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ABSTRACT. Conformal transformations are of much interest to model-

ers of physical phenomena as they provide many attractive mathematical

properties such as locally preserving the isotropy of scales, invariance of

the structure of the operators such as Laplacian under the transformation.

It is known to atmosphere and ocean modelers as to generate coordinate

transformations on the sphere using the analytic functions belonging to

the class of Mobius transformations which are linear and one-to-one in

the complex plane. This work describe the method to use the analytic

function that belongs to the class other than the Mobius transformations.

Especially the complex power function is used to generate a reparametri-

sation of the sphere so as to provide variable resolution geomtry on the

sphere. It is shown how the High resolution Tropical Belt Transforma-

tion is generated from this analytic function. While it is not possible

to generate coordinate transformations on the sphere with this class of

functions, it is indeed possible to achieve reparametrisation of the sphere.

Construction of the Riemann surface is used to achieve this reparametri-

sation.

1. INTRODUCTION

Spherical harmonics based global spectral method under the triangular

truncation provides an uniform resolution discretisation on the sphere. Vari-

able resolution global spectral method is achieved by the spherical har-

monics that have the spatially localised spectrum. The pioneering work

Key words and phrases. Riemann surface, spherical geometry, Schmidt transformation,
High resolution Tropical Belt Transformation, conformal maps, reparametrisation maps.
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by [Sch77] devised a conformal transformation of the spherical surface to

itself. The standard spherical harmonics are transformed by the confor-

mal transformation to generate a new spherical harmonic basis functions.

This transformed spherical harmonic basis functions had spatially-localised

spectrum so as to provide an non-uniform spectral discretisation on the

sphere. A finer resolution spectral discretisation was achieved over one

of the poles with a corresponding defocussing of resolution at the other

pole. Specifically the conformal transformation used by [Sch77] belongs

to the class of Mobius transformations of the complex plane [CG88]. In

the context of global ocean modeling, [BEDJ99] generated a coordinate

transformation based on the Mobius transformations. The class of transfor-

mations represented by the Mobius transformations provide a one-to-one

correspondence for the points on the extended complex plane. These class

of transformations are linear in nature. The search for other kinds of con-

formal transformations on the sphere which are different from the Mobius

transformations is an ongoing quest. The work by [JNM12] came up with

a variable resolution global spectral method using spherical harmonics. It

used a reparametrisation map named ’High resolution Tropical Belt Trans-

formation(HTBT)’ to generate finer resolution spectral discretisation of the

tropics on the sphere. This article describes the generation of HTBT from

a complex power function. This is analytic function is of a different class

than the Mobius transformation. By default, it is a many-to-one mapping

in the complex plane. So the generation of a coordinate transformation

on the sphere using this function is non-trivial. It requires the application

of the concept of Riemann surface construction. Section 2 shows why it

is not possible to generate a coordinate transformation on the sphere us-

ing a many-to-one functions like the complex power function. Section 3
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describes the construction of a Riemann surface that induces a one-to-one

correspondence with the points of the complex plane for the complex power

function. Section 4 decribes a generation of an abstract 2-manifold from the

Riemann surface. The generation of the Reparametrisation map using the

conformal map between the sphere and the Riemann surface is described in

section 5. The final section of this article provides the concluding remarks

of the work.

2. TRANSFORMATION ON THE SPHERE USING THE COMPLEX POWER

FUNCTION

Consider the unit sphere

S2 :=
{
(cosλ cosφ ,sinλ cosφ ,sinφ) |λ ∈ [0,2π), φ ∈

(
−π

2
,
π
2

)}
A point P on S2 is refered by the (λ ,φ) coordinates where λ is the lon-

gitude and φ is the latitude. The north-pole (NP) and south-pole(SP) are

refered by φ = π
2 and φ =−π

2 respectively.

Now we attempt to generate a coordinate transformation τ : S2 → S2

through the analytic function f (z) = z` , ` > 1, ` ∈ Z+.

Note that the function f :C̄ 7−→ C̄ is analytic everywhere except at z = ∞.

Here C̄ = C∪∞ is the extended complex plane. Since f ′(z) 6= 0 everywhere

in C̄ except at z = 0, and z = ∞, it is conformal in C̄ except at the points

z = 0, and z = ∞ .

Definition 1. The stereographic projection ρ can be expressed in terms of

the (λ ,φ) coordinates as

ρ :S2 7−→ C̄ such that z = tan
(

π
4 +

φ
2

)
exp(ıλ )

Definition 2. The inverse of stereographic projection
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ρ−1 : C̄ 7−→ S2 is given by (λ ,φ) = (arg(z),2arctan(|z|)− π
2 ).

Remark 3. The stereographic projection ρ defines an homeomorphism be-

tween S2 and C̄ [Ahl78].

Let w be the image of z under the mapping f(z) = z`, ` > 1.

Since w ∈ C̄, it corresponds to a point P′ on S2. We denote P′ by the

coordinate pair (λ ′,φ ′),

where λ ′ = Arg(w),φ ′ = 2arctan(|w|)− π
2 .

To get the relationship between P(λ ,φ) and P′(λ ′,φ ′), we make use of

the functional relation w = z`.

i.e. tan
(

π
4 +

φ ′

2

)
exp(ıλ ′) = tan`

(
π
4 +

φ
2

)
exp(ıλ ).

Comparing the modulus and argument of the above complex valued ex-

pression, we get

(2.1) tan
(

π
4
+

φ ′

2

)
= tan`

(
π
4
+

φ
2

)

(2.2) λ ′ = `λ +2kπ, k = 0,±1,±2, . . .

2.1. Solution of eqn 2.2. λ ′ = `λ +2kπ, k is an integer.

Since λ ∈ [0,2π) and λ ′ ∈ [0,2π).

0 ≤ `λ +2kπ < 2π

2(k−1)
`

π ≤ λ <
2k
`

π

for 0 ≤ λ < 2π.
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Let

Ik :=
[

2(k−1)
`

π,
2k
`

π
)

Bk := {(λ ,φ)|λ ∈ Ik}

If λ ∈ Ik, λ ′ = `λ +σ2π for some integer σ and λ ′ ∈ [0,2π), then σ =−(k−1).

i.e.

λ ′ = `λ −2π(k−1) if λ ∈ Ik, k = 1,2, . . . , `

2.2. Solution of eqn 2.1. tan
(

π
4 +

φ ′

2

)
= tan`

(
π
4 +

φ
2

)
, ` >1.

Let α = π
4 +

φ ′

2 , β = π
4 +

φ
2 . for α,β ∈ [0,π/2].

Then tanα = tan`β .

If we set tanβ = γ .

This implies α = arctan[γ`].

=⇒ α = ψ +mπ, m = 0,±1,±2, . . . and 0 ≤ ψ ≤ π
2 .

Since φ ′ is a latitudinal coordinate and by choosing φ ′ ∈ [−π
2 ,

π
2 ], we get

α ∈ [0,π/2].

So 0 ≤ ψ +mπ ≤ π
2 =⇒ m = 0.

i.e. φ ′ = 2arctan
(

tan`
(

π
4 +

φ
2

))
− π

2 .

Claim 4. Given a λ ′ such that (λ ′,φ ′)∈ (S2)′, there are exactly ` points that

map to (λ ′,φ ′) , unless it is a pole.

Proof. Suppose (λ ,φ) 7−→ (λ ′,φ ′) and (λ ′,φ ′) ∈ Bk.

i.e. For λ ′ = `λ −2π(k−1) then ρ−1 ◦ f ◦ρ : (λ + 2πn
` ,φ) 7−→ (λ ′,φ ′).

where n =−(k−1),−(k−1)+1,−(k−1)+2, . . .(`− k).

This transformation is conformal on the sphere excepting at the poles.

But due to the multi-valued nature, it does not qualify as a coordinate trans-

formation on the sphere. �
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3. CONSTRUCTION OF THE RIEMANN SURFACE Rw

It was shown in the previous section that it was not possible to construct

a coordinate transformation τ : S2 → S2 using the complex analytic function

f :C̄ 7−→ C̄ defined by f(z) = z`, ` > 1. It was due to the fact that this func-

tion was not one-to-one in the extended complex plane C̄. Given a z 6= 0,

and defining ω := e
2π
` , the points {zωk : k = 1,2, ....., `}all have the same

image under this function.

We proceed to construct a new set Rw which will have the property f :

C̄ 7→ Rw is one-to-one. Here, Rw:= the Riemann surface for the `-th root

function, inducing a conformal and one-to-one map F̀ ◦ f = I on Rw.

Definition 5. Let us define, for z 6= 0, Arg z to be the angle made by the

vector z with respect to the positive real axis, measured counter-clockwise,

and so normalized that 0 ≤ Arg z < 2π .

Definition 6. Let Ak :=
{

z|2(k−1)
` π ≤ Argz < 2k

` π
}
∪{0} be a subset of C.

Definition 7. Now define the set Bk :=
{

w|w = z`,z ∈ Ak
}

.

Fact. By definition Bk is the entire complex plane, except that it holds the

property Argw < 2π.

Fact. ⋃̀
k=1

Ak =C.

Fact. ⋂̀
k=1

Ak = {z|z = 0}

Definition 8. Let us define, for z 6= 0, arg z to be the angle made by the

vector z with respect to the positive real axis, measured counter-clockwise.

It has any one of an infinite number of real vaules differing by an integral

multiples of 2π .
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Fact.

w ∈ Bk =⇒ 2(k−1)π ≤ arg w < 2kπ and 0 ≤ Argw < 2π

Remark. The function f (z) = z` defines an one-to-one correspondence be-

tween the sets Ak and Bk.

Now we construct a new set Rw as follows

Rw := B1 ×{1}∪B2 ×{2}∪ · · ·∪B`×{`}

An arbitrary point P belonging to Rw be denoted by w;k. The notation

w;k refers to a complex number w belonging to the set Bk.

i.e. w;k ∈ Rw ⇒ w ∈ Bk, for some k ∈ {1,2, . . . , `}.

Following properties are imposed on the construction of Rw.

(1) For m,n ∈ {1,2, . . . , `},

m 6= n ⇒ w1;m 6= w2;n even if w1 = w2.

(2) For given w;k ∈ Rw,

lim
Argw−→2π

w;k −→ w′;(k+1)mod `

where |w′|= |w| & Argw′ = 0.

(3) 0;1 = 0;2 = 0;3 = · · ·= 0;`. We denote 0;k as 0. Then ∩`
k=1Bk = 0.

This construction of the set Rw is the Riemann surface on which the function

z = w
1
` is well-defined.

4. CONSTRUCTION OF AN ABSTRACT 2-MANIFOLD M

We proceed to construct an abstract 2-manifold M by applying the

inverse stereographic projection ρ−1 on the Riemann surface Rw.
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For w;k ∈ Rw ( i.e. w ∈ Bk, k ∈ {1,2, ...., `}),

ρ−1(w;k) = (λk,φk)

where λk = Arg(w) and φk = 2arctan(|w|)-π
2 .

Let

Sk :=
{
(cosλk cosφk,sinλk cosφk,sinφk) |λk ∈ [0,2π), φ ∈ (−π

2
,
π
2
)
}

We can define a new map ρ̂ :Bk 7→ Sk given by

ρ̂(w;k) = (cosλk cosφk,sinλk cosφk,sinφk)

Fact. ρ̂ defines an homeomorphism between Bk and Sk.

Now we construct a new set M as follows

M := S1 ×{1}∪S2 ×{2}∪ · · ·∪S`×{`}

By virtue of the continuity of ρ̂ and the construction of Rw, M inherits

the following properties.

(1) For m, n ∈ {1,2, ..., `}, m 6= n =⇒

(cosλm cosφm,sinλm cosφm,sinφm) 6= (cosλn cosφn,sinλn cosφn,sinφn)

,even if (λm,φm) = (λn,φn).

(2) For given (cosλk cosφk,sinλk cosφk,sinφk) ∈ M,

lim
λk−→2π

(cosλk cosφk,sinλk cosφk,sinφk) −→ (cosλn cosφn,sinλn cosφn,sinφn)

where n = (k+1) mod ` and λn = 0, φn = φk.

(3)
⋂̀
k=1

Sk = {(0,0,1),(0,0,−1)}.
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FIGURE 4.1. Illustration of the abstract 2-manifold M

Remark 9. (λk,φk) are the local coordinates of M , with k indiactes the

points of the set Sk ⊂ M .

Remark 10. A global coordinate system (λ ′,φ ′) can be defined for the

points of M.

Let (λ ′,φ ′) = (2(k−1)π +λk,φk) for k ∈ {1,2, ..., `}.

Clearly, λ ′ ∈ {0,2π`) and φ ′ ∈ (−π
2 ,

π
2 ) .

For a given point P′ refered by the global coordinates (λ ′,φ ′) , the local

coordinate (λk,φk) is given by the following relations.

k = λ ′ |2π , λk = λ ′ mod 2π and φk = φ ′ .

Fig. 4.1 illustrates the abstract 2-manifold M . It is a manifold (Riemann

surface) with ` sheets . Each sheet Sk is a sphere with local coordinates

(λk,φk) , 1 ≤ k ≤ ` . Each of the spherical sheet Sk has an infinitesimal

cut along the longitude λk = 2π . The longitude λk = 2π of the sheet Sk

is conneted to the sheet Sk+1 at the longitude λk+1 = 0, 1 ≤ k < `. The

longitude λ` = 2πis connected to λ1 = 0 of the sheet S1.

5. A NEW REPARAMETRIZATION OF THE SPHERE

Notice that there is an one-to-one relation between the points on the

sphere S2 and the points of the 2-manifold M .
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The commutative diagram given below illustrates this correspondence.

S2
ρ

//

τ
���
�
�

C̄

f
��

M Rw
ρ̂

oo

The correspondence is given by

τ ≡ ρ̂ ◦ f ◦ρ

The map can be described by τ : S2 7−→ M with

(5.1) τ(λ ,φ) = (λ ′,φ ′) =

(
`λ ,2arctan

[
tan`

(
π
4
+

φ
2

)]
− π

2

)
where (λ ′,φ ′) are the global coordinates of M.

The inverse map can be described by η : M 7−→ S2 with

(5.2) η(λ ′,φ ′) = (λ ,φ) =
(

λ ′/`,2arctan
[

tan
1
`

(
π
4
+

φ ′

2

)]
− π

2

)
Notice that the one-to-one correspondence between the coordinates of S2

and those of M induces a new reparametrisation for S2.

If we denote the standard longitude-latitude parametrisation on the sphere

as

σ = (cosλ cosφ ,sinλ cossφ ,sinφ)

and if we denote η(λ ′,φ ′) = (η1,η2) .

Then σ ◦η provides a new parametrisation of S2 with respect to (λ ′,φ ′)

coordinates.

i.e. the coordinate function

(cosη1(λ ′)cosη2(φ ′),sinη1(λ ′)cosη2(φ ′),sinη2(φ ′))
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relate a given pair (λ ′,φ ′) to an unique point on the sphere S2 (the north and

south pole will be refered by φ ′ =−π
2 and φ ′ = π

2 respectively).

Refer to textbooks such as [Pre01] for a detailed description of Reparametri-

sation maps.

The eqns. 5.1 and 5.2 both refer to the ’High resolution Tropical Belt

Transformation(HTBT)’ described in [JNM12].

6. CONCLUDING REMARKS

We have constructed an abstract 2-manifold M from the Riemann surface

Rw . The one-to-one correspondence between the points on the sphere S2

and the manifold M is achieved by this construction. Rw being a Riemann

surface, is itself a 2-dimensional C∞ manifold [Mir95]. M being diffeomor-

phic to Rw offers some useful mathematical properties. They are

(1) M is a smooth manifold diffeomorphic to the sphere S2 .

(2) τ is a C∞ diffeomorphism between S2 and M.

(3) τ is not conformal at the poles of the sphere.

From the previous works ([CG88, BEDJ99]), it is known that it is possible

to generate a coordinate transformation on the sphere τ : S2 → S2 using

the class of Mobius transformations which are linear and one-to-one in the

complex plane.

In this work, it is shown that it is not possible to generate a coordinate

transformation τ : S2 → S2 using a multi-valued complex function such as

f (z) = z`, ` > 1. But it is possible to create diffeomorphism to a manifold

M such that τ : S2 → M . This is achieved through the construction of a

Riemann surface. Noteworthy is the fact that the coordinates (λ ′,φ ′) of M

through the coordinate function σ ◦η , become a new coordinate system

for the sphere as well. This aspect has some important implications for
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generating variable resolution methods on the sphere. To generate variable

resolution methods, one could create numerical discretisation with the uni-

form distribution of points on M. The computed results upon mapping back

to the sphere will be of variable resolution. Equivalently, to achieve variable

resolution one could do computations on the sphere S2 with the uniform dis-

tribution of points in (λ ′,φ ′) through the coordinate function σ ◦η . The

latter approach was in fact demonstrated in the work of [JNM12].

The future work will be to identify other class of complex analytic func-

tions using which multiple regions of the sphere can be studied with fine

resolution.
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