆n`

��

Λn`
i`

F`−1T
y`

// F`−1T

F`T
��

Lemma 3.8. If S ⊂ ∆n is the union of 0 < m ≤ n faces of the n-simplex ∆n, the inclusion S ↪→ ∆n is an
m-expansion.

Proof. The proof is by induction on n: the initial step n = 1 is clear.
Enumerate the faces of ∆n not in S:

{∂i0∆n, . . . , ∂in−m∆n},

where 0 ≤ i0 < · · · < in−m ≤ n. Let

F`∆
n = S ∪

⋃
j≤`

∂ij∆
n, 0 ≤ ` ≤ n−m.

By the induction hypothesis, we see that F`−1∆n ∩ ∂i`∆n ↪→ ∂i`∆
n is an m-expansion: on the one hand,

each face of ∆n contained in S contributes a face of ∂i`∆
n to F`−1∆n∩∂i`∆n, and hence F`−1∆n∩∂i`∆n

contains at leastm faces of ∂i`∆
n; on the other hand, F`−1∆n∩∂i`∆n does not contain the face ∂in−m∆n∩

∂i`∆
n of ∂i`∆

n. �

Lemma 3.9. Let T be a finite simplicial set, and let S ↪→ T be an m-expansion.

i) If X is a k-groupoid, the induced morphism

Hom(T,X) // Hom(S,X)

is a cover, and an isomorphism if m > k.
ii) If f : X → Y is a fibration of k-groupoids, the induced morphism

Hom(T,X) // Hom(S ↪→ T, f)

is a cover, and an isomorphism if m > k.
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Proof. The proof is by induction on the length of the filtration of T exhibiting S ↪→ T as an expansion. In
the first case, the morphism Hom(F`T,X)→ Hom(F`−1T,X) is a cover, since it is a pullback of the cover
Xn`
→ Hom(Λn`

i`
, X) (which is an isomorphism if m > k), and in the second case, the morphism

Hom(F`T,X)→ Hom(F`−1T ↪→ S`, f)

is a cover, since it is a pullback of the cover Xn`
→ Hom(Λn`

i`
↪→ ∆n, f) (which is again an isomorphism

if m > k). �

Corollary 3.10. If X is a k-groupoid, the face map ∂i : Xn → Xn−1 is a cover.

Lemma 3.11. If f : X → Y is a fibration of k-groupoids, then

Xn
// Hom(Λni ↪→ ∆n, f)

is an isomorphism for n > k.

Proof. We have the following commutative diagram, in which the square is a pullback:

Hom(Λni , X) Hom(Λni , Y )//

Hom(Λni ↪→ ∆n, f)

Hom(Λni , X)
��

Hom(Λni ↪→ ∆n, f) Yn// Yn

Hom(Λni , Y )

γ

��

Xn Hom(Λni ↪→ ∆n, f)
α

//Xn

Hom(Λni , X)

β

%%

If n > k and 0 ≤ i ≤ n, β and γ are isomorphisms, and hence α is an isomorphism. �

Lemma 3.12. A hypercover f : X → Y of k-groupoids is a fibration.

Proof. For n > 0 and 0 ≤ i ≤ n, we have the following commutative diagram, in which the square is a
pullback:

(3.1)

Hom(Λni ↪→ ∆n, f) Hom(∂∆n−1 ↪→ ∆n−1, f)
δ
//

Hom(∂∆n ↪→ ∆n, f)

Hom(Λni ↪→ ∆n, f)
��

Hom(∂∆n ↪→ ∆n, f) Xn−1
// Xn−1

Hom(∂∆n−1 ↪→ ∆n−1, f)

γ

��

Xn Hom(∂∆n ↪→ ∆n, f)
α

//Xn

Hom(Λni ↪→ ∆n, f)

β

%%

If n > 0 and 0 ≤ i ≤ n, then α and γ are covers, hence β is a cover. �

Lemma 3.13. Suppose the descent category V is subcanonical. If f : X → Y is a hypercover of k-
groupoids, then Xn → Hom(∂∆n ↪→ ∆n, f) is an isomorphism for n ≥ k.

Proof. Consider the diagram (3.1). If n > k, so that β is an isomorphism, we see that α is both a regular
epimorphism and a monomorphism, and hence is an isomorphism.

To handle the remaining case, consider the diagram (3.1) with n = k + 1. We have already seen that
all morphisms in the triangle forming the left side of the diagram are isomorphisms. But δ factors as the
composition of the covers ∂i : Xk+1 → Xk and γ; hence, it is a cover. Since pullback along a cover in V
reflects isomorphisms, we conclude that γ is an isomorphism. �

Next, we show that fibrations and hypercovers are closed under composition.
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Lemma 3.14. If f : X → Y and g : Y → Z are hypercovers, then gf is a hypercover.

Proof. Consider the commutative diagram

(3.2)

Hom(∂∆n ↪→ ∆n, gf) Hom(∂∆n ↪→ ∆n, g)
δ
//

Hom(∂∆n ↪→ ∆n, f)

Hom(∂∆n ↪→ ∆n, gf)
��

Hom(∂∆n ↪→ ∆n, f) Yn// Yn

Hom(∂∆n ↪→ ∆n, g)

γ

��

Xn Hom(∂∆n ↪→ ∆n, f)
α

//Xn

Hom(∂∆n ↪→ ∆n, gf)

β

%%

in which the square is a pullback. Since α and γ are covers, it follows that β is a composition of two covers,
and hence is itself a cover. �

Lemma 3.15. If f : X → Y and g : Y → Z are fibrations of k-groupoids, then gf is a fibration.

Proof. Consider the commutative diagram

(3.3)

Hom(Λni ↪→ ∆n, gf) Hom(Λni ↪→ ∆n, g)//

Hom(Λni ↪→ ∆n, f)

Hom(Λni ↪→ ∆n, gf)
��

Hom(Λni ↪→ ∆n, f) Yn// Yn

Hom(Λni ↪→ ∆n, g)

β

��

Xn Hom(Λni ↪→ ∆n, f)//Xn

Hom(Λni ↪→ ∆n, gf)

α

%%

in which the square is a pullback. If n > 0 and 0 ≤ i ≤ n, then β is a cover, implying that α is a composition
of two covers, and hence itself a cover. �

Next, we prove Axioms (F2) and (F3).

Lemma 3.16. If p : X → Y is a hypercover and f : Z → Y is a morphism, the morphism q in the pullback
diagram

Z Y
f

//

X ×Y Z

Z

q

��

X ×Y Z X// X

Y

p

��

is a hypercover.

Proof. In the pullback diagram

Hom(∂∆n ↪→ ∆n, q) Hom(∂∆n ↪→ ∆n, p)//

Xn ×Yn Zn

Hom(∂∆n ↪→ ∆n, q)

α

��

Xn ×Yn Zn Xn
// Xn

Hom(∂∆n ↪→ ∆n, p)

β

��

the morphism α is a cover because β is. �
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Lemma 3.17. If p : X → Y is a fibration of k-groupoids, and f : Z → Y is a morphism of k-groupoids,
then X ×Y Z is a k-groupoid, and the morphism q in the pullback diagram

Z Y
f

//

X ×Y Z

Z

q

��

X ×Y Z X// X

Y

p

��

is a fibration.

Proof. Given n > 0 and 0 ≤ i ≤ n, we have a pullback square

Hom(Λni ↪→ ∆n, q) Hom(Λni ↪→ ∆n, p)//

Xn ×Yn Zn

Hom(Λni ↪→ ∆n, q)

α

��

Xn ×Yn Zn Xn
// Xn

Hom(Λni ↪→ ∆n, p)

β

��

The morphism α is a cover because β is.
There is also a pullback square

Hom(Λni , X ×Y Z) Hom(Λni , Z)//

Hom(Λni ↪→ ∆n, q)

Hom(Λni , X ×Y Z)

γ

��

Hom(Λni ↪→ ∆n, q) Zn// Zn

Hom(Λni , Z)
��

If Z is a k-groupoid, then γ is a cover, and an isomorphism if n > k. �

Next, we prove that sV is a descent category, with hypercovers as covers: that is, we show that hypercov-
ers satisfy Axiom (D3).

Lemma 3.18. If f : X → Y and g : Y → Z are morphisms of simplicial spaces and f and gf are
hypercovers, then g is a hypercover.

Proof. In diagram (3.2), α and β are covers. We will show that δ is a cover: applying Axiom (D3), it follows
that γ is a cover.

For −1 ≤ j ≤ n− 1, let

Mn(f, g, j) = Hom(skj ∆n, X)×Hom(skj ∆n,Y ) Hom(∂n∆ ↪→ ∆, g),

where skj ∆n, the j-skeleton of ∆n, is the union of the j-simplices of ∆n. The pullback square

Mn(f, g, j − 1) Hom(∂∆j ↪→ ∆, f)(
n+1
j+1)//

Mn(f, g, j)

Mn(f, g, j − 1)
��

Mn(f, g, j)
(
Xj

)(n+1
j+1)//

(
Xj

)(n+1
j+1)

Hom(∂∆j ↪→ ∆, f)(
n+1
j+1)

��
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shows that the morphism Mn(f, g, j)→Mn(f, g, j − 1) is a cover. Since

Mn(f, g,−1) ∼= Hom(∂∆n ↪→ ∆n, g)

and

Mn(f, g, n− 1) ∼= Hom(∂∆n ↪→ ∆n, gf),

we see that the δ is a cover. �

In order to show that k-groupoids form a category of fibrant objects, we will need to construct path spaces.
In fact, the proof requires iterated path spaces as well: it is convenient to organize these into a simplicial
functor Pn. The proof of Theorem 3.6 actually only requires the functors P1 and P2 (and P0, the identity
functor).

Definition 3.19. Let Pn : sV → sV be the functor on simplicial spaces such that

(PnX)m = Hom(∆m,n, X),

where ∆m,n is the prism ∆m ×∆n.

The functor Pn is the space of maps from the n-simplex ∆n to X; in particular, there is a natural isomor-
phism between P0X andX , and PX = P1X is a path space forX . Note that Pn preserves finite limits, and
in particular, it preserves the terminal object e. Motivated by Brown’s Lemma 1.3, we make the following
definition.

Definition 3.20. A morphism f : X → Y of k-groupoids is a weak equivalence if the fibration

q(f) : P (f) // Y

is a hypercover, where P (f) = X ×Y P1Y .

In the case of Kan complexes, this characterization of weak equivalences amounts to the vanishing of the
relative simplicial homotopy groups. (A similar approach is taken, in the setting of simplicial sheaves, by
Dugger and Isaksen [9].)

If T is a finite simplicial set and X is a simplicial space, denote by PTX the simplicial space

(PTX)n = Hom(T, P•Xn) ∼= Hom(T ×∆n, X).

The following theorem will be proved in the next section.

Theorem 3.21. The functor
P• : sV // s2V

satisfies the following properties:

a) if n ≥ 0 and f : X → Y is a fibration (respectively hypercover), the induced morphism

PnX // P∂∆nX ×P∂∆nY Yn

is a fibration (respectively hypercover);
b) if f : X → Y is a fibration, n > 0 and 0 ≤ i ≤ n, the induced morphism

PnX // PΛn
i
X ×PΛn

i
Y Yn

is a hypercover.

15



In particular, the functor P1 satisfies the conditions for a (functorial) path space in a category of fibrant ob-
jects: the simplicial morphism P1X → X×X is a fibration, and the face maps P1X → X are hypercovers.
Lemma 1.3 now implies the following.

Lemma 3.22. Axiom (F4) holds in skV .

Lemma 3.23. The weak equivalences form a subcategory of skV .

Proof. Let f : X → Y and g : Y → Z be weak equivalences in skV . Form the pullback

P (f) ∼= X ×Y P1Y P1Z

P (g, f)

P (f) ∼= X ×Y P1Y
��

P (g, f) P2Z// P2Z

P1Z

∂0

��

P (f) ∼= X ×Y P1Y P1Y
f×Y P1Y

// P1Y P1Z
P1g

//

In the following commutative diagram, the solid arrows are hypercovers:

P (g)×Y P (f) P (g)//

P (g, f)

P (g)×Y P (f)
��

P (g, f) P (gf)×X P (f)// P (gf)×X P (f)

P (g)P (g) Z//

P (gf)×X P (f)

P (g)

P (gf)×X P (f) P (gf)// P (gf)

Z
��

The result now follows from Lemma 3.18. �

Lemma 3.24. If f : X → Y and g : Y → Z are morphisms of k-groupoids such that f and gf are weak
equivalences, then g is a weak equivalence.

Proof. In the following commutative diagram, the solid arrows are hypercovers:

P (g)×Y P (f) P (g)//

P (g, f)

P (g)×Y P (f)
��

P (g, f) P (gf)×X P (f)// P (gf)×X P (f)

P (g)P (g) Z//

P (gf)×X P (f)

P (g)

P (gf)×X P (f) P (gf)// P (gf)

Z
��

Again, the result follows from Lemma 3.18. �

Lemma 3.25. A fibration f : X → Y of k-groupoids is a weak equivalence if and only if it is a hypercover.

Proof. In the following commutative diagram, the solid arrows are hypercovers:

X Y
f

//

P1X

X
��

P1X P (f)// P (f)

Y

q(f)

��

It follows by Lemma 3.18 that f is a hypercover if and only if q(f) is. �
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In order to complete the proof that skV is a category with weak equivalences, we need the following
result, which is familiar in the case where V is a topos.

Lemma 3.26. If f : X → Y is a fibration of k-groupoids, and g : Y → Z and gf are hypercovers, then f
is a hypercover.

Proof. The idea is to use the fact that Xn+1 → Λn+1,1(f) is a cover in V in order to show that Xn →
Hom(∂∆n ↪→ ∆, f) is a cover.

Define the fibred products

Xn Hom(Λn+1
1 ↪→ ∆n, gf)

V (f, g)

Xn

b

��

V (f, g) Xn+1
a

// Xn+1

Hom(Λn+1
1 ↪→ ∆n, gf)
��

Xn Xn+1s0
// Xn+1 Hom(Λn+1

1 ↪→ ∆n, gf)
‘
//

Xn Hom(Λn+1
0 ↪→ ∆n, gf)

W (f, g)

Xn

b̃

��

W (f, g) Xn+1
ã

// Xn+1

Hom(Λn+1
0 ↪→ ∆n, gf)
��

Xn Xn+1s0
// Xn+1 Hom(Λn+1

0 ↪→ ∆n, gf)
‘
//

The spaces V (f, g) and W (f, g) are isomorphic: there is a morphism from V (f, g) to W (f, g), defined by
the diagram

V (f, g)

Xn+1

a

,,

V (f, g)

Xn

∂0a

��

V (f, g)

W (f, g)
$$

Xn Hom(Λn+1
0 ↪→ ∆n, gf)

W (f, g)

Xn

��

W (f, g) Xn+1
// Xn+1

Hom(Λn+1
0 ↪→ ∆n, gf)
��

Xn Xn+1s0
// Xn+1 Hom(Λn+1

0 ↪→ ∆n, gf)
‘
//

Likewise, there is a morphism from W (f, g) to V (f, g), induced by the morphisms ã : V (f, g) → Xn+1

and ∂1ã : V (f, g)→ Xn. These morphisms between V (f, g) and W (f, g) are inverse to each other.
In this way, we see that the morphism ∂0a : Vn(f, g)→ Xn is a cover: under the isomorphism V (f, g) ∼=

W (f, g), it is identified with the morphism b̃ : V (f, g) → Xn, and this map is a pullback of a cover by
Lemma 3.3, since gf is a hypercover.

Define the additional fibred products

Xn Hom(∂∆n ↪→ ∆n, g)

T (f, g)

Xn

��

T (f, g) Yn// Yn

Hom(∂∆n ↪→ ∆n, g)
��

Xn Yn// Yn Hom(∂∆n ↪→ ∆n, g)//
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Xn Hom(Λn+1
0 ↪→ ∆n, g)

U(f, g)

Xn

��

U(f, g) Yn+1
// Yn+1

Hom(Λn+1
0 ↪→ ∆n, g)
��

Xn Xn+1s0
// Xn+1 Yn+1

// Yn+1 Hom(Λn+1
0 ↪→ ∆n, g)//

We have the following morphisms between the spaces T (f, g), U(f, g), and V (f, g), each of which is a
cover:

Xn ×Hom(∂∆n↪→∆n,g) Yn Hom(∂∆n ↪→ ∆n, gf)×Hom(∂∆n↪→∆n,g) Yn//

T (f, g)

Xn ×Hom(∂∆n↪→∆n,g) Yn

T (f, g) Hom(∂∆n ↪→ ∆n, f)Hom(∂∆n ↪→ ∆n, f)

Hom(∂∆n ↪→ ∆n, gf)×Hom(∂∆n↪→∆n,g) Yn

Xn ×Hom(Λn+1
1 ↪→∆n,g) Yn+1 Xn ×Hom(Λn+1

1 ↪→∆n,g) Hom(∂∆n+1 ↪→ ∆n, g)//

U(f, g)

Xn ×Hom(Λn+1
1 ↪→∆n,g) Yn+1

U(f, g) T (f, g)T (f, g)

Xn ×Hom(Λn+1
1 ↪→∆n,g) Hom(∂∆n+1 ↪→ ∆n, g)

Xn ×Hom(Λn+1
1 ↪→∆n,gf) Xn+1 Xn ×Hom(Λn+1

1 ↪→∆n,gf) Hom(Λn+1
1 ↪→ ∆n, f)//

V (f, g)

Xn ×Hom(Λn+1
1 ↪→∆n,gf) Xn+1

V (f, g) U(f, g)U(f, g)

Xn ×Hom(Λn+1
1 ↪→∆n,gf) Hom(Λn+1

1 ↪→ ∆n, f)

In this way, we obtain a diagram

Xn Hom(∂∆n ↪→ ∆n, f)//

V (f, g)

Xn

33 V (f, g)

Hom(∂∆n ↪→ ∆n, f)
++

in which the solids arrows are covers, and hence the third arrow is as well. �

We can now complete the proof of Theorem 3.6.

Lemma 3.27. If f : X → Y and g : Y → Z are morphisms of k-groupoids such that g and gf are weak
equivalences, then f is a weak equivalence.

Proof. In the following commutative diagram, the solid arrows are hypercovers, while the dashed arrow is
a fibration:

P (g)×Y P (f) P (gf)

P (g, f)

P (g)×Y P (f)
��

P (g, f) P (gf)×X P (f)// P (gf)×X P (f)

P (gf)

P (gf)×Xp(f)

��

P (g) Z
q(g)

//

P (g)×Y P (f)

P (g)

P (g)×Y p(f)

��

P (g)×Y P (f) P (gf)P (gf)

Z

q(gf)

��
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It follows by Lemma 3.18 that the composition

P (g)×Y P (f) P (g)
P (g)×Y q(f)

// P (g) Z
q(g)

//

is a hypercover. Lemma 3.26 implies that P (g) ×Y q(f) is a hypercover. In the following commutative
diagram, the solid arrows are hypercovers, while the dashed arrow is a fibration:

P (g) Y
p(g)

//

P (g)×Y P (f)

P (g)

P (g)×Y q(f)

��

P (g)×Y P (f) P (f)
p(g)×Y P (f)

// P (f)

Y

q(f)

��

Applying Lemma 3.18 one final time, we conclude that q(f) is a hypercover, and hence that f is a weak
equivalence. �

4. THE SIMPLICIAL RESOLUTION FOR k-GROUPOIDS

In this section, we prove Theorem 3.21. Consider the following subcomplexes of the prism ∆m,n:

Λm,ni = (Λmi ×∆n) ∪ (∆m × ∂∆n) Λ̃m,nj = (∂∆m ×∆n) ∪ (∆m × Λnj ).

Moore has proved that the inclusions Λm,ni ↪→ ∆m,n and Λ̃m,nj ↪→ ∆m,n are expansions. The following
lemma is a refinement of his theorem.

Lemma 4.1. The inclusions Λm,ni ↪→ ∆m,n and Λ̃m,nj ↪→ ∆m,n are m- and n-expansions respectively.

Proof. The proof is a modification of an argument of Cartan [5]. The proofs of the two parts are formally
identical, and we will concentrate on the former.

An (m,n)-shuffle is a permutation π of {1, . . . ,m+ n} such that

π(1) < · · · < π(m) and π(m+ 1) < · · · < π(m+ n).

The (m,n)-shuffles index the
(
m+n
m

)
non-degenerate simplices of the prism ∆m,n: we denote the simplex

labeled by a shuffle π by the same symbol π. Any simplex of dimension m+ n− 1 in ∆m,n lies in at most
two top-dimensional simplices.

The geometric realization of the simplex ∆n is the convex hull of the vertices

vi = (0, . . . , 0︸ ︷︷ ︸
n− i times

, 1, . . . , 1︸ ︷︷ ︸
i times

) ∈ Rn.

Thus, the simplex is the convex set

∆n = {(t1, . . . , tn) ⊂ Rn | 0 ≤ t1 ≤ · · · ≤ tn ≤ 1}.

Given sequences 0 < s1 · · · < sm < 1 and 0 < t1 < · · · < tn < 1 such that si 6= tj , representing a pair of
points in the interiors of ∆m and ∆n respectively, the union of these sequences determines a word of length
m + n in the letters s and t, with m letters s and n letters t, and hence an (m,n)-shuffle. The set of such
points associated to a shuffle π is the interior of the geometric realization |π| ⊂ |∆m,n| ∼= |∆m| × |∆n|.

Represent an (m,n)-shuffle π by the sequence of natural numbers

0 ≤ a1(π) ≤ · · · ≤ am(π) ≤ n,

19



in such a way that the associated shuffle has the form

ta1sta2−a1s . . . tam−am−1stn−am ,

in other words,

0 = s0 < · · · < sj < taj+1 < · · · < taj+1 < sj+1 < · · · sm+1 = 1.

We adopt the convention that a0 = 0 and am+1 = n.
Filter ∆m,n by the subcomplexes

F`∆
m,n = Λm,ni ∪

⋃
{π|b(π,i)≤`}

π,

where

b(π, i) =

i∑
j=1

aj(π)−
m∑

j=i+1

aj(π).

The faces of a top-dimensional simplex π are as follows:

• the geometric realization of the face ∂aj+j−1π is the intersection of the geometric realization of the
simplex π with the hyperplane

taj = sj ,

when aj−1 < aj , and the hyperplane

sj−1 = sj ,

when aj−1 = aj ;
• the geometric realization of the face ∂aj+jπ is the intersection of the geometric realization of the

simplex π with the hyperplane
sj = taj+1,

when aj < aj+1, and the hyperplane

sj = sj+1,

when aj = aj+1;
• when aj + j < k < aj+1 + j, the geometric realization of the face ∂kπ is the intersection of the

geometric realization of the simplex π with the hyperplane

tk−j = tk−j+1.

We must show that at least one face of π does not lie in Fb(π,i)−1∆m,n:

i) if ai(π) = ai+1(π), the face ∂ai+iπ is not contained in Λm,ni , nor in any top-dimensional simplex
of ∆m,n other than π;

ii) if ai(π) < ai+1(π) and i > 0, the face ∂ai+iπ is contained in the simplex π̃ with

aj(π̃) =


aj(π), j < i,

aj(π) + 1, j = i,

aj(π), j > i,

for which b(π̃, i) = b(π, i) + 1;
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iii) if ai(π) < ai+1(π) and i < m, the face ∂ai+1+i−1π is contained in the simplex π̃ with

aj(π̃) =


aj(π), j < i+ 1,

aj(π)− 1, j = i+ 1,

aj(π), j > i+ 1,

for which b(π̃, i) = b(π, i) + 1.

By Lemma 3.8, the proof is completed by enumerating at least m faces of π which lie in either Λm,ni or a
simplex π̃ for which b(π̃, i) = b(π, i)− 1:

i) For each j < i with aj < aj+1, we obtain aj+1 − aj such faces as follows:
a1) the aj+1 − aj − 1 faces ∂`π with aj + j < ` < aj+1 + j − 1 lie in Λm,ni ;
a2) the face ∂aj+1+j−1π lies in the simplex π̃ with

aj(π̃) =


ak(π), k < j + 1,

ak(π)− 1, k = j + 1,

ak(π), k > j + 1,

for which b(π̃, i) = b(π, i)− 1.
ii) For each j > i with aj < aj+1, we obtain aj+1 − aj such faces as follows:

b1) the aj+1 − aj − 1 faces ∂`π with aj + j + 1 < ` < aj+1 + j lie in Λm,ni ;
b2) the face ∂aj+j+1π lies in the simplex π̃ with

aj(π̃) =


ak(π), k < j,

ak(π) + 1, k = j,

ak(π), k > j,

for which b(π̃, i) = b(π, i)− 1.
iii) The ai+1 − ai − 1 faces ∂`π with ai + i < ` < ai+1 + i− 1 lie in Λm,ni .
iv) The face ∂0π lies in Λm,ni unless i = 0 and a1 = 0.
v) The face ∂m+nπ lies in Λm,ni unless i = m and am = n. �

Lemma 4.2. Let T be a finite simplicial set, and let S ↪→ T be a simplicial subset. Then

∆m × S ∪ Λmi × T ↪→ ∆m × T

is an m-expansion, and
S ×∆n ∪ T × Λnj ↪→ T ×∆n

is an n-expansion.

Proof. We prove the first statement: the proof of the second is analogous.
Filter T by the simplicial subsets F`T = S ∪ sk` T . Let I` be the set of nondegenerate simplices in

T` \ S`. There is a pushout square

(∆m,`)I` ∆m × F`T ∪ Λmi × T//

(Λm,`i )I`

(∆m,`)I`
��

(Λm,`i )I` ∆m × F`−1T ∪ Λmi × T// ∆m × F`−1T ∪ Λmi × T

∆m × F`T ∪ Λmi × T
��
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and by Lemma 4.1, the vertical arrows of this diagram are m-expansions. Composing the m-expansions

∆m × F`−1T ∪ Λmi × T ↪→ ∆m × F`T ∪ Λmi × T

for ` ≥ 0, we obtain the result. �

Proof of Theorem 3.21. Let X be a k-groupoid. To show that PnX is a k-groupoid, we must show that for
all 0 ≤ i ≤ m, the morphism

PnXm
// Hom(Λmi , PnX)

is a cover, if m > 0, and an isomorphism, if m > k. This follows by Part i) of Lemma 3.9, since Λm,ni ↪→
∆m,n is an m-expansion.

If f : X → Y is a fibration, then for all n ≥ 0, the simplicial morphism

PnX // Hom(∂∆n, P•X)×Hom(∂∆n,P•Y ) PnY

is a fibration since for all m > 0, the morphism Λm,ni ↪→ ∆m,n is an expansion, and for all n > 0, the
simplicial morphism

PnX // Hom(Λnj , P•X)×Hom(Λn
j ,P•Y ) PnY

is a cover since for all m > 0, the morphism Λ̃m,nj ↪→ ∆m,n is an expansion.
If f : X → Y is a hypercover, then for all n ≥ 0, the simplicial morphism

PnX // Hom(∂∆n, P•X)×Hom(∂∆n,P•Y ) PnY

is a cover, by Lemma 3.3 applied to the inclusion of simplicial sets

(∂∆m ×∆n) ∪ (∆m ×∆n) ↪→ ∆m,n. �

5. A CHARACTERIZATION OF WEAK EQUIVALENCES BETWEEN k-GROUPOIDS

A morphism f : X → Y of k-groupoids is a weak equivalence if and only if the morphism

P (f)n // Hom(∂∆n ↪→ ∆n, q(f))

is a cover for n ≥ 0. When n = 0, this condition says that the morphism

X0 ×Y0 Y1 → Y0

is a cover, which is a translation to the setting of simplicial spaces of the condition for a morphism between
Kan complexes that the induced morphism of components π0(f) : π0(X) → π0(Y ) be surjective. For
n > 0, it analogous to the condition for a morphism of Kan complexes f : X → Y that the relative
homotopy groups πn+1(Y,X) (with arbitrary choice of basepoint) vanish.

The following theorem is analogous to Gabriel and Zisman’s famous theorem on anodyne extensions
[14, Chapter IV, Section 2].

Theorem 5.1. A morphism f : X → Y of k-groupoids is a weak equivalence if and only if the morphisms

(5.1) Hom(∆n ↪→ ∆n+1, f) // Hom(∂∆n ↪→ Λn+1
n+1, f)

are covers for n ≥ 0.
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Proof. We have
P (f)n ∼= Hom(∆n ↪→ ∆1,n, f),

and
Hom(∂∆n ↪→ ∆n, q(f)) ∼= Hom(∂∆n ↪→ Λ1,n

1 , f).

This shows that f is a weak equivalence if and only if the morphisms

(5.2) Hom(∆n ↪→ ∆1,n, f) // Hom(∂∆n ↪→ Λ1,n
1 , f)

are covers for all n ≥ 0.
Suppose that the morphism (5.1) is a cover for n ≥ 0; we show that (5.2) is a cover for n ≥ 0. For

0 ≤ i ≤ n, let ∆n+1
i ⊂ ∆1,n be the simplex whose vertices are

{(0, 0), . . . , (0, i), (1, i), . . . , (1, n)}.

Observe that
∆n+1
i−1 ∩∆n+1

i = ∂i∆
n+1
i−1 = ∂i∆

n+1
i .

Filter the prism:
Fi∆

1,n = Λ1,n
1 ∪∆n+1

0 ∪ · · · ∪∆n+1
i .

If i < n, there is a pullback diagram

Hom(∂∆n ↪→ Fi−1∆1,n, f) Yn//

Hom(∂∆n ↪→ Fi∆
1,n, f)

Hom(∂∆n ↪→ Fi−1∆1,n, f)
��

Hom(∂∆n ↪→ Fi∆
1,n, f) Yn+1

// Yn+1

Yn

∂i

��

The vertical morphisms are covers by part i) of Lemma 3.9: composing them for 0 ≤ i < n, we see that the
morphism

Hom(∂∆n ↪→ Fn−1∆1,n, f) // Hom(∂∆n ↪→ Λ1,n
1 , f)

is a cover.
There is also a pullback diagram

Hom(∂∆n ↪→ Fn−1∆1,n, f) Hom(∂∆n ↪→ Λn+1
n+1, f)//

Hom(∆n ↪→ ∆1,n, f)

Hom(∂∆n ↪→ Fn−1∆1,n, f)
��

Hom(∆n ↪→ ∆1,n, f) Hom(∆n ↪→ ∆n+1, f)// Hom(∆n ↪→ ∆n+1, f)

Hom(∂∆n ↪→ Λn+1
n+1, f)

��

The right-hand vertical morphism is a cover by hypothesis, and hence the left-hand vertical morphism,
namely (5.2), is also a cover.

Now, suppose that (5.2) is a cover for n ≥ 0; we show that (5.1) is a cover for n ≥ 0. There is a map
from ∆1,n to ∆n+1, which takes the vertex (0, i) to i, and the vertices (1, i) to n + 1. This map takes the
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simplicial subset Λ1,n
1 ⊂ ∆1,n to the horn Λn+1

n+1 ⊂ ∆n+1, and induces a pullback square

Hom(∂∆n ↪→ Λn+1
n+1, f) Hom(∂∆n ↪→ Λ1,n

1 , f)//

Hom(∆n ↪→ ∆n+1, f)

Hom(∂∆n ↪→ Λn+1
n+1, f)

��

Hom(∆n ↪→ ∆n+1, f) Hom(∆n ↪→ ∆1,n, f)// Hom(∆n ↪→ ∆1,n, f)

Hom(∂∆n ↪→ Λ1,n
1 , f)

��

It follows that (5.1) is a cover for n ≥ 0. �

6. k-CATEGORIES

In this section, we study a class of simplicial spaces bearing the same relationship to k-groupoids as
categories bear to groupoids. The definition of k-categories is inspired by Rezk’s definition of a complete
Segal space [22].

Recall that the thick 1-simplex �1 is the nerve of the groupoid [[1]] with objects {0, 1} and a single
morphism between any pair of objects.

Definition 6.1. Let k > 0. A k-category in a descent category V is a simplicial space X such that

1) if 0 < i < n, the morphism
Xn → Hom(Λni , X)

is a cover, and an isomorphism if n > k;
2) if i ∈ {0, 1}, the morphism

Hom(�1, X)→ Hom(Λ1
i , X) ∼= X0

is a cover.

There is an involution permuting the two vertices of �1. Thus, in the second axiom above, it suffices to
consider one of the two morphisms Hom(�1, X)→ Hom(Λ1

i , X), since they are isomorphic.

Lemma 6.2. A k-category X is k + 1-coskeletal, that is, for every n ≥ 0,

Xn
∼= coskk+1Xn = Hom(skk+1 ∆n, X).

Proof. Consider the commutative diagram

Xn Hom(Λnn−1, X)
γn

//

Hom(∂∆n, X)

Xn

33
αn

Hom(∂∆n, X)

Hom(Λnn−1, X)

βn

++

If n > k, the morphism γn is an isomorphism, and hence βn is a split epimorphism.
If furthermore n > k + 1, the upper horizontal morphism of the pullback square

Hom(Λnn−1, X) Hom(∂∆n−1, X)
∂n−1

//

Hom(∂∆n, X)

Hom(Λnn−1, X)

βn

��

Hom(∂∆n, X) Xn−1
// Xn−1

Hom(∂∆n−1, X)

αn−1

��
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factors into a composition

Hom(∂∆n, X)
βn−→ Hom(Λnn−1, X)

βn−1∂n−1−−−−−−→ Hom(Λn−1
n−2, X)

γ−1
n−1−−−→ Xn−1

and hence, by universality of the pullback square, the morphism βn is a monomorphism. Since this mor-
phism is also a split epimorphism, it follows that βn is an isomorphism. We conclude that αn is an isomor-
phism.

The pullback square

cosk`−1Xn Hom(∂∆`, X)(
n+1
`+1)//

cosk`Xn

cosk`−1Xn

��

cosk`Xn

(
X`

)(n+1
`+1)//

(
X`

)(n+1
`+1)

Hom(∂∆`, X)(
n+1
`+1)

α
(n+1
`+1)

`
��

shows that the morphism cosk`Xn cosk`−1Xn is an isomorphism if ` > k + 1. The lemma follows by
downward induction in `, since Xn

∼= cosknXn. �

If T is a finite simplicial set, form the coend

T ×∆ � =
∫ n∈∆

Tn × �n.

(This is denoted k!T by Joyal and Tierney [18].) As examples of this construction, we have the thick horns

�ni = Λni ×∆ � ⊂ �n

and the thick boundary
∂�n = ∆n ×∆ � ⊂ �n

Of course, �1
i
∼= Λ1

i , and ∂�1 ∼= ∂∆1.
Inner expansions play the same role in the theory of k-categories that expansions play in the theory of

k-groupoids.

Definition 6.3. An inner m-expansion (inner expansion, if m = 1) is a map of simplicial sets such that
there exists a filtration

S = F−1T ⊂ F0T ⊂ F1T ⊂ · · · ⊂ T
satisfying the following conditions:

1) T =
⋃
` F`T ;

2) there is a weakly monotone sequence n` ≥ m, a sequence 0 < i` < n`, and maps x` : ∆n` //F`T

and y` : Λn`
i`

// F`−1T such that the following diagram is a pushout:

∆n` F`Tx`
//

Λn`
i`

∆n`

��

Λn`
i`

F`−1T
y`

// F`−1T

F`T
��

It is not hard to see that inner n-expansions form a category.

Lemma 6.4. If 0 < i < n, the inclusion �ni ∪∆n ↪→ �n is an inner n-expansion.
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Proof. The k-simplices of �n have the form (i0, . . . , ik), where i0, . . . , ik ∈ {0, . . . , n}; a k-simplex is
nondegenerate if ij−1 6= ij for 1 ≤ j ≤ k.

Let Qk,m, 0 ≤ m < k − i be the set of non-degenerate k-simplices s = (i0 . . . ik) of �n which satisfy
the following conditions:

a) s is not contained in �ni ∪∆n;
b) ij−1 = ij+1 for i ≤ j < i+m;
c) ii+m = i;
d) ii+m−1 6= ii+m+1.

For example, if n = 2 and i = 1, then Q2,0 = {(2, 1, 0)},

Q3,1 = {(1, 0, 1, 2), (1, 2, 1, 0)},

and
Q3,0 = {(0, 1, 2, 0), (0, 1, 2, 1), (2, 1, 0, 1), (2, 1, 0, 2)}.

Let Rk be the set of non-degenerate k-simplices which do not lie in �ni ∪∆n, nor in any of the sets Qk,m.
The simplicial set �n is obtained from �ni ∪∆n by inner expansions along the simplices of type Qk,m in

order first of increasing k, then of decreasing m. (The order in which the simplices are adjoined within the
sets Qk,m is unimportant.)

To prove this, consider a simplex s = (i0, . . . , ik) inRk. There is a unique natural number 0 ≤ ms < k−i
such that the simplex

s̃ = (i0, . . . , ii+ms−1, i, ii+ms , . . . , ik)

has typeQk+1,ms . In fact,ms is either 0 or the largest positive numberm satisfying the following conditions:

a) ij−1 = ij+1 for i ≤ j < i+m;
b) ii+m−2 = i;
c) ii+m−1 6= i.

The simplex s̃ is non-degenerate: ii+ms−1 does not equal i by hypothesis, while ii+ms does not equal i
by the maximality of ms. It is easily seen that s̃ has type Qk+1,ms .

We see that s = ∂i+ms s̃ is an inner face of s̃. The faces ∂j s̃, j < i, are either degenerate, lie in �ni ∪∆n,
or lie in Qk,ms−1. The faces ∂j s̃, j > i, are either degenerate, lie in �ni ∪ ∆n, or lie in the boundary of
simplex in Qk+1,m, m > ms. �

Corollary 6.5. If S ↪→ T is an inner n-expansion of finite simplicial sets, then

S ×∆ � ∪ T ↪→ T ×∆ �

is an inner n-expansion.

Proof. The proof is by induction on the length of the filtration

S = F−1T ⊂ F0T ⊂ F1T ⊂ · · · ⊂ T

exhibiting S ↪→ T as an inner n-expansion. We see that there is a pushout square

�n`
(
F`T ×∆ �

)
∪ T//

�n` ∪∆n`

�n`

��

�n` ∪∆n`
(
F`−1T ×∆ �

)
∪ T//

(
F`−1T ×∆ �

)
∪ T

(
F`T ×∆ �

)
∪ T

(y`×∆�)∪x`
��
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It follows that
(
F`T ×∆ �

)
∪ T ↪→

(
F`−1T ×∆ �

)
∪ T is an n`-expansion, where n` ≥ n. Since the inner

n-expansions are closed under composition, the result follows. �

Corollary 6.6. If S ↪→ T is an m-expansion of finite simplicial sets, where m > 1, then

S ×∆ � ↪→ T ×∆ �

is an inner m-expansion.

Proof. The proof is by induction on the number of nondegenerate simplices in T \S. For the induction step,
it suffices to prove that if n > 1 and 0 ≤ i ≤ n, the inclusion �ni ↪→ �n is an inner n-expansion.

The action of the symmetric group Sn+1 on the simplicial set �n induces a transitive permutation of
the subcomplexes �ni . Thus, it suffices to establish the result when i = 1. But in this case, the inclusion
�n1 ↪→ �n1 ∪∆n is an inner n-expansion, and the result follows from Lemma 6.4. �

We will also need some results involving the simplicial set �1. This simplicial set has two nondegenerate
simplices of dimension k, which we denote by

k = (0, 1, . . . ) k∗ = (1, 0, . . . ).

Let k◦ be the mirror of k:

k◦ = (. . . , 1, 0) =

{
k k even

k∗ k odd
.

In particular, the simplicial subset �1
1 ↪→ �1 may be identified with the vertex 0 = (0).

Lemma 6.7. The inclusion
∂∆n × �1 ∪∆n × �1

1 ↪→ ∆n × �1

is an expansion, and an inner expansion if n > 0.

Proof. The expansion �1
1 = 0 ↪→ �1 is obtained by successively adjoining the simplices 1, 2, . . . .

The product ∆n × �1 is isomorphic to the iterated join of n + 1 copies of �1. Indeed, a k-simplex of
∆n × �1 may be identified with a pair consisting of a k-simplex 0a0 . . . nan of ∆n, where a0 + · · ·+ an =

k + 1, and a k-simplex (i0, . . . , ik) of �1. We may think of this k-simplex as a sequence of simplices
(σ0, . . . , σn), where σi is an (ai − 1)-simplex of �1 if ai > 0, and is absent if ai = 0. Such a simplex
is degenerate precisely when one of the σi is degenerate. Denote the simplex (i0, . . . , ik) × 0a0 . . . nan by
[σ0; . . . ;σn].

The simplicial subset ∂∆n×�1∪∆n×�1
1 ⊂ ∆n×�1 is the union of the simplex [0; . . . ;0], the simplices

[σ0; . . . ;σi−1; ;σi+1; . . . ;σn], and their faces.
Let Sk,`,m be the set of k-simplices in ∆n × �1 of the form

[0; . . . ;0;m;σn−`+1; . . . ;σn],

if ` < n, and of the form
[m◦;σ1; . . . ;σn]

if ` = n. The successive expansions of ∂∆n × �1 ∪ ∆n × �1
1 along the simplices of Sk,`,m, in order first

of ascending k, next of ascending ` (between 0 and n), and lastly of ascending m (between 1 and k − n),
exhibit the inclusion

∂∆n × �1 ∪∆n × �1
1 ↪→ ∆n × �1

as an inner expansion. �
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Corollary 6.8. A k-groupoid is a k-category.

Proof. This follows from Lemma 3.9 and the special case of the lemma where n = 1. �

Corollary 6.9. If S ⊂ T is a simplicial subset containing the vertices of T , then the inclusion

S × �1 ∪ T × �1
1 ↪→ T × �1

is an inner expansion.

The following definition is modeled on Joyal’s definition of quasi-fibrations between quasi-categories
[17].

Definition 6.10. A quasi-fibration f : X → Y of k-categories is a morphism of the underlying simplicial
spaces such that

1) if 0 < i < n, the morphism

Xn
// Hom(Λni ↪→ ∆n, f)

is a cover;
2) if i ∈ {0, 1}, the morphism

Hom(�1, X) // Hom(∆0 ↪→ �1, f) = X0 ×Y0 Hom(�1, Y )

is a cover.

Clearly, the morphism from a k-category X to the terminal simplicial space e is a quasi-fibration.
The proof of the following lemma is the same as that of Lemma 3.9. Note that Hom(S ↪→ T, f) is

isomorphic to Hom(skk+1 S ↪→ skk+1 T, f) by Lemma 6.2; this is important, since Hom(S ↪→ T, f) is
only defined a priori when T is a finite simplicial set.

Lemma 6.11. Let T be a simplicial set such that skn T is finite for all n.

i) Let i : S ↪→ T be an inner expansion, and let f : X → Y be a quasi-fibration of k-categories. Then
the morphism

Hom(T,X) // Hom(S ↪→ T, f)

is a cover.
ii) Let i : S ↪→ T be an inclusion, and let f : X → Y be a hypercover of k-categories. Then the

morphism
Hom(T,X) // Hom(S ↪→ T, f)

is a cover.

We now introduce a functor X 7→ G(X) from k-categories to k-groupoids, which may be interpreted as
the k-groupoid of quasi-invertible morphisms in X .

Theorem 6.12.
i) If X is a k-category, then the simplicial space

G(X)n = Hom(�n, X)

is a k-groupoid.
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ii) If f : X → Y is a quasi-fibration of k-categories, then

G(f) : G(X)→ G(Y )

is a fibration of k-groupoids.
iii) If f : X → Y is a hypercover of k-categories, then

G(f) : G(X)→ G(Y )

is a hypercover of k-groupoids.

Proof. To prove Part i), we must show that the morphism

G(X)n // Hom(Λni ,G(X)),

or equivalently, the morphism
Hom(�n, X) // Hom(�ni , X),

is a cover for all n > 0, and for 0 ≤ i ≤ n, and an isomorphism for n > k. For n = 1, this is part of the
definition of a quasi-fibration, and for n > 1, it is a consequence of Corollary 6.6.

The proof of Part ii) is similar, since if f : X → Y is a quasi-fibration of k-categories, then the morphism

Hom(�n, X) // Hom(�ni ↪→ �n, f),

is a cover for all n > 0, and for 0 ≤ i ≤ n, by the same argument.
To prove Part iii), we must show that if f : X → Y is a hypercover, the morphism

G(X)n // Hom(∂∆n ↪→ ∆n,G(f)),

or equivalently, the morphism

Hom(�n, X) // Hom(∂�n ↪→ �n, f),

is a cover for all n ≥ 0: this follows from Lemma 3.3, applied to the inclusion of simplicial sets ∂�n ↪→
�n. �

It is clear that G takes pullbacks to pullbacks. We will show that k-categories form a category of fibrant
objects, and that G is an exact functor from this category to the category of k-groupoids.

The main step which remains in the proof that k-categories form a category of fibrant objects is the
construction of a simplicial resolution for k-categories. We use the following refinement of Lemma 4.2,
which was already implicit in the proof of Lemma 4.1.

Lemma 6.13. Let T be a finite simplicial set, and let S ↪→ T be a simplicial subset. Then the morphism

∆m × S ∪ Λmi × T ↪→ ∆m × T, 0 < i < m,

is an inner m-expansion, and the morphism

S ×∆n ∪ T × Λnj ↪→ T ×∆n, 0 < j < n,

is an inner n-expansion.

Definition 6.14. Define PnX to be the simplicial space

(PnX)m = Hom(∆m × �n, X).

Theorem 6.15. The functor P•X is a simplicial resolution.
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Proof. Let f : X → Y be a quasi-fibration. By Lemma 6.13, the inclusion

Λmi × �n ∪∆m × ∂�n ↪→ ∆m × �n

is an inner expansion for 0 < i < m. Applying Lemma 6.11, we conclude that the morphism

Hom(∆m × �n, X) // Hom(Λmi × �n ∪∆m × ∂�n ↪→ ∆m × �n, f)

is a cover.
By Corollary 6.9, the inclusion

�1 × ∂�n ∪ �1
1 × �n ↪→ �1 × �n

is an inner expansion for n > 0. It follows by Lemma 6.11 that the morphism

Hom(�1 × �n, X) // Hom(�1 × ∂�n ∪ �1
1 × �n ↪→ �1 × �n, f)

is a cover for n > 0. Together, these two results show that the simplicial morphism

PnX // P∂∆nX ×P∂∆nY PnY

is a quasi-fibration for n > 0.
By Corollary 6.6 and Lemma 6.13, the inclusion

∂∆m × �n ∪∆m × �nj ↪→ ∆m × �n

is an inner expansion for n > 1 and 0 ≤ j ≤ n. It follows that the morphism

Hom(∆m × �n, X) // Hom(∂∆m × �n ∪∆m × �nj ↪→ ∆m × �n, f)

is a cover, and hence that the simplicial morphism

PnX // PΛn
i
X ×PΛn

i
Y PnY

is a hypercover for n > 1.
Let f : X → Y be a hypercover. Applying Lemma 3.3, we see that the morphism

Hom(∆m × �n, X) // Hom(∂∆m × �n ∪∆m × ∂�n ↪→ ∆m × �n, f)

is a cover for n > 0, and hence the simplicial morphism

PnX // P∂∆nX ×P∂∆nY PnY

is a hypercover for n > 0. �

The following lemma is the analogue of Lemma 3.26 for k-categories.

Lemma 6.16. If f : X → Y is a fibration of k-categories, and g : Y → Z and gf are hypercovers, then f
is a hypercover.

Proof. The proof of Lemma 3.26 extends to this setting as well. Indeed, the proof contained there establishes
that the morphism Xn → Hom(∂∆n ↪→ ∆n, f) is a cover for n > 0. It remains to show that f0 : X0 → Y0

is a cover, which follows from Lemma 3.26 applied to the morphisms G(f) and G(g). �

With these results in hand, we may easily adapt the proof of Theorem 3.6 to prove the following result.

Theorem 6.17. The category of k-categories is a category of fibrant objects.

The following corollary is immediately implied by Lemma 1.3 (“Brown’s Lemma”).
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Corollary 6.18. If f : X → Y is a weak equivalence of k-categories, then

G(f) : G(X) // G(Y )

is a weak equivalence of k-groupoids.

We have the following analogue of Theorem 5.1.

Theorem 6.19. A morphism f : X → Y of k-categories is a weak equivalence if and only if the morphism

X0 ×Y0 Hom(�1, Y ) // Y0

is a cover, and the morphisms

Hom(∆n ↪→ �1 ?∆n−1, f) // Hom(∂∆n ↪→ �1 ? ∂∆n−1 ∪ �1
0 ?∆n−1, f)

are covers for n ≥ 0.

Proof. The morphism f is a weak equivalence if and only if the morphisms

(6.1) Hom(∆n ↪→ ∆n × �1, f) // Hom(∂∆n × �1
1 ↪→ ∂∆n × �1 ∪∆n × �1

1, f)

are covers for all n ≥ 0. For n = 0, this is the first hypothesis of the theorem. Thus, from now on, we take
n > 0.

We have seen in Lemma 6.7 that the simplicial set ∆n×�1 is an inner expansion of ∂∆n×�1∪∆n×�1
1,

by the successive adjunction of the simplices [0; . . . ;0;m;σn−`+1; . . . ;σn] and

[m◦;σ1; . . . ;σn].

Of these simplices, only one, namely [1∗; 0∗; . . . ; 0∗] ∈ Sn+1,n,1, has a face in the simplicial subset ∆n ×
�1

1 ⊂ ∆n × �1. Thus, the morphism (6.1) factors into a sequence of horn-filler morphisms indexed by
this sequence of simplices, all of which are seen to be covers, except possibly the one corresponding to the
simplex [1∗; 0∗; . . . ;0∗]. But the morphism corresponding to this simplex is a cover under the hypotheses
of the theorem.

Now suppose that (6.1) is a cover for n > 0. The map

0a0 . . . nak × i0 . . . ik 7→ 0a0 . . . nak × i0 . . . ia0−10 . . . 0

from ∆n×�1 to �1 ?∆n−1 takes ∂∆n×�1 ∪∆n×�1
1 to �1 ? ∂∆n−1 ∪�1

0 ?∆n−1 and induces a pullback
square

Hom(∂∆n ↪→ �
1 ? ∂∆n−1 ∪ �1

0 ?∆n−1, f) Hom(∂∆n ↪→ ∂∆n × �1 ∪∆n × �1
1, f)//

Hom(∆n ↪→ �
1 ?∆n−1, f)

Hom(∂∆n ↪→ �
1 ? ∂∆n−1 ∪ �1

0 ?∆n−1, f)
��

Hom(∆n ↪→ �
1 ?∆n−1, f) Hom(∆n ↪→ ∆n × �1, f)// Hom(∆n ↪→ ∆n × �1, f)

Hom(∂∆n ↪→ ∂∆n × �1 ∪∆n × �1
1, f)

��

This completes the proof of the theorem. �
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7. REGULAR k-CATEGORIES

If V is a regular descent category, it is natural to single out the following class of k-categories.

Definition 7.1. A regular k-category is a k-category X such that the morphism

Hom(�1, X) // Hom(∆1, X) ∼= X1

induced by the inclusion ∆1 ↪→ �1 is regular.

Since ∆1 ↪→ �1 is an expansion, every k-groupoid is a regular k-category.

Proposition 7.2. If X is a regular k-category, then for all n ≥ 0, the morphism

Hom(�n, X) // Hom(∆n, X) ∼= Xn

induced by the inclusion ∆n ↪→ �n is regular.

Proof. Let Tni ⊂ ∆n be the union of the 1-simplices

(j − 1, j), 1 ≤ j ≤ i.

For k > 0, let Qk be the set of k-simplices of ∆n such that i1 = i0 + 1. In particular, Q1 is the set of
1-simplices in Tnn.

Let k > 1. Given a simplex (i0, . . . , ik) ∈ Qk, the faces ∂j(i0, . . . , ik) lie in Qk−1 for j > 1, while
∂0(i0, . . . , ik) either lies in Qk−1, if i2 = i1 + 1, or equals ∂1(i1, i1 + 1, i2, . . . , ik) if i2 > i1 + 1.

On the other hand, ∂1(i0, . . . , ik) lies neither in Qk−1 nor is it a face of any simplex (i′0, . . . , i
′
k) ∈ Qk

with i′0 + · · · + i′k > i0 + · · · + ik. This shows that the inclusion Tnn ↪→ ∆n is an inner expansion, in
which the simplices of Qk are attached in order of increasing k ≥ 2, and for fixed k, in order of decreasing
i0 + · · ·+ ik.

Let Tni = (Tni ⊗∆ �)∪∆n ⊂ �n. By Lemma 6.5, Tnn ↪→ �n is an inner expansion. Hence the morphism

Hom(�n, X) // Hom(Tnn, X)

is a cover, and hence regular. For each 1 ≤ i ≤ n, the morphism

Hom(Tni ∆n, X) // Hom(Tni−1∆n, X)

is regular, since it may be realized as the pullback of a regular morphism:

Hom(Tni−1, X) Hom(∆1, X)//

Hom(Tni , X)

Hom(Tni−1, X)
��

Hom(Tni , X) Hom(�1, X)// Hom(�1, X)

Hom(∆1, X)
��

This completes the proof of the theorem, since Tn0 = ∆n, and the composition of regular morphisms is
regular. �

Let G(X)n be the image of the regular morphism G(X)n → Xn. The spaces G(X)n form a simplicial
space, and for each n, the morphism G(X)n → G(X)n (coimage of G(X)n → Xn) is a cover. We call
G(X)1 the space of quasi-invertible morphisms.

It follows from the proof of Theorem 7.2 that G(X)n is the image of the morphism

Hom(Tnn,G(X))×Hom(Tn
n,X) Xn

//Xn.
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Lemma 7.3. G(G(X)) ∼= G(G(X)) ∼= G(X)

Proof. In order to prove that G(G(X)) is isomorphic to G(X), it suffices to show that for all k, n ≥ 0,

Hom(∆k,�n) ∼= Hom(�k,�n).

Since �k is the nerve of the groupoid [[k]], we see that Hom(�k,�n) may be identified with the set of functors
from [[k]] to [[n]]. But a functor from [[k]] to [[n]] determines, and is determined by, a functor from [k] to [[n]],
i.e. by a k-simplex of the nerve �n = N•[[n]] of [[n]].

Applying the functor Gn to the composition of morphisms

G(X)→ G(X)→ X,

we obtain a factorization of the identity map of G(X)n:

G(G(X))n ∼= G(X)n → G(G(X))n → G(X)n.

Since the functor Gn is a limit, it preserves monomorphisms. Thus the morphism from G(G(X))n to G(X)n
is a monomorphism, and since it has a section, an isomorphism. �

The statement and proof of the following lemma are similar to those of Lemma 6.4.

Lemma 7.4. The inclusion ∂�n ∪∆n ↪→ �n is an expansion.

Proof. Let Qk,m, 0 ≤ m < n be the set of non-degenerate k-simplices s = (i0 . . . ik) of �n which satisfy
the following conditions:

a) s is not contained in ∂�n ∪∆n;
b) ij = j for i ≤ j ≤ m;
c) {im+1, . . . , in} = {m, . . . , n}.

Let Qk be the union of the sets Qk,m.
The simplicial set �n is obtained from �ni ∪∆n by inner expansions along the simplices of type Qk,m in

order first of increasing k, then of decreasing m. (The order in which the simplices are adjoined within the
sets Qk,m is unimportant.)

Given a non-degenerate simplex s = (i0, . . . , ik) which does not lie in the union of ∂�n ∪∆n and Qk,
let m be the largest integer such that ij = j for j < m. Thus

s = (0, . . . ,m− 1, im, . . . , ik),

and im 6= m. The infimum ` of the set {im, . . . , ik} equals m: it cannot be any larger, or the simplex would
lie in ∂�n, and it cannot be any smaller, or the simplex would lie in Qk. Define the simplex

s̃ = (0, . . . ,m, im, . . . , ik)

in Qk+1,m. We have s = ∂ms̃.
If m occurs more than once in the sequence {im, . . . , ik}, then the remaining faces of the simplex s̃ are

either degenerate, or lie in the union of ∂�n ∪ ∆n and Qk. If m occurs just once in this sequence, say
i` = m, then all faces of the simplex s̃ other than s = ∂ms̃ and ∂`+1s̃ are either degenerate, or lie in the
union of ∂�n ∪∆n and Qk, while ∂`+1s̃ is a face of a simplex of type Qk+1,m′ , where m′ > m. �

This lemma implies that the natural morphism G(X)→ X is a hypercover when X is a k-groupoid, even
if the descent category is not assumed to be regular.

The following theorem is related to results of Rezk [22] and Joyal and Tierney [18].
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Theorem 7.5. If X is a regular k-category, then G(X) is a k-groupoid, and the induced morphism

G(X) // G(X)

is a hypercover.

Proof. For n > 0, consider the assertions
An: for all 0 ≤ i ≤ n, the morphism G(X)n → Hom(Λni ,G(X)) is a cover; and
Bn: for all 0 ≤ i ≤ n, the morphism

G(X)n // Hom(Λni → ∆n,G(X)→ G(X))

is a cover. These imply that G(X) is a k-groupoid.
Let us demonstrate A1. In the commuting diagram

G(X)1 G(X)0
∼= X0

//

G(X)1

G(X)1

xx

G(X)1

G(X)0
∼= X0

&&

the solid arrows are covers, hence by Axiom (D3), the bottom arrow is a cover.
Consider the commuting diagram

G(X)n Hom(Λni → ∆n,G(X)→ G(X))//

G(X)n ×Hom(Λn
i ,G(X)) G(X)n

G(X)n
ww

G(X)n ×Hom(Λn
i ,G(X)) G(X)n

Hom(Λni → ∆n,G(X)→ G(X))
''

in which the solid arrow is a cover. If An holds, the left-hand arrow is a cover, and hence by Axiom (D3),
so is the bottom arrow, establishing Bn.

Suppose that T is a finite simplicial set and S ↪→ T is an expansion obtained by attaching simplices of
dimension at most n− 1 to S. Suppose that Bn−1 holds. Then the same proof as for Lemma 3.9 shows that
the morphism

Hom(T,G(X))→ Hom(S ↪→ T,G(X)→ G(X))

is a cover. Applying this argument to the expansion ∆0 ↪→ Λni shows that

Hom(Λni ,G(X)) // Hom(Λni ,G(X))

is a cover. In the commuting diagram

G(X)n Hom(Λni ,G(X))//

G(X)n

G(X)n
��

G(X)n Hom(Λni ,G(X))// Hom(Λni ,G(X))

Hom(Λni ,G(X))
��

the solid arrows are covers, hence by Axiom (D3), so is the bottom arrow, establishing An.
Now that we know that G(X) is a k-groupoid, it follows from Lemma 7.4 that G(X) → G(X) is a

hypercover. �
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8. THE NERVE OF A DIFFERENTIAL GRADED ALGEBRA

In this final section, we give an application of the formalism developed in this paper to the study of the
nerve of a differential graded algebra A over a field K. There are different variants of this construction: we
give the simplest, in which the differential graded algebra A is finite-dimensional in each dimension and
concentrated in degrees > −k. Working in the descent category of schemes of finite type, with surjective
smooth morphisms (respectively smooth morphisms) as covers (respectively regular morphisms), we will
show that the nerve of A is a regular k-category.

In the special case that A = MN (K) is the algebra of N × N square matrices, our construction pro-
duces the nerve of the monoid End(KN ): the associated 1-groupoid G(N•A) is the nerve of the algebraic
group GL(N). If V is a perfect complex of amplitude k, then G(N• End(V )) is the k-groupoid of quasi-
automorphisms of V . A straightforward generalization of this construction from differential graded algebras
to differential graded categories yields the stack of perfect complexes: in a sequel to this paper, we show
how this gives a new construction of the derived stack of perfect complexes of Toën and Vezzosi [24].

Let A be a differential graded algebra over a field K, with differential d : A• → A•+1. The curvature
map is the quadratic polynomial

Φ(µ) = dµ+ µ2 : A1 → A2.

The Maurer-Cartan locus MC(A) = V (Φ) ⊂ A1 is the zero locus of Φ.
The graded commutator of elements a ∈ Ai and b ∈ Aj is defined by the formula

[a, b] = ab− (−1)ijba ∈ Ai+j .

In particular, if µ ∈ A1, then
[µ, a] = µa− (−1)iaµ ∈ Ai+1.

If µ lies in the Maurer-Cartan locus, the operator dµ : a 7→ da+ [µ, a] is a differential.
Given µ and ν lying in the Maurer-Cartan locus of A•, define a differential dµ,ν on the graded vector

space underlying A by the formula

Ai 3 a 7→ dµ,νa = da+ µa− (−1)iaν ∈ Ai+1.

Let C•(∆n) be the differential graded algebra of normalized simplicial cochains on the n-simplex ∆n

(with coefficients in the field K): this algebra is finite-dimensional, of dimension
(
n+1
i+1

)
in degree i. An

element a ∈ C•(∆n)⊗A• corresponds to a collection of elements

(ai0...ik ∈ A
i−k | 0 ≤ i0 < · · · < ik ≤ n),

where ai0...ik is the evaluation of the cochain a on the face of the simplex ∆n with vertices {i0, . . . , ik}.
The differential on the differential graded algebra C•(∆n) ⊗ A is the sum of the simplicial differential

on C•(∆n)⊗A and the internal differential of A:

(δa)i0...ik =

k∑
`=0

(−1)`ai0...̂ıi` ...ik + (−1)kd(ai0...ik).

The product of C•(∆n) ⊗ A combines the Alexander-Whitney product on simplicial cochains with the
product on A: if a has total degree j, then

(a ∪ b)i0...ik =

k∑
`=0

(−1)(j−`)(k−`)ai0...i`bi`...ik .
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The nerve of a differential graded algebra A is the simplicial scheme N•A such that NnA is the Maurer-
Cartan locus of C•(∆n)⊗A:

NnA = MC(C•(∆n)⊗A).

If T is a finite simplicial set, the Yoneda lemma implies that the scheme of morphisms from T to N•A is the
Maurer-Cartan set of the differential graded algebra C•(T )⊗A.

A simplex � ∈ NnA consists of a collection of elements of A

� =
{
µi0...ik ∈ A

1−k | 0 ≤ i0 < . . . < ik ≤ n
}
,

such that the following Maurer-Cartan equations hold: for

0 ≤ i0 < . . . < ik ≤ n,

we have

(−1)k (d�+ �2)i0...ik = dµi0...ik +

k∑
`=0

(−1)k−` µi0...̂ı`...ik +

k∑
`=0

(−1)k` µi0...i`µi`...ik = 0.

The components µi and µij play a special role in the Maurer-Cartan equation. The components µi are
Maurer-Cartan elements of A, and determine differentials dij : A• → A•+1 by the formula

dija = da+ µia− (−1)|a|aµj .

In terms of the translate fij = 1 + µij of the coefficient µij , the Maurer-Cartan equation for µij becomes

dijfij = 0.

The Maurer-Cartan equation for µijk may be rewritten

dikµijk + fijfjk − fik = 0.

In other words, µijk is a homotopy between fijfjk and fik. For n > 2, the Maurer-Cartan equation becomes

di0ikµi0...ik +

k−1∑
`=1

(−1)k−` µi0...̂ı`...ik

+ (−1)k fi0i1fi1...ik + µi0...ik−1
µik−1ik +

k−2∑
`=2

(−1)k` µi0...i`µi`...ik = 0.

The following is the main result of this section.

Theorem 8.1. Let A be a differential graded algebra such that Ai is finite-dimensional for i ≤ 1, and
vanishes for i ≤ −k. Then N•A is a regular k-category.

Proof. The proof divides into three parts.

1) If 0 < i < n, the morphism NnA → Hom(Λni , N•A) is a smooth epimorphism, and an isomor-
phism if n > k.

2) The morphisms Hom(�1, N•A)→ MC(A) are smooth.
3) The morphism Hom(�1, N•A)→ N1A is smooth.
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Part 1) is established by rearranging the Maurer-Cartan equations for µ0...n and µ0...̂ı...n to give a natural
isomorphism NnA ∼= Hom(Λni , N•A)×A1−n:

µ0...n = x ∈ A1−n

µ0...̂ı...n = −(−1)n−id0nx− (−1)if01µ1...n − (−1)n−iµ0...n−1fn−1,n

−
∑

`/∈{0,i,n}

(−1)`−iµ
0...̂̀...n −

n−2∑
`=2

(−1)n`−n+iµ0...`µ`...n ∈ A2−n.

The case n = 2 is slightly special:

µ012 = x ∈ A−1

µ02 = dx+ µ0x+ xµ2 + f01f12 − 1 ∈ A0.

To establish Parts 2) and 3), we will use an alternative representation of the algebra C•(�1)⊗A in terms
of 2× 2 matrices with coefficients in A[u], where u is a formal variable of degree 2.

Associate to a differential graded algebra A the auxilliary differential graded algebra UA, such that UAk

is the space of 2× 2 matrices

UAk =

{(
α00 α01

α10 α11

)∣∣∣∣∣αij ∈ Ak+i−j [u]

}
.

Composition is the usual matrix product. Let d : UA→ UA be the differential given by the formula

(da)ij = (−1)i d
(
αij
)
.

Let VA ⊂ UA be the differential graded subalgebra

VA =

{(
α00 α01

α10 α11

)
∈ UA

∣∣∣∣∣α10(0) = 0

}
.

In other words, the bottom left entry α10 of the matrix has vanishing constant term. Let a0 ∈ VA be the
element

a0 =

(
0 1

u 0

)
.

The following lemma is a straightforward calculation.

Lemma 8.2. The map from C•(�1)⊗A to VA given by the formula

x 7→ ψ(x) =

(
x0 + ux010 + u2x01010 + . . . x01 + ux0101 + u2x010101 + . . .

ux10 + u2x1010 + . . . −x1 − ux101 − u2x10101 − . . .

)
is an isomorphism of differential graded algebras between C•(�1)⊗A and VA with differential

δx = dx+ [a0, x].

Corollary 8.3. The morphism
� 7→ a(�) = a0 + ψ(�)

induces an isomorphism of schemes between N1A = MC(C•(�1)⊗A) and

Z(da+ a2 − u1) ⊂ VA1.
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A Maurer-Cartan element � = (µ0, µ1, µ01) is quasi-invertible if

f = 1 + µ01

is quasi-invertible in A0: that is, there exist elements g ∈ A0 and h and k ∈ A−1 such that

dh+ [µ0, h] = fg − 1, dk + [µ1, k] = gf − 1.

The following result (with a different proof) is due to Markl [20].

Proposition 8.4. Every quasi-invertible point of N1A may be lifted to a point of N1A.

Proof. Consider the matrices

α =

(
µ0 f

0 −µ1

)
∈ VA1 β =

(
h h(fk − hf)

g −k + g(fk − hf)

)
∈ VA−1

It is easily checked that dβ + [α, β] = 1. Let Cn be the nth Catalan number. The matrix

a = α+ u

∞∑
n=0

(−u)nCn β
2n+1 ∈ VA1

solves the equation da + a2 = u1, and corresponds to an element of N1A lifting � ∈ N1A. (The sum
defining a is finite, since the differential graded algebra A• is bounded below.) �

The following lemma is our main tool in the proofs of Parts 2) and 3).

Lemma 8.5. Let A be a differential graded algebra such that A1 is finite-dimensional. Let h : A• → A•−1

be an operator on A satisfying the following conditions:

a) hdh = h and h2 = 0;
b) the image of p = dh+ hd is an ideal I ⊂ A.

Then the natural morphism MC(A)→ MC(A/I) is smooth at 0 ∈ MC(A).

Proof. Let U be the open neighbourhood of 0 in A1 on which the determinant of the linear transformation

1 + h ad(µ) : A1 //A1

is nonzero. We will show that the projection MC(A)→ MC(A/I) is smooth on the open subset U∩MC(A).
There is an isomorphism between MC(A) and the variety

V = Z(pν, (1− p)x, dhx− y,Φ(ν) + dνx+ x2) ⊂ X = {(ν, x, y) ∈ A1 ×A1 ×A1},

induced by the morphism taking µ ∈ A1 to ((1− p)µ, pµ, hµ). Likewise, there is an isomorphism between
MC(A/I) and the variety

Z(pν, (1− p)Φ(ν)) ⊂ {ν ∈ A1}.
It follows that the variety

W = Z(pν, (1− dh)y, (1− p)Φ(ν)) ⊂ {(ν, y) ∈ A1 ×A1}

is a trivial finite-dimensional vector bundle over MC(A/I), with fibre the image of hd : A0 → A0, or
equivalently, the image of h : A1 → A0.
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Denote the differentials of x and y : X → A1 by ξ and η ∈ ΩX ⊗ A1. Taking the differentials of the
equations defining V with respect to x and y, we obtain the differentials

ω1 = (1− p)ξ ω2 = dhξ − η ω3 = dξ + ad(ν + x)ξ.

By the equation

(1 + h ad(ν + x))−1
(
ω1 + ω2 + hω3

)
= ξ − (1 + h ad(ν + x))−1η,

we see that the projection from U ∩ V toW is étale, proving the lemma. �

We next prove Part 2). Let b(�) ∈ UA be the derivative of a(�) with respect to u:

b(�) =

(
µ010 + 2uµ01010 + . . . µ0101 + 2uµ010101 + . . .

1 + µ10 + 2uµ1010 + . . . −µ101 − 2uµ10101 − . . .

)
We have the equation

da(�)b(�) = 1.

Consider the projection q0 : VA→ VA given by the formula

q0

(
α00 α01

α10 α11

)
=

(
α00(0) 0

0 0

)
,

where α00(0) is the constant term of α00 ∈ A[u]. Let p0 = 1− q0: this is the projection onto the two-sided
differential ideal in V A

I =

{(
α00 α01

α10 α11

)
∈ V A

∣∣∣∣∣ α00(0) = 0

}

=

{(
α00 α01

α10 α11

)
∈ UA

∣∣∣∣∣ α00(0) = α10(0) = 0

}
.

The homotopy
h = b(�)da(�)b(�)

[
da(�), b(�)p0

]
maps VA• to VA•, and satisfies the hypotheses of Lemma 8.5, with respect to the differential da(�): the
projection p is given by the explicit formula

p =
[
da(�), b(�)p0

]
= p0 + b(�)

[
da(�), q0

]
,

and has the same image I as p0. It follows that the morphism MC(C•(�1)⊗ A)→ MC(A) is smooth at �.
This proves Part 2).

Likewise, consider the projection Q0 : VA → VA given by evaluation at u = 0, and let P0 = 1 − Q0.
Applying Lemma 8.5 to the differential graded algebra VA, with differential da(�), and with homotopy

H = b(�)da(�)b(�)
[
da(�), b(�)P0

]
,

we see that the morphism MC(C•(�1)⊗A)→ MC(C•(∆1)⊗A) is smooth at �. This proves Part 3). �
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