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Abstract. We study the ability of high order numerical methods to propa-
gate discrete waves at the same speed as the physical waves in the case of the

one-way wave equation. A detailed analysis of the finite element method is
presented including an explicit form for the discrete dispersion relation and
a complete characterisation of the numerical Bloch waves admitted by the

scheme. A comparision is made with the spectral element method and the dis-
continuous Galerkin method with centred fluxes. It is shown that all schemes
admit a spurious mode. The spectral element method is always inferior to the
finite element and discontinuous Galerkin schemes; a somewhat surprising re-

sult in view of the fact that, in the case of the second order wave equation, the
spectral element method propagates waves with an accuracy superior to that
of the finite element scheme. The comparative behaviour of the finite element
and discontinuous Galerkin scheme is also somewhat surprising: the accuracy

of the finite element method is superior to that of the discontinuous Galerkin
method in the case of elements of odd order by two orders of accuracy, but
worse, again by two orders of accuracy, in the case of elements of even order.

1. Introduction and Summary of Main Results

Consider the one-way wave equation for a given wave-speed c > 0,

∂tu+ c∂xu = 0 x ∈ R, t > 0 (1)

with suitable initial data. A key feature of the equation is the existence of non-
trivial, spatially propagating solutions for each given temporal frequency ω,

u(x, t) = eiωtU(x) (2)

where U(x) = e−ikx, k = ω/c. The relation between the wavenumber and the
temporal frequency is known as the dispersion relation for the continuous problem.
The function U satisfies a Bloch wave condition

U(x+ h) = λU(x), x ∈ R, h ∈ R (3)

where λ = e−ikh is the Floquet multiplier.
Let Xh,N denote the space of continuous, piecewise polynomials of degree N on

the grid hZ,
Xh,N =

{
v ∈ C(R) : v|(xm,xm+1) ∈ PN , m ∈ Z

}
(4)

1991 Mathematics Subject Classification. 65M12, 65M60, 65M70.
Key words and phrases. Spectral element method. Finite element method. Centred Discontin-

uous Galerkin method. Numerical dispersion. Spurious numerical modes. Computational modes.
The author gratefully acknowledges the support of the Isaac Newton Institute for Mathematics

during the programme on Multiscale Numerics for the Atmosphere and Ocean in which this work
was completed. It is with pleasure and gratitude that the author acknowledges a number of
stimulating discussions with Frank Giraldo, Paul Fischer and Mark Taylor, that provided much
of the impetus for the current work.

1



2 MARK AINSWORTH

where xm = mh. A semi-discrete approximation of the one-way wave equation may
be defined by seeking uh,N ∈ Xh,N such that∫

R
(∂tuh,N + c∂xuh,N ) v dx = 0, v ∈ Xh,N (5)

along with appropriate initial conditions. A key issue [4] when assessing any spatial
discretisation scheme for the one-way wave equation is the existence of non-trivial
Bloch wave solutions of the discrete problem (5). These solutions again take the
form (2),

uh,N (x, t) = eiωtUh,N (x) (6)

with the essential difference that the function Uh,N must belong to the discrete
space Xh,N , and satisfy a discrete Bloch wave condition

Uh,N (x+ h) = λh,NUh,N (x), x ∈ R (7)

with the discrete Floquet multiplier λh,N depending on the mesh-size h and the
polynomial degree N .

The ability of the numerical scheme to propagate waves in space faithful to the
true propagating waves depends on the accuracy with which the discrete Floquet
multiplier approximates the true Floquet multiplier. The relative accuracy Rh,N of
the approximation is defined by

Rh,N =
λ− λh,N

λ
. (8)

and our aim is to study the behaviour of this ratio as ωh/c → 0, for any polynomial
order N . Some authors prefer to introduce a discrete wavenumber, kh,N , satisfying

e−ihkh,N = λh,N (9)

and to study the relative accuracy of the approximation k ≈ kh,N , where k = ω/c
is the true wavenumber, given by

Eh,N =
k − kh,N

k
. (10)

These measures are related in the case where k − kh,N is small as follows

Rh,N =
e−ikh − e−ikh,Nh

eikh
= 1− e−i(kh,N−k)h ≈ −i(k − kh,N ) = −ikEh,N . (11)

As such, the choice of whether to study Rh,N or Eh,N is purely a matter of taste
in the case where k − kh,N is small. However, it should be borne in mind that
the condition (9) does not define a unique value of kh,N . Care must be taken in
selecting the value of kh,N satisfying (9) appropriately in order to avoid drawing
incorrect conclusions. Moreover, if k − kh,N is not small, then there is no simple
relation between Rh,N and Eh,N . For these reasons, our preference is to study the
relative accuracy of the discrete Floquet multiplier directly, since it is this quantity
that appears in the Bloch wave condition and is uniquely defined.

Our first result establishes an algebraic condition on the discrete Floquet mul-
tiplier in terms of the order N , the mesh-size h and the wavenumber ω/c under
which a non-trivial discrete Bloch wave may exist.

Theorem 1. There exists a non-trivial Bloch wave solution of problem (5) of the
form

uh,N (x, t) = eiωt
∑
m∈Z

λm
h,Nφ(x−mh) (12)
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(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

(e) N = 5 (f) N = 6

Figure 1. Plots of the basic function φ appearing in the Bloch
wave expansion (12) in the case where Ω = 2 for polynomial degree
N from 1 to 6.

where φ ∈ Xh,N , if and only if λh,N is a solution of the algebraic equation

vN (ωh/c) (λ− qN (ωh/c)) + (−1)NvN (ωh/c)

(
1

λ
− qN (ωh/c)

)
= 0, (13)

where qN (Ω) = wN (Ω)/vN (Ω), vN (Ω) and wN (Ω) are defined in Theorem 4.

The function φ appearing in the Bloch wave expansion (12) is a piecewise polyno-
mial supported on (−h, h) that depends on the polynomial degree N and Ω = ωh/c.
The function is constructed as part of the proof of Theorem 1 given in Section 3.
Figure 1 shows the function in the case h = 1 and ω = 2c for polynomial degree N
from 1 to 6.
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The next result, also proved in Section 3, addresses the accuracy of the Floquet
multiplier (or if one prefers, thanks to (11), the accuracy of the discrete wavenum-
ber):

Theorem 2. The discrete dispersion relation (13) has two solutions λP
h,N and λS

h,N ,

one of which corresponds to a physical mode λP
h,N ≈ e−iωh/c and the other of which

corresponds to a spurious mode. More precisely,

e−iωh/c − λP
h,N

e−iωh/c
=

i

2

[
N !

(2N + 1)!

]2

−2N + 1

N + 1

(
ωh

c

)2N+1

, N even,

N + 1

2N + 3

(
ωh

c

)2N+3

, N odd

(14)

and

λS
h,N = (−1)N

vN (ωh/c)

vN (ωh/c)λP
h,N

≈ (−1)N
vN (ωh/c)

vN (ωh/c)
eiωh/c. (15)

Theorem 2 shows that the discrete dispersion relation always has a solution cor-
responding to the physical wave eiΩx but, in addition, there is always a second
solution corresponding to a spurious propagating wave that is non-physical. Fig-
ure 2 shows the true physical wave plotted along with both propagating discrete
Bloch waves in the case h = 1, ω = 2c. Figure 2(a) corresponds to piecewise linear
approximation which is completely unable to resolve the physical wave. However,
Figures 2(b)-(e) show that the physical wave is rapidly resolved as the polynomial
degree is increased on a fixed mesh of size h = 1.

Interestingly, the nature of the spurious discrete Bloch wave is revealed as a
higher frequency mode characterised by sharp peaks. The presence of a spurious
mode is less than ideal, but has not proved to be a serious problem in applications
provided one adopts the common practice of employing a numerical filter [6,8] that
removes the mode as a post-processing operation.

2. Comparison with Spectral Element and Centred Discontinuous
Galerkin Schemes

A number of alternative numerical schemes have been advocated for the approx-
imation of problems of type (1). The spectral element method [5,9,11] is equivalent
to the finite element method used in conjunction with a Gauss-Lobatto quadrature
rule for the evaluation of the element matrices, and is attractive computationally be-
cause it leads to a diagonal mass matrix. The discontinuous Galerkin method [3,7]
is widely used for computational wave propagation and is also computationally
attractive because it leads to a block diagonal mass matrix. We confine our atten-
tion to the variant with centred fluxes since, like the finite and spectral element
schemes, it is conservative and as such makes for a more natural comparison. All
three schemes exhibit a single, undamped, spurious mode. The interested reader
may consult [1] for the analysis of the dispersive properties of the discontinuous
Galerkin method with non-centred fluxes.

Table 1 presents the leading term in the relative error in the approximation of the
Floquet multiplier for each of the methods in the cases N = 1, . . . , 5. The results
for the finite element scheme are special cases of the general result (14) proved in
Theorem 2, whilst the results for the centred discontinuous Galerkin scheme are
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(a) N = 1

(b) N = 2

(c) N = 3

(d) N = 4

(e) N = 5

Figure 2. Plots of the Bloch wave expansion (12) in the case
where Ω = 2 for polynomial degree N from 1 to 5. The true phys-
ical mode eiΩ is shown along with the Bloch waves corresponding
to both the physical zero λP

h,N and the spurious zero λS
h,N .
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Degree Centred DG Finite Element Spectral Element

1
iΩ3

48

iΩ5

180

iΩ3

6

2 − iΩ7

16800
− iΩ5

4320

iΩ5

1080

3
iΩ7

806400

iΩ9

3175200

iΩ7

75600

4 − iΩ11

1005903360
− iΩ9

254016000

iΩ9

31752000

5
iΩ11

120708403200

iΩ13

479480601600

iΩ11

838252800

Table 1. Leading terms for the relative error in the approxima-
tion of the Floquet multiplier for Centred Discontinuous Galerkin,
Finite Element and Spectral Element schemes applied to (1)

.

special cases of the general result proved in Theorem 2 of [1]. It seems that a
general result is not available concerning the the spectral element scheme [9]; we
have obtained the entries in Table 1 by direct computation.

Table 1 shows that the accuracy of the spectral element method is always inferior
to the finite element and centred discontinuous Galerkin methods both in terms of
the order of convergence and the magnitude of the coefficient of the leading term
in the error. It would be easy to dismiss the inferior behaviour of the spectral
element scheme as an inevitable by-product arising from the use of reduced order
integration were it not for the somewhat surprising fact [2] that, in the case of the
second order wave equation, the spectral element method propagates waves with an
accuracy superior to that of the finite element scheme.

The comparison of the finite element method and centred discontinuous Galerkin
schemes is less clear-cut with both methods exhibiting superconvergence. That is
to say, the order of convergence for the centred discontinuous Galerkin scheme
in the case of even order elements is two orders larger than one might expect.
Conversely, the finite element scheme exhibits superconvergence in the case of odd
order elements. The relative behaviour of the finite element and discontinuous
Galerkin schemes becomes even more remarkable if one compares the expression
for the leading term in the relative error (14) for the finite element scheme with
that of the centred discontinuous Galerkin scheme presented in Theorem 2 of [1]:

e−iωh/c − λDG
h,N

e−iωh/c
=

i

2

[
N !

(2N + 1)!

]2


2N + 1

N + 1

(
ωh

c

)2N+1

, N odd

− N + 1

2N + 3

(
ωh

c

)2N+3

, N even.

(16)

The reader will observe that the expression is virtually identical to the correspond-
ing expression (14) for the finite element scheme (the only difference being that the
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’odd’ and ’even’ cases are interchanged) despite the quite different nature of the
schemes.

3. Proofs

Let 1F1 denote the confluent hypergeometric function defined by the series

1F1(a, b, z) = 1 +
a

b
z +

a

b

a+ 1

b+ 1

z2

2!
+

a

b

a+ 1

b+ 1

a+ 2

b+ 2

z3

3!
+ . . . (17)

so that, in particular,

1F1(−n;−2n; z) =
n∑

`=0

(2n− `)!

(2n)!

n!

(n− `)!

z`

`!
. (18)

Let L denote the operator defined by

L v = v′ +
1

2
iΩv. (19)

Theorem 3. For N ∈ N, define

ΦN =
N∑
`=0

(−iΩ)`
(2N + 2− `)!

(2N + 2)!
P

(N−`+1,N−`+1)
` (20)

where P
(α,α)
` denotes the Jacobi polynomial of degree `, orthogonal with respect to

the weight function (1− x2)α. Then, ΦN is a polynomial of degree N satisfying

(i)

ΦN (±1) = 1F1(−N − 1;−2N − 2;∓iΩ)− (N + 1)!

(2N + 2)!
(∓iΩ)N+1, (21)

so that, in particular, ΦN (−1) = ΦN (1),
(ii)

LΦN = −1

2

(N + 2)!

(2N + 2)!
(−iΩ)N+1P

(1,1)
N (22)

(iii) for all v ∈ PN+1 ∩H1
0 (−1, 1) there holds∫ 1

−1

LΦN (x)v(x) dx = 0, (23)

(iv) ∫ 1

−1

LΦN (x) dx = −2
(N + 1)!

(2N + 2)!
(−iΩ)N+1

{
1, N even

0, N odd
(24)

and∫ 1

−1

LΦN (x)x dx = −2
(N + 1)!

(2N + 2)!
(−iΩ)N+1

{
0, N even

1, N odd.
(25)

Proof. (i) Inserting the identity

P
(N−`+1,N−`+1)
` (±1) = (±1)`

(N + 1)!

`!(N − `+ 1)!
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into the expression for ΦN (±1) gives

ΦN (±1) =

N+1∑
`=0

(2N − `+ 2)!

(2N + 2)!

(N + 1)!

(N − `+ 1)!

(∓iΩ)`

`!
− (N + 1)!

(2N + 2)!

(∓iΩ)N+1

(N + 1)!
,

and then comparing with (18) gives (ii).
(ii) A simple computation using the identity

d

dx
P

(N−`+1,N−`+1)
` =

1

2
(2N − `+ 3)P

(N−`+2,N−`+2)
`−1 , ` = 1, 2, . . .

along with the fact that P
(N+1,N+1)
0 is constant gives the first result.

(iii) Let v ∈ PN+1 ∩H1
0 (−1, 1) so that v = (1 − x2)w for some w ∈ PN−1. The

result then follows at once from (ii) in view of the orthogonality of P
(1,1)
N to PN−1

with respect to the inner product with weight 1− x2.
(iv) The first identity follows by integrating (22) and using the result

P
(1,1)
N (x) =

2

N + 2

d

dx
P

(0,0)
N+1 . (26)

The second identity follows by taking the product of (22) with x, and integrating

by parts again making use of (26), and the orthogonality properties of P
(0,0)
N+1 . �

The polynomials defined in Theorem 3 are used to construct a pair of new poly-
nomials ΦE , ΦO ∈ PN as follows.

Theorem 4. For given N ∈ N, there exists a pair of polynomials ΦE, ΦO of degree
N satisfying ΦE(±1) = ∆N (Ω), ΦO(±1) = ±∆N (Ω), where

∆N (Ω) = ΦN−1(1)ΦN (1)− ΦN (1)ΦN−1(1),

and in addition, ∫ 1

−1

LΦE(x)v(x) dx =

∫ 1

−1

LΦO(x)v(x) dx = 0 (27)

for all v ∈ PN ∩H1
0 (−1, 1). Moreover,∫ 1

−1

(LΦE(x) + xLΦO(x)) dx = − 2N !

(2N)!
(−iΩ)N

(
(−1)NwN (Ω) + wN (Ω)

)
(28)

where

wN (Ω) = 1F1(−N − 1;−2N − 2;−iΩ)− iΩ

2(2N + 1)
1F1(−N ;−2N ;−iΩ). (29)

Furthermore,∫ 1

−1

(1 + x) (LΦE(x)− LΦO(x)) dx = 2
2N !

(2N)!
(−iΩ)NvN (Ω) (30)

and ∫ 1

−1

(1− x) (LΦE(x) + LΦO(x)) dx = 2
2N !

(2N)!
(iΩ)NvN (Ω) (31)

where

vN (Ω) = 1F1(−N − 1;−2N − 2;−iΩ) +
iΩ

2(2N + 1)
1F1(−N ;−2N ;−iΩ). (32)
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Proof. Existence of ΦE (and likewise ΦO) is by construction. We seek ΦE in the
form

ΦE = αN−1ΦN−1 + αNΦN

where αN−1 and αN are coefficients, and observe that LΦE satisfies condition (27)
automatically thanks to Theorem 3(iii). The coefficients are chosen so that

αN−1 = −ΦN (1) + ΦN (1); αN = ΦN−1(1)− ΦN−1(1)

and

βN−1 = ΦN (1) + ΦN (1); βN = −ΦN−1(1)− ΦN−1(1).

Straightforward computation using (24) and (25) gives∫ 1

−1

(LΦE(x) + xLΦO(x)) dx =

− 2
N !

(2N)!
(−iΩ)N


αN−1 −

iΩ

2(2N + 1)
βN , N odd

βN−1 −
iΩ

2(2N + 1)
αN , N even.

Substituting for the coefficients and simplifying gives (28) with the difference that
wN (Ω) is replaced by w′

N (Ω) given by

w′
N (Ω) = ΦN (1)− iΩ

2(2N + 1)
ΦN−1(1).

Substituting for ΦN (1) and ΦN−1(1) using (21) and simplifying gives

w′
N (Ω) = wN (Ω)− N !

(2N + 1)!
(−iΩ)N+1

which, in turn, gives

(−1)Nw′
N (Ω) + w′

N (Ω) = (−1)NwN (Ω) + wN (Ω)

and (28) follows.
The proofs of (30) and (31) proceed in a similar fashion using (24) and (25) and

substituting for the coefficients to obtain (30) and (31) with the difference that
vN (Ω) is replaced by v′N (Ω) given by

v′N (Ω) = ΦN (1) +
iΩ

2(2N + 1)
ΦN−1(1).

Substituting for ΦN (1) and ΦN−1(1) as before and simplifying reveals that v′N (Ω) =
vN (Ω) and the results follow as claimed. �

Lemma 1. Let EN (Ω) be defined by

EN (Ω) =
eiΩ − qN (Ω)

eiΩ
. (33)

Then,

EN (Ω) = −
[

N !

(2N + 1)!

]2
Ω2N+2

2

{
1− 2N + 2

(2N + 1)(2N + 3)
iΩ+O(Ω2)

}
. (34)
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Proof. Define DN (Ω) by the condition

eiΩDN (Ω) = eiΩ − 1F1(−N ;−2N ; iΩ)

1F1(−N ;−2N ;−iΩ)
, (35)

so that DN (Ω) is the relative error in the diagonal Padé approximation of the
exponential [10]. It may be shown [12] that

DN (Ω) = i

[
N !

(2N)!

]2
Ω2N+1

2N + 1

{
1 +O(Ω2)

}
. (36)

Identity (35) allows one to write 1F1(−N ;−2N ; iΩ) and 1F1(−N−1;−2N−2; iΩ)
in terms of DN (Ω) and DN+1(Ω) respectively. Inserting these expressions into

the formula for qN (Ω) gives, after some computation, the following expression for
EN (Ω):

1F1(−N − 1;−2N − 2;−iΩ)DN+1(Ω) +
iΩ

2(2N+1) 1F1(−N ;−2N ;−iΩ)DN (Ω)

1F1(−N − 1;−2N − 2;−iΩ) + iΩ
2(2N+1) 1F1(−N ;−2N ;−iΩ)

.

Expanding the denominator as a series in Ω gives

1− N

2N + 1
iΩ+O(Ω2),

whilst, along with the aid of identity (36), the numerator is given by{
1− 1

2
iΩ+O(Ω2)

}{
DN+1(Ω) +

iΩ

2(2N + 1)
DN (Ω)

}
.

Combining these expressions gives the claimed result. �

3.1. Proof of Theorem 1.

Proof. A simple change of variable in the summation gives

uh,N (x+ rh, t) = eiωt
∑
`∈Z

λ`+r
h,Nφ(x− `h) = λr

h,Nuh,N (x, t)

for x ∈ R, r ∈ Z, showing that uh,N is indeed a discrete Bloch wave with Floquet
multiplier λh,N . The function φ ∈ Xh,N is chosen to be supported on (−h, h) and
given by

φ(x) =


1

2
(ΦE +ΦO) (2x/h+ 1), x ∈ (−h, 0)

1

2
(ΦE − ΦO) (2x/h− 1), x ∈ (0, h)

where ΦE and ΦO are defined in Theorem 4. The first assertion in Theorem 4
shows that φ is a continuous piecewise polynomial of degree N .

The first step is to show that condition (5) holds for uh,N of the form (12). Let
v ∈ PN ∩H1

0 (0, h) and observe that, with Ω = ωh/c, applying the change of variable
s = 2x/h− 1 and letting V (s) = v(x), there holds∫

R
(iωφ(x) + cφ′(x)) v(x) dx =

c

2

∫ 1

−1

(LΦE − LΦO)V (s) ds = 0

and ∫
R
(iωφ(x− h) + cφ′(x− h)) v(x) dx =

c

2

∫ 1

−1

(LΦE + LΦO)V (s) ds = 0
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thanks to V ∈ PN ∩H1
0 (−1, 1) and (27). Consequently, since φ(·−mh) is supported

on (mh − h,mh + h), the only non-zero terms arising from substituting uh,N into
condition (5) arise when m = 0 and m = 1. Consequently, (5) holds for all v ∈
PN ∩ H1

0 (0, h). In turn, the Bloch wave property means that (5) holds for all
v ∈ PN ∩H1

0 (mh,mh+ h) for all m ∈ Z.
It therefore remains only to show that (5) holds when v is continuous piecewise,

linear on the grid hZ. Moreover, thanks again to the Bloch wave property, it
suffices to consider the case where v is supported on (−h, h) and satisfies v(±h) = 0,
v(0) = 1. The only non-zero terms arising from substituting uh,N into (5) for this
choice of v occur when m = 0 and m = ±1. Direct computation and simple changes
of variable reveal that

T 0 =

∫
R
(iωφ(x) + cφ′(x)) v(x) dx

=
c

4

∫ 1

−1

(LΦE + LΦO) (1 + s) ds+
c

4

∫ 1

−1

(LΦE − LΦO) (1− s) ds

=
c

2

∫ 1

−1

(LΦE + sLΦO) ds.

Likewise

T− =

∫
R
(iωφ(x− h) + cφ′(x− h)) v(x) dx =

c

4

∫ 1

−1

(LΦE + LΦO) (1− s) ds

and

T+ =

∫
R
(iωφ(x+ h) + cφ′(x+ h)) v(x) dx =

c

4

∫ 1

−1

(LΦE − LΦO) (1 + s) ds.

Consequently, condition (5) holds if and only if λh,N = λ where

T+

λ
+ T 0 + T−λ = 0.

The coefficients in this condition are evaluated explicity in terms of Ω and N in
identities (28)-(31). Inserting these identities and simplifying shows that the con-
dition on λ is equivalent to (13). �

3.2. Proof of Theorem 2.

Proof. Let Ω = ωh/c and use (33) to write qN (Ω) = eiΩ(1− EN (Ω)) and qN (Ω) =

e−iΩ(1 − EN (Ω)) where EN (Ω) is defined in (34). Substituting in the discrete dis-
persion relation (13) and rearranging gives

e−iΩ − λ

λ
=

e−iΩvN (Ω)EN (Ω) + (−1)NeiΩvN (Ω)EN (Ω)

λvN (Ω) + (−1)N+1eiΩvN (Ω)
.

Inspection of (34) shows that EN (Ω) → 0 as Ω → 0. Consequently, λ → e−iΩ or

λ → (−1)NvN (Ω)eiΩ/vN (Ω) as Ω → 0.
Letting Ω → 0 and passing along the branch on which λ → e−iΩ gives

e−iΩ − λ

e−iΩ
=

e−iΩvN (Ω)EN (Ω) + (−1)NeiΩvN (Ω)EN (Ω)

e−iΩvN (Ω) + (−1)N+1eiΩvN (Ω)
+O(|EN (Ω)|2).
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The remainder of the proof consists of simply expanding the numerator and de-
nominator as series in Ω. In particular, the denominator is found to be

e−iΩvN (Ω) + (−1)N+1eiΩvN (Ω) =


2 +O(Ω2), N odd

−2(N + 1)

2N + 1
iΩ, N even.

Likewise, using the expression (34) for EN (Ω) gives the following expression for the
numerator

e−iΩvN (Ω)EN (Ω) + (−1)NeiΩvN (Ω)EN (Ω) =[
N !

(2N + 1)!

]2
Ω2N+2


N + 1

2N + 3
iΩ+O(Ω2), N odd

−1 +O(Ω2), N even.

Taking the ratio and expanding as a series in Ω gives the result claimed for the
error in λP

h,N .
The expression for the spurious solution follows simply from the fact that the

product of the zeros of the (associated quadratic version of the) discrete dispersion

relation (13) is given by (−1)NvN (Ω)/vN (Ω). �
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