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Abstract

Textbooks on response surface methodology emphasize the importance of lack-of-fit
tests when fitting response surface models, and stress that, to be able to test for
lack of fit, designed experiments should have replication and allow for pure-error
estimation. In this paper, we show how to obtain pure-error estimates and how to
carry out a lack-of-fit test when the experiment is not completely randomized, but a
blocked experiment, a split-plot experiment, or any other multi-stratum experiment.
Our approach to calculating pure-error estimates is based on residual maximum
likelihood (REML) estimation of the variance components in a full treatment model.
It generalizes the one suggested by Vining et al. (2005) in the sense that it works for a
broader set of designs and for replicates other than center point replicates. Our lack-
of-fit test also generalizes the test proposed by Khuri (1992) for data from blocked
experiments because it exploits replicates other than center point replicates and
works for split-plot and other multi-stratum designs as well. We provide analytical
expressions for the test statistic and the corresponding degrees of freedom, and
demonstrate how to perform the lack-of-fit test in the SAS procedure MIXED. We
re-analyze several published data sets and discover a few instances in which the usual
response surface model exhibits significant lack of fit.

Keywords: Kenward-Roger degrees of freedom, multi-stratum design, replication, resid-
ual maximum likelihood (REML), split-split-plot design, treatment model.
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1 Introduction

When analysing data using empirical response surface models, it is often desirable to allow
detection of failures of assumptions. In particular, an analysis which allows separation of
lack of fit from pure error is useful. When experiments are completely randomized, this
is easily accomplished since the pure-error estimate is obtained from replicate points, and
is implemented in several packages for analysing experimental data - see Box and Draper
(2007) for a full explanation.

In blocked response surface designs, when the block effects are taken as fixed, more care
is needed with the definition of pure error, but the most reasonable, discussed in detail
by Gilmour and Trinca (2000), is that it is the expectation of the residual mean square
from the block-treatment model. In this model, each combination of factor levels used
in the experiment is taken to be a discrete treatment. It is sometimes desirable to treat
block effects as random and similar models are used with split-plot and other multi-
stratum structures. The purpose of this paper is to show how a test for lack of fit can be
conducted in response surface models with these structures.

Khuri (1992) tested for lack of fit with random block effects, but based his pure-error
estimates only on replicated center points, although we will see that extending the def-
inition of Gilmour and Trinca (2000) allows more precise pure-error estimation. Vining
et al. (2005) and Vining and Kowalski (2008) recommended a simple analysis based on
estimation of each variance component using the sample variance obtained from replicate
points. However, this method is only applicable to particular types of design and only uses
replicate points within whole plots and completely replicated whole plots to obtain pure-
error estimates. Gilmour and Trinca (2000) showed, in the context of blocked response
surface designs, that this is a stronger definition of pure error than is used in completely
randomized designs, which requires only the use of the full treatment model. Parker et al.
(2007) noted that the pure-error estimates could also be used to test for lack of fit, but
did not give detailed explanation of how this could be done.

Almimi et al. (2009) pointed out the importance of developing procedures for checking
the adequacy of fit of split-plot models. To do so, they proposed the use of two different
coefficients of determination or R2 values, one for the whole-plot stratum in the analysis
and one for the subplot stratum. Similarly, they suggest PRESS values for both the
whole-plot and subplot strata. However, they do not present a formal lack-of-fit test for
models estimated from split-plot experimental data. In this paper, we show how to carry
out formal lack-of-fit tests for random block models and split-plot models. We apply the
test to several data sets described in the literature and use a simulated data set to show
that the test can be extended for use in a split-split-plot design.
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2 Model

In any experimental design, blocking factors arise from restrictions to the randomization,
so that particular sets of treatments must appear together in blocks. Unless each block
consists of the same set of treatments, some information for comparing treatments is
confounded with block effects. If the order of the blocks is randomized, we can use
random block effects in the model to recover this inter-block information. Split-plot
designs have treatments defined by combinations of the levels of several factors applied in
two strata, i.e. some factors have main effects completely confounded with the effects of
blocks. Hence, blocked reponse surface designs with random block effects and split-plot
response surface designs have exactly the same structure and model, the only difference
being that in the former no main effects are completely confounded with block effects.

We assume that the model is
Y = Xtτ + Zδ + ǫ, (1)

where Y is a random variable of which the response vector y is assumed to be a realization,
Xt is the full treatment design matrix, having (i, t)th element equal to 1 if treatment t
appears in run i and 0 otherwise, τ is the corresponding vector of treatment means, δ is
a vector of random block or whole-plot effects, Z is the design matrix for these random
effects and ǫ is the vector of random experimental unit errors. We further assume that
δ ∼ N (0, σ2

1
I), ǫ ∼ N (0, σ2

0
I) and that δ and ǫ are independent. We refer to model (1)

as the full treatment model.

In a typical response surface experiment, we want to further interpret the treatment
effects, for example by assuming that

Xtτ = Xβ, (2)

where X is the model matrix for a polynomial regression model and β is the vector of
parameters of this model. Obviously, adopting the polynomial regression model is a much
stronger assumption than that of model (1), which allows any pattern of treatment effects.
Therefore, we would like to be able to test for lack of fit of this polynomial model.

3 Estimation and Testing

3.1 Estimated Standard Errors of Fixed Effects

In response surface studies, the main interest is usually in estimating the fixed effects β

in the polynomial regression model (2). However, to test for lack of fit, we must fit the
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full treatment model (1). This is usually done using the empirical GLS estimator

τ̂ = (X′

tV̂
−1Xt)

−1X′

tV̂
−1Y, (3)

where
V̂ = σ̂2

1
Z′Z+ σ̂2

0
I,

and σ̂2

1
and σ̂2

0
are the estimators of the variance components obtained from residual

maximum likelihood (REML) (McCulloch et al., 2008) applied to the full treatment model.
The variance matrix of these estimators is usually estimated by

V̂(τ̂ ) = Ψ̂ = (X′

tV̂
−1Xt)

−1. (4)

The corresponding estimated standard errors of the fixed effects’ estimates are known
to be negatively biased. A correction, which usually gives much less biased estimated
standard errors, was suggested by Kenward and Roger (1997).

Simple orthogonal block structures are those made up of crossed and nested blocking
factors, in which each block contains equal numbers of units (Nelder (1965); see also
Gilmour and Trinca (2006)), irrespective of the treatment structure or model. In simple
orthogonal block structures, the approximate variance matrix for fixed effects, with the
Kenward-Roger correction, is

̂̂
V(β̂) = Ψ̂A = Ψ̂+ 2Λ̂, (5)

where Λ̂ is obtained by plugging the REML estimators of the variance components into

Λ = Ψ

1
∑

i=0

1
∑

j=0

{uij (Qij −PiΨPj)}Ψ,

Ψ = (X′

tV
−1Xt)

−1, uij = Cov(σ̂2

i , σ̂
2

j ), i, j ∈ {0, 1}, σ̂2

i is the estimator of σ2

i ,

Pi = X′

t

∂V−1

∂σ2

i

Xt

and

Qij = X′

t

∂V−1

∂σ2

i

V
∂V−1

∂σ2

j

Xt.

Hence

V−1 =
1

σ2

0

I−
σ2

1

σ4

0
+ kσ2

1
σ2

0

ZZ′. (6)
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By direct differentiation, we obtain

∂V−1

∂σ2

1

= −
1

(σ2

0
+ kσ2

1
)
2
ZZ′

and
∂V−1

∂σ2

0

=
1

σ4

0

{

σ2

1
(2σ2

0
+ kσ2

1
)

(σ2

0
+ kσ2

1
)
2

ZZ′ − I

}

.

We use the asymptotic sampling variance of the REML estimators of variance components,
given by McCulloch et al. (2008) for example,

u00 = V
(

σ̂2

0

)

= 2tr(Z′CZZ′CZ)/c,

u11 = V
(

σ̂2

1

)

= 2tr(CC)/c

and
u01 = u10 = Cov

(

σ̂2

0
, σ̂2

1

)

= −2tr(Z′CCZ)/c,

where
c = tr(CC)tr(Z′CZZ′CZ)− {tr(Z′CCZ)}

2

and
C = V−1 −V−1Xt

(

X′

tV
−1Xt

)

−1

X′

tV
−1.

3.2 Testing for Lack of Fit

In completely randomized response surface designs, it is common practice to carry out a
hypothesis test to check for lack of fit of the second order model (Box and Draper, 2007);
it is also straightforward to do in blocked response surface designs with fixed block effects
(Gilmour and Trinca, 2000). The extension to random block effects and split-plot designs
is not trivial. One possibility would be to perform a likelihood ratio test to compare
the polynomial model with the full treatment model. Although it should have good
asymptotic properties, such a test suffers from problems in realistic sized experiments.
Instead, we recommend using the approximate F -test proposed by Kenward and Roger
(1997), which uses their adjusted estimated variance-covariance matrix in Wald-type test
statistics.

We rewrite the full treatment model by separating the polynomial model parameters,

Xtτ = Xβ +XlL
′τ =

[

X 0

0 Xl

]

τ ∗,

5



where τ ∗′ = [β′ τ ′L] and L has dimensions l × t. The additional terms L′τ represent
higher order polynomial terms, though it is not essential for them to be parameterized in
this way.

The lack-of-fit test should test the null hypothesis H0 : L′τ = 0 against the alternative
H1 : L′τ 6= 0. The natural test statistic is

F =
1

l
τ̂ ′L

(

L′Ψ̂AL
)

−1

L′τ̂ ,

but this does not reduce to the standard F -test when the latter is appropriate, e.g. in
orthogonal designs. Kenward and Roger derived an approximation which does and, in
our case, this gives the test statistic F ∗ = λF , where

λ =
m

E∗(m− 2)
,

m = 4 +
l + 2

lρ− 1
,

ρ =
V ∗

2E∗2
,

E∗ =
l

l − A2

,

V ∗ =
2(1 + c1B)

l(1− c2B)2(1− c3B)
,

c1 =
g

3l + 2(1− g)
,

c2 =
l − g

3l + 2(1− g)
,

c3 =
l + 2− g

3l + 2(1− g)
,

g =
(l + 1)A1 − (l + 4)A2

(l + 2)A2

,

A1 =
1

∑

i=0

1
∑

j=0

uijtr(ΘΨPiΨ)tr(ΘΨPjΨ),

A2 =
1

∑

i=0

1
∑

j=0

uijtr(ΘΨPiΨΘΨPjΨ)

and
Θ = L(L′ΨL)−1L′.
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Under H0, F
∗ has approximately an F distribution with l and m degrees of freedom. This

test for lack of fit is easily programmed, so that checking for lack of fit in a randomized
block or split-plot response surface design becomes almost as simple as in a completely
randomized response surface design. Also, the lack-of-fit test can be readily performed in
the SAS procedure MIXED. We refer to the Appendix for two example SAS programs.

4 Examples

4.1 Pastry dough experiment

Gilmour and Ringrose (1999) and Gilmour and Trinca (2000) describe a pastry dough
experiment carried out in the Department of Food Science and Technology at the Uni-
versity of Reading. The factors investigated in the experiment were the feed flow rate
(x1), the initial moisture content (x2) and the screw speed (x3) of a mixing process for
pastry dough. The goal of the experiment was to acquire an understanding of how the
various properties of a dough depend on the settings of the three factors and to develop
an overall control scheme for the process. The experiment involved seven days, on each of
which four runs were performed. The design for the experiment was obtained using the
blocking algorithm of Trinca and Gilmour (2000). It is displayed in Table 1, along with
five of the responses: a longitudinal expansion index (y1) and a cross-sectional expansion
index (y2), and three variables representing the color of the pastry using the CIE 1976
(L∗ a∗ b∗) color system (Commission internationale de l’éclairage, 1986), the lightness
(y3), the redness (y4) and the yellowness (y5). The redness response has not previously
been analyzed in the literature. The design involves 15 distinct factor level combinations,
labeled 1–15 in Table 1. As a result, the full treatment model required for the pure-error
estimates of the variance components and the lack-of-fit test involves 15 parameters.

For each of the five responses, we tested the second-order response surface model for lack
of fit. The pure-error estimates of the block error variance σ2

1
and the residual error

variance σ2

0
, along with the denominator degrees of freedom, F test statistic and p-value

for the lack-of-fit test, are given in Table 2. For the purpose of comparison, we have also
shown the variance component estimates obtained by using the response surface model
in the table. Note that the numerator degrees of freedom for the lack-of-fit tests equal 5
for each of the five responses. This is because the design involves 15 different factor level
combinations or treatments and the response surface model has 10 unknown parameters.

Response y4 is the only one for which there is a significant lack of fit, giving a p-value
of 0.0345. By adding either of the linear-by-quadratic interaction terms x1x

2

2
or x1x

2

3

to the full quadratic model, we can get rid of the significant lack of fit. In that case,
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Table 1: Design and response data for the pastry dough experiment
Block Treatment x1 x2 x3 y1 y2 y3 y4 y5

1 1 −1 −1 −1 15.0 6.14 77.89 0.20 11.46
1 15 0 0 0 13.0 4.97 77.31 0.12 11.93
1 15 0 0 0 11.7 5.41 77.91 0.13 11.63
1 8 1 1 1 14.8 4.83 78.10 0.09 11.32
2 4 −1 1 1 11.2 4.25 76.93 0.26 12.17
2 15 0 0 0 12.2 3.86 77.51 0.16 11.85
2 15 0 0 0 11.6 4.34 77.38 0.05 11.64
2 5 1 −1 −1 14.1 4.93 77.96 0.02 11.28
3 2 −1 −1 1 15.9 6.26 78.68 −0.05 10.76
3 3 −1 1 −1 10.8 3.92 77.74 −0.02 14.41
3 5 1 −1 −1 15.6 4.92 76.90 0.11 12.27
3 8 1 1 1 15.8 5.48 77.24 −0.04 12.13
4 9 −1 0 0 11.2 4.36 76.99 0.31 13.33
4 13 0 0 −1 12.7 4.12 76.72 −0.15 14.19
4 12 0 1 0 11.4 4.24 76.34 −0.05 13.84
4 6 1 −1 1 18.6 6.11 78.07 0.20 10.55
5 3 −1 1 −1 10.1 4.35 76.79 0.24 14.22
5 11 0 −1 0 13.0 5.02 76.75 0.07 12.35
5 14 0 0 1 11.1 4.32 77.64 0.10 12.54
5 10 1 0 0 11.7 4.18 76.70 0.10 13.50
6 1 −1 −1 −1 14.6 5.85 77.00 −0.08 12.92
6 4 −1 1 1 12.8 4.89 76.73 0.00 13.91
6 6 1 −1 1 17.6 6.67 78.38 0.14 11.66
6 7 1 1 −1 15.4 4.80 77.19 −0.04 14.48
7 2 −1 −1 1 15.0 6.38 77.74 −0.02 12.20
7 15 0 0 0 10.7 4.21 76.97 0.00 14.94
7 15 0 0 0 9.6 4.29 76.97 0.02 14.61
7 7 1 1 −1 10.9 4.30 77.19 0.08 14.78

the F test statistic and the p-value equal 2.74 and 0.1076, respectively. Both linear-
by-quadratic interaction effects lead to the same p-value for the lack-of-fit test because
they are completely aliased with each other in this design. The next smallest p-value is
for y1. Unlike for the other responses, the two sets of variance component estimates for
responses y1 and y4 are somewhat different. In both cases, σ2

0
seems to be overestimated

in the response surface model, presumably due to contamination by higher-order effects.
For the other responses, the variance component estimates are not much different in the
two models, which strongly suggests that higher-order terms are not needed in the model
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Table 2: Results for the lack-of-fit test and variance component estimates for the data
from the pastry dough experiment

Lack of fit Pure error Response surface
Response df F value p-value σ2

1
σ2

0
σ2

1
σ2

0

y1 10.5 2.38 0.1101 2.0596 1.3752 1.8100 2.3246
y2 9.92 0.67 0.6557 0.1970 0.2977 0.1799 0.2904
y3 9.09 0.51 0.7626 0.1178 0.1258 0.1408 0.1003
y4 7.03 4.63 0.0345 0.0124 0.0033 0.0012 0.0107
y5 8.18 1.71 0.2360 0.9782 0.0721 0.9703 0.0970

for these responses.

4.2 Galvanized steel experiment

Khuri (1992) analyzes data from an experiment in which the impact of two factors, tem-
perature (x1) and curing time (x2), on the shear strength y of the bonding of galvanized
steel bars was investigated. The two factors had three levels each, 375, 400 and 450◦F for
temperature and 30, 35 and 40 seconds for curing time. These levels were coded as −1,
0 and 2 for the first factor, and −1, 0 and 1 for the second factor. The design involved
nine different treatment combinations, and included twelve blocks. Eight of these blocks
had nine runs, one for each treatment combination. Two of the four remaining blocks had
twelve runs, and the remaining two blocks had eleven runs. The difference in size of the
blocks was entirely due to replications of the center run in the latter four blocks. The
design and the data are shown in Table 3.

For these data, Khuri (1992) reports the results for a test for lack of fit. His test is based
on the replicated observations within the blocks, i.e. on the replicated center points only.
With his test involving 85 degrees of freedom for lack of fit and ten degrees of freedom
for pure error, Khuri obtains a p-value of 0.225. Our test for lack of fit differs from
Khuri’s because it is based on the full treatment model instead of on the response surface
model and because it also exploits the replication of treatment combinations other than
the center run. Our test uses three degrees of freedom for lack of fit and 98.9 degrees of
freedom for pure error, and results in a test statistic of 3.10 and a p-value of 0.0301. Hence,
unlike Khuri’s, our test suggests a significant lack of fit. The lack of fit can be accounted
for by adding a linear-by-quadratic interaction term, x1x

2

2
, to the response surface model.

The test statistic for the corresponding lack-of-fit test (involving two degrees of freedom
for lack of fit and 99.1 for pure error) drops to 2.72, giving a p-value of 0.0708.
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Table 3: Design and response data for the galvanized steel experiment

Treat- Factor Block

ment x1 x2 1 2 3 4 5 6 7 8 9 10 11 12

1 −1 −1 1226 1075 1172 1213 1282 1142 1281 1305 1091 1281 1305 1207

2 0 −1 1898 1790 1804 1961 1940 1699 1833 1774 1588 1992 2011 1742

3 2 −1 2142 1843 2061 2184 2095 1935 2116 2133 1913 2213 2192 1995

4 −1 0 1472 1121 1506 1606 1572 1608 1502 1580 1343 1691 1584 1486

5 0 0 2010 2175 2279 2450 2291 2374 2417 2393 2205 2142 2052 2339

5 0 0 1882 2355 2268 2032

5 0 0 1915 2420 2103 2190

5 0 0 2106 2240

6 2 0 2352 2274 2168 2298 2147 2413 2430 2440 2093 2208 2201 2216

7 −1 1 1491 1691 1707 1882 1741 1846 1645 1688 1582 1692 1744 1751

8 0 1 2078 2513 2392 2531 2366 2392 2392 2413 2392 2488 2392 2390

9 2 1 2531 2588 2617 2609 2431 2408 2517 2604 2477 2601 2588 2572

In this example, the pure-error estimates of σ2

1
and σ2

0
are 3630.80 and 11813, respec-

tively, whereas the estimates obtained from the second-order response surface model are
3521.59 and 12238, respectively. Hence, using the response surface model leads to an
overestimation of σ2

0
, when compared to the full treatment model.

4.3 Strength of ceramic pipes

The experiment on ceramic pipes reported by Vining et al. (2005) has 12 whole plots,
each with four runs, and three complete blocks consisting of replicated center points. The
experimental factors were zone-1 temperature (x1), zone-2 temperature (x2), amount of
binder (x3) and grinding speed (x4). The former two factors were whole-plot factors,
while the latter two were subplot factors. The design for the ceramic pipe experiment was
based on a four-factor central composite design. Hence, it involves 25 distinct factor level
combinations or treatments. The design and the response data are shown in Table 4. The
response, y, was the strength of a ceramic pipe.

When fitting a second-order response surface model to the ceramic pipe data, there is
no evidence of lack of fit. The F test statistic equals 1.13, while the numerator and
denominator degrees of freedom amount to 10 and 6.96, respectively. This results in a
p-value of 0.4499. The pure-error estimates of the variance components σ2

1
and σ2

0
are

0.5263 and 0.0936, while those obtained from fitting the response surface model equal
1.4176 and 0.0756, respectively. The numerator degrees of freedom equal 10 because
there are 25 treatments in the design and 15 parameters in the second-order response
surface model.
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Table 4: Design and response data for the ceramic pipe experiment

Block Treatment x1 x2 x3 x4 y Block Treatment x1 x2 x3 x4 y

1 1 −1 −1 −1 −1 80.40 7 10 0 −1 0 0 80.07
1 2 −1 −1 −1 1 89.91 7 10 0 −1 0 0 80.79
1 3 −1 −1 1 −1 71.88 7 10 0 −1 0 0 80.20
1 4 −1 −1 1 1 76.87 7 10 0 −1 0 0 79.95

2 17 1 −1 −1 −1 87.48 8 16 0 1 0 0 68.98
2 18 1 −1 −1 1 90.84 8 16 0 1 0 0 68.64
2 19 1 −1 1 −1 84.49 8 16 0 1 0 0 69.24
2 20 1 −1 1 1 83.61 8 16 0 1 0 0 69.20

3 6 −1 1 −1 −1 62.99 9 11 0 0 −1 0 78.56
3 7 −1 1 −1 1 79.91 9 12 0 0 0 −1 74.59
3 8 −1 1 1 −1 49.95 9 14 0 0 0 1 82.52
3 9 −1 1 1 1 63.23 9 15 0 0 1 0 68.63

4 22 1 1 −1 −1 73.06 10 13 0 0 0 0 74.86
4 23 1 1 −1 1 84.45 10 13 0 0 0 0 74.22
4 24 1 1 1 −1 66.13 10 13 0 0 0 0 74.06
4 25 1 1 1 1 73.29 10 13 0 0 0 0 74.82

5 5 −1 0 0 0 71.87 11 13 0 0 0 0 73.60
5 5 −1 0 0 0 71.53 11 13 0 0 0 0 73.59
5 5 −1 0 0 0 72.08 11 13 0 0 0 0 73.34
5 5 −1 0 0 0 71.58 11 13 0 0 0 0 73.76

6 21 1 0 0 0 82.34 12 13 0 0 0 0 75.52
6 21 1 0 0 0 82.20 12 13 0 0 0 0 74.74
6 21 1 0 0 0 81.85 12 13 0 0 0 0 75.00
6 21 1 0 0 0 81.85 12 13 0 0 0 0 74.90
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4.4 Wind tunnel experiment

Simpson et al. (2004) report the results from a wind tunnel experiment, involving four
different responses: coefficient of lift at the front of the car (y1), coefficient of lift at the
rear of the car (y2), drag (y3) and lift over drag ratio (y4). The design for the experiment,
which is shown in Table 5 along with the response data, had nine whole plots of five runs.
Four experimental variables were studied: front ride height (x1), rear ride height (x2), yaw
angle (x3) and grille coverage (x4). The first two of these are whole-plot factors, whereas
the others are sub-plot factors. The design involved 25 distinct factor level combinations
or treatments, 20 of which were duplicated. A special feature of the design was that only
one of the quadratic whole-plot effects and only one of the quadratic sub-plot effects could
be estimated. Hence, we estimated a model including main effects, two-factor interaction
effects and two of the four quadratic effects. The results of the lack-of-fit tests for the
four responses are given in Table 6.

For two of the responses in the wind tunnel experiment, y2 and y4, there is significant
lack of fit. For these responses, there are substantial differences between the pure-error
estimates of the variance components and the estimates obtained from the response surface
model. Note that, for the wind tunnel experiment, the denominator degrees of freedom
are 16 for each of the responses. This is due to the orthogonality of the subplot design to
the whole plots.

To remove the lack of fit for the y2 and y4 responses, more than just a few higher-order
interactions have to be added to the model. For y2, for instance, adding all three-factor
interactions to the model does not suffice. Adding all three-factor interactions and all
linear-by-quadratic interactions, however, does remove the lack of fit. The F statistic
and the p-value of the corresponding lack-of-fit test equal 1.87 and 0.1654, respectively.
For the y4 response, one model that does not exhibit significant lack of fit is a model
including all three-factor interactions and the four-factor interaction. The corresponding
F statistic and p-value are 2.38 and 0.0719, respectively. In any case, it should be clear
that, for two of the responses in the wind tunnel experiment, no simple response surface
model exists that fits the data well. This may be due to the rounding used for the
responses, the extremely small estimates for the variance components, and a few outlying
observations. Especially for the y2 response, the estimates for σ1 and σ0 are of the same
order of magnitude as the rounding error. A transformation of the y2 and y4 responses
did not result in simpler solutions to avoid lack of fit.
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Table 5: Design and response data for the wind tunnel experiment
Block Treatment x1 x2 x3 x4 y1 y2 y3 y4

1 4 1 −1 −1 −1 −0.079 −0.219 0.416 0.715

1 9 1 −1 −1 1 −0.130 −0.227 0.409 0.875

1 14 1 −1 0 0 −0.097 −0.219 0.401 0.788

1 19 1 −1 1 −1 −0.069 −0.210 0.398 0.700

1 24 1 −1 1 1 −0.121 −0.199 0.385 0.830

2 2 −1 1 −1 −1 −0.120 −0.281 0.419 0.955

2 7 −1 1 −1 1 −0.168 −0.290 0.410 1.118

2 12 −1 1 0 0 −0.127 −0.276 0.400 1.005

2 17 −1 1 1 −1 −0.097 −0.238 0.393 0.852

2 22 −1 1 1 1 −0.151 −0.259 0.386 1.061

3 5 1 1 −1 −1 −0.112 −0.249 0.435 0.831

3 10 1 1 −1 1 −0.168 −0.259 0.428 0.996

3 15 1 1 0 0 −0.139 −0.252 0.421 0.926

3 20 1 1 1 −1 −0.105 −0.229 0.414 0.807

3 25 1 1 1 1 −0.157 −0.228 0.405 0.952

4 2 −1 1 −1 −1 −0.123 −0.279 0.420 0.958

4 7 −1 1 −1 1 −0.173 −0.289 0.412 1.123

4 12 −1 1 0 0 −0.138 −0.270 0.404 1.012

4 17 −1 1 1 −1 −0.104 −0.240 0.394 0.872

4 22 −1 1 1 1 −0.155 −0.261 0.387 1.074

5 4 1 −1 −1 −1 −0.081 −0.221 0.418 0.721

5 9 1 −1 −1 1 −0.128 −0.226 0.408 0.867

5 14 1 −1 0 0 −0.098 −0.219 0.400 0.793

5 19 1 −1 1 −1 −0.070 −0.212 0.399 0.708

5 24 1 −1 1 1 −0.118 −0.198 0.383 0.825

6 5 1 1 −1 −1 −0.118 −0.249 0.436 0.843

6 10 1 1 −1 1 −0.168 −0.255 0.426 0.994

6 15 1 1 0 0 −0.138 −0.246 0.419 0.918

6 20 1 1 1 −1 −0.107 −0.227 0.412 0.810

6 25 1 1 1 1 −0.160 −0.225 0.403 0.956

7 3 0 0 −1 −1 −0.111 −0.248 0.420 0.853

7 8 0 0 −1 1 −0.158 −0.252 0.409 1.004

7 13 0 0 0 0 −0.128 −0.238 0.401 0.912

7 18 0 0 1 −1 −0.093 −0.217 0.394 0.785

7 23 0 0 1 1 −0.149 −0.211 0.384 0.939

8 1 −1 −1 −1 −1 −0.096 −0.250 0.402 0.861

8 6 −1 −1 −1 1 −0.150 −0.257 0.394 1.033

8 11 −1 −1 0 0 −0.108 −0.231 0.382 0.887

8 16 −1 −1 1 −1 −0.082 −0.221 0.380 0.797

8 21 −1 −1 1 1 −0.133 −0.220 0.369 0.959

9 1 −1 −1 −1 −1 −0.097 −0.249 0.400 0.863

9 6 −1 −1 −1 1 −0.154 −0.257 0.391 1.051

9 11 −1 −1 0 0 −0.118 −0.239 0.383 0.932

9 16 −1 −1 1 −1 −0.091 −0.226 0.382 0.830

9 21 −1 −1 1 1 −0.132 −0.217 0.365 0.955
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Table 6: Results for the lack-of-fit test and variance component estimates for the data
from the wind tunnel experiment.

Lack of fit Pure error Response surface
Response df F value p-value σ2

1
σ2

0
σ2

1
σ2

0

y1 16 1.87 0.1213 0.65× 10−5 0.57× 10−5 0.61× 10−5 0.78× 10−5

y2 16 8.37 <.0001 0.70× 10−6 0.49× 10−5 0 0.19× 10−4

y3 16 1.98 0.1001 0.51× 10−6 0.16× 10−5 0.38× 10−6 0.23× 10−5

y4 16 3.60 0.0094 0.42× 10−4 0.72× 10−4 0.26× 10−4 0.15× 10−3

4.5 Split-split-plot example

The lack-of-fit test we propose can also be applied to data from multi-stratum experiments
other than split-plot experiments. For lack of published data sets from industrial split-
split-plot response surface experiments, we simulated data for a D-optimal 48-run split-
split-plot design obtained using the algorithm of Jones and Goos (2009), as implemented
in the JMP 10 software, and assuming a full quadratic model in four factors, x1–x4. The
design involves eight whole plots, and each whole plot has two subplots of three runs.
The first factor, x1, is the whole-plot factor, and the second, x2, is the subplot factor.
The design, which is shown in Table 7 along with the response data, has 41 distinct
factor level combinations or treatments. The treatments 2, 9, 10, 14, 28, 37 and 41 are
duplicated. The seven duplicate treatments can be used to obtain pure-error estimates
for the variance components corresponding to the whole plots, the subplots and the runs
in the split-split-plot model

Y = Xtτ + Z2δ + Z1γ + ǫ, (7)

where Y is a random variable of which the response vector y is assumed to be a realization,
Xt is the full treatment design matrix, τ is the corresponding vector of treatment means, δ
is a vector of random whole-plot errors, Z2 is the design matrix for these random effects,
γ is a vector of random whole-plot errors, Z1 is the design matrix for these random
effects, and ǫ is the vector of random experimental unit errors. We further assume that
δ ∼ N (0, σ2

2
I), γ ∼ N (0, σ2

1
I) and ǫ ∼ N (0, σ2

0
I), and that all random effects are

independent. We call model (7) the full treatment model.

We simulated responses for the D-optimal design assuming the values −9, −1, 3 and −5
for the linear main effects, 7, −1, 6 and −8 for the quadratic effects, and 5, −7, −1,
−4, −3, −8 for the two-factor interaction effects. We also assumed that two three-factor
interactions (one involving x1, x2 and x3 with coefficient −6.5, and one involving x1,
x2 and x4 with coefficient −5) were active, and that the variance components σ2

2
, σ2

1
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Table 7: Design and response data for the split-split-plot example

WP SP Treatment x1 x2 x3 x4 y WP SP Treatment x1 x2 x3 x4 y

1 1 9 −1 1 −1 −1 62.36 5 9 9 −1 1 −1 −1 20.03

1 1 12 −1 1 1 −1 99.70 5 9 10 −1 1 −1 1 17.59

1 1 14 −1 1 1 1 86.91 5 9 13 −1 1 1 0 56.40

1 2 6 −1 0 −1 0 83.28 5 10 1 −1 −1 −1 −1 34.54

1 2 7 −1 0 0 1 77.68 5 10 2 −1 −1 −1 1 44.23

1 2 8 −1 0 1 −1 97.63 5 10 4 −1 −1 1 0 56.33

2 3 27 1 −1 −1 −1 51.44 6 11 35 1 1 −1 −1 33.80

2 3 28 1 −1 −1 1 65.75 6 11 37 1 1 −1 1 33.82

2 3 30 1 −1 1 −1 85.28 6 11 40 1 1 1 0 18.50

2 4 37 1 1 −1 1 83.41 6 12 32 1 0 −1 −1 18.30

2 4 38 1 1 0 −1 78.43 6 12 33 1 0 0 1 3.45

2 4 41 1 1 1 1 32.19 6 12 34 1 0 1 0 23.55

3 5 2 −1 −1 −1 1 93.18 7 13 28 1 −1 −1 1 18.88

3 5 3 −1 −1 0 −1 85.02 7 13 29 1 −1 0 −1 11.14

3 5 5 −1 −1 1 1 94.08 7 13 31 1 −1 1 1 −3.51

3 6 10 −1 1 −1 1 60.83 7 14 36 1 1 −1 0 40.33

3 6 11 −1 1 0 −1 75.64 7 14 39 1 1 1 −1 35.54

3 6 14 −1 1 1 1 86.61 7 14 41 1 1 1 1 −15.48

4 7 24 0 1 −1 0 80.57 8 15 16 0 −1 −1 0 19.65

4 7 25 0 1 0 1 61.15 8 15 18 0 −1 0 1 7.58

4 7 26 0 1 1 −1 92.65 8 15 19 0 −1 1 −1 32.10

4 8 15 0 −1 −1 −1 64.96 8 16 21 0 0 −1 −1 10.54

4 8 17 0 −1 0 0 76.17 8 16 22 0 0 0 0 19.65

4 8 20 0 −1 1 1 68.28 8 16 23 0 0 1 −1 35.02

and σ2

0
were 9, 4 and 1, respectively. When estimating a second-order response surface

model, the lack-of-fit test has 26 numerator degrees of freedom (41 treatments minus 15
parameters in the response surface model) and one denominator degree of freedom. The
F test statistic is 260.36, which results in a p-value of 0.0489. Thus, despite the single
denominator degree of freedom, there is an indication of some lack of fit. This is in line
with the model assumed to simulate the data. The pure-error estimates of σ2

2
, σ2

1
and

σ2

0
are 2.7925, 4.1887 and 0.2314, respectively. Each of these are completely different

from the estimates obtained from the second-order response surface model: 0, 0 and
57.1494. As in the pastry dough experiment, the galvanized steel experiment and the
wind tunnel experiment, a symptom of the lack of fit is the large estimate for σ2

0
obtained

from the response surface model, relative to the pure-error estimate obtained from the
full treatment model. Adding the two active three-factor interactions to the model leads
to an F statistic of 5.30 and a p-value of 0.3321 for the lack-of-fit test. Adding one of the
two active three-factor interactions leads to p-values of 0.0749 and 0.0610, each of which
suggests that adding one three-factor interaction effect to the model is not enough.
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5 Discussion

Testing for lack of fit is a routine part of response surface methodology, when the runs
can be completely randomized. It should similarly be done routinely in blocked, split-
plot and other multi-stratum response surface experiments. We have shown that this
testing is fairly straightforward, given an appropriate linear mixed models program. We
recommend that this test should always be done before interpreting a fitted polynomial
response surface model. If no evidence of lack of fit is found, then we can interpret the
response surface model output with more confidence. If lack of fit is found then further
investigation is required. Sometimes a single third-order term can explain the lack of fit,
in which case we can modify our model accordingly; at other times, the lack of fit might
be caused by an outlier, or indicate the need for a transformation of the response. In
other cases the lack of fit, though statistically significant, might have little impact on the
interpretation of the data and can be effectively ignored. The most difficult cases are
those like the wind tunnel data, where it is very difficult to see a clear pattern indicated
by the lack of fit. In such cases, we should procede to interpretation with caution.

At present, construction methods for efficient split-plot and other multi-stratum designs
that allow for pure-error estimation and lack-of-fit testing are still lacking. An interesting
avenue for research would be to extend the approach of Gilmour and Trinca (2012) for
completely randomized designs and designs with fixed block effects to split-plot and other
multi-stratum designs, and to experiments involving random block effects.

Appendix. SAS Programs

Galvanized steel example

data steel;

input block treat x1 x2 y;

datalines;

1 1 -1 -1 1226

1 2 0 -1 1898

...

12 8 0 1 2390

12 9 2 1 2572

;

* response surface model;

proc mixed;
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class block;

model y = x1 x2 x1*x2 x1*x1 x2*x2 / ddfm=kr solution;

run;

* lack-of-fit test second-order model;

proc mixed;

class block treat;

model y = x1 x2 x1*x2 x1*x1 x2*x2 treat/ ddfm=kr solution;

random block / solution;

run;

* lack-of-fit test second-order model + linear-by-quadratic interactions;

proc mixed;

class block treat;

model y = x1 x2 x1*x2 x1*x1 x2*x2 x1*x2*x2 treat/ ddfm=kr solution;

random block / solution;

run;

Split-split-plot example

data splitsplitplot;

input run wp sp x1-x4 y treat;

datalines;

1 1 9 -1 1 -1 -1 62.36

1 1 12 -1 1 1 -1 99.70

1 1 14 -1 1 1 1 86.91

1 2 6 -1 0 -1 0 83.28

...

8 15 19 0 -1 1 -1 82.10

8 16 21 0 0 -1 -1 60.54

8 16 22 0 0 0 0 69.65

8 16 23 0 0 1 -1 85.02

;

* response surface model;

proc mixed data = splitsplitplot;

class wp sp;

model y = x1|x2|x3|x4@2 x1*x1 x2*x2 x3*x3 x4*x4 / solution ddfm = kr;

random wp sp;

run;

* lack-of-fit test second-order model;

proc mixed data = splitsplitplot;

class wp sp treat;
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model y = x1|x2|x3|x4@2 x1*x1 x2*x2 x3*x3 x4*x4 treat/ ddfm = kr solution;

random wp sp;

run;

* lack-of-fit test second-order model + 2 three-factor interactions;

proc mixed data = splitsplitplot;

class wp sp treat;

model y = x1|x2|x3|x4@2 x1*x1 x2*x2 x3*x3 x4*x4

x1*x2*x3 x1*x3*x4 treat/ ddfm = kr solution;

random wp sp;

run;
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