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Introduction

V.I.Arnold formulated the following problem [[Arn], Problem 1984- 12]:
”To transform the asymptotic ergodic definition of the Hopf invariant of
divergence-free vector fields to the theory of S.P.Novikov which generalizes
the Whitehead product of homotopy groups of spheres”’. In the paper we
recall and simplify (a partial) solution of the problem from the [A4] and
present new results, which generalize the problem to non-simply connected
manifolds. In July 2008 at the International Conference on Differential Equa-
tions and Dynamical Systems (Suzdal’) V.I. Arnol’d told that the solution
of this problem would be practically interesting and could help to solve en-
gineering problem in plasma dynamics.

In the first section we present an additional motivation of the Arnold
Problem, which is based on mean magnetic field theory. We use geometrical
considerations due to K.Moffatt and formulate properties of invariants in
ideal MHD, which are asymptotic and ergodic properties.

Then we introduce an asymptotic ergodic invariant, which is called M -
invariant. We present a simpler new proof (in part) that the M -invariant
is ergodic. The M -invariant is a higher invariant, this means that for the
magnetic field with closed magnetic lines the invariant is not a function of
pairwise linking numbers of the magnetic lines. This property is based on
the following fact: an arithmetic residue of the M -invariant for a triple of
closed magnetic lines, which is a model of a link with even pairwise linking
numbers, coincides with the Arf-invariant (about the Arf-invariant, or, the
Rokhlin-Robertello invariant, see [G-M], [Co]).

The new results concern magnetic fields on closed 3-dimensional manifolds
and use theM -invariant. The manifolds with magnetic field, that we consider
are not, generally speaking, simply-connected. This manifold is assumed
homogeneous and is a rational Poncaré sphere. One can try to transform
results on the asymptotics and ergodicity of theM -invariant for the magnetic
fields on the standard sphere S3 to an arbitrary rational homology sphere Σ.
To make this idea precise we generalize the Arf-invariants of classical semi-
boundary links (including the Arf-Brown Z/8-invariant) (see [G-M]) and we
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introduce a new Arf-invariant, called the hyperquaternionic Arf-invariant.
This generalization could clarify the relationship between theM -invariant

and homotopy groups of spheres. It is well-known that the helicity invariant
is a specification of the Hopf invariant, see [A-Kh] for details. The Hopf
invariant determines the homotopy group π3(S

2), the stabilization of this
homotopy group is denoted by Π1. The group Π1 contains the only non-
trivial element with the Hopf invariant one.

The Arf-invariant describes the stable homotopy group Π2 via the ge-
ometrical approach due to L.S.Pontrjagin. The Arf-Brown invariant de-
scribes the 2-torsion of the stable homotopy group Π3, this result follows
from V.A.Rokhlin’s theorems. The hyperquaternionic Arf-invariant describes
the 2-torsion of the stable homotopy group Π7. The hyperquaternionic Arf-
invariant is introduced in Appendix I. This invariant could be useful to
generalized M -invariant and to estimate the complexity of the generalized
M -invariant for links and knots in rational homology spheres Σ.

Are complicated constructions related to stable homotopy groups re-
quired? The author assumes that this is a way to introduce a well-presented
statistics of magnetic lines complicity. Near magneto-static configuration val-
ues of invariants of magnetic lines have to minimized. By small alterations
we get configurations with greater complicity. This implies that transforma-
tions to a magneto-static configuration require magnetic reconnection, which
decrease magnetic energy. This could prove stability of several explicit mag-
netic configurations (let us call such configurations generalized Kamchatnov-
Hopf magnetic solitons) at least, for magnetic fields in non-simply connected
domain, using well-presented invariants of magnetic lines.

The present paper was presented at the conference ”‘Knots and Links in
Fluid Flows. From helicity to knot energies”’ April 27 - 30, 2015 Independent
University, Moscow. Preliminary results were presented at the A.B.Sossinsky
Topological Seminar in IMU September-October 2014. A preliminary re-
sult was presented at the conference on differential equations, organized by
V.P.Leksin in Kolomna, June 2014, and at the conference ”Nonlinear Equa-
tions and Complex Analysis” 2009-2012 Bannoe Lake.

The author is grateful to D.D.Sokolov and A.B.Sossinsky for discussions,
to Russlan Valikhanov for pictures.



Chapter 1

MHD

1.1 The mean magnetic field equation

Let us consider, as in [R], the domain Ω in R
3, which is compact for sim-

plicity, with a conductive liquid. In Ω a velocity field u of the liquid and
a magnetic field B are well-defined. Moreover, the following decomposition
of the considered vector-fields into a mean part and a random part is well
defined:

B = B̄+B′; u = ū+ u′.

Assume that the mean velocity field ū(t) is done, then the equation for
the mean magnetic field is following:

rot(ηrotB̄)− rot(ū× B̄+E) + ∂B̄
∂t

= 0,
E = B′ × u′, div(B̄) = 0.

(1.1)

The equation (1.1) is called the kinematic dynamo equation. Assuming η =
0,E = 0 this equation means that the magnetic field is frozen-in.

Assume that the following equation is satisfied:

E = αB̄− βrot(B̄). (1.2)

Then, using the condition that α changes the sign with respect to the mirror
symmetry and using additional simplifying assumptions we get:

α ∼ (u′, rot(u′)), (1.3)

where the function (u′, rot(u′)) is called the density of (a small-scaled)
the hydrodynamic helicity. Denote the hydrodynamic helicity by χu′ =∫
(u′, rot(u′))dΩ.
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Take the scalar product of the both sides of the equation (1.2) with the
vector B̄, assuming for simplicity that η = 0, and take the integral over
the domain Ω. We get, using E = ∂A

∂t
, the equation, which describes the

transport of the magnetic helicity χB̄ =
∫
(A, B̄)dΩ:

dχB̄

dt
= 2α

∫
(B̄, B̄)dΩ− 2β

∫
(B̄, rot(B̄))dΩ. (1.4)

The integral UB̄ = 2
∫
(B̄, B̄)dΩ is called the magnetic energy (of the mean

field), the integral χrotB̄ = 2
∫
(B̄, rot(B̄))dΩ is called the current helicity (of

the mean field).

1.1.1 Topological considerations concerning the trans-

port equation of the magnetic helicity

In the paper [M] by K.Moffatt the equation (1.4) is discussed from the point of
view of geometry of magnetic lines, see also [S-S] for another one application.
Assume that a support of a magnetic field consists of a finite set of magnetic
tubes, see [B-F]. This means that the magnetic fields B̄, B′ are inside the
tubes and are tangent to the surfaces of the tubes. Additionally, let us assume
that the same collection of the tubes is a support of a velocity field u′. With
this assumption the vorticity field points along the central axis of the each
tube.

The magnetic and hydrodynamic tubes may be defined as the following
condition, called ”‘force-free”’ condition is satisfied: rotu′ ∼ u′, rotB′ ∼ B′.

With the considered assumption it is not hard to prove, using the formula
(1.3), that the mean magnetic field B̄ in the collection of tubes tends |α|-
exponentially to +∞, if the absolute value of α is sufficiently large. This is
called the α-effect.

The contribution of the second term in the right side of the equation (1.4)
could be clarified using the Calugareanu formula, see [M-R], [A-K-K].

In principal, the asymptotic ergodic invariant M , which is introduced in
the present paper, can be applied to get analogous results. Practically this
is impossible, because the formula of M is extremely complicated. Probably,
the equation (1.1) can be investigated using the simplest higher invariants,
called quadratic helicity invariants, introduced in [A], and the q-monomial
helicity, and but this problem is complicated and is not a subject of the
paper.

In the paper [C] the problem of magnetic field relaxation is investigated.
The author assumed that the third and the forth order topological invariants
of magnetic fields, which are not extracted from the linking number of mag-
netic lines, can be applied to study the slowed down decay of the magnetic
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energy. The invariant M is of the asymptotic order 12, and is more compli-
cated. But it is the simplest asymptotic invariant, which is not a function of
the pairwise asymptotic linking numbers of components! This invariant can
be applied, probably, in the considered problem as a constraint in magnetic
field relaxation with free boundary. At least, closed to force-free field configu-
rations, f.ex., closed to Kamchatnov-Hopf magnetic solitons, see [T-S-W-B],
properties of magnetic lines are sufficiently simple and M -invariant (and
other higher invariants of similar type) can be calculated. An example, using
Lemma (4), shows that M is non-degenerates for Kamchatnov-Hopf solitons.
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Chapter 2

Ergodic integrals

2.1 Asymptotic invariants

For simplicity assume that magnetic lines in a magnetic tube Ω are closed.
The magnetic tube Ω is characterized by the magnetic helicity integral, this
integral equals to the mean pairwise linking number of magnetic lines is
the magnetic tube Ω, which is normalized by magnetic flows thought the
collection of infinitesimal magnetic lines Ω.

The magnetic tube Ω is also characterized by various combinatorial invari-
ants I(L1, L2, L3), which are calculated for various collections {L1, L2, L3} of
k magnetic lines (we assume k = 3 for simplicity). In this case we may
assume that lines of collections are inside the magnetic tubes Ω1,Ω2,Ω3 cor-
respondingly, some magnetic tubes could coincide. In a particular interesting
case we have the only magnetic tube, magnetic lines of the collections are
inside of this tube.

What are required conditions for a combinatorial invariant I, which can
be applied to describe magnetic fields? From the consideration above of the
equation (1.4) we have to assume the following conditions:

• C1. The invariant I is of a finite-type invariant of an order t in the
sense of V.A.Vassiliev.

• C2. The invariant I is characterized by a positive integer s, which
is called the asymptotic denominator. Take a link (L1, L2, L3), which
is formed by central lines of disjoint magnetic tubes Ω1,Ω2,Ω3. Denote
by (rL1, rL2, rL3) the r-time spinning link, which is constructed from
(L1, L2, L3) by the r-fold spinning along the central line of the corresponding
magnetic tubes Ω1,Ω2,Ω3. The following equation is satisfied:

r3sI(L1, L2, L3) = I(rL1, rL2, rL3) +O(r3s−1).

• C3. Assume we have two disjoint magnetic tubes Ω2,Ω3 and we have
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12 CHAPTER 2. ERGODIC INTEGRALS

two parallel magnetic lines, which is a 2-component link (L1, L2) in Ω2, and
a magnetic line L3 is a central line in Ω3. Take a magnetic tube Ωtw

2 , which
is obtained from the magnetic tube Ω2 by a twist, Ω2 �→ Ωtw

2 , Tw(Ω2) =
Tw(Ωtw

2 ) + const. Take two parallel magnetic lines Ltw
1 , Ltw

2 in Ωtw
2 . Take

the r-time spinning link (rL1, rL2), each commponent of this link is rotated
along the central line L1 = L2 of Ω2 r times. Take the r-time spinning
link (rLtw

1 , rLtw
2 ), each commponent of this link is rotated along the central

line Ltw
1 = Ltw

2 of Ωtw
2 r times. Take 3-component links (rL1, rL2, rL3),

(rLtw
1 , rLtw

2 , rL3). The following formula is satisfied:

I(rL1, rL2, rL3)− I(rLtw
1 , rLtw

2 , rL3) = O(r3s).

• C4 (Condition-Definition). Assume that the invariant I is not a function
of pairwise linking numbers of components of the link (for a 3-component link
we get 3 pairwise linking numbers). In this case we say that I is a higher
invariant.

Figure 2.1: Condition C3.

2.2 Why are Higher Ergodic Invariants pos-

sible?

In [B-M] (Theorem 1) the authors prove that the asymptotic of Vassiliev
invariants (see [P-S] for definition and properties) of magnetic lines is com-
pletely determined by the helicity of the vector field.

This means that the asymptotic limit of a Vassiliev order-q invariant v of
knots for almost arbitrary pair of magnetic lines of B is calculated by αχq(l),
where χ(l) is the asymptotic value of the Gauss integral of B on the line l,
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α is a constant not depended of B. This result is generalized for a pairs of
magnetic lines. The asymptotic q-Monomial helicity, defined in Section 2, is
an example.

Higher asymptotic invariantM satisfies the Baader-Marché Theorem with
α = 0. M is of the order q = 7, the asymptotic denominator (the condition
C3) of the invariant M is 3s = 12.

The invariantM is well-defined by a complicated integral expression (4.5).
An idea to express integrals of magnetic fields by similar integrals exists in
[M-R], [B]. This idea was used by A.Ruzmaikin and the author in [A-R1],
[A-R2]. The integral invariant of magnetic tubes, introduced in the above
papers, is called the Sato-Levine invariant. The Sato-Levine invariant admits
a natural extension, which is called the Generalized Sato-Levine invariant.
This is an order 3 Vassiliev invariant, this invariant is well-defined for an
arbitrary 2-component link in R

3. The Generalized Sato-Levine invariant is
not an asymptotic invariant of links. This is proved in the Appendix II.

The ergodic property of the main term of the expression is proved in
Theorem 4. The extra terms satisfy a weaker condition of almost-ergodicity
(introduced by the author). This means that the asymptotic values of the
terms for generic B, generally speaking, are multivalued. A priori M is an
invariant of volume-preserved diffeomorphism of the domain in which B is
frozen-in, this implies that the gauge of M is well-defined.

We conjecture that for magnetic lines of hyperbolic magnetic knots (gen-
eralized Kamchatnov-Hopf solitons in non-simply connected domain), which
are generated by Anosov’s almost geodesic flows [D-P], generalized ergodic
integral invariants (analogs of M) are well-defined as single-valued integral
invariants with stability properties. The present paper could be used towards
the Conjecture.
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Chapter 3

Momenta of the magnetic

helicity

3.1 Configuration spaces

Definition 1. Let B, div(B) = 0, is a smooth magnetic field in R
3 with a

compact support Ω ⊂ R
3, which is a manifold with a boundary. We assume

that the magnetic field B is tangent to the boundary ∂Ω and is not vanished
inside Ω. In this case we say that the support Ω is called a magnetic tube.
All the C∞–magnetic fields in tubes are formed a space, equipped with C∞

topology. We do not assume that magnetic lines of B are closed.

The configuration space Kq,r is defined as following. Assume that a
collection of r magnetic lines L1, . . . , Lr of the magnetic field B, which is
parametrized of the segments [0, T ], started at the prescribed points {l1, . . . , lr}
of the domain Ω correspondingly. The subcollection {l1;x1,1, . . . , x1,q} of the
full collection consists of q points, which are on the first magnetic line L1 of
the magnetic field B, the subcollection {l2;x2,1, . . . , x2,q} consists of q points,
each point belongs to the second magnetic line L2 of B, e.t.c., the last sub-
collection {lr;xr,1, . . . , xr,q} of the full collection consists of q points, each
point belongs to the r-th magnetic line Lr of B. Each point xi,j, 1 ≤ i ≤ r,
1 ≤ j ≤ q is well-defined by the time-variable ti,j, 0 ≤ ti,j ≤ T , which is the
time of the evolution of the point li into the point xi,j by the magnetic flow.

Let a real-valued functional Ī : Ω → R be well-defined. Let us say the func-
tional Ī is of a finite-order, if it is defined as the average Ī = I(l1, l2, . . . , lr)
over the all collections {l1, . . . , lr} of the asymptotic limits for T → +∞
(called Cesaro averages) of integrals

∫
fdx1,1 . . . dxr,q of a function f : Kq,r →

R over all finite collections {l1;x1,1, . . . , xq,r} ∈ Kq,r with fixed {l1, . . . , lr}.
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Figure 3.1: Configurations of configuration spaces K2,1, K2,3.

3.2 Asymptotic Hopf Invariant

Let us recall the definition of the asymptotic Hopf invariant by V.I. Arnol’d.
Let {gt : Ω → Ω} be the magnetic flow, which is determined by the magnetic
field B with a support inside a ball Ω ⊂ R

3. Define the Gaussian linking
number of the magnetic lines of B by the times T1, T2 correspondingly, issued
from the points l1, l2 correspondingly, by the following formula:

ΛB(T1, T2; l1, l2) =
1

4πT1T2

∫ T2

0

∫ T1

0

〈
∫
ẋ1(t1), ẋ2(t2), x1(t1)− x2(t2)〉

‖x1(t1)− x2(t2)‖3
dt1dt2,(3.1)

ΛB(l1, l2) = lim
T1,T2→+∞

ΛB(T1, T2; l1, l2), (3.2)

where xi(ti) = gt(li) is the magnetic line, issued from the point li, i = 1, 2,
and ẋi(ti) = d

dti
gtixi are the corresponded velocity tangent vectors (= the

vectors of the magnetic field).
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(Lemma 2, [A-Kh], p. 158, Lemma 4.12.)

The limit ΛB(x1, x2) exists almost everywhere on Ω × Ω ⊂ R
3 × R

3. The
function ΛB(x1, x2) belongs to L1 (the absolute value is integrable) and the
following equation

∫
ΛB(x1, x2)dx1dx2 = χB is well-defined, where the right

side of the equation is given by the formula χB =
∫
(A,B)dD, rotA = B.

The value is called the asymptotic Hopf invariant, or, the helicity integral.
This invariant has the dimension G2sm4, and the corresponding combinato-
rial invariant of links, the linking number, has the topological order 1.

Lemma 1. For a generic magnetic field B with inside Ω the asymptotic Hopf
invariant is an asymptotic functional in the sense of Definition 1.

Proof of Lemma 4

Assume that Ω ⊂ R
3 be a magnetic tube (or a finite collection of magnetic

tubes), which is the support of the magnetic field B. Let us prove that the
asymptotic Hopf invariant χB is a local functional as in Definition 1. Let us
define a configuration space K2,1(B), which is diffeomorphic to Ω×R

1×Ω×
R

1. Let us define a mapping, which is called the evaluation mapping

F1 : K2,1 → Ω× Ω, (3.3)

by the following formula:

F1(l1, t1, l2, t2) = (gt1(l1), g
t2(l2)),

where gt is the magnetic flow. Therefore, the space K2,1 is well-defined as
the configuration space of ordered pairs of points, where each point is on the
corresponding magnetic line, which is issued from the point l1, or l2. The
space K2,1 is a particular example of a configuration space, see Definition 1.

On the configuration space K2,1 the standard volume form dK2,1 = dΩ ∧
dR ∧ dΩ ∧ dR is well-defined. Let us define an integral kernel as following:

Γ[1] : K2,1 → R, (3.4)

using the subintegral function in the Gauss integral (3.1) (the factor (4π)−1

in the formula (6.29) provides the asymptotic linking number for two closed
curves is an integer. The restriction of the function (6.29) to an arbitrary
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compact subspace in K2,1 is integrable, and, moreover, belongs to the space
L2 (an integrable function with the integrable square). Let us consider two
flows on the spaceK2,1, which are commuted. Each flow is defined by the shift
along the corresponding coordinate Rx1

, or Rx2
. By the Birkhoff Theorem

(see [H]) the asymptotic Hopf invariant χB is well-defined as the time average
number of the function Γ[1] of this pair of the flows. Lemma 4 is proved.

Assume B ∈ Ω. Denote by Kr,q;T ⊂ Kr,q a compact subspace in the
configuration space, for which each time-variable coordinate belongs to the
segment [0, T ]. Let us formulate the definition of limiting tensor.

Definition 2. Assume a function

A : Kr,q → R (3.5)

is integrable for each subspace Kr,q;T ⊂ Kr,q. Let us say that an integrable
non-negative function

a[q] : (Ωq)r → R+, (3.6)

which, possibly, tends to +∞, when a point in the origin tends to the thick
diagonal Diag ⊂ (Ωq)r, is called a limiting tensor for (3.5), if there exists
T0 ≥ 0, such that for an arbitrary T > T0 the function a[q] ◦ Fq : K(r, q) →
(Ωq)r → R+ (this function is integrable, because the function (3.6) is inte-
grable) and |A| : Kr,q → R+ satisfies the following equation:

∫
|A|dKr,q;T ≤

∫
a[q] ◦ Fq dKr,q;T . (3.7)

In the diagram above the evaluation mapping is used:

Kr,q
Fq

−→ ((Ω)q)r. (3.8)

The evaluation mapping Fq for q > 1 is defined analogously to F1, see the
formula (3.9) below for the case r = 2. The evaluation mapping is used to
investigate what’s happening if we omit all the coordinates R1,i,R2,j of points
of the configuration spaces.

The following statement is the Main Theorem of the section.
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Theorem 1. Let I(l1, x1,1, . . . , xr,q) is defined as a polynomial A(f1, . . . , fq)
of functions fj ◦ Fq(j) : Kr,q(lj , xj,1, . . . , xj,q) → R, fj : Ωq → R, Fq(j) :
Kr,q → Ωq.

–1. Assume that for an arbitrary j the function fj : Ω
r → R, 1 ≤ j ≤ q

is integrable.
–2. Assume that there exists a limiting tensor (3.6) for I in the sense of

Definition 2.

Then the asymptotic mean value Ī(l1, . . . , lr) of I(l1, x1,1, . . . , xr,q) with
respect to the coordinates R1,i,R2,j is well-defined except, possibly, a subset
of {l1, . . . lr} in Ωr of zero measure, the function Ī(l1, . . . , lr) : Ωr → R is
integrable (belongs to L1) and invariant with respect to the magnetic flow on
Ωr.

Proof of Theorem 1

We will prove the theorem in the case r = 2, this case is used for applications.
In a general case the proof is analogous.

Let us define the configuration space K2,q = Ω × R
k × Ω × R

k and the
evaluation mapping:

Fq : K2,q → (Ω)q × (Ω)q, (3.9)

where (Ωq) is the Cartesian product of q exemplars of a magnetic tube Ω (or,
a finite number of magnetic tubes), by the formula:

Fq(l1, t1,1 . . . t1,q, l2, t2,1 . . . t2,q) =

(gt1,1(l1), . . . g
t1,q(l1), g

t2,1(l2)), . . . g
t2,q(l2))

where gt is the magnetic flow. The mapping Fq for q = 1 coincides with
the mapping (3.3), defined above. Therefore, the configuration space K2,q is
defined as the space of two ordered collections of q points, each collection on
the corresponded magnetic line.

On the space K2,q a collection of 2q flows (each two flows are commuted)
along the coordinates R1,i,R2,j , 1 ≤ i ≤ q, 1 ≤ j ≤ q are well-defined. This
coordinates are denoted by t1,i, t2,j , the images gt1,i(x1), g

t2,j(x2) are denoted
by x1,i(t1,i), x2,j(t2,j), or, briefly, by x1,i, x2,j . The standard volume form on
K2,q is denoted by dK2,q.

Prove Statement 1. This is a corollary of the Birkhoff Theorem followed
the argument by V.I.Arnol’d as in Lemma 4.

Prove Statement 2. Let us consider the function (3.6) and apply for each
of 2q flows on the space (Ω2)q the the Birkhoff Theorem by the induction.
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In each step of the induction we get an integrable function on the Cartesian
product of one less copies of Ω. At the last step of the induction we get an
integrable function, denoted by A : Ω2 → R+ as in (3.5), which is well-defined
almost everywhere and which is a constant along each of the two magnetic
flows on Ω2.

The inequality (3.7) implies the following inequality:

a[2](l1, l2) ≥ |I(l1, l2)|. (3.10)

Because the left side of (3.10) is integrable, the right side is also integrable.
Statement 2 is proved. Theorem 1 is proved.

3.3 q-Monomial helicities

Apply Theorem in the case of the q-power of the helicity density, defined by
the equation (3.2).

Let us start to define the asymptotic q-monomial linking coefficient Λ
[q]
B

and the asymptotic ergodic invariant χ
[q]
B , which is called q-helicity. Define

q-linking coefficient Λ
[q]
B (T1, T2; l1, l2) of the magnetic lines of B by the times

T1, T2, which are issued from the points l1, l2, as follows:

Λ
[q]
B (T1, T2; l1, l2) = (3.11)

1

4qπqT q
1T

q
2

∫ T1

0

. . .

∫ T1

0

∫ T2

0

. . .

∫ T2

0

〈ẋ1,1(t1,1), ẋ2,1(t2,1), x1,1(t1,1)− x2,1(t2,1)〉

‖x1,1(t1,1)− x2,1(t2,1)‖3
·· · · ·

〈ẋq,1(t1,q), ẋq,2(t2,q), x1,q(t1,q)− x2,q(t2,q)〉

‖x1,q(t1,q)− x2,q(t2,q)‖3
dt1,1 . . . dt1,qdt2,1 . . . dt2,q.

In this integral we may put T1 = T2 = T , this gives a little simplification.
For almost arbitrary pair of initial points l1, l2 by the Arnol’d Theorem

there exists a limit

Λ
[q]
B (l1, l2) = lim

T→+∞
Λ

[q]
B (T ; l1, l2), (3.12)

where the function in the right side of the equation is integrable on Ω × Ω,
see .

Let us define (at least a formal) functional on the space Ω, which generates
the q–helicity by the formula:

χ
[q]
B =

∫
Λ

[q]
B (l1, l2)dΩdΩ, (3.13)

where Λ
[q]
B (l1, l2) is defined in (3.12).

Theorem 2. The integral at the right side of the formula (3.13) is well-
defined.
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Corollary

The q-monomial helicity χ
[q]
B depends continuously on a C∞-small perturba-

tion of magnetic fields in Ω. The proof is following: for an arbitrary ε > 0
there exists T , such that the term Λ

[q]
B (T ; l1, l2) in the right side of the for-

mula (3.12) is distinguished from the left side of the equation less then ε
2
. The

term Λ
[q]
B (T ; l1, l2) depends smoothly on a perturbation of B. This gives the

required result. In [A2] is proved using Stokes lemma a modification of χ
[q]
B

in the case q = 2 depends Lipschitz continuity on a C∞-small perturbation
of B.

Remark

The dimension of χ
[q]
B is Gs2qsm4. The order of the corresponding topological

invariant equals to q.

Let us define the configuration space K2,q = Ω × R
k × Ω × R

k. Let us
denote

Γ[q] : K2,q → R. (3.14)

by the integral kernel in (3.23). The function Γ[q] determines a functional
(3.25) (probably, a formal functional). Define a smoothing of the subintegral
kernel Γ[q], using a small finite parameter ε > 0, over this additional time-
parameter the integration of Γ[q] as following. Each time-variable vary by
additional small alterations in the interval [−ε,+ε]. Denote the result of the
smoothing of Γ[q] by Kε(x1,1, x2,1, . . . , x1,q, x2,q).

Replace the integral kernel Γ[q] into the smoothed kernel Kε in the right
side (below the limit of the equation (3.24). The mean value over the time-
variables over the segment [0, T ] at the left side of the non-equality (3.7),
which is used for A[q] = Kε, is the following:

Λ
(q)
B (T1, T2; l1, l2; ε) = (3.15)

1

2qπqT q
1T

q
2

∫ T1

0

. . .

∫ T1

0

∫ T2

0

. . .

∫ T2

0

Kε(x1,1, x2,1, . . . , x1,q, x2,q)dt1,1 . . . dt1,qdt2,1 . . . dt2,q,

where the integral kernel Kε is calculated by the formula:

Kε(x1,1, x2,1, . . . , x1,q, x2,q) = (3.16)
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ε−q

∫ ε

0

. . .

∫ ε

0

∫ ε

0

. . .

∫ ε

0

〈ẋ1,1(t1,1), ẋ2,1(t2,1), x1,1(t1,1)− x2,1(t2,1)〉

|x1,1(t1,1)− x2,1(t2,1)|
3 · . . .

·
〈ẋq,1(t1,q), ẋq,2(t2,q), x1,q(t1,q)− x2,q(t2,q)〉

|x1,q(t1,q)− x2,q(t2,q)|
3 dt1,1 . . . dt1,qdt2,1 . . . dt2,q.

Put is the right side of the non-equality (3.7) the expression A[q] = Γ[q]:
∫

|Γ[q]|dK2,q;T . (3.17)

Put in the same formula the expression A[q] = K
[q]
ε :

∫
|K [q]

ε |dK2,q;T . (3.18)

Obviously, the integrals (3.17), (3.18) distinguishes by its absolute value by a
real, which is non-depended of T and is arbitrary small, if ε → 0. The differ-
ence of this two integrals are given by boundary conditions, when one of the
parameter belongs to {0, T}. Therefore for the proof of the required state-

ment is sufficient to construct a limiting tensor for K
[q]
ε for an appropriate

finite ε > 0.
The smoothed integral kernel (3.16) is equal to a product of the integrals

as following:

Kε(x1,1, x2,1, . . . , x1,q, x2,q) = (3.19)

ε−q

q∏
j=1

∫ ε

0

∫ ε

0

〈ẋ1,j(t1,j), ẋ2,j(t2,j), x1,j(t1,j)− x2,j(t2,j)〉

|x1,j(t1,j)− x2,j(t2,j)|
3 dt1,jdt2,j .

Let us apply the elementary non-equality between arithmetic and geo-
metric mean values. Then we get:

Kε(x1,1, x2,1, . . . , x1,q, x2,q) ≤ (3.20)

1

qεq

q∑
j=1

(

∫ ε

0

∫ ε

0

∣∣∣∣〈ẋ1,j(t1,j), ẋ2,j(t2,j), x1,j(t1,j)− x2,j(t2,j)〉

‖x1,j(t1,j)− x2,j(t2,j)‖3

∣∣∣∣ dt1,jdt2,j)q.
Let us fix an arbitrary small constant 1 >> δ0 > 0, such that at the

prescribed scale the magnetic field and its partial derivatives are of a small
variation. Assume that points x1,j , x2,j are distinguished not more then to a
positive small constant δ0, then the corresponding term in (3.20) is absolutely
estimated by the following term

C lnq(ρB(x1,j , x2,j)), (3.21)
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where ρB(x1,j , x2,j) is the distance from the point x1,j to the magnetic line,
which contains the point x2,j . The coefficient C < 0, in the case q = 2s+ 1,
and C > 0, in the case q = 2s, depends of first and second order partial
derivatives of B and of the prescribed constant δ0.

If the distance between points x1,j , x2,j is greater then δ0, the corre-
sponding term in the expression (3.20) is absolutely estimated by a positive
constant, which is not depended of δ0 and of the components of B. Putting
the non-equalities (3.20), (3.21) into the expression (3.19). This gives the
following absolute bound of the integral kernel (3.16) of the integral (3.15):

Kε(x1,1, x2,1, . . . , x1,q, x2,q) ≤
Cq

εq

q∑
i=1

lnq(ρB(x1,i, x2,i)). (3.22)

Define the limiting tensor by the formula:

δ[q](x1, x2) =
qCq

εq
lnq(ρB(x1, x2)).

Because the integral ∫
lnq(ρB(x1, x2))dx1dx2

over an arbitrary compact domain in R
3(x1)×R

3(x2) exists, for an arbitrary
q ≥ 1 the function in the left side of (6.63) is integrable. The required estima-

tion (3.7) for A = K
[q]
ε follows from the equation (6.63): using this equation

each term in the expression (3.20) is estimated. This proves Theorem 2.

Let us start to define the asymptotic q-monomial linking coefficient Λ
[q]
B

and the asymptotic ergodic invariant χ
[q]
B , which is called q-helicity. Define

q-linking coefficient Λ
[q]
B (T1, T2; l1, l2) of the magnetic lines of B by the times

T1, T2, which are issued from the points l1, l2, as follows:

Λ
[q]
B (T1, T2; l1, l2) = (3.23)

1

4qπqT q
1T

q
2

∫ T1

0

. . .

∫ T1

0

∫ T2

0

. . .

∫ T2

0

〈ẋ1,1(t1,1), ẋ2,1(t2,1), x1,1(t1,1)− x2,1(t2,1)〉

‖x1,1(t1,1)− x2,1(t2,1)‖3
·· · · ·

〈ẋq,1(t1,q), ẋq,2(t2,q), x1,q(t1,q)− x2,q(t2,q)〉

‖x1,q(t1,q)− x2,q(t2,q)‖3
dt1,1 . . . dt1,qdt2,1 . . . dt2,q.

In this integral we may put T1 = T2 = T , this gives a little simplification.
Below is proved (see Theorem 3.3) that for almost arbitrary pair of points

l1, l2 there exists a limit

Λ
[q]
B (l1, l2) = lim

T→+∞
Λ

[q]
B (T ; l1, l2), (3.24)
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where the function in the right side of the equation is integrable on Ω× Ω.

The formula (3.24) determines the time-average of the corresponding in-
tegral kernel, which is denoted by Γ[q]. In the particular case q = 1 the
formula (3.23) coincides with (3.1).

Let us define (a formal) functional, which generates the q–helicity by the
formula:

χ
[q]
B =

∫
Λ

[q]
B (l1, l2)dΩdΩ, (3.25)

where Λ
[q]
B (l1, l2) is defined in (3.24).

Theorem 3. The helicity density, given by (3.2) is is invariant with respect
to volume-preserved diffeomorphisms of the domain Ω ⊂ R

3. In particular,
the q-monomial helicities, given by (3.13), are invariants in the ideal MHD.

Let D(s) : R3 → R
3, s ∈ [0, s0] is a one-parameter family of volume-

preserved diffeomorphisms with a compact support, which transforms the
identity Id : R3 → R

3 to a diffeomorphism D(s0) (the existence of such a
family of diffeomorphisms follows from the A.I.Shnirelman Theorem ([A-X],
section 7, chapter IV). For an arbitrary s consider a function of T

Λ
(q)
F (s)∗(B)(T ; l1, l2), (3.26)

which is induced from ΛB by a diffeomorphism Fs.

Lemma 2. The function

d

ds
ΛFs,∗(B)(l1, l2;T, s) (3.27)

for an arbitrary T is absolutely bounded by the positive function C(l1, l2)T
−1,

where C : Ω × Ω → R+ is a non-negative integrable function, which is de-
pended of components of B and of partial derivatives of components of B.

Proof of Lemma 2

An analogous statement is proved in [A2], statement 2.2.
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Proof of Theorem 3

By the formula 3.27 we get a well-defined limit limT→+∞
d
ds
ΛFs,∗(B)(l1, l2;T, s)

of absolute integrable functions with respect to a measure, and this limit is
equal to zero function. Therefore the function ΛB(l1, l2), as an integrable

function, is invariant with respect to the flow Fs. Therefore, Λ
[q]
B (l1, l2) is also

invariant with respect to the flow Fs, because Λ
[q]
B (l1, l2) = (ΛB(l1, l2))

q. The
flow Fs preserves the volume, and, therefore, the integral (3.25). Theorem 3
is proved.

3.4 Possible applications

The most important application of magnetic helisity in MHD is related with
the Arnol’d inequality:

∫
B2dΩ ≤ C

∫
(A,B)dΩ,

where the constant C > 0 depends only on geometrical properties of the
domain Ω. In the right side of the equation we get the magnetic helicity
integral χB, which is an invariant for the ideal MHD. In the left side we get
the magnetic energy. Are analogous inequalities possible for higher magnetic
energies in the left side of generalized inequalities with χ

[q]
B instead of χB?

Generalizations are important for turbulence. For problems with mag-
netic field an approach, initially proposed by Kolmogorov A.N. [1941] is in
progress. Expecting results relate with generalized Arnol’d inequalities and
applications in MHD cascades [F-S].
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Chapter 4

Higher invariants of magnetic

lines

4.1 The M-Invariant for a triple of magnetic

tubes

Consider a magnetic field B = ∪iBi with a support into 3 magnetic tubes
Ωi, i = 1, 2, 3 correspondingly. Assume that inside the each magnetic tube
a coordinate system Ωi

∼= D2 ×S1 is fixed. Assume that this coordinate sys-
tem corresponds with the standard volume form in R

3 and the magnetic field
Bi points strictly along the S1–coordinate of the system. This assumption
simplifies calculations and gives no loss of a generality.

The integral magnetic flow of Bi trough the cross-section of the magnetic
tube Ωi is denoted by Φi. The integral linking number

∫
Ωi
(Aj,Bi)dx =

ΦiΦjlk(i, j) of magnetic tubes Ωi, Ωj is denoted by (i, j), i, j = 1, 2, 3 i �= j.
A multivalued function with the period (i, j), which is a restriction of the

scalar branch of the vector-potential Aj on the magnetic tube Ωi denote by
ϕj,i : Ωi → R. The function ϕj,i is well-defined up to an additive constant.
Consider a function

φ1 = (3, 1)ϕ2,1 − (1, 2)ϕ3,1 : Ω1 → R,

which is well-defined by means of multivalued functions ϕ2,1, ϕ3,1 up to an
additive constant. To fix the constant, we assume that the following equation
is satisfied:

∫
Ω1

φ1dx = 0. Define the functions φ2, φ3 by analogous formula.
Define the vector

F = (1, 3)(2, 3)A1 ×A2 + (2, 1)(3, 1)A2 ×A3 + (3, 2)(1, 2)A3 ×A1

−φ1B1(2, 3)− φ2B2(3, 1)− φ3B3(1, 2).

27
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Obviously, the equation div(F) = 0 is satisfied.
The vector-potential G, rotG = F and the integral

∫
R3(G,F)dx are well-

defined. This integral is modified into the required invariant of volume-
preserved diffeomorphisms. This modification includes the following extra
10 terms:

e1,2,3 = −2(1, 2)(2, 3)(3, 1)(

∫
R3

〈A1,A2,A3〉dx)
2, (4.1)

f1 = −2(

∫
Ω1

ϕvar
2,1 (gradϕ

var
3,1 ,B1)dΩ1)(

∫
R3

〈A1,A2,A3〉dx), (4.2)

d1,1 = −(2, 3)2
∫

φ2
1(A1,B1)dΩ1, (4.3)

d1;3 = (2, 3)(1, 2)

∫
φ2
1(A3,B1)dΩ1. (4.4)

In the formula (4.2) the terms ϕvar
3,1 , ϕ

var
2,1 are defined from ϕ3,1, ϕ2,1 cor-

respondingly, see [A2]. The extra 6 terms are defined by cyclic permutation
of the indexes {1, 2, 3} in the formulas (4.2), (4.3), (4.4).

In [A2] the following result is proved.

Theorem 4. The integral expression

M(B) =

∫
R3

(G,F)dx+ e1,2,3 +
∑

i=1,2,3

fi + di,i + di;i+2 (4.5)

is invariant with respect to volume-preserved diffeomorphisms.

The invariant M is non-degenerated and is not expressed by the
linking coefficients of the tubes

This example illustrates Theorem 4. Let us consider the field B decomposed
into 3 tubes with the flows fl1 = fl2 = fl3 = 1. Let us consider the tubes
Ω1 and Ω2, presented by the Whitehead link, and the tube Ω3, such that
the pairs of tubes (Ω1,Ω3) and (Ω2,Ω3) present Hopf links with the linking
coefficients +1, (see Fig. 3).

Because (1, 2) = 0 (2, 3) = (3, 1) = 1, the expression (4.5) is simplifyed:

F = A1 ×A2 − ψ2B1 + ψ1B2,
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Figure 4.1: A link with non-trivial M -invariant.

M(B1,B2,B3) =

∫
[2GF− ψ2

2(A1,B1)− ψ2
1(A2,B2)]dR

3. (4.6)

This equation coincides with the integral formula for Sato-Levine in-
variant presented in [A-R1], [A-R2]. Because Sato-Levine invariant for the
Whitehead link is non-trivial [Co], we have M �= 0. This proves that M is
non-degenerated. If we change the pair of tubes Ω1,Ω2 to the trivial pair of
tubes, keeping the pairs Ω1,Ω3, Ω2,Ω3 in the isotopy class of the Hopf link,
the value M becomes trivial. This proves that the invariant M cannot be
expressed from the linking numbers of the components.

4.2 The M-invariant of 3 closed magnetic

lines

Assume that Φ1 = Φ2 = Φ3 = 1 and take a limit in the formula (4.5),
when the thickness of magnetic tubes tends to zero. The result satisfies the
following definition.

Definition

For an arbitrary 3-component link L ⊂ R
3 define a space (non-connected)

Conf r(L) = (L)r as the Cartesian product of r copies of L. The space
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Conf r(L) is called the configuration space of the link L.
Let

F : Conf r(L) → R (4.7)

be an integrable function on the configuration space.

Theorem 5. Each term in the expression (4.5) is defined by the integral of
a corresponding function on the configuration space of the link L.

Let us formulate an analogous definition for a function on the configura-
tion space of magnetic lines.

4.2.1 Ergodic integrals and quasi-ergodic integrals

Let B, div(B) = 0 be a smooth magnetic field in R
3 with a support inside a

finite collection of magnetic tubes Ω ⊂ R
3, the magnetic field B is tangent

to the surface boundary of Ω and non-vanishes inside Ω.
Let us say that the function F : Kq,r → R (see Definition 1) on config-

uration space determines an ergodic integral, if the following conditions are
satisfied:

• -1. For almost an arbitrary point {l1, . . . , lr} ∈ Ωr the mean value F̄ :
Kq,r → R (in the sense of Cesàro) of the function F with respect to position
of points {x1,1, . . . , x1,q, . . . , xr,1, . . . , xr,q} is well-defined. By definition F̄ is
induced by a function in the domain Ωr with respect to the projection π :
Kq,r → Ωr, π(z) = {l1, . . . , lr}, z ∈ Kq,r; denote this function by F̄ : Ωr → R.

• -2. The function F̄ : Ωr → R is locally integrable and is integrable.
The ergodic integral I(B) is defined as the integral of the function F̄ over

the domain Ωr.

Let us say that a function F : Kq,r → R determines a quasi-ergodic in-
tegral, if a linear mapping (non-homogeneous) X : Kq,r → R with respect
to variables {t1,1, . . . , t1,q, . . . , tr,1, . . . , tr,q} is well-defined (this mapping de-
termines a relation between parameters ti,j , ti,j(li) = xi,j) and, moreover, for
an arbitrary p ∈ R the restriction of F to X−1(p) ⊂ Kr,q satisfy Conditions
-1, -2; moreover, for an arbitrary p > 0 the integral f(p) =

∫
F̄ d(X−1(p))

determines an absolute bounded function f(p) : R+ → R, p > 0.
The quasi-ergodic integral I(B) is defined as a mean value of the function

f(p) over R+. Generally speaking, this integral is multivalued and takes the
value into a segment.
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Additionally, if magnetic a lines, issued from the points {l1, . . . , lr} are
closed, the function f : R+ → R is periodic. In the case magnetic lines of B
are closed, f is periodic and a value I(B) is well-defined.

Theorem 6. The terms
∫
R3(G,F)dx, e1,2,3, fi in the formula of M , presented

in (5), are ergodic integrals. The terms di,i, di;i+2 in (5) are quasi-ergodic
integrals.

In the paper [A3] the following theorem is proved.

Theorem 7. Assume that magnetic lines of B inside Ω are closed. Then
the invariant M satisfy Condition C1 for t = 7, Condition C2 for s = 12,
and Conditions C3, C4.

Proof of Theorem 6.60

A particular proof of Theorem is in [A4] (Theorem 3.1,(1) and Lemma 4.1.).
I present a simplification of the proof for the main term

∫
R3(G,F)dx with

simple estimations of the integral.
Recall the definition of the term W of the integral W , supp(B) = Ω ⊂ R

3.
Coordinates of a point in K3,4;2 are given by collections

{l1, t1,1, . . . t1,4, l2, t2,1, . . . t2,4, l3, t3,1, . . . t3,4; y1, y2}, where li ∈ Ωi,
ti,j ∈ [0, T ] ⊂ Ri,j , j = 1, 2, 3, 4, y1, y2 ∈ R

3.
Define the evolution mapping F : K3,4;2 → Ω4

1 × Ω4
2 × Ω4

3 by the formula

F (l1, t1,1, . . . t1,4, l2, t2,1, . . . t2,4, l3, t3,1, . . . t3,4) =

(gt1,1(l1), . . . g
t1,4(l1), g

t2,1(l2), . . . g
t2,4(l2), g

t3,1(l3), . . . g
t3,4(l3),

where gt is the magnetic flow of B. From this formula the
space K3,4;2 is the configuration space of 17-points: 3(1 + 4) points
{li, g

ti,1(li), g
ti,2(li), g

ti,3(li), g
ti,4(li)} are on the magnetic lines, which are is-

sued from li, i = 1, 2, 3, and points (y1, y2) ∈ (R3)2 are arbitrary. The
standard volume form dK3,4 on the space K3,4;2 is well-defined.

The first step of the construction includes a definition of a functionW3,4;2 :
K3,4;2 → R, which is called the density function. The density function is not
the lift of a function on Ω3 by the projection π : K3,4;2 → Ω3. The mean
asymptotic value of the function W3,4;2 over the coordinates ti,j , which is
well-defined almost everywhere, depends of the parameters (l1, l2, l3; y1, y2).
The last second step of the construction is a construction of a limiting tensor,
this proves that the integral of W3,4;2 over Ω3 × (R3)2 is well-defined.

Let us use the Gauss integral to calculate W in the following formulas:

(2, 3)(3, 1)2(1, 2)γt1,1,t2,1,t2,2,t3,1(�α1,2(x1, x2,1; y1), �α2,3(x2,2, x3; y2)), (4.8)
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(2, 3)2(1, 2)2γt1,1,t1,2,t2,1,t2,2(�α1,2(x1,1, x2,1; y1), �α1,2(x1,2, x2,2; y2)). (4.9)

In this formula by γ( , ; , ) is denoted the value of the kernel of the
Gauss integral at a pair of corresponding magnetic vectors, the vectors of the
pair depend of the variables (x1, x2,1, x2,2, x3) and are attached to the points
y1, y2 (each point is an arbitrary point the space R

3) correspondingly, the
vectors �α1,2(x1, x2,1; y1), �α2,3(x2,2, x3; y2) in (4.8) (for (4.9) the formulas are
similar) are given by (4.12), (4.13). The terms (4.8), (4.9) are well-defined
in the asymptotic limit of all the positions of the variables xi,j . For short
we take x1 = gt1,1(l1), x3 = gt3,1(l3). The integration over the variables
(y1, y2) ∈ R

3 × R
3 is taken after the asymptotic limit.

Let us investigate the term (4.8) only, for the term (4.9) the proof is
analogous. The coordinates {t1,1, . . . t1,4, t2,1, . . . t2,4, t3,1, . . . t3,4} are divided
into the following 2 groups of coordinates, the coordinates of the first group
{t1,1, t2,1, t2,2, t3,1} are re-denoted by {τ1, τ2,1, τ2,2, τ3} correspondingly. The
coordinates of the second group {t1,2, t1,3, t1,4, t2,3, t2,4, t3,2, t3,3, t3,4} are re-
order as following: {t1,2, t3,2, t1,4, t3,4, t1,4, t2,3, t2,3, t3,4} and are re-denoted by
{ρ1,1, ρ3,1, ρ1,2, ρ3,2, ρ1,3, ρ2,3, ρ2,4, ρ3,4} correspondingly.

Let us define the factors in the formula (4.8). Using the 4 points of the
first group x1 = gτ1(l1), x2,1 = gτ2,1(l2), x2,2 = gτ2,2(l2), x3 = gτ3(l3), define the
integral kernel

γτ1,τ2,1,τ2,2,τ3(�α1,2(x1, x2,1), �α2,3(x2,2, x3); y1, y2). (4.10)

Using the last 8 points of the second group gρ1,1 = z1,1, g
ρ3,1 = z3,1, g

ρ1,2 =
z1,2, g

ρ3,2 = z3,2, g
ρ1,3 = z1,3, g

ρ2,3 = z2,3, g
ρ2,4 = z2,4, g

ρ3,4 = z3,4, define the
integral kernel to calculate (2, 3)(3, 1)2(1, 2) by obvious way, see [A-Kh] for
the integral formula of the linking number. The product of the expressions
gives (4.8).

Let us prove that for almost arbitrary collection (l1, l2, l3; y1, y2) there
exists the asymptotic mean value of the expression (4.10) with respect to the
variables {τ1, τ2,1, τ2,2, τ3}. Denote this asymptotic mean value by

γ̄(l1, l2, l3; y1, y2) (4.11)

The absolute value of coordinates of the vector-potential A(xi; y) at an
arbitrary point xi ∈ L is integrable with respect to the parameter y ∈ R

3.
This vector-potential determines the vector-functions

�α1,2(x1, x2,1; y1) = A(x1; y1)×A(x2,1; y1), (4.12)

�α2,3(x3, x2,2; y2) = A(x3; y2)×A(x2,2; y2). (4.13)
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This vector-functions for arbitrary fixed y1, y2 are integrable with respect to
the parameters {x1, x2,1, x2,2, x3}.

By the Birkhoff Theorem the vector-functions �α1,2, �α2,3 in (4.10) admit
the asymptotic limits with respect to the first group coordinates. The mean
vector-functions are denoted by �̄α1,2(l1, l2)(y1), �̄α2,3(l2, l3)(y2), this vector-
functions depend formally of the points (l1, l2, l3), but, in fact, depend of the
triple of magnetic lines L1, L2, L3 only, li ∈ Li, i = 1, 2, 3.

The integral kernel (4.10) is calculated algebraically and the term (4.11)
is well-defined for almost arbitrary (l1, l2, l3; y1, y2). Analogously, the integral
kernel W3,4;2, corresponded to (4.8), admits the mean value over all the vari-
ables {τ1, τ2,1, τ2,2, τ3; ρ1,1, ρ3,1, ρ1,2, ρ3,2, ρ1,3, ρ2,3, ρ2,4, ρ3,4}. Denote this mean
value by

W̄ (l1, l2, l3; y1, y2). (4.14)

The product of pairwise asymptotic linking numbers is well-defined for
almost arbitrary collections of magnetic lines (L1, L2, L3). The vector (4.14)
is well-defined and the first step of the construction is described.

Pass to the second step of the construction and prove that the integrals
(4.11), (4.14) over Ω3 × (R3)2 are well-defined. Estimate the total term (4.8)
by a limiting tensor (Definition 2), which is absolutely integrable over the
configuration space Ω3 × (R3)2. Denote by a(x1, x2,1, x2,2, x3) the absolute
value of the term (4.10) (the value +∞ is admitted) after the integration over
the variables y1, y2. Assume firstly that the points x1, x2,1, x2,2, x3 belong to
the triple of the segments of magnetic lines, which are pairwise close to each
other. Denote by δ a small parameter, which is the distance of the segment
on L2 to the segments on {L1, L3} (for short we assume that the segment on
L1 is closer that the segment on L3 to the segment on L2).

Lemma 3. Let y1 = y2 = x1,1 = x1,2 = x2 = x3, and ω > 0 be a given
positive (arbitrary small) number, constants δ0 > δ be arbitrary. Take an
arbitrary non-degenerate δ-variation of the magnetic line L1 and an arbitrary
variation of the magnetic line L3, which is estimated from above by δ and
from below by δ0. Then the absolute integral value of the term

a(x1, x2,1, x2,2, x3) (4.15)

over arbitrary ε–variations of variables y1, y2, x1, x2,2, x3 (the variable x1,1

is fixed) along the corresponding segments of magnetic lines is estimated by
Cδ−1−ω, where the positive constant C depends only on ε. The constant ε
depends on the norm of the 2-jets of B in Ω and depends no of δ.
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Remark

By the results of [A4], one may replace Cδ−1−ω by C log(δ−1) in the lemma.

Proof of Lemma 3

To simplify the notation put ε = 1. The singularity in the configuration
space is of the order r−10, where r is the distance in R

3 which corresponds
to the parameter of deformation. This formal order includes the order −2
of the each magnetic dipole (4 dipoles), the order of the kernel in the Gauss
integral, given by dist(y1, y2)

−2. The integration of the term (4.15) is over the
6-dimensional domain of the variables y1, y2 and of a 3-dimensional domain,
of the variables x1,1, x1,2, x2, x3. As the result, we get that the singularity of
(4.15) is of the formal order −1.

After the deformation, described in the lemma, the term (4.15) is well-
defined and integrable. To calculate this generic term, we integrate singular
functions of the order r−6 (the coordinate r is the distance between the
parameters x1,1, x1,2 on the line L1) over 7-dimensional space. The integral is
well-defined. A formal estimation (over the parameter δ) of the deformation
of the singularity proves Lemma. 3.

Let us estimate W by absolute value using the lemma. Consider the cube
with the edge of the length T in the configuration space, which is given by
the parameter of the magnetic flow. The configuration space is a union of
a finite number of small cubes. Let us define a limiting tensor of W3,4;2 in
each cube. Recall that the limiting tensor is absolutely integrable over the
configuration space. and estimates the absolute value of W3,4;2.

We start with cubes, called diagonal cubes, which are closed to top sin-
gularities, which are described in Lemma 3, up to parallel translations of all
4-points along the magnetic flow. The last cubes in the configuration space,
called peripheral cubes, are defined analogously.

In each diagonal cube we get the estimation from Lemma 3. In an arbi-
trary peripheral cube estimations is more simple, and formally are given by
the same formulas, δ0 is not a small parameter. As the result we get that the
expression (4.10) is estimated by a function of the order δ−1−ω, where δ is
the minimal pairwise distance between segments of magnetic lines (if there
is a pair of close segments of magnetic line) and by a function of the order
1, if all the segments are pairwise non-closed.
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By the Holder inequality we get:

∫
fgdx ≤ (

∫
|f |q dx)

1

q (

∫
|g|p dx)

1

p , 1 < p < 2,
1

p
+

1

q
= 1.

In this inequality f is the limiting tensor for (4.10), g is the limiting tensor
with logarithmic singularities for the term (2, 3)(3, 1)2(1, 2), which is much
simple. We use the denominator p = 1 + ω and a large denominator q. The
function (4.14) is integrable and the main term W is given by an ergodic
integral.

4.3 Examples of Magnetic Knots

We consider examples of magnetic knots with closed magnetic lines (or with
magnetic lines on family of surfaces) inside compact (homogeneous) mani-
folds, for which M -invariant is non-vanished. The Examples I and II are
generalizations with non-simply connected manifolds.

4.3.1 A one-parametric family of magnetic knots in S3

Consider the standard singular fibration S3 → S2 with 2 singular linked
circles S1

1 ⊂ S3, S1
2 ⊂ S3, and with Hopf family of regular tori Tt, t ∈ [1, 2]

between this two circles, T1, T2 are shrined into S1
1 and S1

2 correspondingly.
Consider the Cartesian coordinate system (x, y, z) on S3 \ {∞}. The circle
S1
1 is the unite central circle on the plane (x, y). The circle S1

2 is the standard
vertical z-axis, ∞ ∈ S1

2 , through the origin.
Define a real parameter r, 1 ≤ r ≤ 2. Define a r-parameter family of

magnetic knots Υr in S3. Magnetic lines of Υr for each t ∈]1, 2[ are on
Tt and wind 1 time along the S1

1–parallel of Tt and r times along the S1
2 -

meridian of Tt. For rational r, the magnetic knot Υr consists of closed lines.
The magnetic knots Υr1 , Υr2 , in the case r1 �= r2, are not equivalent with
respect to volume-preserved diffeomorphisms of S3. In the case r = 1 we get
the standard Hopf fibration with fibers along the standard Hopf mapping
h : S3 → S2. For r = 2 we get a Kamchatnov-Hopf soliton.

The combinatorial formula of the invariant M(L), in the case L is a 3-
component link, is well-defined (probably, up to a sum with a polynomial
P ((1, 2), (2, 3), (3, 1)), which depends on pairwise linking numbers of L, see
[A3]). In the case (1, 2) = (2, 3) = (3, 1), to keep asymptotic properties of
M , assume that deg(P (k)) ≤ 11. We define Ṁ = M +P , the invariant Ṁ is
ergodic. Moreover, without lost of a generality we assume that Ṁ is trivial
on a prescribed collection of the following 2 simplest links L1,1,1, L2,2,2.
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The link L1,1,1 consists of 3 magnetic lines with pairwise linking number
1, each line is a fiber of the Hopf fibration h : S3 → S2. By the construction,
L(1) = L1,1,1, where L(1) is the link, which is defined by an arbitrary ordered
magnetic lines of the magnetic knot Υ1.

Figure 4.2: Link L(1) = L1,1,1.

The link L2,2,2 is defined as following. Take the symmetric triangle with
the unite edges on the plane. Take 3 circles L′

1, L
′
2, L

′
3 of the radius

1
2
around

its vertexes, which are tangent to each other in the centers of edges. Then
take a small 3D deformation of (L′

1, L
′
2, L

′
3) → (L1, L2, L3) in small neighbor-

hoods of tangent points of the pairs (L′
1, L

′
2), (L

′
2, L

′
3), (L

′
3, L

′
1); as the result

we assume that the pairwise linking numbers of (L1, L2), (L2, L3), (L3, L1)
are equal to +2.

Denote by L(2) a 3-component link, which is defined by an arbitrary
ordered triple of generic magnetic lines of the magnetic knot Υ2 It is not
difficult to prove that pairwise linking numbers of L(2) and L2,2,2 coincide.

By the construction L2,2,2 is distinguished from L(2) by the commuta-
tor of 3-components (or, equivalently, by the Δ-moves of 3 components; for
Δ-moves see Appendix II). By the following lemma and the combinato-
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Figure 4.3: Link L2,2,2 = Hopf−(2, 2, 2).

rial formula of M from [[A3](17)], the value M(L(2)) is distinguished from
M(L2,2,2) by a non-zero integer.

Lemma 4. Let L = (L1 ∪ L2 ∪ L3) be an arbitrary 3-component link for
which the pairwise linking coefficients (1, 2), (2, 3), (3, 1) are even. Let L′ =
(L′

1 ∪ L′
2 ∪ L′

3) be the 3-component link, which is the result of a Δ–move of
L with 3 different components.

The parity of the coefficients C2(L), C2(L
′) of the Conway polynomial are

distinguished, and the invariants Arf(L), Arf(L′) are distinguished.

Remark 1. The invariant Arf(L) is well-defined in a less restrictive case,
when all the pairwise linking numbers of L are odd.

Proof of Lemma 4

For a link L = (L1 ∪ L2 ∪ L3) which satisfies the lemma, the equation
μ2
123(L) ≡ C2(L) (mod GCD(1, 2), (2, 3), (3, 1)) is proved in [Me] (in the case

(1, 2)2+(2, 3)2+(3, 1)2 = 0 the integer equation μ2
123(L) ≡ C2(L) is proved in

[Co],Theorem 5.1). The equation Arf(L) ≡ μ123(L) (mod 2) is proved using
the Gauss diagrams as in [M-P]. Arf -invariant satisfy the lemma. Lemma 4
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Figure 4.4: Link L(2) �= L2,2,2.

is proved.

The invariantM is ergodic, thereforeM(L(r)) is continuously varied from
M(L(1)) = 0 to M(L(2)) �= 0, 1 ≤ r ≤ 2.

4.3.2 Examples of magnetic knots in rational homol-

ogy spheres

Example I

In the group of unit quaternions SH consider the subgroup of integer quater-
nions Q ⊂ SH

{i, j,k | ij = k = −ji, jk = i = −kj,ki = j = −ik, i2 = j2 = k2 = −1}.

Consider the standard (right) action Q× S3 → S3, which is well-defined
because of the diffeomorphism SH ∼= S3. Consider the 2-sheeted covering
SH → SO(3), the image of the subgroup Q ⊂ SH is the Klein subgroup
K ⊂ SO(3), K ∼= Z/2 × Z/2. The Klein group acts on S2, this action
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is induced by the standard projection SO(3) → S2, the action has 6 fixed
points, which are the intersection points of the standard unite sphere S2 ⊂ R

3

with the coordinate axis. The elements of K acts on S2 by rotations trough
the angle π with respect to the corresponding coordinate axis.

The following commutative diagram of groups

Q× S3 → S3/Q
↓ ↓

K× S2 → S2/K,
(4.16)

is well-defined. In this diagram horizontal maps are projections onto the
orbits of the action, the left vertical mapping is the Cartesian product of
the projection Q → K and the composition S3 ∼= SH → SO(3) → S2,
which coincides with the standard Hopf fibration, the right vertical mapping
is induced from the left vertical mapping by the projection onto the orbits.

The magnetic knot in S3/Q with closed magnetic lines is well-defined by
fibers of the right vertical mapping in the diagram.

A generalization of Example I

The diagram (6.59) is included into the following diagram:

Σ× S3 → S3/Σ
↓ ↓

I× S2 → S2/I.
(4.17)

In this diagram Q ⊂ Σ is the Poincaré extension of the index 15 of the in-
teger quaternions to the fundamental group of the integer homology sphere,
K ⊂ I is the extension of the Klein group to the icosahedron group, the lower
horisonatal mapping of the diagram is a free action, the bottom mapping is
the semi-free action. By the Poincar’e-Klein uniformization [K], the icosahe-
dron group I is covered by the modular group PSL(2,Z), which acts on the
half-plane.

Below in the diagram (6.2) a quadratic extension Q ⊂ ℵ is well-defined.
The quadratic extension Q ⊂ ℵ is mapped into a quadratic extension K ⊂ D
by the projection onto the factorgroup, where D is the dihedral group of the
order 8.

The inclusion K ⊂ I admits no extension of the quadratic extension
K ⊂ D of the subgroup to a quadratic extension of the group I. The minimal
infinite-order extension I ⊂ Υ is well-defined, where Υ is a Kleinian group,
which acts conform on Ĉ, and this action extends the action of the Fuchsian
group. The group Υ is covered by a group, which acts conform on the half-
plane.
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Conjecture

The Poincarè-Klein uniformization mapping translates geodesic flows on orb-
ifolds with negative scalar curvature (see [D-P]) into non-homogenouse gener-
alized Kamchatnov-Hopf solitons in rational homology sphere. M invariant
for a magnetic knot, which is C2–closed to generalized Kamchatnov-Hopf
soliton is well-defined end explicitly calculated.

Example II

The standard Hopf fibration h : S3 → S2, is given by the formula
{(z1, z2)}, |z1|

2 + |z2|
2 = 1,

h : (z1, z2) �→
z1
z2
.

The conjugated Hopf fibration h̄ : S3 → S2 is given by the formula

h̄ : (z1, z2) �→
z̄1
z2
.

The following diagram

Q× S3 → S3/Q
↓ ↓

Z/2× S2 → RP2,

is well-defined, where Q → Z/2 is the epimorphism with the generator i is
the kernel, Z/2×S2 → RP2 is the projection of the antipodal involution, see
[S].

Define the magnetic knot on S3/Q by the fibers of h̄. An arbitrary mag-
netic line L ⊂ S3/Q of the magnetic knot is not an non-oriented boundary.
The involution [j] : S3/[i] → S3/[i] inverse the magnetic lines, the Seifert sur-
face of the magnetic potential in S3/Q is non-oriented. For a non-oriented
Seifert surface the Arf-Brown invariant mod 8 is well-defined. The magnetic
knot is investigated in [Z].

The group Q, which is the fundamental group of the rational homology
sphere S3/Q admits a quadratic extension Q ⊂ ℵ, which is defined below
by (6.2). By this extension the image of the generator i ∈ Q in ℵ belongs
to the commutant [ℵ,ℵ] ⊂ ℵ. A Seifert surface for L is well-defined as a
surface with a prescribed normal bundle structure (see below the definition
of this structure in Theorem 8) with a control to the Eilenberg-MacLane
space K(ℵ, 1).
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The simplest example of magnetic knot which corresponds to this exten-
sion is given by a double diffeomerphic copies of S3/Q, defined by Example
II, the orientation of the second copy is opposite. The two copy are permuted
by an element in ℵ \Q. For Seifert surfaces with prescribed normal bungle
structures the hyperquaternionic Arf-invariant is well-defined as an integer
(mod 16). A description of the normal bundle structure of the Seifert surfaces
for Example II is given in the Appendix.

Examples I, II of magnetic knots on S3/Q assume that asymptotic er-
godic M -invariant is generalized for magnetic knots in rational homology
spheres. The parity of C2-coefficient of the Conway polynomial for classical
links in R

3 corresponds to the Arf-invariant. In the next section we deter-
mine a group W , which is called the Witt group of hyperquaternionic forms.
The reason to introduce the hyperquaternionic Arf-invariant is clarify by the
following diagram:

C2 of the Conway polynomial −→ Arf invariant
of classical links

↓ ↓
? −→ hyperquaternionic Arf − invariant

of links in S3/Q.

In the diagram by ? is denoted a hypothetic integer-valued finite-type in-
variant of links in rational homology spheres, which determines asymptotic
ergodic invariants.

4.3.3 Conjecture

M is generalised for 3-component oriented links in non-simply connected
rational homology sphere and the order (in the sense of V.A.Vassiliev) of
the generalized invariant M depends on the fundamental group π of the
homology sphere and for π ∼= Z/pn is O(n).
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Chapter 5

Conclusion

V.I.Arnol’d formulated the problem [[Arn], Problem 1984-12]: ”To transform
asymptotic ergodic definition of the Hopf invariant of divergence-free vector
fields to the theory of S.P.Novikov, which generalize the Whitehead product
of homotopy groups of spheres”’.

Algebraic commutators, which are used to define the higher invariants
of 3D-links, are particular Whitehead products in homotopy groups of
spheres. M -invariant is a special generalized Whitehead product, which
admits asymptotic and ergodic property. To keep additional symmetry of
magnetic fields we have to apply the M -invariant for links in various homo-
geneous manifolds, which are rational homology spheres. For links in the
standard sphere M -invariant is related with the Arf-invariant in the stable
homotopy group Π2. Hypothetic modifications of M -invariant for links in
S3/Q are associated with Arf-Brown invariant in the stable homotopy group
Π3, and with hyperquaternionic Arf-invariant in the stable homotopy group
Π7. Stable homotopy groups are detected by Postnikov k-invariants. The
constructions give a solution (in part) of the Arnol’d Problem.

A first-order commutators of component of links is the linking number.
A high-order momenta of linking numbers for magnetic lines are called q-
monomial helicities, is introduced in Theorems 2 and 3. In the case q = 1 we
get the well-known magnetic helicity, see, for example, [A-Kh]. In the case
q = 1 we get the quadratic helicity, defined in [A2]. The quadratic helicity
is the dispersion of the magnetic helicity density. In the cases q ≥ 3 we
get higher momenta of the magnetic helicity. In [Y-H] the authors observed
that the flux function is an action in the Hamiltonian formulation of the
field line equations (see also [A-Kh] Ch. IV, paragraph 8). This shows that
quadratic helicity contains statistical meaning, and is related with extremal
of the magnetic energy.

The construction of q-monomial helicity is a straightforward application

43



44 CHAPTER 5. CONCLUSION

of Theorem 1. The theorem itself gives much more possibilities to define
higher topological invariants of magnetic fields.

The proof of Theorem 2 contains a new idea: smoothing of the integral
kernel in the Gauss integral, given by (3.16). The proof of Theorem 3, based
on Lemma 2, also contains a new idea: to replace short paths of an open
long magnetic line by pairs monopole–antimonopole as in [A2], formula (7).
This means that instead of a short path, joined the ends of a magnetic line,
the dipole, associated with the end points of the line, is introduced. A short
path is replaced by the collection of the magnetic lines of the dipole. This
trick gives a smoothing of end-singularities of a corresponding segment of a
magnetic line. There in no explicit integral formula for q-monomial magnetic
helicity, for q ≥ 2.

Using an ergodic definition in [A2] is proved that the quadratic helicity de-
pends continuously of magnetic fields B inside a finite collection of magnetic
tubes with respect to C2 topology (but not with respect to C1 topology, see
[Kudr]). This gives applications for the induction equation with the α-term
and with the diffusion term.
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Appendix

6.1 Hyperquaternionic Arf-invariant

6.1.1 Arf-invariants of immersed surfaces

Consider an immersion ϕ : M 2
� R

3 of a closed, generally speaking, non-
oriented surface into R3. The immersion ϕ up to regular cobordism represents
an element of the group denoted by Immsf (2, 1). In this section we use
notations from preprints by O.D.Frolkina and the author (2016).

The Arf-Brown invariant is an isomorphism

Θ : Immsf (2, 1) → Z/8.

Denote Immsf (2, 1) by V for short (an algebraic definition of Θ : V ∼= Z/8,
using Z/4-quadratic forms, is in [G-M]). If M 2 is an orientable surface, the
element Θ([ϕ]) belongs to the subgroup Z/2 ⊂ Z/8. In this case the element
Θ([ϕ])

4
(mod 2) is called the Arf-invariant of [ϕ].

Let K3 be a closed oriented 3-dimensional manifold. Assume that a
trivialization of the tangent bundle Ψ : T (K3) ∼= 3ε is fixed. Assume that
an immersion ϕ : M 2

� R
3 of a closed surface is given. The immersion ϕ

represents an element [ϕ] in the group V and the Arf-Brown invariant Θ([ϕ])
is well-defined.

In the case, when M 2 is a surface with a boundary, assume that each
component of the immersed curve ϕ(∂M 2) has the trivial stable Hopf invari-
ant (= an even self-linking number). In this case the Arf-Brown invariant
Θ([ϕ]) is well-defined.
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6.1.2 Group ℵ of the order 16

Consider the cyclic group C8 of the order 8, C8 = {exp (kπi
4
) |k ∈ Z/8}.

Denote by θ : C8 → C8, θ : S �→ S3, S ∈ C8 the cubing automorphism. Let
us define a group ℵ of the order 16, by attaching an element T of the order
2 by the equation TST = S3, see for details [C-M], Ch.1 1.8. The following
short exact sequence:

0 → C8 → ℵ → Z/2 → 0 (6.1)

is well-defined. In this sequence the left mapping is the inclusion on the
subgroup, the right mapping is the projection onto. Denote by T j ∈ C8 a
generator of the subgroup C8 ⊂ ℵ; denote by j ∈ ℵ the element T (T j); denote
by k ∈ ℵ the element T jT ; denote by −1 ∈ C8 ⊂ ℵ the element (T j)4, denote
by −i the element (T j)2 = kj.

Define the following short exact sequence

0 → Q → ℵ → Z/2 → 0, (6.2)

where Q is the integer quaternions subgroup. The group Q is of the order 8,
this group admits the following standard corepresentation:

{i, j,k | ij = k = −ji, jk = i = −kj,ki = j = −ik, i2 = j2 = k2 = −1},

which corresponds to the notations of the generators.

Representation Φ : ℵ → SO(4)

Define a SO(4)–representation Φ : ℵ → SO(4) by the following matrices:

Φ(T ) =

1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

Φ(T j) =

0 0 −1 0
0 0 0 −1
0 −1 0 0
1 0 0 0

(6.3)

The elements i, j, k are given by the following matrices:

Φ(i) =

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

Φ(j) =

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

Φ(k) =

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

(6.4)

The representation φ = Φ|Q : Q → SO(4) is equivalent to the standard
representation Q → SH ⊂ SO(4).
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The octahedral extension ℵ ⊂ Υ of the index 3

Let us unify short exact sequences (6.1), (6.2) into the following diagram:

0 0
↑ ↑

0 → K ⊂ D → Z/2 → 0
↑ ↑ ‖

0 → Q ⊂ ℵ → Z/2 → 0
↑ ↑

Z/2 ∼= Z/2
↑ ↑
0 0

(6.5)

In this diagram by D is denoted the dihedral group of the order 8, the
projection ℵ → D extends the reduction C8 → C4 of the cyclic subgroup
modulo 4, K ∼= Z/2×Z/2 ⊂ D is the Kleinian group, Q → K is the natural
epimorphism, which is the projection onto the central quotient {±1} ⊂ Q.
The group K is equipped with the representation K → SO(3), the image of
the corresponding element [i], [j], [k] is the rotation trough the angle π with
respect to the axis, which is perpendicular to the coordinate plane Pi, Pj, Pk

in R
3 correspondingly.
The group D is equipped with the representation λ̃ : D → O(3), the

element [T ] ∈ D, which is define as the image of the element T ∈ ℵ by the
projection ℵ → D, is represented by symmetry with respect to the plane,
which is perpendicular to Pi, along the bisector of the coordinate planes Pj

and Pk. The representation λ̃|K = λ is defined such that the representation
φ : Q → S

3 ⊂ SO(4) covers the representation λ by the projection S3 →
SO(3).

The representation λ̃ : ℵ → O(4) is the quadratic extension of the repre-
sentation λ by the standard quadratic extension SO(3) ⊂ O(3).

Define the following diagram:

0 0
↓ ↓

0 → Z/3×̃K ⊂ Z/3×̃D → Z/2 → 0
↓ ↓ ||

0 → I ⊂ Υ → Z/2 → 0

(6.6)

The group Z/3×̃K is a semi-direct product of the subgroups D, Z/3 in
the icosahedron group. The subgroup Z/3 permutes the images of quaternion
units [i], [j], [k] in K. The inclusion Z/3×̃K ⊂ I into the icosahedron group
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is of the index 5. The group Υ is the fundamental group of the homology
Poincaré sphere. The inclusion Z/3×̃D ⊂ Υ is the quadratic extension of
the inclusion Z/3×̃K ⊂ I.

Lemma 5. –1. Diagram (6.6) is well-defined and contains the diagram (6.5)
as a subdiagram.

–2. The groups Υ, B are equipped with representations M : Υ → SO(4),
μ : Z/3×̃D → O(3), the representations M,μ extend the representations Φ,
λ̃ correspondingly.

6.1.3 The Witt group W of hyperquaternionic forms

Define the regular cobordism group of closed surfaces, the elements of W will
be called hiperquaternionic forms. Denote this group by W , from algebraic
point of view, W is a Witt group of special quadratic forms.

Define an epimorphism α : ℵ → Z/2 = {±1} by the following formula:
T j, T ∈ ℵ, α(T j) = −1, α(T ) = +1. The kernel Ker(α) coincides with the
dihedral subgroup D ⊂ ℵ.

Define an epimorphism β : ℵ → Z/2 = {±1} by the following formula:
β(T j) = −1, β(T ) = −1. The kernel Ker(β) coincides with the quaternion
subgroup Q ⊂ ℵ.

Over the space Bℵ = K(ℵ, 1) the canonical vector SO(4)–bundle is well-
defined, the structure group of the canonical bundle is defined by the rep-
resentation Φ : ℵ → SO(4), denote this universal bundle by A. Denote by
γ the line canonical bundle over BZ/2 ∼= P

∞. Denote by α : Bℵ → BZ/2
the mapping of the classifing spaces, which is associated with the homomor-
phism α, denote by β : Bℵ → BZ/2 the mapping, which is associated with
the homomorphism β.

A triple (M 2, ηM ,ΞM) is called a hyperquaternionic form, where
• M2 is a closed, generally speaking, non-orientable surface;
• ηM =: M 2 → Bℵ is a characteristic class, the composition α ◦ ηM

is denoted by ηα;M : M2 → BZ/2, the composition β ◦ ηM is denoted by
ηβ;M : M2 → BZ/2;

• ΞM is the isomorphism T (M) ⊕ ηα;M(γ) ⊕ η∗M(A) ⊕ 3ηβ;M (γ) ∼= 10ε,
where by ε is the trivial line bundle.

In particular, by definition of ΞM , the characteristic class ηα;M + ηβ;M :
M2 → BZ/2 corresponds to the orientation homomorphism H1(M ;Z/2) →
Z/2, (denote ηα;M + ηβ;M = κM : M2 → BZ/2, this characteristic class
coincides with the characteristic Stiefel-Whitney class w1(M)).

On a set of all hyperquaternionic form an additive operation by a disjoint
union is well defined. The standard regular cobordism relation determines an
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equivalence relation of quadratic hyperquaternionic forms. The cobordism
group up to this equivalence relation is denoted by W , this is the required
Witt group.

Definition 3. A hyperquaternionic form (M 2, ηM ,ΞM), for which the char-
acteristic mapping η takes values in the subspace BQ ⊂ Bℵ, is called a
quaternionic form.

Theorem 8. The group W contains a cyclic subgroup P ⊂ W of the order
16, P ∼= Z/16.

Definition 4. Define a subgroup WQ ⊂ W in the Witt group as the group,
which is generated by quaternionic forms. Define the group W�

Q , which is

called the Witt group of quaternion forms. The group W�
Q is generated by

quaternion forms, the regular cobordism relation for this group assumes the
following additional property:

• the structure mapping on a cobordism manifold admits a prescribed
reduction to a mapping with the image in the quaternion classifying subspace
BQ ⊂ Bℵ.

By the construction, the canonical projection p : W�
Q → WQ is well-

defined.

6.1.4 The Arf-Brown homomorphism the group WQ

onto the Witt group of Z/4–quadratic forms

Denote by V the Witt group of Z/4–quadratic forms with Arf-Brown in-
variants. This group is related with the Rokhlin’s Signature Theorem, see
[G-M]. The group V is the cyclic group of the order 8. Define the forgetful
homomorphism

ρ� : W�
Q → V

from the Witt group of quaternionic forms into the Witt group of quadratic
Z/4–forms as following.

Let (M 2, η,Ξ) be a quaternionic form represented an element in W�
Q .

Consider the standard 3-skeleton S3/Q ⊂ BQ, which is represented by the
standard quaternion lens space. The pull-back of the bundle A over Bℵ with
respect to the inclusion S3/I ⊂ BQ → Bℵ is denoted by AS3/Q. The canoni-
cal isomorphism AS3/Q

∼= 4ε of the vector bundles over S3/Q is well-defined.
The pull-back isomorphism η∗(AS3/Q) ∼= 4ε, determines the isomorphism
ΞM : νM → 7ε ⊕ κ, where νM is the stable normal bundle over M 2. De-
fine ρ�([(M 2, ηM ,ΞM)]) ∈ V by the formula: ρ�(M2, ηM ,ΞM) = (M 2,ΞM),
[(M 2,ΞM)] ∈ V .



50 CHAPTER 6. APPENDIX

Lemma 6. The homomorphism ρ� : W�
Q → V is decomposed as following:

ρ� = ρ ◦ p : W�
Q → WQ → V,

where the homomorphism ρ : WQ → V is well-defined and is an epimorphism
onto the index 2 subgroup in V of elements of the order 4.

Proof of Lemma 6

Consider the standard transfer homomorphism with respect to the subgroup
Q ⊂ ℵ, denote the transfer homomorphism by ! : W → W�

Q . The following
lemma is required.

Lemma 7. The image of the transfer homomorphism ! : W → W�
Q is inside

the kernel Kerρ�.

Proof of Lemma 7

A given arbitrary hyperquaternionic form (M 2, ηM ,ΞM), is represented by
a connected surface. Take a geometrical stabilization of the surface M 2 by
a connected sum with 2 mirror copies of Moebius bands, the generators of
the bands are represented by the element T (we say that a band of the
considered type is a T -band). Denote the result of the stabilization again by
(M2, ηM ,ΞM). As the result, the surface M 2 is a connected sum of Moebius
bands, which are represented by the elements j, or by k (we say that a band
of the considered type is a quaternion band).

Take the decomposition of M 2 into a connected sum of Moebius bands
with the only T -band and several quaternion bands. By the transfer homo-
morphism M 2 is covered by (a non-oriented) surface M̃2. A T -band in the
decomposition of M 2 is transformed into a cylinder on M̃2, the generator
l̃ ⊂ M̃2 of the cylinder is a closed loop on corresponds to the double covering
over the generator l ⊂ M 2 of the T -band, the Hopf invariant h(l̃) ∈ Z/2
of l̃ loop is trivial. The each quaternion band on M 2 is covered by a pair
of quaternion mirror-symmetric bands on M̃2. This proves that the image
(M2, ηM ,ΞM)! in V is trivial. Lemma 7 is proved.

The last part of the proof of Lemma 6 is following. Let (M 2, ηM ,ΞM)
represents an arbitrary element in WQ. Consider the manifold P 3 with
boundary ∂P 3 = M2, the manifold is equipped with a normal bundle
structure (P 3, ζP ,ΨP ), this structure determines a boundary of the form
(M2, ηM ,ΞM). Denote by Q2 ⊂ P 3 a surface, which is defined as a dual



6.1. HYPERQUATERNIONIC ARF-INVARIANT 51

surface to ζβ. Obviously, there exists a closed characteristic surface, because
ζβ;P |∂P 3 is null-homotopic. Then (Q2, ζP |Q,ΨP |Q) determines an element
x ∈ W , the transfer x! belongs to Ker(ρ⊗) by Lemma 7. By the construc-
tion, ρ⊗[(M 2, ηM ,ΞM)] coincides with x! = (Q2, ζP |Q)

! in V . Lemma 6 is
proved.

Proof of Theorem 8

Let us define a hyperquaternionic form (M 2, ηM ,ΞM). Consider a pair of
Moebious bands (μi, ∂) ⊂ M 2, i = 1, 2, the generators of μ1, μ2 is repre-
sented by ηM into the elements TJ , T correspondingly. The connected sum
(μ1, ∂)�(μ2, ∂) along the common boundary ∂μ1 = ∂μ2 coincides to M 2. The
characteristic mapping ηM admits a reduction: ηM : M2 → BD ⊂ Bℵ.

By the construction, M 2 contains a thin cylinder CJ ⊂ M2, the (orienta-
tion preserved) loop lJ ⊂ CJ which corresponds to the element J ∈ D ⊂ ℵ
by ηM . The surface M 2 \ CJ is diffeomorphic to the cylinder C−J , this
cylinder is a non-oriented cycle between the two copies of ∂CJ . Denote the
segment of the cylinder C−J , which is transversal to the central line of C−J

by lT ⊂ C−T . Extend the segment lT ⊂ C−T ⊂ M2 by a closed loop on
M2 by a short path, which is transversal to lJ . This closed path is denoted
by lT ⊂ M2. The closed path lJT ⊂ M2 are defined as the central path in
M2\ lT . The paths lT , lJT coincide with central lines the the Moebious bands
μ1, μ2 on M2.

The (orientation reversed) loop lT ⊂ M2 corresponds to the element
T ∈ D ⊂ ℵ by ηM . The element ηM(l−1

T ◦ lJ ◦ lT ◦ lJ) is the trivial element
in D ⊂ ℵ, because [T, J ] = −1. Informally speaking, the Klein bottle M 2 is
the result of a non-oriented self-homology of lJ by lT .

Describe a regular cobordism of 2(M 2, ηM ,ΞM) into a form (L2, ηL,ΞL),
where L2 is the Klein bottle, which is defined analogously to M 2. Take the
orientation preserving loop l−1 ⊂ C−1 ⊂ L2, which represents the element
J2 = −1 ∈ D ⊂ ℵ by ηL. The loop l−1 is the analog of the loop lJ ⊂ M2.
Define the orientation reversed loop, which is analog of the loop lT ⊂ M2.
Denote the corresponding cycle of l−1 by S1, denote the corresponding cycle
of lT by S2.

Lemma 8. The form 2(M 2, ηM ,ΞM) is equivalent to the form (L2, ηL,ΞL)
(probably, up to an element of the order 2 in W ).

Describe a regular cobordism of 2(L2, ηL,ΞL) into a form (K2, ηK ,ΞK),
where K2 is the Klein bottle, as in the case of M 2 and L2. Denote the
orientation preserved cycle R2 ⊂ C ⊂ K2, which is the analog of the cycle
S2 ⊂ C−1 ⊂ L2 and which is represented into the trivial element in ℵ, by ηK .
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In this formula C in a thin cylinder, which is the analog of the cylinder C−1.
Denote the orientation reversed cycle lT ⊂ μ1 ⊂ K2 by R1.

Recall that an immersion f : K2
� R

10 with the prescribed isomorphism
ΞK : νK ∼= η∗K(A) ⊕ η∗α;K(γ) ⊕ 3η∗β;K(γ) of the normal bundle, where A is
the universal 4-bundle over the subspace BZ/2(−1) × BZ/2(T ) ⊂ Bℵ, γ is
the universal line bundle, is well-defined. The element ηK(R1) is the trivial
element in ℵ. Moreover, the mapping ηK(R1) has the target a point in Bℵ.

The curve f(R1) is a framed curve in R
10 and the stable Hopf invariant

h(R1) ∈ Z/2 = {0, 1} is well-defined.

Lemma 9. The form 2(L2, ηL,ΞL) is equivalent, probably, up to an element
of the order 2 in W , to a form (K2, ηK ,ΞK), where the oriented framed loop
R1 has the Hopf invariant h(R1) �= 0, h(R1) ∈ Z/2.

Proof of Lemma 8 and Lemma 9

Proofs of Lemmas are analogous. Let us prove Lemma 9. The characteristic
mapping ηL takes the image in the subgroup Z/2(−1)× Z/2(T ) ⊂ ℵ, where
the generators of the factors are {−1, T}.

Define the normal bundle structure ΞL as following. The normal bundle
for (L2, ηL,ΞL) is represented by a Whitney sum of 4-bundle, 3-bundle and
the trivial line bundle A⊕B ⊕ ε.

The bundle B is splitted into the Whitney sum of 3 isomorphic line bun-
dles: B = B1 ⊕B2 ⊕B3. Each factor Bj, j = 1, 2, 3 is the line bundle, which
is skew along the cycle R2 by means of the element T , and is constant along
the cycle R1. The factors correspond to η∗β;L(γ).

The bundle A is splitted into the Whitney sum of 2 isomorphic copies of
plane-bundles: A = A1⊕A2. The plane bundle A1 (and A1) should be looked
as a line complex bundle. The each line complex bundle is equipped with the
Hermitian conjugation long the cycle R2 by means of the point symmetry,
given by multiplication on −1 along the cycle R1. The factors A1, A2 are
inside the 4-dimensional block η∗L(A) of νL2

with generators {±1, T}.
The factor ε corresponds to η∗α;L(γ).
Denote two copies of (L2, ηL,ΞL) by (L2

1, ηL1
,ΞL1

), (L2
2, ηL2

,ΞL2
). Define

the following form (L2
2, η

op
L2
,Ξop

L3
), which represents an element in W . The

characteristic classes ηL2
, ηopL2

coincide, the normal bundle structure Ξop
L2

is
derived from ΞL2

by the reversing of the orientation of the each factors B =
B1 ⊕ B2 ⊕ B3 and by the complex conjugation on the factors A1, A2. In
particular, the local orientations on the surfaces (L2

2,ΞL2
) and (L2

2,Ξ
op
L2
) with

a prescribed normal bundle structure are opposite.
Let us prove that the forms (L2

2, ηL2
,ΞL2

), (L2
2, ηL2

,Ξop
L2
) are equivalent in

W . Take a self-homotopy of ηL2
into itself such that the trace of a point pt ∈
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L2 by this homotopy represents the generator T ∈ Z/2(−1)×Z/2(T ) ⊂ ℵ. By
this homotopy the framing ΞL2

is transformed into a framing Ξop
L2
, where Ξop

L2

is the composition of ΞL2
with the reflection in the factors B1, B2, B3, A1, A2

as described above. The forms are equivalent.
Let us prove that the form (L2

1, ηL1
,ΞL1

)∪ (L2
2, ηL2

,Ξop
L2
) is regular cobor-

dant to the form (K2, ηK ,ΞK), probably, up to a form (P 2, ηP ,ΞP ) with the
characteristic class ηP takes the image in the central subgroup Z/2(−1) ⊂ ℵ.

Take the restriction of Ξ1 and of Ξop
2 over the cycle R1 ⊂ L2

1 and the
cycle −R′

1 ⊂ L2
3 correspondingly (in this formula −R′

1 is the cycle on L2
2

which corresponds to the cycle R1 with the opposite orientation, using the
diffeomorphism L2

1
∼= L2

2). The restrictions Ξ1|R1
, Ξtw

2 |−R1
are 4-dimensional

(−1, T )-framings, which are stabilized in the codimension 4 by corresponding
framings on B⊕ε (Bi|R1

, i = 1, 2, 3 is the trivial bundle, the trivialization Ξ2

over B|R1
is opposite to the trivialization Ξtw

2 |R1
, the trivialization Ξ2 over

A|R1
is conjugate to the trivialization Ξtw

2 |R1
).

Denote a (−1, T )-framing Ξtw
2 over (L2, ηL2

) as following. Denote the line
subbundles λ1 ⊂ A1, λ2 ⊂ A2, which correspond to the imaginary axis of
the complex line bundles. The line bundle λ over L2

2 is well-defined, and this
bundle is skew over the cycle R2 ⊂ L2

2, which corresponds to the element
T . Take the rotation trough the angle π inside the 4-bundle B ⊕ λ over L2.
As the result we get the new (−1, T )-framing over L2

2, denoted by Ξtw
2 . The

framing Ξtw
2 coincides to the framing Ξ1 everywhere, except the line bundle

λ2 ⊂ νL1
, on this factor the framing Ξtw

2 is given by the reflection of Ξ1.
The framings Ξtw

2 is equivalent to the framing Ξop
2 , and is equivalent to the

framing Ξ1.
Assume without loss of a generality that the restriction of the framing

Ξ1|R1
to the subbundle B ⊕ ε over the cycle R1 is parallel to the coordinate

axis e7, e8, e9, e10. Assume the framing Ξ1|R1
on the factors λ1, λ2 is parallel

to the vectors e4, e6 correspondingly. Assume the framing Ξ1|R1
on the fac-

tors A1, A2 is parallel to the vectors (e3, e4), (e5, e6) correspondingly. Then
the skew-framing Ξtw

2 |R1
coincides to the Ξ1 along each directions, but the

direction of the coordinate vector e6, where Ξ1, Ξ
tw
2 are opposite.

The −1-structure of skew framings Ξ1|R1
, Ξtw

2 |−R′

1
are distinguished only

inside the factor A2 of the normal bundle of L2
1
∼= L2

2, by a full rotation
trough the angle 2π.

Take the regular cobordism transformation of the form (L2
1, ηL1

,ΞL1
) ∪

(L2
2, ηL2

,Ξtw
L2
) by a surgery, with a support in small neighborhoods of a

corresponding pair of points on R1, −R′
1. As the result we get the form

(L2
4, ηL4

,ΞL4
). The image of ηL4

is in the spaceBZ/2(−1)×BZ/2(T ). The cy-
cle R1∪−R′

1 is transformed into a cycle R3 ⊂ L2
3. The image of the character-

istic class ηL3
(R3) is null-homotopic in the target space BZ/2(−1)×BZ/2(T ).
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The stable Hopf invariant h(R3) of the framed curve R3 is non-trivial.
The form (L2

3, ηL3
,ΞL3

) ∪ (K2, ηK ,ΞK) is cobordant to a form
(L2

4, ηL4
,ΞL4

), where the image of the mapping ηL4
is inside the space

BZ/2(−1). The form (L2
4, ηL4

,ΞL4
) is trivial, or, is of the order 2 in W .

Theorem 8 is proved.

6.2 Combinatorial invariants of links

6.2.1 Combinatorial asymptotic invariants

We shall give a combinatorial prove of the following statement. Analytical
proof is much easy, see [A3].

Theorem 9. For m = 3 there exists a combinatorial M of order 7 (see the
formula (6.61) below), which is not a function of pairwise linking numbers
of components. The combinatirial invariant M satisfies properties C1-C3
(C2 and C3 are reformulated below as (6.7), (6.8)) i.e. this is an asymptotic
invariant.

Let us reformulate conditions C2,C3 for combinatorial finite-type invari-
ants in a more convenient form. Let (L, ξ) be an arbitrary m-component
framed link. The framing ξ = ∪iξi is determined a coordinate system on
the boundary of a tubular neighborhood of the component Li ⊂ L, this
coordinate system is given by a family of parallels and meridians.

For an arbitrary integer r ∈ Z let us define another framed m-component
link r(L, ξ), the components of this link are defined by the replacement of the
corresponding framed component (Li, ξi) of the oriented framed link (L, ξ),
i = 1, . . .m to the component r(Li, ξi), which is the standard (r, 1)–time
winding along Li. The component r(Li, ξi) passes r times along the parallel
and 1–time along the meridian on the boundary of the thin regular tubular
neighborhood of the component Li. In the case r = 0 we get the link with
small non-knotted disjoin components.

The link r(L, ξ) is equipped with an induced framing rξi. The framing
rξi along an arbitrary component r(Li, ξi) of the link r(L, ξ) is defined by
the (interior) normal vectors to the boundary of the regular neighborhood of
each component of the link L.

Let (L, ξ;L0) be an arbitrary framed (m − 1)–component link with a
marked component L0 ⊂ L. Let us define m–component framed link
(L, ξ;L0)

↑. The last (m−2) components of the link (L, ξ) are transformed by
the identity. The marked framed component (L0, ξ0) of the link L is trans-
formed to the pair of parallel framed components (L↑

0,1, ξ
↑
0,1;L

↑
0,2, ξ

↑
0,2), the
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first component coincides with L0, the second is defined by a small shift of
the component L0 along the frame ξ0. The framed ξ↑0,1, ξ

↑
0,2 are defined as

induced framed by ξ0.
From a (m−1)–component framed link (L, ξ;L0) with one marked compo-

nent and an integer r let us define two framed m-component links, denoted
by r((L, ξ;L0)

↑), (r(L, ξ;L0))
↑. The link r((L, ξ;L0)

↑) is obtained by the
composition of the operation of dubbing of the marked component and by
the operation of r-time winding along each framed component (on the dub-
bing component the standard framings are defined). The link (r(L, ξ;L0))

↑ is
obtained by the composition of the same operation with the opposite order.
Namely, at the first stage each components, including the marked compo-
nent, is transformed into r-time winding along the given framing. After
the marked component is dubbed (the winding of the marked component is
equipped with the prescribed framing.

Definition 5.
Let us say that a finite-type invariant I for m-component framed links (the

invariant I depends not on its framing) is an asymptotic invariant of degree
s (degree of the invariant I depends not from its order), if the following two
equations are satisfied:

I(r(L, ξ)) = rsI(L) + o(rs). (6.7)

I(r((L, ξ;L0)
↑)) = I((r(L, ξ;L0))

↑) + o(rs), (6.8)

where o(rs) is a polynomial of r of the degree less then s, coefficients of this
polynomial depend only on the isotopy class of the framed link (L, ξ).

Remark on the condition (6.8) in Definition 5

Assume that one-parameter family of magnetic fields B = B(t), t ∈ [0, 1] is
not frozen-in and at the initial moment t = 0 has only closed magnetic lines
inside the only magnetic tube; for t �= 0 non-closed magnetic lines appear.
Additionally, assume that in the moments ti =

1
i
, i ∈ N all magnetic lines B

are closed, and each magnetic line is characterized by the windings number
along the central axis of the tube. For t = ti for each collection onmmagnetic
lines of the magnetic field B(ti) the value I is well defined. The value I(B(ti))
is well defined as the mean value over each collections of m magnetic lines,
normalized on lengths. Condition (6.8) means that I(B(ti)) → I(B(0)), for
i → +∞.
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6.2.2 An asymptotic invariant: q-monomial linking co-

efficient, q ∈ N

Let us start with the prove that q-monomial linking coefficient satisfies the
properties (6.7), 6.8). L = L1 ∪ L2 be a 2-component link with linking coef-
ficient k of components. Define q-monomial linking coefficient as kq. In the
case q = 1 q–monomial linking coefficient coincides with linking coefficient.
The q-monomial linking coefficient is a finite-type invariant of the order q in
the sense of V.A.Vassiliev. let us prove that the invariant kq is an asymptotic
invariant of the degree s = 2q. For this matter we shall prove the equalities
(6.7), (6.8).

In the case q = 1 the linking number k satisfies the equations (6.7), (6.8).
Namely, the linking number k is determined by the integral (3.1), after we
replace the link L by the link rL the value of the integral is changed to the
factor r2. Therefore the value I = kq is changed to the factor r2q, this proves
the equation (6.7).

Let us check the formula (6.8) for I = kq. Let us start with the case q = 1.
Let (L, ξ) be a framed knot. Consider the 2-component link (L, ξ)↑ = (L↑, ξ↑)
and the 2-component link r(L↑, ξ↑). The following formula is satisfied;

k(r((L, ξ)↑)) = r2k((L, ξ)↑). (6.9)

For a positive integer r let us consider a framed knot r(L, ξ) and the 2-
component link (r(L, ξ))↑. From geometrical point of view it is evident that
k((r(L, ξ))↑) = kr2 + r. Therefore by the formula (6.9) we get

k((r(L, ξ))↑) = k(r((L, ξ)↑)) + r. (6.10)

The formula (6.8) in the case q = 1 is proved. For an arbitrary q the proof
is evident: take the both sides of the equation (6.10) in the power q.

The q–monomial linking coefficient kq is a combinatoric analog of the
q–monomial helicity χ

[q]
B , which is constructed in Theorem (2).

To describe a finite-type invariant M ◦, which corresponds to the asymp-
totic invariant M , given by the formula (4.5), (see Conjecture the last line
of the Appendix II) we need preliminaries. Let us recall simplest properties
of finite-type invariants of multy-component links.

Let us consider a Conway polynomial for m–component link L:

∇L(z) = zm−1(c0 + c1z
2 + · · ·+ cnz

2n). (6.11)
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(for definition and properties of Conway polynomial see [P-S], [Me], [Co]).
We shall consider invariants of links, which are expressed from the first

two coefficients c0, c1 of this polynomial (the Conway polynomial is applied
to the link L itself and to the all proper sublinks of L).

The simplest invariant of 2-component links, which is not expressed from
pairwise linking coefficients of components, is called the generalized Sato-
Levine invariant, discovered by M.Polyak and O.Viro, see [[M-P], Section 5]
for the definition. The simplest formula for this invariant was proposed in
[K-L]:

β(L) = c1(L)− c0(L)(c1(L1) + c1(L2)). (6.12)

In this formula c0(L) coincides with linking coefficient lk(L1, L2), c1(L1),
c1(L2) are called Casson’s invariants of the corresponding knots, determined
by the knotted components. For short we shall write k instead of c0(L) and
lk(L1, L2).

We shall define the simplest 2-component link, which is called k-Hopf link
and is denoted by L−

Hopf (k). The first component L1 of the link L−
Hopf (k)

is the standard oriented circle in the plane, the second component L2 is
inside the tubular neighborhood, this component spends one time along the
meridian in the opposite direction and −k times along parallel, such that the
linking coefficient of the component is equal to the prescribed integer k (see
also [[M-P], Figure 7]).

Figure 6.1: Link L−
Hopf (k), k < 0.

It is easy to check that after the renumbering of the components of the
link L−

Hopf (k) we have a new link in the same isotopy class. It is easy to
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check the equality:

r(L0, ξ0)
↑ = L−

Hopf (1), (6.13)

where (L0, ξ0) is the standard circle in the plane, equipped with the trivial
framing, which is parallel to the plane. Obviously, we have c0(L

−
Hopf (1)) = 1.

With the link L−
Hopf (k) let us define the link L+

Hopf (k), which is obtained

from L−
Hopf (−k) by the opposition of the orientation of one (an arbitrary) of

the components. Linking coefficient of L+
Hopf (k), obviously, is k. The link

L−
Hopf (k) is more simple then L+

Hopf (k) from algebraic point of view, because

for L−
Hopf (k) all coefficients in the Conway polynomial, except the coefficient

c0, are trivial.
The link L+

Hopf (k) is natural when we investigate asymptotic limits. The

link L+
Hopf (k) is modeled a pair of closed magnetic lines, linked with the

coefficient k.

Figure 6.2: Link L+
Hopf (k), k > 0.

The link L+
Hopf (k) is equipped with the natural framing. This framing is

defined such that the self-linking coefficient of each component of L+
Hopf (k)

is equal to k. The framing of the component L2 coincides with the interior
normal vector to the regular neighborhood of the component L1 (recall that
L2 is on this surface). The framing along the component L1 is defined by
the collection of vectors, each vector is in the normal plane of the component
L1 at the corresponding point, the end of this vector coincides with the
intersection point of the considered plane with component L2. In particular,
for k = 0 the standard framing is parallel to the standard plane.
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Lemma 10. The generalized Sato-Levine invariant, defined by the formula
(6.12), satisfies the following equation:

β(L+
Hopf (k)) =

(k + 1)k(k − 1)

6
. (6.14)

Proof of Lemma 10

We shall present two different proof of the lemma.
The first proof. The standard calculation of the left side of the formula

(6.14) by means of the formula (6.11) for the Conway polynomial proves that
β(L+

Hopf (k)) is the polynomial of the degree 3 of the variable k. For k = −1, 0,

or +1, we have β(L+
Hopf (k)) = 0, and β(L+

Hopf (2)) = 1. The equality (6.14)
is the only possible.

Second proof. For the link L+
Hopf (k) let us consider the link L−

Hopf (−k).

As we had mentioned above, we have c1(L
−
Hopf (−k)) = 0. Components of

L−
Hopf (−k) are non-knotted and by the formula (6.12) we get β(L−

Hopf (−k)) =
0. The formula (6.14) is a special case of the formula, when one component
of the link changes the orientation. This theorem is proved in [N]. Lemma
10 is proved.

Remark

The definition of the generalized Sato-Levine Invariant, introduced in [A-R],
is different with respect to (6.12). This definition is given by the formula:

β◦(L) = c1(L)− k(c1(L1) + c1(L2))− P (k), (6.15)

where P (k) is a polynomial of the degree 3 of k, given by the formula

P (k) =
(k + 1)k(k − 1)

6
. (6.16)

In particular, for the invariant β◦ we have:

β◦(L+
Hopf (k)) = 0, (6.17)

β◦(L−
Hopf (k)) = −P (k). (6.18)

For the invariant β we have:

β(L+
Hopf (k)) = P (k), (6.19)
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β(L−
Hopf (k)) = 0. (6.20)

The invariant β◦, given by the formula (6.17), is called the normalized
generalized Sato-Levine invariant. The normalization β◦ as well as the gen-
eralized Sato-Levine invariant β have the order 3.

In the case k(L) = 0 the generalized Sato-Levine invariant is called the
Sato-Levine invariant. In the paper [A-R2] an integral formula for the Sato-
Levine invariant is proposed.

Lemma 11.
1. For an arbitrary 2-component link (L, ξ) the following equations are

satisfied:

Q(r) + β◦(rL1, L2) = r2β◦(L), (6.21)

Q(r) + β◦(L1, rL2) = r2β◦(L), (6.22)

where Q(r) is an r-polynomial, the coefficients of this polynomial depends
only on the two parameters, namely, on the parameters k(L), k(L1, ξ1) in the
case of the equation (6.21) and on the parameters k(L), k(L2, ξ1) in the case
of the equation (6.22). In the case k(L) = 0 we get Q(r) = 0.

2. For an arbitrary framed knot (K, ξ) in the case k(K, ξ) �= 0 the fol-
lowing equation is satisfied:

β◦((r(K, ξ))↑) = 2r5c1(K), (6.23)

where c1(L) is the Casson invariant of the knot K.

Corollary

The generalized (normalized) Sato-Levine invariant β◦ is not an asymptotic
invariant of the degree ≤ 5 (Definition 5).

Remark

Of coarse, deg(β◦) = 3, deg(β) = 3, and by [B-M] β◦, β are asymptotic
invariants of the degree 6, but the asymptotic limits coincide with k3.
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Proof of Corollary

By Statement 2 the asymptotic denominator cannot be less then 5, hence it
is exactly 5. In the case k(L, ξ) �= 0 the equation β◦(r(K, ξ)↑) = P (r)+O(r4)
is satisfied, where P is a polynomial, the coefficients of the polynomial de-
pends on k(K, ξ) only (the proof repeats arguments of Statement 1). Even
if deg(P (r)) ≤ 5, this polynomial depends not of C2(K). We get, the
formula (6.23) contradicts to the asymptotic axiom (6.8) β◦(r(K, ξ)↑) =
β◦(r(K, ξ)↑) +O(r4).

The Δ-moves are more convenient with respect to crossing moves for
investigation of invariants of low orders (see [Na] for detailed definition and
references).

Accordingly to calculations, presented in [A-M-R], the generalized Sato-
Levine invariant β◦ is totally defined by the condition (6.17) and by the
following two formula (6.24),(6.25), which are described the jumps of the
invariant by Δ–moves of the following two kinds:

β◦(L)|t=t0+ε − β◦(L)|t0−ε = O(x)O(y)(lk(L+
x , L

′)− lk(L−
x , L

′)−O(x)),(6.24)

where the Δ-move involves two branches of a one component and one branch
of another component.

Figure 6.3: Δ-move for 2-component links.
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β◦(L)|t=t0+ε − β◦(L)t0−ε = 0, (6.25)

where is assumed that the Δ-move involves 3 branches of a one component.
In the formula (6.24) by O(x) a vertex is denoted the algebraic value of the

vertex x of the disappeared triangle, in which the projection of a component
of L, say the component L1 (the case of the component L2 is analogous);
O(y) is the algebraic value of an arbitrary last vertex of the disappeared
triangle on the diagram; L+

x is a closed loop on the diagram with the vertex
x, which contains two sides of the disappeared triangle (by the assumption
this loop is on the projection of L1), L

−
x is the last loop on the projection on

the same component L1, L
′ is the last component of the link (by assumption,

L′ = L2).
Assume that the link L for t = t0 is transformed by means of Δ–move

with the formula (6.24). Then the link rL for t = t0 is transformed by means
of the associated family of r2 Δ–moves. Let us prove the following formula:

r4β◦(L)|t=t0+ε − r4β◦(L)|t0−ε = β◦(rL)|t=t0+ε − β◦(rL)t0−ε, (6.26)

In this formula and below we write rL instead of r(L, ξ) for short.
On the diagram of the link rL let us consider r2 self-intersection points

xi, i = 1, . . . , r2, which are in a neighborhood x of the disappeared triangle
on the diagram L. In each point xi on the diagram of rL let us consider
the loop (rL)+x , which starts and ends the same side that the loop L+

x on
the corresponding diagram of L. Denote the linking number lk(L1, L2) by k,
the linking numbers lk(L+

x , L
′), lk(L−

x , L
′) by λ+(x), λ−(x) correspondingly.

Evidently, we get λ+(x) + λ−(x) = k.
Let us calculate in each point xi the coefficients λ+(xi) = lk((rL)+xi

, rL′),
λ−(xi) = lk((rL)+xi

, rL′) and then calculate the sum of the coefficients over
all the self-intersection points. By the straightforward calculation we get:

r2∑
i=1

λ+(xi) = r2(λ+(x)+(λ+(x)+k)+· · ·+(λ+(x)+ki)+· · ·+(λ+(x)+k(r−1))).

r2∑
i=1

λ−(xi) = r2(λ−(x)+k(r−1))+(λ−(x)+k(r−2))+· · ·+(λ−(x)+ki)+· · ·+λ−(x).

Therefore for each family of Δ–moves, which consists of r2 elementary
Δ–moves, determined by the moves of one of the r copies of the branches of
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the component rL′ in a neighborhood of the point x, the sum of jumps of β◦

is equal to
r2∑
i=1

λ+(xi)− λ−(xi) = r3(λ+(x)− λ−(x)).

the sum of jumps of β◦ for branches of the component rL′ are equal. The
equation (6.26) is proved.

To prove the equations (6.21), (6.22) for an arbitrary (L, ξ) it is sufficient
to check the each equation for the link L+

Hopf (k) with arbitrary framings of
the components. This calculation is evident.

Let us check the equation (6.23). By a result of [A-M-R] the generalized
Sato-Levine invariant satisfies the formula:

β◦((K, ξ)↑) = 2c1(K)k((K, ξ)↑), (6.27)

where the link (K,ξ)↑ is defined by the dubbing of the framed knot (K, ξ),
c1(K) is the Casson invariant of the knot K, k((K, ξ)↑) is the linking coeffi-
cient of the components.

Figure 6.4: An illustration of the formula (6.27).

The following formula is satisfied:

c1(rK) = r3c1(K). (6.28)

Indeed, by a result of [A-M-R] the Casson invariant c1(K) is jumped by a Δ–
move to the sign of the disappeared triangle. The sides of the disappeared
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triangle are formed by the 3 segments of branches on the diagram of the
knot in the neighborhood of the critical point of the Δ–move. Therefore the
equation (6.28) is evident, and from the equations (6.27), (6.10), (6.28) we
have the equality (6.23).

The equation (6.23) follows from the formula (6.27) and from (6.17).
Lemma 11 is proved.

Let us start by the definition of an axillary invariant M̃ and its normal-
ization M̃◦.

Let L = L1∪L2∪L3 be a 3-component link. Let us consider the invariant
γ(L), which is defined by S.A.Melikhov in the paper [Me]. This invariant is a
function of the coefficients c1 and k = c0 of the Conway polynomial of various
sublinks of the link L, this invariant is defined by the following formula:

γ(L) = c1(L)− (6.29)

((1, 2)(2, 3) + (2, 3)(3, 1) + (3, 1)(1, 2))(c1(L1) + c1(L2) + c1(L3))

−((3, 1) + (2, 3))(c1(L1 ∪ L2)− (1, 2)(c1(L1) + c1(L2)))

−((1, 2) + (3, 1))(c1(L2 ∪ L3)− (2, 3)(c1(L2) + c1(L3)))

−((2, 3) + (1, 2))(c1(L3 ∪ L1)− (3, 1)(c1(L3) + c1(L1))),

where by (i, j) the linking number k(Li ∪ Lj) of the pair of components Li,
Lj, i, j = 1, 2, 3, i �= j, of the link L is defined.

Define a 3-component link L−
Hopf ((1, 2); (2, 3); (3, 1)), this link depends

on 3 integer parameters (1, 2), (2, 3), (3, 1) ∈ Z. Let us consider three 2-
components links L−

Hopf ((2, 3)), L−
Hopf ((3, 1)), L−

Hopf ((1, 2)), which are lo-
cated in small neighborhoods of the standard triangle ABC on the plane.
Define a 3-component link L−

Hopf ((1, 2); (2, 3); (3, 1)), the components of this
link are defined by the connected sum of the first component of the link
L−

Hopf ((2, 3)) with the second component of the link L−
Hopf ((3, 1)), the first

component of the link L−
Hopf ((3, 1)) with the second component of the link

L−
Hopf ((1, 2)), and the first component of the link L−

Hopf ((1, 2)) with the sec-

ond component of the link L−
Hopf ((2, 3)).

The summation of the corresponding components of the corresponding
2-component links in vertexes of the triangle is defined along corresponding
sides of the triangle without twist along the plan of the triangle ABC. The
components of the link L−

Hopf ((1, 2); (2, 3); (3, 1)) correspond to the sides of
the triangle, denote this components by L1, L2, L3. The denotations are
taken such that k(L1, L2) = (1, 2), k(L2, L3) = (2, 3), k(L3, L1) = (3, 1).
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Figure 6.5: Link Hopf−((1, 2)(2, 3)(3, 1)).

Let us define also the link L+
Hopf ((1, 2), (2, 3), (3, 1)) with the prescribed

linking coefficients. The differences between L−
Hopf ((1, 2), (2, 3), (3, 1)) and

L+
Hopf ((1, 2), (2, 3), (3, 1)) is the following: the summation of the components

is defined by means of the collection of the links L+
Hopf ((2, 3)), L

+
Hopf ((3, 1)),

L−
Hopf ((1, 2)), instead of the collection of the links L−

Hopf ((2, 3)), L
−
Hopf ((3, 1)),

L−
Hopf ((1, 2)).
From the formula (6.29) the following equalities follow:

γ(L−
Hopf ((1, 2), (2, 3), (3, 1))) = 0, (6.30)

γ(L+
Hopf ((1, 2), (2, 3), (3, 1))) = R((1, 2), (2, 3), (3, 1)), (6.31)

where the polynomial R((1, 2), (2, 3), (3, 1)) of the pairwise linking numbers
of components is defined by the formula:

R((1, 2), (2, 3), (3, 1)) =

(1,2)2(2,3)(3,1)+(2,3)2(3,1)(1,2)+(3,1)2(1,2)(2,3)
2

+ 3(1,2)(2,3)(3,1)
2

.

(6.32)
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Figure 6.6: Link Hopf+((1, 2)(2, 3)(3, 1)).

Define the normalized invariant γ◦(L) by the formula:

γ◦(L) = γ(L)−R((1, 2), (2, 3), (3, 1)). (6.33)

It is easy to check the equations:

γ◦(L+
Hopf ((1, 2), (2, 3), (3, 1))) = 0, (6.34)

γ◦(L−
Hopf ((1, 2), (2, 3), (3, 1))) = −R((1, 2), (2, 3), (3, 1)). (6.35)

The normalized invariant γ◦ and the invariant γ have the order 4.
In the following lemma we write-down the formula by S.A.Melikhov of

jumps of the invariant γ (the formula of jumps for the invariant γ◦ are the
same) for homotopy of links with self-intersection but without intersections
between different components. Let Lsing;3 be a singular 3-component link,
the components L1, L2 are regular, the component Lsing,3 has the only self-
intersection point. Denote by L+;3, L−;3 two 3-component links, the first 2
components of this links coincides with L1, L2, the third component L3;+

of the link L3;+ is defined by means of the prescribed resolution of the self-
intersection of the component Lsing,3, the third component L3;− of the link
L−;3 is defined by means of the opposite resolution of the self-intersection of
the component of the link Lsing,3.
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Let us define 4-component link Ls;3 with the components
(L1, L2, L3+, L3−). The first two components of the links Ls;3, Lsing;3

coincide, the components L3+, L3− of the link Ls;3 are obtained by the
orientation-preserved smoothing of the singular component Lsing,3 of the
link Lsing;3.

Denote by (1, 3+) (1, 3−) the linking coefficients of the component L1

with the components L3+, L3− correspondingly. Define by (2, 3+) (2, 3−)
the linking coefficients of the component L2 with the components L3+, L3−

correspondingly.

Figure 6.7: A skein relation for γ: (1, 3+) = +1, (2, 3+) = 0,
(1, 3−) = 0, (2, 3−) = +2, (1, 2) = +1; γ(L+)− γ(L−) = 2.

Analogical denotations are well-defined after the replacement 3 → 1,
3 → 2 of the numbers of the components.

Lemma 12. The invariant γ(L) of 3-component links satisfies the following
equations:

γ(L+;3)− γ(L−;3) = (1, 2)((1, 3+)(2, 3−) + (1, 3−)(2, 3+)), (6.36)

γ(L+;1)− γ(L−;1) = (2, 3)((2, 1+)(3, 1−) + (2, 1−)(3, 1+)), (6.37)
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γ(L+;2)− γ(L−;2) = (3, 1)((3, 2+)(1, 2−) + (3, 2−)(1, 2+)), (6.38)

The normalized invariant γ◦(L) satisfies the same equations.

Proof of Lemma 12

The formula (6.36),(6.37),(6.38) of the jump of the invariant γ are proved
in [Me], p. 11. The formula for γ◦ are, evidently, one-to-one. Lemma 12 is
proved.

Let us study the formula for jumps of the invariant γ◦ with respect to
Δ–moves of components. Let us consider the case when a Δ–move involves
all 3 components of the link L. Let us introduce the following denotations.

Let us consider the links L− = (L1,− ∪ L2,− ∪ L3,−), L+ = (L1,+ ∪ L2,+ ∪
L3,+), the disappeared triangle ABC−, formed by 3 branches of the projection
of L−, which are on different components of the link, and the appeared
triangle ABC+, which is formed by the corresponding branches of the link
L+. Let us take the order of the vertexes of the triangle, such that the
vertex A of the appeared and disappeared triangles is on the intersection
of projections of components L2 and L3, the vertex B of the appeared and
disappeared triangles is on the intersection of projections of components L1

and L2,the vertex C of the appeared and disappeared triangles is on the
intersection of projections of components L1 and L2.

Denote by (L1,± � L2,±, L3,±) the 2–component link, which is defined by
the standard smoothing of the components L1,±, L2,± at the vertex C±. The
sign ± means one of the two possible position on L+, or, on L−.

Analogously denotations (L2,±�L3,±, L1,±), (L3,±�L1,±, L2,±) are intro-
duced.

Lemma 13. The invariant γ satisfies the following equations with respect
to Δ–moves, which involve all 3 components of the link:

γ(L+)− γ(L−) = β(L1,+ � L2,+, L3,+)− β(L1,− � L2,−, L3,−) = (6.39)

β(L2,+ � L3,+, L1,+)− β(L2,− � L3,−, L1,−) =

β(L3,+ � L1,+, L2,+)− β(L3,− � L1,−, L2,−).

For normalized invariants γ◦, β◦ the analogous equations are satisfied.
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Figure 6.8: L− = L1,− � L2,−, L3,− L+ = L1,+ � L2,+, L3,+

A Δ-move for γ; all components of links are involved.

Proof of Lemma 13

let us apply formula (6.29), (6.30). The following equation is satisfied:

c1(L+)− c1(L−) = γ(L+)− γ(L−). (6.40)

Indeed, for a Δ–move, which involves all 3 components of the link L, only
the first term in the formula (6.29) is jumped. Let us recall that an arbitrary
Δ–move is presented as the composition of the homotopy with intersection
of the prescribed pair of branches components, the isotopy for which the
projection of the last component L3 is moved thought the vertex A of the
disappeared triangle, and the homotopy this the opposite crossing of the same
pair of branches of the components. There are 3 different decompositions of
the given Δ–homotopy of this kind.

Let us apply the formula for transformations of the coefficients in the Con-
way polynomial for each of this three decompositions. We have the following
relation:

c1(L+)− c1(L−) = c1(L1,+ � L2,+, L3,+)− c1(L1,− � L2,−, L3,−). (6.41)

Let us express the coefficient c1 in the formula (6.41) by means of the
invariant β◦, using the formula (6.15). Evidently, the following formula is
satisfied:

c1(L1,+ � L2,+, L3,+)− c1(L1,− � L2,−, L3,−) = (6.42)

β(L1,+ � L2,+, L3,+)− β(L1,− � L2,−, L3,−).



70 CHAPTER 6. APPENDIX

Take the expression (6.42) in the right side of the formula (6.41) and use this
formula in the formula (6.40). This gives one of the three required equities in
(6.39). The last two equations is proved analogously. Lemma 13 is proved.

Let us define an axillary invariant M̃ and its normalization M̃◦.

Definition 6. Let L = (L1 ∪ L2 ∪ L3) be an arbitrary 3-component link.
Define the invariant M̃(L) by the following formula:

M̃(L) = (1, 2)(2, 3)(3, 1)γ(L)− (6.43)

((1, 2)2(1, 3)2β(L2 ∪ L3) + (2, 3)2(2, 1)2β(L3 ∪ L1) + (2, 3)2(2, 1)2β(L3 ∪ L1)).

Define the normalized invariant M̃◦(L) by the following formula:

M̃◦(L) = (1, 2)(2, 3)(3, 1)γ◦(L)− (6.44)

((1, 2)2(1, 3)2β◦(L2∪L3)+(2, 3)2(2, 1)2β◦(L3∪L1)+(2, 3)2(2, 1)2β◦(L3∪L1)).

Theorem 10.
1. The invariant M̃ satisfies the following equations for homotopies of

links with one self-intersection point on the corresponding component.

M̃(L+;3)− M̃(L−;3) = (1, 2)2(2, 3)(3, 1)((1, 3+)(2, 3−) + (1, 3−)(2, 3+))(6.45)

−(1, 2)2(3, 1)2(2, 3+)(2, 3−)− (2, 3)2(2, 1)2(1, 3+)(1, 3−),

M̃(L+;1)− M̃(L−;1) = (1, 2)(2, 3)2(3, 1)((2, 1+)(3, 1−) + (2, 1−)(3, 1+))(6.46)

−(2, 3)2(1, 2)2(3, 1+)(3, 1−)− (3, 1)2(3, 2)2(2, 1+)(2, 1−),

M̃(L+;2)− M̃(L−;2) = (1, 2)(2, 3)(3, 1)2((3, 2+)(1, 2−) + (3, 2−)(1, 2+))(6.47)

−(3, 1)2(2, 3)2(1, 2+)(1, 2−)− (1, 2)2(1, 3)2(3, 2+)(3, 2−).

For the normalized invariant M̃◦ the same equations are satisfied.
The invariant M̃ satisfies the following equations for a Δ–move, which

involves all 3 components of the link:

M̃(L+)− M̃(L−) = (6.48)

(1, 2)(2, 3)(3, 1)(β◦(L1,+ � L2,+, L3,+)− β◦(L1,+ � L2,+, L3,+)) =
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(1, 2)(2, 3)(3, 1)(β◦(L2,+ � L3,+, L1,+)− β◦(L2,+ � L3,+, L1,+)) =

(1, 2)(2, 3)(3, 1)(β◦(L3,+ � L1,+, L2,+)− β◦(L3,+ � L1,+, L2,+)).

For normalized invariants M̃◦, β◦ the same equations are satisfied.
The invariant M̃ satisfies the following equation:

M̃(L−
Hopf ((2, 3), (1, 2), (3, 1))) = 0. (6.49)

The normalized invariant M̃◦ satisfies the following equation:

M̃◦(L+
Hopf ((2, 3), (1, 2), (3, 1))) = 0. (6.50)

2. The invariants M̃ and M̃◦ are uniquely well-defined by means of the
equations (6.45)-(6.50). The invariants M̃ and M̃◦ are of order 7 in the sense
of V.A.Vassiliev.

3. In the particular case (1, 2) = (2, 3) = (3, 1) = k the formulas for the
invariants M̃ and M̃◦ are simplified:

M̃ = k3c1(L)− 3k4[c1(L1, L2) + c1(L2, L3) + c1(L3, L1)] (6.51)

−k5[c1(L1) + c2(L2) + c3(L3)].

M̃◦ = k3c1(L)− 3k4[c1(L1, L2) + c1(L2, L3) + c1(L3, L1)] (6.52)

−k5[c1(L1) + c2(L2) + c3(L3)]− 2k7 −
3k6

2
+

k5

2
.

Proof of Theorem 10.

The formulas (6.45),(6.46),(6.47),(6.48) are followed from the formulas (6.36),
(6.37), (6.38) for jumps of the invariant γ◦ and from analogous well-known
formulas for jumps of the invariant β◦ for elementary homotopies of links, see
[A-R],[Me],[Ni]. The formula (6.49) follows from the formulas (6.29), (6.49).
The second and the third parts of the theorem are evident. Theorem 10 is
proved.
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To construct the asymptotic invariantM and to prove Theorem 9 we shall
need two lemmas. In the lemmas properties of the invariant M̃ are studied.
The first lemma could be interesting by itself.

Let (L, ξ) = ((L1, ξ1), (L2, ξ2), (L3, ξ3)) be a 3-component framed link.
Let us consider the link (r(L1, ξ1), L2, L3), r ∈ N. Denote this link by

1rL for short. This freedom of the denotation is possible, because of
the formula (6.54) below. Analogously define 2rL = (L1, r(L2, ξ2), L3),

3rL = (L1, L2, r(L3, ξ3)).

Lemma 14. Let the link 1rL̄ is obtain from the link 1rL after the first
component of r(L1, ξ1) is replaced to another component by the gluing of an
arbitrary colored braid with r strings along a short segment on the component
L1 of the link L. The following equation

M̃(1rL̄) = M̃(1rL) (6.53)

is satisfied. In particular, as an evident corollary, if we take another framing
ξ′1 of the component L1 and obtain another link (1rL)

′ = (r(L1, ξ
′
1), L2, L3)

for which the following formula is satisfied:

M̃((1rL)
′) = M̃(1rL). (6.54)

The formulas, analogously to the formulas (6.53), (6.54), are satisfied for an
arbitrary component of L.

The same formulas are satisfied for the normalized invariant M̃◦.

Proof of Lemma 14

It is sufficiently to proof the lemma for the case when the braid is presented
by the elementary full twist of the two strings. Such a transformation is
determined by an elementary homotopy with the only self-intersection point
of the pair of parallel strings of the component r(L1, ξ1).

Denote by (1, 2), (2, 3), (3, 1) the linking coefficients of the corresponding
components of the link 1rL. Let r1, r2 be positive integers, which are equal to
the numbers of the wings of the components rL+

1 , rL
−
1 around the component

L1 and satisfied the relation r1 + r2 = r. Let us apply the formula (6.46)
to calculate the jumps of the invariant M̃ , when the link 1rL is transformed
into the link L̄. It is not hard to see that the first term is changed by the
value 2(1, 2)2(2, 3)2(3, 1)2r1r2, the second and the third terms are jumped by
the value −(1, 2)2(2, 3)2(3, 1)2r1r2. Therefore the value M̃ is fixed. Lemma
14 is proved.



6.2. COMBINATORIAL INVARIANTS OF LINKS 73

Lemma 15. 1. The following property is satisfied:

M̃(1rL) = r4M̃(L) +1 Q(r), (6.55)

where the polynomial 1Q(r) is defined by the formula:

1Q(r) = M̃(1rL
−
Hopf ((1, 2), (2, 3), (3, 1))− M̃(L−

Hopf (r(1, 2), (2, 3), r(3, 1))),

and the coefficients of the polynomial 1Q(r) depends only on the pairwise
linking numbers (1, 2), (2, 3), (3, 1) of components of the link L. The same
relations are satisfied for the links 2rL, 3rL.

2. The following equation is satisfied:

M̃(rL) = r12M̃(L) +Q(r), (6.56)

where the polynomial Q(r) is depended by the formula:

Q(r) = M̃(rL−
Hopf ((1, 2), (2, 3), (3, 1))− M̃(L−

Hopf (r
2(1, 2), r2(2, 3), r2(3, 1))),

the coefficients of the polynomial Q(r) depends only of pairwise linking num-
bers (1, 2), (2, 3), (3, 1) of the link L.

3. For an arbitrary 2-component framed link L with the marked first
component the following equation is satisfied:

M̃(L↑, ξ) = S(k(L1, ξ1), k(L)), (6.57)

where the polynomial S(k(L1, ξ1), k(L)) is equal to M̃((L−)↑Hopf (k), ξ
′) and is

depended only of the self-linking coefficient of the framed component (L1, ξ1)
and of the linking coefficient k(L) of components of the link L.

Analogous formula are satisfied for the normalized invariant M̃◦.

Proof of Lemma 15

Let us proof Claim 1. let us consider the following list 1-4 of elementary
transformations of the link L.

–1. A Δ–move, which involves only the first component L1.
–2. A homotopy with a self-intersection point on the component L2.
–3. A homotopy with a self-intersection point on the component L3.
–4. A Δ–move, which involves all the 3 components of the link L.
Evidently, for an arbitrary link L there exists a sequence Ξ of transforma-

tions 1-4, which transforms the link L into the link L−
Hopf ((2, 3), (1, 2), (3, 1)).

Denote the components of the link L−
Hopf ((2, 3), (1, 2), (3, 1)) by



74 CHAPTER 6. APPENDIX

(L−
1;Hopf , L

−
2;Hopf , L

−
3;Hopf ). The sequence Ξ detects the sequence rΞ of

elementary transformations from the list 1-4 of the link 1rL into the link

1rL
−
Hopf .
Let us consider an arbitrary elementary transformation ξi of the type

1-4. Denote by rξi an elementary transformation of the type 2,3,4 or a
sequence of elementary transformations of the type 1, which corresponds to
the elementary transformation ξi of the link 1rL. Denote by L−, L+ the links,
which are related by the transformation ξi. Denote by 1rL−, 1rL+ the links,
constructed from the links L−, L+ by means of the r-time winding of the first
component. The links 1rL−, 1rL+ are related by the corresponding sequence
of elementary transformations of the types 2,3,4, or by a transformation of
the type 1. For an arbitrary of elementary transformation ξi of the link L,
listed above, and for the corresponding transformation rξi of the link rL the
following equality is satisfied:

r4(M̃(L+)− M̃(L−)) = M̃(1rL+)− M̃(1rL−). (6.58)

This equality is followed from the formulas (6.45) - (6.48). It is sufficiently
to check the equality (6.55) for the link L−

Hopf ((2, 3), (1, 2), (3, 1))). This
calculation is evident, using Lemma 14. For the links 2rL, 3rL the proves
are analogous. Clam 1 is proved.

Let us prove Clam 2. The equality (6.56) follows from the equality (6.55)
and from the analogous equalities for the last two components. Claim 2 is
proved.

Let us prove Clam 3. Consider the following list 1-2 of elementary trans-
formations of 2-component links.

–1. Δ–move, which involves only the component L1.
–2. The elementary homotopy with self-intersection point of the compo-

nent L2.
It is easy to check, that for an arbitrary 2-component framed link (L, ξ)

with c0(L) = k there exists a sequence Ξ of elementary transformations 1-
2, which transforms the framed link (L, ξ) into the standard framed link
(LHopf (k), ξ

′). The sequence Ξ induces the corresponding sequence Ξ↑ of
transformations of the 3-component link (L↑) into the 2-component link
(LHopf (k)

↑). For an arbitrary framing ξ1 of the component LHopf ;1 of
the link LHopf (k) the following equalities are satisfied: M̃(LHopf (k)

↑) =
M̃(3kLHopf (1)

↑) = k4M̃(LHopf (1)
↑) = k4M̃(LHopf (1, 1, 1)) = 0. Let us check

that for each elementary transformation, listed above, the value M̃(L↑) is
fixed.

Let us start with the elementary transformation of type 1. In the for-
mula (6.49) only the following terms are changed: (1, 2)(2, 3)(3, 1)γ◦ and
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(2, 3)(1, 3)β◦(L1,1, L1,2), where components L1,1, L1,2 are defined as the dub-
bing of the component L1 by means of the given framing ξ. Each therm is
changed by the value

2σk(L1,1, L1,2)k(L1,1, L3)k(L1,2, L3),

where σ is the sign of the disappeared triangle in the singular point of the
Δ-move. The jumps of the two summands are opposite and the total jump
is trivial. It is proved that the value M̃(L↑) is not changed by the transfor-
mation of the type 1.

Let us consider an elementary transformation of type 2. In the for-
mula (6.58) only the terms (1, 2)(2, 3)(3, 1)γ◦(L↑), (1, 2)2(2, 3)2β◦(L1,1, L3),
(1, 2)2(1, 3)2β◦(L1,2, L3) are changed. The jump of the first term is compen-
sated by the sum of jumps of the second and the third terms. It is proved
that the value M̃(L↑) is not changed by the transformation of the type 2.
Claim 3 is proved. Lemma 15 is proved.

Let us define an asymptotic finite-type invariant, which we denote by
M◦. Let us consider the link L+

Hopf ((2, 3), (3, 1), (1, 2)), the component
of this link denote by LHopf,i, i = 1, 2, 3, the framings of the compo-
nents could be arbitrary. Denote by Lnorm

Hopf ((2, 3), (3, 1), (1, 2)) the link with
components ((2, 3)LHopf,1, (3, 1)LHopf,2, (1, 2)LHopf,3). Let us define function
Q((1, 2), (2, 3), (3, 1)), which gives a normalization of the invariant (below we
shall prove that the function Q is a polynomial). The function Q depends
on the 3 variables (1, 2)(2, 3)(3, 1) �= 0 by the formula:

Q((1, 2), (2, 3), (3, 1)) =
M̃◦(Lnorm

Hopf ((1, 2), (2, 3), (3, 1)))

(1, 2)4(2, 3)4(3, 1)4
, (6.59)

and denote Q = 0 in the case (1, 2)(2, 3)(3, 1) = 0. The required invariant is
given by the following formula:

M◦(L) = M̃◦(L)−Q((1, 2), (2, 3), (3, 1)). (6.60)

For an arbitrary framed 3-component link (L, ξ) =
((L1, ξ1), (L2, ξ2), (L3, ξ3)), let us re-denote the framed link
((2, 3)(L1, ξ1), (3, 1)(L2, ξ2), (1, 2)(L3, ξ3)) by (Lnorm, ξnorm). Below the
framings would be omitted, because the invariant is not depended on this
framings (see Lemma 15). Obviously all the linking numbers of components
of the link Lnorm coincide and equal to the product (1, 2)(2, 3)(3, 1) of the
pairwise linking numbers of the link L.
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Lemma 16.

1. Assuming (1, 2)(2, 3)(3, 1) �= 0, the invariant M ◦, which is defined by
the formula (6.60), is not depended of a framing ξnorm and is given by the
following formula:

M◦(L) =
M̃◦(Lnorm, ξnorm)

(1, 2)4(2, 3)4(3, 1)4
=, (6.61)

γ◦(Lnorm)

(1, 2)(2, 3)(3, 1)
− β◦(Lnorm

1 , Lnorm
2 )− β◦(Lnorm

2 , Lnorm
3 )− β◦(Lnorm

3 , Lnorm
1 ).

2. Assuming (1, 2)(2, 3)(3, 1) = 0, more precisely, assuming (1, 2) = 0,
the invariant M ◦ is given by the following formula (comp. with (4.6)):

M◦(L) = (2, 3)2(3, 1)2β◦(L1, L2). (6.62)

3. The function Q((1, 2), (2, 3), (3, 1)), which is defined by the formula
(6.59), is a polynomial.

Proof of Lemma 16

Let us prove the statement 1. Using the formula (6.55) for each component,
let us prove that the sides of the formula (6.61 coincide, if they coincide for
an arbitrary link L with the given linking coefficients. By the normalized
condition we may take L = LHopf ((2, 3), (3, 1), (2, 3)). The statement is
proved.

The statement 2 is evident.

The statement 3 follows from the formula (6.61), which is applied to the
link Lnorm

Hopf ((2, 3), (3, 1), (1, 2)). The right side of the formula (6.61) is trans-
formed by means of the formula (6.52). By the formula (6.52) it is sufficient
to prove that the coefficient c1(L

norm
Hopf , ξ

norm
Hopf )in the Conway polynomial is zero

if at least one of the linking coefficients (1, 2), (2, 3), or (3, 1) is zero. In this
case the link (Lnorm, ξnorm) contains a small non-linked component and by
the basic property of the Conway polynomial this condition is satisfied (see
[P-S]). Lemma 16 is proved.
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Proof of Theorem 9

Let us prove that the invariant M ◦, defined by the formula (6.61), or, by
(6.60), satisfies the equation (6.7) for s = 12 (in this formula the invariant I
has to be replaced by M ◦).

Let (L, ξ) be an arbitrary framed link, (Lnorm, ξnorm) be its normaliza-
tion, r(L, ξ), r(Lnorm, ξnorm) be the links, which are obtained using r-time
windings of the links (L, ξ), (Lnorm, ξnorm) correspondingly. Let us consider
the move Ξ of the link (L, ξ) into the link (L+

Hopf ((1, 2), (2, 3), (3, 1)), which
consists of a sequence of Δ–moves, the operation of a changing of fram-
ings, and homotopies (self-intersections of different components is forbid-
den). Consider the corresponding move rΞ of the link r(L, ξ) into the link
rL+

Hopf ((1, 2), (2, 3), (3, 1)), which is induced by Ξ. Using the formula (6.61)
from Lemma 15 we may prove that the jumps δM ◦(Ξ), δM ◦(rΞ) of the in-
variant M ◦ by means of Ξ and by means of rΞ are related by the formula:

r12δM◦(Ξ) = δM ◦(rΞ).

Let us re-denote L+
Hopf ((1, 2)(2, 3)(3, 1)) by LHopf , and

(L+
Hopf ((1, 2)(2, 3)(3, 1)))

norm and Lnorm
Hopf for short. Let us prove the

following equation:

r12M◦(LHopf ) + o(r12) = (6.63)

M◦(rLHopf ).

After evident transformations the first term in the left side of the formula
(6.63) is the following:

r12((1, 2)(2, 3)(3, 1))−4M̃◦((LHopf )
norm).

The right side of the formula (6.63) is the following:

(r6(2, 2)(2, 3)(3, 1))−4)M̃◦(r3(LHopf )
norm).

After the rescaling r3 �→ r the equation (6.63) is transformed in the following:

r12M̃◦((LHopf )
norm) + o(r12) = (6.64)

M̃◦(r(LHopf )
norm).

From Lemma 15 using the short denotations we get that the equation (6.64)
is equivalent to the equation:

r12M̃◦(LHopf (k, k, k)) + o(r12) = M̃◦(r(LHopf (k, k, k))), (6.65)
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where k = (1, 2)(2, 3)(3, 1). Using the equation (6.50) the previous equation
is transformed as following:

M̃◦(r(L+
Hopf (k, k, k))) = o(r12). (6.66)

Let us prove the equation (6.66). The link L+
Hopf (k, k, k) is represented

by 3 parallel components of the type (1, k) on the standard embedding torus.
The link rL+

Hopf (k, k, k) is defined using r-time winding of the each com-

ponent of the link L+
Hopf (k, k, k) along the given framing. Take the link

rL+
Hopf (k, k, k) in its isotopy class such that the 3-d component is in a neigh-

borhood of the axis (OZ), and the components 1 and 2 are in the neigh-
borhood of the standard circle S in the plane (x, y), this circle is the central
line of the origin solid torus. With the links L+

Hopf (k, k, k), rL
+
Hopf (k, k, k) let

us consider also 2-component links L+
Hopf (k, k), rL

+
Hopf (k, k), each such link

is obtained by elimination of the 3-d component of the corresponding link.
Denote the first link by (L1, L2), and the second link by (rL1, rL2) for short.

Let us transform the link r(L+
Hopf (k, k, k)) into the link

L+
Hopf (r

2k, r2k, r2k) by means of the following composition of homotopies
Ξ3 ◦ Ξ2 ◦ Ξ1.

Let us consider the central line S with the framing ξ, of the self-linking
coefficient k. Denote the thin solid-torus U , its boundary by ∂U . On the
boundary the coordinate system, which is related with ξ is well defined.
Without loss of a generality we may assume that the component rL1 coincides
with r-time winding of S of the type (1, r). The homotopy Ξ1 is fixed on
rL1. Therefore we have rL1 = L′

1.
Without loss of the generality we may assume that the component rL1 is

on the surface ∂V of the solid torus V , the thin of this torus is much more
less then the thin of the solid torus U the solid torus V is closed to the surface
∂U ′ of a bigger solid torus U ′, which is concentric of the solid torus U . The
homotopy Ξ1 is defined as a result of a shift of the solid torus V thought a
short segment on the component rL1 from ∂U ′ to the central line S. The
homotopy Ξ1 has r intersections between a the short segment on rL1 with
the component rL2. Let us denote by (L′

1, L
′
2) the result of the homotopy.

Define the homotopy Ξ2, which is a simplest homotopy in a neighborhood
of the two closed parallel short segments on L′

1, L
′
2, and which has exactly

r intersection points between the components. This homotopy change the
linking coefficient of the components L′

1, L
′
2, from kr2 + r to kr2.

As the result the homotopy the link Ξ1(rL
+
Hopf (k, k, k)) is transformed

into a link Ξ2 ◦ Ξ1(rL
+
Hopf (k, k, k)), denoted by (L”1, L”2, L”3). Denote the

homotopy Ξ2 ◦ Ξ1 by Ψ for short. The homotopy Ψ is decomposed as the
r elementary homotopies Ψi, i = 1, . . . r, each elementary homotopy has
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two intersection points of the components with different signs and keeps the
linking coefficient:

Ψ = Ψr ◦ . . .Ψ1.

Define the homotopy Ξ3, which transforms the link (L”1, L”2, L”3) into
the link L+

Hopf (r
2k, r2k, r2k). This homotopy is fixed on the component L”1,

on the components L”2, L”3, this homotopy, generally speaking, has self-
intersection points. By the considered homotopy the component L”2 (cor-
respondingly L”3) is transformed into an interior (correspondingly exterior)
winding of the torus ∂U , which is parallel to the winding L”1. An analogous
homotopy is considered in Lemma 15. The homotopy Ξ3 keeps the value M

◦.
Let us denote by δM ◦ the jump of the invariant M ◦ by the homotopy Ψ.

Let us re-denote the first two components of the link by L1, L2. Denote by
δc1(L1, L2) the jump of the coefficient c1, when the homotopy Ψ is restricted
on the sublink of the 1-th and the 2-d components, denote by δc1(L1, L2, L3)
the jump of the coefficient c1 of the homotopy of the 3-component link. Using
the equation (6.52) it is sufficient to prove the following equations:

δc1(L1, L2) = O(r3), (6.67)

δc1(L1, L2, L3) = O(r5). (6.68)

Investigate the jump of the coefficient c1(L1, L2) by the elementary ho-
motopy Ψi. By the homotopy Ψi the jump δ(c1)i of the coefficient c1 has the
order ir, the sum of the jumps

∑r
i=1 δ(c1)i has the order r3. The formula

(6.67) is proved.
Investigate the jump of the coefficient c1(L1, L2, L3) by the elementary

homotopy Ψi. By the homotopy Ψi the jump δ(c1)i of the coefficient c1 has
the order ir3, the sum of the jumps

∑r
i=1 δ(c1)i has the order r

5. The formula
(6.68) is proved. The formula (6.7) for I = M ◦ is proved.

The formula (6.8) is proved by analogously calculations. The asymptotic
invariant M ◦ is well-defined and Theorem 9 is proved.

6.2.3 Conjecture

The invariant M ◦ for 3-component links given by (6.60), or, by (6.61), coin-
cides with the integral invariant M , given by (4.5).

This Conjecture is proved in [A3] up to polynomial, which depends on pair-
wise linking numbers of the components.
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due, Birkhäuser (1986).

[F-S] Frick P.G., Sokoloff D.D. Cascade and dynamo action in a shell model
of turbulence, Physical Review E, 1998, Vol.57, N.4. P.4155-4164.

[H] P. Halmos Lectures on Ergodic Theory (1956) Chelsea (Russian transl).
Regular and Khaotic dynamics (1999) Vol 12.

[K-L] P. Kirk and C. Livingston Vassiliev invariants of two component links
and the Casson-Walker invariant, Topology 36 (1997), 1333-1353.
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