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ABSTRACT. We adjust methods of computable model theory to effective
analysis. We use index sets and infinitary logic to obtain classification-
type results for compact computable metric spaces. We show that every
compact computable metric space can be uniquely described, up to an
isomorphism, by a computable II3 formula, and that orbits of elements
are uniformly given by computable II> formulas. We show that the
index set for such spaces is II3-complete, and the isomorphism problem
is I13-complete within its index set. We also give further classification
results for special classes of compact spaces, and for other related classes
of Polish spaces. Finally, as our main result we show that each compact
computable metric space is AS-categorical, and there exists a compact
computable Polish space which is not AJ-categorical.

1. INTRODUCTION

An equivalence relation on a standard Borel space is called smooth if it
is Borel reducible to the equality relation on R. By a result of Gromov (see
[11, proof of 14.2.1]), the isomorphism relation on compact metric spaces
is smooth. Thus, every compact metric space can be uniquely described,
up to an isomorphism, by a single real. In invariant descriptive set theory,
a smooth equivalence relation F is considered trivial: by Silver’s theorem,
either F is Borel equivalent to equality on R, or E has only countably many
classes.

Recall that every compact metric space is separable and complete. Sepa-
rable complete metric spaces occurring in mathematical practice are usually
computable. For instance, [0,1]", the Hilbert cube, f2, C[0,1], and the
Urysohn space are computable with any of the standard metrics [18, 16].
While computable analysis [18, 5, 24] at present does not have suitable tools
to study classification problems, such tools are available in effective algebra
and computable model theory [2, 9]. In this paper, we adapt these methods
to computable analysis in order to obtain classification results for compact
computable metric spaces.

In contrast to computable analysis, the main objects of computable al-
gebra are countable algebraic structures. These are structures with domain
N and in which the basic operations can be represented by computable
functions on N. There are several approaches to classification problems in

We are thankful to Isaac Newton Institute for Mathematical Sciences and, more specif-
ically, Semantics and Syntax: A Legacy of Alan Turing program, for partial support of our
project. The first author thanks the Marsden Fund of New Zealand for its support. The
second author’s research was also partially supported by SPMS, Nanyang Technological
University, Singapore.

1



2 ALEXANDER G. MELNIKOV AND ANDRE NIES

computable model theory and effective algebra (see, e.g., [12, 13, 6, 7]). We
focus on three approaches which use index sets, infinitary computable logic,
and the complexity of isomorphisms, respectively. These three approaches
are closely related.

Index sets and isomorphism problems. The first approach uses the fact that
all partial computable functions can be effectively listed. As a consequence,
there exists an effective listing of all partial computable algebraic structures
(A¢)een which includes all infinite computable algebras. For a class K of
computable algebras, the difficulty of the classification problems is reflected
in the following sets:

1. the index set Ix = {e : A. € K} of K, and

2. the isomorphism problem Ex = {(e,j) € 1',2C t A =2 A} for K.

The complexity of the index sets is measured using the arithmetical, hy-
perarithmetical, and analytical hierarchies [2]. Recall that the arithmetical
hierarchy is defined via iterating quantifiers over computable predicates, and
the hyprarithmetical hierarchy extends the arithmetical hierarchy to com-
putable ordinals. Deciding if two algebras from K are isomorphic might be
simpler than detecting whether an algebra belongs to this class. In this
case one usually considers the complexity of Ex within Ix. For example,
Ex is 11§ within a 1 set I if there exists a 19 set S C N? such that
Ex =Sn Ik x Ix).

A collection of computable models K is called classifiable if both I and
Ex are hyperarithmetical. (Usually K will be closed under isomorphism on
computable models.) The position of I and Ex in the (hyper)arithmetical
hierarchy measures the complexity of the classification. See [12, 13, 6, 7] for
further background and results in this direction.

Infinitary computable logic. Ash [1] introduced computable infinitary for-
mulas in the context of computable algebras. An infinitary computable lan-
guage extends a first-order language by allowing infinite conjunctions and
disjunctions over computably enumerable families of formulas. The defini-
tion [1, 2] uses a recursion scheme. Computable formulas have proved to
be of a great importance in computable algebra; see the book of Ash and
Knight [2]. We say that a class K of computable structures closed under
isomorphism admits a syntactic description, if there exists a computable
infinitary sentence ® such that, for any computable M, we have M = &
if and only if M € K. Note that this condition implies that the index set
is hyperarithmetical [12]. The converse is known without the restriction
to indices for computable structures. Vanden Boom [23] has shown that
every hyperarithmetical invariant class can be described by a computable
sentence. There is also a syntactic counterpart of requiring that Ex is hy-
perarithmetical.

Definition 1.1. We say that a class K of computable structures admits a
syntactic classification if there is a hyperarithmetical bound on the com-
plexity of infinitary formulas which describe the orbits of tuples of elements
in M € K under the action of the automorphism group of M.

The complexity of the formulas describing the orbits measures the difficulty
of the classification.
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Higher categoricity. The third approach is based on the tradition going back
to Frohlich and Shepherdson [10], Rabin [19], and Mal’cev [14].

Definition 1.2. [10, 19, 14] A computable algebraic structure A is com-
putably categorical if every computable algebraic structure isomorphic to A
is in fact computably isomorphic to it.

The notion of computable categoricity can be relativized either fully or
partially. For instance, we say that a structure A is Al-categorical if every
computable algebraic structure isomorphic to A is 0*~V-isomorphic to it.
Here 0(®~1) stands for the (n-1)’th iteration of the halting problem. The
definition can be pushed to computable ordinals « via a transfinite iteration
of the jump.

Various results on AY-categorical structures (see [15, 3, 4, 17, 8]) give
evidence that A%-categoricity can be used to measure the complexity of
strictures in a class. Most typically, a computable algebraic structure is com-
putably categorical if it either has a “finite basis” (vector spaces, Boolean
algebras, abelian groups, etc.), or is highly homogeneous (random graph,
dense linear order). If all structures in a class K are Al-categorical and the
index set I is at most E% 19, then the isomorphism problem Ej is at most
¥Y 5. Also, here are syntactical characterizations of A%- and relatively AY-
categorical structures (see, e.g., [2]) which provide a link to the syntactical
approach. If for a class I there is a computable ordinal a such that all
members of K are AY-categorical, then the class is considered simple. The
isomorphism type of o measures the complexity of the class.

1.1. Computable metric spaces. To adjust the effective classification
methods to computable analysis, we need some basic definitions. Follow-
ing the tradition rooted in the works of Turing [21, 22], we say that a real x
is computable if for each k we can compute a rational within 2=% of x.

Definition 1.3 ([5, 18]). Let (M, d) be a complete separable metric space,
and let (¢;);en be a dense sequence of points in M without repetitions. The
triple

M = (M,d, (gi)ien)
is a computable metric space if d(q;,qx) is a computable real uniformly in
i,k. We say that (¢;)ien is a computable structure on M, and that the g;
are the special points of M. A Cauchy name for z is a sequence (rp)pen of
special points converging rapidly to « in the sense that d(rp,rp41) < 27P.

The general philosophy of effective mathematics is that effectively pre-
sented objects should be considered up to effective isomorphisms.

Definition 1.4. [18] An isometry ® from (M, d, (¢;)ien) to (M, d1, (p;i)ien)
is computable if there is an effective procedure which, on input i, enumerates
a Cauchy name for ®(x).

The definition above can be relativized to an oracle X by replacing “effective
procedure” by “procedure effective relative to X” in the definition above.
That is, we can produce a Cauchy name for ®(z) with the help of the
oracle. The analog of computable categoricity in the context of separable
metric spaces is:
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Definition 1.5. [16] A computable Polish space (M, d) is A-categorical if
for every two computable structures (;),.; and (y;),., on M there exists a
surjective isometry

U: (Mv dv (xi)ieN) - (M, d, (y])

which is computable relative to 01,

jen)

1.2. Results. We introduce computable infinitary formulas in the context
of computable metric spaces (see preliminaries). Our first result is:

Theorem 3.1.

(i) Within the class of computable Polish spaces, each compact member
is uniquely described by a computable II3 axiom.

(ii) The orbits of special elements in a compact computable Polish space
(under the action of its automorphism group) are given uniformly
by computable Iy formulas.

As a consequence, compact computable Polish spaces admit a syntac-
tic characterization. We apply Theorem 3.1 to show that the collection of
compact computable metric spaces is classifiable in the sense given above.

Teorem 4.3.

(i) The index set CSp of compact computable Polish spaces is Hg—complete.
(ii) The isomorphism problem for compact computable Polish spaces is
I19-complete within TI9.
We also investigate the complexity of index sets of locally compact and
connected computable Polish spaces. In Proposition 4.2 we show that their
index sets are H%—Complete and H%—hard, respectively.

Our main result is the following theorem.
Theorem 5.2. Each compact computable metric space is Ag—categorical.

In fact, the proof of Theorem 5.2 can be easily modified to improve Ag
upper bound to low relative to 0. That is, every pair of isomorphic compact
computable metric spaces are isomorphic relative to some S such that S’ =
0" (see Theorem 5.3). Nonetheless, the upper bound from Theorem 5.2 can
not be further improved to AJ. In Theorem 5.5 we construct an example of
a compact metric space which is not Ag—categorical.

2. PRELIMINARIES

We view a metric space (X, d) as a structure in the signature

S = {R<QJR>Q: q S @Jr}v

where R, and R, are binary relation symbols. The intended meaning of
Ro,4(x,y) is that d(z,y) < ¢. The intended meaning of R~,(z,y) is that
d(z,y) > q. We denote the first-order language of S by L.

For a tuple 7 € X" consider the nxn distance matrix D, (%) = d(x;, ;)i j<n-

We often view this matrix as a tuple in R”* with the max norm |.| Some-

max”
times we suppress the subscript n. Note that for any matrix A € Q"2 and
any positive rational p, there is a quantifier free positive first-order formula
®Anp(T) in the signature above expressing that | Dy, (T) — Al < P-
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In this paper, the main objects are computable metric spaces. Notice
that, in the notations of Definition 1.3, a separable space is computable if
and only if R, (g, qx) and Rs,(q;,qx) are uniformly 39.

Definition 2.1. Since all partial functions can be effectively listed, we
obtain a uniformly computable sequence of partial computable structures
(Me)een so that some of these M, are computable structures on metric
spaces: we view M. as a partial computable function v such that r, =
¥(i,7,p)pen converges rapidly (in the sense above) to d(i,7). It is a II9
property of 1 to be total and describe a metric space. We denote the com-
pletion of M, by cp(M.).

Fact 2.2. For (M,d,(pi)ien) a computable metric space, and W a c.e. set,
(pi)iew is a computable structure on the space cp((p;)iew ), d).

Proof. If W is infinite, we use a computable bijection f : w — W to define
a computable structure (r;);en on cp((pi)iew),d) by the rule r; = pr). O

Infinitary computable formulas. The language Lf, , is a countable frag-
ment of L,,,. The atomic formulas are open finitary formulas in the lan-
guage of metric spaces introduced above, with — but without =. We allow
computably enumerable conjunctions, computably enumerable disjunctions,
and quantification over a variable.

In contrast to computable model theory, a computable structure on a
space is not the whole space but a dense subset of it. Thus, for a computable
metric structure M, and ¢ a computable infinitary formula, cp(M,) E ¢ and
M, = ¢ have different interpretations.

The hierarchy of such formulas is defined similarly to the countable case;
see the book of Ash and Knight [2]. In our specific case, the important
modification is that D<,(z,y), for a rational ¢ and special points « and y,
should be understood as a 3; formula, and similarly for D,(z,y).

Informally, in the calculation of the complexity of a formula we also count
alternations of infinitary conjunctions and disjunctions. When we count
these alternations, we do not distinguish the infinitary conjunction from V,
and disjunction from 3. So, for example, a prefix of the form I AV\/ 3
will have only 3 alternations. More formally, the complexity of \/,; is
determined using inf{f : ¢ € ¥z}, and similarly for conjunctions. See [2]
for formal definitions. We will omit the adjective “infinitary” when it is
clear from the context.

Fact 2.3. Let ¢ be a computable formula of complexity ¥,, where n € w.
Then the set {e : M, =} is X0, (Similarly for I1,,.)

Proof. By induction on the complexity of ¥ we can show that, if M, is a
(partial) computable metric structure and M, = v, then ("~ will eventu-
ally recognize it. O

3. EXISTENTIAL THEORIES AND INFINITARY FORMULAS

Theorem 3.1.

(i) Within the class of computable Polish spaces, each compact member
1s uniquely described by a computable I3 axiom.
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(ii) The orbits of special elements in a compact computable metric space
(under the action of its automorphism group) are given uniformly by
computable 11y formulas.

Proof. We will need a result due to Friedman, Fokina, Kérwien and Nies
(2012) which itself is based on Gromov’s work (see [11, proof of 14.2.1]).

Proposition 3.2. Let X,Y be compact metric spaces. Suppose that tuples
a € XP,b € YP satisfy the same existential positive finitary formulas. Then
there is an isometry from X to 'Y mapping a to b.

Proof. 1t is well-known that any isometric self-embedding of a compact met-
ric space is onto (see [11, proof of 14.2.1]). Thus, it suffices to find an iso-
metric embedding of X into Y mapping a to b. The following lemma slightly
extends the above-mentioned result of Gromov (see [11, Exercise 14.2.3]).

Lemma 3.3. Suppose that for every e > 0, for any n and tuple T € X"
there is a tuple j € Y™ such that HD(&, T) — D(b,y)H < €. Then there is
X

ma
an an isometric embedding of X to' Y mapping a to b.

It now suffices to show that if a € X ”,g € Y satisfy the same existential
positive formulas, the hypothesis of the lemma is satisfied. For every n x n
rational matrix A, there is a formula ¢4 ,, (%) saying that | D, (T) — Al 0 <
€/2. Given T € X" choose a rational (k+ n) x (k+ n) matrix A such that

|D(a,7) — Al oy < €/2.
Thus 3T ¢4 pike/2(a,T) holds in X. Hence there is § € Y™ such that
<Z>A,n+k,6/2(fl;, y) holds in Y. This implies HD('&, T)— D(fl;7 g)Hmam < € as re-
quired.

We prove (i) of the theorem. Note that a complete metric space is compact
iff it is totally bounded, namely, satisfies the computable sentence

(1) /\ \/ dzg ... 21y \/ d(zi,y) < q.

qeQ* neN <n

We can replace each quantifier by a quantifier restricted to special points,
and also replace d(z;,y) < g by =(d(zi,y) > q) with the meaning d(z;,y) <
q. Let 6 be the resulting computable sentence. The quantifier \/,_, is
finitary and does not contribute any extra complexity to the formula. Thus,
6 is computable IT3. Clearly, M, = 6 if and only if cp(M.) |= 0.

We take M, a computable structure on a Polish space. For the tuple a = ()
of special points we let ¢ be a conjunction of all formulas 37 ¢ 1 (Z) (with
quantification over special points, B a rational k£ x k matrix, € a positive
rational) which are true on M.. Note that cp(M,) |= 3% ¢p i(T) if and only
if the corresponding restricted formula holds on M,. Thus, the conjunction
is in fact c.e. since we can enumerate all such sentences which are true on M.
Therefore, 1 is computable 5. The desired computable axiom is F = 6 A1)
which is of complexity II3.

We prove (ii). The orbit of a tuple @ of special points in a compact com-
putable Polish space is definable by the conjunction of 3% ¢ 4 4k ¢/2(a, T)
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which hold on M. Given @ we can effectively list all formulas ¢ 4 41 ¢/2(a, T)
such that Me = 3% ¢4 pyk,e/2(@,T). Thus, the disjunction of all such for-
mulas, with @ replaced by a tuple of variables y, is effective. Similarly
to the proof of (1) above, we have M. = 3T ¢4 pyke/2(a,7) & cp(Me) =
3T ¢ 4 ptke/2(a, T), for every a € M, and every parameters A,n,k and e. [

4. DESCRIPTIVE COMPLEXITY OF INDEX SETS

Recall from Definition 2.1 that cp(M,)ecw is an effective listing which
includes all computable metric spaces.

Fact 4.1. The set Inf = {e : cp(M,) is infinite} is 119-complete.

Proof. We need the approximation to the distance function to be total, this
is an V3 property. The rest can be checked using 0’. For the completeness,
we define a l-reduction of the I13-complete Tot = {e : ¢, total} to Inf by
the following rule. Given e, if we see @¢(z)] for every z < y, we define
d(y,j) = y—j for every j < y. As a result, we either construct the standard
computable structure on the descrete space of the natural numbers, or will
be stuck at our definition of the distance function. (]

Proposition 4.2. (i) The set {e : cp(M.) is locally compact} is 1} —complete.
(i) The set {e : cp(M,) is connected} is I1i ~hard.

Proof. A complete metric space X is locally compact iff for each x € X, there
is rational € > 0 such that the closed ball K = K(z) is compact. If X =
cp(M,), then from a Cauchy name f for z we can compute a presentation
of K as computable metric space relative to f, where the special points are
the special points p of M, with d(x,p) < e. Then by (1) and the discussion
thereafter, compactness of K is arithmetical in f. (On the other hand notice
that being connected is merely TI3.)

We now prove the II1~hardness. As usual let [T] denote the set of infinite
branches of a tree T C w<“, and note that [T], unless empty, is a metric
space via d(f,g) = 27%, where k is minimal such that f(k) # g(k). Also,
[T] is locally compact iff for each f € [T] there is n such that T" with the
dead ends removed is finitely branching above f [,,.

We encode the problem whether a computable tree has an infinite branch,
which is well known to be II}—complete. Let

F(T)={{o,7): c €T AT €W A |o| =|7|}.

Via the Cantor pairing function we can view F/(T) as a subtree of w<“, and
hence as a computable metric space. If [F'(T)] is nonempty, it is neither
locally compact, nor connected. Now let M7 be the computable metric
space obtained by adjoining an isolated point at distance 2 to [F'(T)]. Then
[T] # 0 < My is locally compact < My is connected. O

Theorem 4.3.

(i) The index set CSp of compact computable metric spaces is Hg—complete.
(ii) The isomorphism problem for compact computable metric spaces is
19-complete within T13.
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Proof. (i) Recall that, for a sentence ¢ € L¢, ,, the expressions M, = 1)
and cp(M,.) = ¢ have different interpretations: In the former we treat i) as
a computable formula with quantifiers ranging over special points. In the
latter v is understood as an formula from L, ., with quantifiers ranging over
the completion. We use notation from the proof of Theorem 3.1 (1). The
sentence F has the following property. For each e, if M, is a structure on a

Polish space, then
M, £ F & cp(M,) £ F.

Thus, we have CSp = {e : cp(M,) = 0} = {e: M. = 6}. Now, by Facts 4.1
and 2.3, we have that CSp is II9.

We now prove Hg—completeness of CSp. The standard computable struc-
ture on Baire space w® is given by the collection of finite strings of natural
numbers. We fix a Hg—complete set S and a computable predicate P such
that z € S & Vy3<*°zP(z,y,2). By Fact 2.2, it is sufficient to construct
a uniformly c.e. family (C;),en of substructures of the standard structure
on w® which satisfies © € S < cp(C,) is compact. By uniformity, there will
exist a total computable f such that C; = My(,) witnessing the desired
reduction.

Construction. At stage -1, enumerate 01Y into the structure C, for every y.
At stage s > 0, we enumerate 01Yz with z < s into C,, if P(z,y, z) holds.

If z € S then each of the 01Y will have only finitely many extending
strings, and the space cp(Cy) is compact. If x ¢ S, then there is at least
one string 01¥ witnessing that cp(C,) is not compact.

Remark 4.4. It follows from the 113-completeness of CSp and Fact 2.3 that
the complexity of the sentence F from Theorem 3.1 can not be reduced.

(ii) Given e,j € CSp, we can effectively produce a computable Iy formula
1 in the notation of Theorem 3.1(1) which completely describes the isomor-
phism type of M;. To see if cp(M.) = cp(M;) it suffices to check if M, = .
By Fact 2.3, ¥; = {i : M; = ¢} is II9, and it is actually uniformly II5 in
the index of the formula 1. Thus, the condition e € ¥; is 19 uniformly in
e and j.

For the completeness, fix a I13-complete set S and a computable binary
predicate R such that x € § < I*°yR(x,y). Let j be any computable
index of the standard structure on Cantor space. For every x, we construct
a c.e. closed subspace C, of the standard structure on Cantor space. By
Fact 2.2, we will get a computable structure on a compact space.

In the construction, if we see another y for which R(x,y) holds, we enu-
merate finite strings of length < y from the standard structure into C. As
a result, we will have C, isomorphic to the whole Cantor space if, and only
if, z € S. Let f be a total computable function such that Cy = My (,). We
have M; = My, if and only if x € S, as desired. O

Next we study the complexity of whether a computable metric space is a
continuum.

Proposition 4.5. The index set CCSp of compact and connected computable
metric spaces is Hg—complete.
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Proof. Note that a metric space X is connected iff for each nonempty open
sets U, V, we have C = X — (UUV) =0 = UNV # (). Suppose now we are
given a compact computable metric space X = cp(M,). For connectedness,
we may restrict U,V to finite unions of basic open sets of the form B(p)
where ¢ € Q' and p is a special point. We may effectively in e obtain
a (/-computable map ¢ from 2% onto X. Thus C' = () is equivalent to
g 1(C) = 0. Since the latter is a II{(()’) class, this condition is £9. The
condition U NV # ( is Z(l] since this set contains a special point unless
empty. Thus being connected is in fact 11 within the Hg set CSp.

Let S be any Hgfcomplete set, and choose a uniformly c.e. double se-
quence (V;,) of initial segments of w such that i € S < VnV;, # w. Let
ap = 1—27%. Given i, we can compute an index e for the computable metric
space the Cartesian product Il,eu[0,ay; (] with the canonical computable
structure obtained from the enumerations of the V; ,,, and the metric inher-
ited from the standard metric on the Hilbert cube [0,1]¥. Clearly M, is
connected, and M, is compact iff i € S. O

5. AY CATEGORICITY

Definition 5.1. Let S C w be an oracle. An isometry ® from a computable

metric space (X, d, (¢;)ien) to a computable metric space

(Y, d, (pi)ien) is computable in S if there is a Turing machine with oracle S

which, on inputs i, k, outputs the k-th term of a Cauchy name for ®(g;).
We say that a computable metric space is A —categorical if between each

of its computable presentations, there is an isometry computable relative to

pn=1)
Theorem 5.2. Fach compact computable metric space is Ag categorical.

Proof. Let X = (X,d, (pi)ien) and YV = (Y,d,(¢;)jen) be compact com-
putable metric spaces. Suppose that X' can be isometrically embedded into
Y. We show that then there is a AJ embedding; this is sufficient by sym-
metry.

Recall distance matrices D,, from Section 2. Let ¢, = 27 ". There is
a computable array of special points (y") in Y such that, where 3" =
(Yo yp_q1), we have

HDW(<p07 R 7p71—1>) - Dn(yn)umax < €n.

We define a ()" computable array of special points (w!)

<n

i<n0<n N Y such

that for each n, where w" = (wy,...,w'_;), we have
(2) k> n: d(y* ., T") < en}| = 0.
For each n > 1, the space Y is equipped with the maximum metric. We
use compactness of the Y™ throughout. Let w} € Y be a special point such
that Ay = {k: d(yk,w}) < €1} is infinite. Then (2) holds for n = 1.
(a) Increasing the dimension. Let wi be a special point in Y such that
Cy = {k € Ay: d(y¥,w}) < e} is infinite.
(b) Refining the sequence. Let w? € Y2 be a special point in B, ({(w}, wi))
such that Ay = {k € By: d(¥" [2,W?) < €2} is infinite.

We continue this process. Suppose w" (and hence A,,) has been defined
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(a) Let w) be a special point in Y such that
Cpn={k€An: k>n Adyk,w) <e}

is infinite.
(b) Let w"+! € Y"1 be a special point in B, ((w") w?) such that

Appr ={k € Cpt d@" Ins1, ") < €ny1}

is infinite. Then (2) holds for n + 1.

Note that the sequence (w}'),.,, o, is indeed ("-computable because we
uniformly in the previously defined special points obtain indices for the
potential c.e. sets Cp, A,r1. It takes (/" as an oracle to pick the next
special points in such a way that the relevant set is infinite. Also note
that d(w?, wP*!) < e, for each n > r. Thus, the sequence of points in Y’
2 = limy,~, w is computable in ()”. Tt now suffices to show that the map
x; — z; preserves distances. Let i < j. Given n, by (2) pick k£ > n such that
d(y* [, @") < €n. Then, by the definitions,

|d(ziv Zj) - d(wzna w?)‘
k ok
Ay’ y;) — d(wi,x5)| < en.
Therefore, |d(z;, zj) — d(x;, )| < 4e,. O

IN

2€,,

IN

€n

The bound on the complexity of an isomorphism we obtained in Theo-
rem 5.2 is not optimal. We can prove the following strengthening saying
that some isomorphism is low relative to (.

Theorem 5.3. Let X = (X, d, (pi)ien) and Y = (Y, d, (¢;)jen) be isometric
compact computable metric spaces. Then there is a function h on N with
n <7 0" which computes an isometry.

Proof. The proof is an extension of the previous argument. We build a
nonempty I19((') class D of isometric embeddings from X to ), and then
apply symmetry to obtain an isometry. The class D consists of the branches
of a tree of special points. Since the space is compact, the level size of the
tree is bounded by a (/—computable function f. Then, by the low basis
theorem relative to (', we obtain an isometric embedding as required.

We give the details. For each n, we identify a tuple (ig,...,i,—1) in N”
with the special point (g;,,-..,,_,) of Y. We introduce a basic tree that
consists of strings « such that «(2n) is a special point of Y, and for n > 0,
a(2n — 1) is a special point of Y. Via the usual computable bijections of
N* and N, we can identify this basic tree in an effective way with w<%.

Since Y is compact, there is a (//-computable function f such that for each
n, we have

Y = U Bﬁn (p)
p<f(2n)
and for each g < f(2n — 1) and p < f(2n),

B.,(@p) S |J B

r<f(2n+1)
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(Note that the number g is thought of as a special point of Y, and (g, p)
and 7 are thought of as special points of Y1)

Recall the computable array of special points (y;'),_,, in Y. Let Ay = N.
For a string 0 = 7"p where p € w and 7 has even length, let

C,={kec A dF lns1,p) < €nt1}-

For a string 7 = 0" where 7 € w and ¢ has odd length, let
ATI = {k‘ S Ca': d(yk [n+1,f) < €n+1}-

Now consider the I19((') subclass of w®

D= {h < f: vnllCy
By the choice of f we have D # (). From any h in this class we compute a
double sequence (w}'), ., o, by letting w}' be the i-th component of h(2n).
So z, = limy,~, w) is computable in h. The map x; — z; preserves distances.
Since D is bounded by the (-computable function f, by the Low Basis

Theorem relative to (/' there is h € D with A’ <t 0" as required. O

00 A [App,, | = oo}

2n+1 ‘ =

Theorem 5.2 can not be improved to AY-categoricity. In the theorem
below we are building a c.e. substructure of the standard structure on Cantor
space (recall Fact 2.2). In the proof, we will identify special points with their
respective numbers. To make the space corresponding to our structure not
AY-categorical, we use the following observation:

Fact 5.4. Let U : (My,dy, (pi)ien) = (Ma, da, (uj),oy,) be a AY map between
computable metric spaces. Then there exists a computable function f of three
arguments such that for every i,

where (f(i,n, s))sen stabilizes for every i, n, and additionally (limy f(i,n, s))
is a Cauchy name.

neN

Proof. By assumption, there exists a (0’-computable function g such that
U(pi) = limy ug(p), and (ug(in))nen is a Cauchy name. By the Limit
Lemma [20], there exists a total computable function f such that g(i,n) =
limg f(i,n,s), and the limit here means that the sequence

f(i;n,0), f(i,n, 1), ...

stabilizes from some k on. O

Theorem 5.5. There exists a compact computable metric subspace which is
not AJ-categorical.

Proof idea. We construct isometric c.e. subspaces, L and R, of Cantor
space. The €'th potential Ag map between L and R will be associated with
a finite string o, in L. The string o, will be definable in L in the language
of metric spaces. In the following, we may think of both L and R as of
collections of finite binary strings. At every stage we will have a finite tree
of strings. Using the finite strings extending the witness string o, we will
“grow” two potentially infinite extensions of .. The €'th potential map has
to choose how these extensions are mapped to the corresponding locations
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in R extending the uniquely defined isometric image of .. If the ¢/th map
stabilizes, we create extensions of o, of different length so that the image
via the e’th potential map gives a wrong length in R. If the map does not
stabilize, we grow the extensions to infinity. In both cases the corresponding
locations in L and R are isometric, but the €/th potential map is defeated.

Proof. We will be enumerating two computable structures, L = («;);en and
R = (ﬂj)jeN, on a closed subspace of Cantor space. Each of the «; and
Bj correspond to a finite string from the standard computable structure on
Cantor space. In the following, we identify special points, their respective
numbers, and the corresponding finite strings. We may also identify finite
strings £ and £(0™) since they correspond to the same element £(0°°).)

We need to make the closures of L and R isometric but not AJ-isometric.
It follows from Fact 5.4 that it is sufficient to meet, for every e, the require-
ment:

P, : liTIln(lign ©e(i,m, s)) total = ligrlﬂign ©e(i,m, s)) is not an isometry,
where the first limit is taken in R with respect to the metric inherited
from Cantor space, and the second means that the sequence (¢c(i,n,s))
stabilizes.

seN

For every e > 0, P. will have witnesses strings o, € L and 7. € R. More
specifically, we set 0. = 7, = 0°1. At later stages, P. will possibly enumerate
only strings extending o, or 7, (in L and R, respectively).

The strategy for P.. The strategy immediately enumerates o, and o1 into
L, and also enumerates 7, and 7.1 into R. Then the strategy performs the
substages below.

(1) Wait for (o, 2e+2, s) to converge to (the index of) a string ps 2 7
at stage s. If we ever see such a computation, then let js € {0,1} be
such that 7.js C ps. (Recall that we identify 7. and 7.0.)

(2) For every t < s enumerate 0.01! into L and 7.(1-j5)1¢ into R.

We repeat the process above. We wait for s’ > s and a computation
Ye(0e,e+2,8") = pg D 7 with jg # js. If we ever see such a computation,
then for every t < s we enumerate o.1'*! into L and 7,.j,1! into R, and then
go to (2) with ¢’ in place of s.

Construction. At stage s > 0, let P, e < s, act according to their instruc-
tions.

Verification. The strategies altogether will possibly grow only extensions
of 0. and 7.. Notice that () (identified with 0°°) is the only point in the
completion of L having Cantor-Bendixson rank 2. The same can be said
about R. The points x extending o, satisfy the formula d(f),x) = 27¢ in
the completion of L, and the points y extending 7. satisfy the same formula
in the completion of R. Since the formulae are different for different e, we
conclude that an isometry from L to R (if it exists) should map an element
extending o, into an element extending 7.
We have the following cases:
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Case 1. Either p.(oe, e+2, s) diverges for some s, or eventually settles on
¢ which does not extend 7. In the latter case d(£,7.) > 271, contradicting
the choice of 7. and o.

Case 2. The sequence (@e(0e, e+ 2,5))sen stabilizes on p D 7.7, where
7 = limgjs. In this case the strategy guarantees that no isometry can
possibly map strings extending o.0 to strings extending 7.j. (All strings
extending 0.0 and 7.5 correspond to isolated points in L and R, respectively.
The number of isolated strings extending o0 is not the same as the number
of those extending 7.7, this property can be recognized by a formula.)

Case 3. The sequence (pc(oe, e+ 2,5))sen never stabilizes. In this case
the strategy will possibly enumerate all strings of the form o.v1* into L and
rewl® into R, where v,w € {0, 1}.

In each case P, is met. Notice that in each of the three cases the fragment
of L containing extensions of o, will be isometric to the corresponding frag-
ment of R containing extensions of 7.. Consequently, the definitions of L
and R guarantee that, in fact, L and R are isometric (thus, their completions
are isometric as well). O
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