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Abstract. The d.g. operad C of cellular chains on the operad of spineless cacti [6] is isomorphic

to the Gerstenhaber–Voronov operad codifying the cup product and brace operations on the

Hochschild cochains of an associative algebra, and to the suboperad F2X of the surjection operad
of [1]. Its homology is the Gerstenhaber operad G. We construct an operad map ψ : A8 ÝÑ C
such that ψpm2q is commutative and H˚pψq is the canonical map A Ñ Com Ñ G. This
formalises the idea that, since the cup product is commutative in homology, its symmetrisation

is a homotopy associative operation. Our explicit A8 structure does not vanish on non-trivial

shuffles in higher degrees, so does not give a map Com8 Ñ C. If such a map could be written
down explicitly, it would immediately lead to a G8 structure on C and on Hochschild cochains,

that is, a direct proof of the Deligne conjecture.

Introduction

The Hochschild cohomology H˚pA,Aq of an associative algebra is an algebra over the Gersten-
haber operad G, and Deligne’s conjecture that this structure lifts to a suitable strong homotopy
algebra structure on the cochain complex C˚pA,Aq has received much attention. Many proofs have
appeared and there are now a large number of differential graded operads, all weakly equivalent
to the singular chains on the little discs operad, known to act on the Hochschild cochains. In par-
ticular, Tamarkin [15] showed that C˚pA,Aq is a homotopy Gerstenhaber algebra in the operadic
sense: the (quasi-free, minimal) resolution G8 of the Gerstenhaber operad acts on C˚pA,Aq, via
an operad B8 considered in [4, §5.2]. Later, McClure–Smith [12] showed that the Gerstenhaber–
Voronov operad H encoding the cup product and brace operations on cochains [3] is also equiv-
alent to the chains on the little discs. Extensions of the Deligne conjecture from associative to
A8-algebras A were given in [10, 9], and a cyclic version in [7].

The aim of this note is modest in comparison: we provide a first step towards a possible explicit
operad map from G8 to H which in homology is the identity map on G. Concretely, we define an
operad map

(1) A8 ÝÑ F2X ,

which in homology is just the canonical map

AÑ ComÑ G.

Here A and Com denote the associative and commutative operads, A8 is the operad encoding
associative algebras up to homotopy, and F2X is an operad isomorphic to H which is given
as a certain suboperad of the surjection operad X of Berger–Fresse (see [12, 1] and [13, §5]).
Alternatively, we can identify H with the operad C of cellular chains on Kaufmann’s topological
operad of spineless cacti, by [6, Proposition 4.9] (see also [5]). Operads of cacti were first introduced
by Voronov [16, §2.7] to codify the Batalin–Vilkovisky structure discovered in string topology,
compare [2, §2].

The lowest degree operation of C codifies the cup product of Hochschild cochains. This product
is not commutative but, since its failure to be so is the boundary of Gerstenhaber’s brace operation,
it becomes commutative in homology. Thus we require the comparison map (1) to send the binary
product in A8 to the symmetrisation of the cup product. Of course, the symmetrisation of an
associative operation need not be associative.
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1. The operads of surjections and cacti

Let k be a commutative ring. A (dg-)operad O is a sequence of differential graded k-modules
Opnq, n ě 0, together with composition operations

˝i : Opmq bOpnq ÝÑ Opn`m´ 1q, 1 ď i ď m, n ě 0,

satisfying the operadic relations

(1) pa ˝i bq ˝j c “ p´1q|b||c|pa ˝j cq ˝i`n´1 b if 1 ď j ă i and c P Opnq.
(2) pa ˝i bq ˝j c “ a ˝i pb ˝j´i`1 cq if b P Opmq and i ď j ă m` i.

In addition there is a two sided unit 1 P Op1q for the operations ˝i. These structures often appear
in the literature under the name non-symmetric operad.

Let us recall from [1] the definition of the surjection operad X .

Definition 1. Let X pnq be the graded module whose degree k component X pnqk is spanned by
the non-degenerate surjections

u : t1, . . . , n` ku Ñ t1, . . . , nu,

that is, the surjective functions u such that upiq ‰ upi ` 1q for all i. We often write a surjection
u as the sequence of its values,

u “ pup1q, . . . , upn` kqq.

The operad structure maps are defined by

X pmql b X pnqk
˝t
ÝÑ X pm` n´ 1qk`l p1 ď t ď mq

v ˝t u “
ÿ

1“j0ď¨¨¨ďjr“n`k

˘pβv0, αu1, βv1, . . . , αur, βvrq(2)

Here r “ |v´1ttu| ě 1, the number of occurrences of the value t in v, and up, vp are subsequences
of u, v given by

up “ pupiqqjp´1ďiďjp , v “ pv0, t, v1, t, . . . , vr´1, t, vrq.

The images of these subsequences are relabelled by composing with functions α, β given by

αpsq “ s` t´ 1, βpsq “

#

s if s ă t,

s` n´ 1 if s ą t.

To fix the signs, we consider the relative degree of pupaq, upa` 1q, . . . , upbqq in u : t1, . . . , n` ku Ñ
t1, . . . , nu to be

|ta ď i ď b´ 1 : upiq “ upi1q for some i ă i1 ď n` ku|

Then the ˘ sign in (2) is defined by the Koszul sign rule from the permutation of 2r symbols

v1, . . . , vr, u1, . . . , ur ÞÑ u1, v1, . . . , ur, vr

in which the degrees of vq for q ‰ r and for q “ r are the relative degrees of pt, vq, tq and of pt, vrq
in v, respectively, and the degree of each up is its relative degree in u.

The differential δ : X pnqk Ñ X pnqk´1 is given by

δpuq “
n`k
ÿ

i“1

p´1qri δipuq

where δi skips the ith entry,

δipuq “
`

up1q, . . . ,yupiq, . . . , upn` kq
˘

.

The term δipuq is omitted if upiq is the only occurrence in u of some value. Otherwise, ri is
the relative degree of pup1q, . . . , upiqq in u if upiq is not the last occurrence of a value, or the
relative degree of pup1q, . . . , upj`1qq in u if upiq is the last occurrence and upjq is the penultimate
occurrence.

For the proof that this structure indeed defines a differential graded operad we refer the reader
to [1, Proposition 1.2.7].
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Figure 1. Graphical representations of cacti.

Example 2. Consider the sequences v “ p1, 2, 1q P X p2q1 and u P X pnqk. Then the composite
p1, 2, 1q ˝1 u P X pn` 1qk`1 is given by

p1, 2, 1q ˝1 u “
n`k
ÿ

j“1

p´1q|u|j 8uj

where |u|j is the relative degree of pup1q, . . . , upjqq in u and 8uj is obtained by replacing the jth
value in u by pupjq, n` 1, upjqq,

8uj “ pup1q, . . . , upj ´ 1q, upjq, n` 1, upjq, upj ` 1q. . . . , upn` kqq.

The operad X has a natural filtration by suboperads

F1X Ă F2X Ă ¨ ¨ ¨ Ă FmX Ă ¨ ¨ ¨ Ă X
The mth stage is spanned by the surjections u in which all subsequences of the form puprpqq1ďpďq “
pi, j, i, j, i, . . . q, i ‰ j, have length q ď m` 1.

The surjection operad X is, with different sign conventions, termed the sequence operad S
in [13], and the second stage F2X is just the so-called Gerstenhaber–Voronov operad H encoding
cup product and brace operations on the Hochschild cochains of an associative algebra. The
second stage of the filtration is also isomorphic to the cellular chains on the topological operad
of spineless cacti [6, Proposition 4.9], see also [14, Section 4] and [8]. Here we take this as our
definition:

Definition 3. The (dg) operad C of spineless cacti is the suboperad F2X of the surjection operad.

Thus a non-degenerate surjection u : t1, . . . , n` ku Ñ t1, . . . , nu is a cactus if it has no subse-
quence of the form pi, j, i, jq for i ‰ j.

Alternatively, a cactus may be represented as a configuration of labelled circles embedded in
the plane, with pairwise intersections at at most one point, such that the union of all circles and
their interiors forms a contractible region. A root is given on the boundary.

The circles are usually called the lobes of the cactus, and are labelled 1, . . . , n. The intersection
points together with the root divide the boundary of the cactus into segments, called the arcs of
the cactus. The positive (anticlockwise) orientation of the plane specifies a labelling 1, . . . , n ` k
of the arcs, beginning at the root. The map from arcs to the lobes that contain them gives a
non-degenerate surjection u as above. Examples are given in Figure 1.

We see that the degree |u| “ k of a cactus u is the number of distinct intersection points
not equal to the root, and the maximum degree of a cactus with n lobes is n ´ 1, when the
intersection points and the root are all distinct. The terms in the boundary δu are the cacti
obtained by contracting one arc. The operadic composition v ˝t u in C may be seen (modulo signs)
as substituting u into the lobe t of v, and distributing the subcacti at the intersection points on
this lobe in all possible ways across the arcs of u.

2. Commutativity and associativity

The element u “ p1, 2q “
2 1

of the cactus operad C encodes a binary product that is clearly
associative:

p1, 2q ˝1 p1, 2q “ p1, 2, 3q “ p1, 2q ˝2 p1, 2q.
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In the homology of the operad it becomes commutative, since p2, 1q´ p1, 2q is the boundary of the
element p1, 2, 1q,

δ
´

1

2
¯

“
1 2

´
12
.

On the other hand, we may consider the operation codified by

p1, 2q ` p2, 1q “
12
`

1 2

This is commutative but no longer associative,

pp1, 2q ` p2, 1qq ˝1 pp1, 2q ` p2, 1qq ´ pp1, 2q ` p2, 1qq ˝2 pp1, 2q ` p2, 1qq

“ p2, 1, 3q ` p3, 1, 2q ´ p1, 3, 2q ´ p2, 3, 1q.

This failure of associativity will obviously vanish in homology, and we find, for example, that it is
the boundary of the element p1, 3, 1, 2q ´ p2, 1, 3, 1q. Our goal is to show that this extends to an
A8 structure:

Theorem 4. There is an operad morphism ψ : A8 Ñ C given by

ψpm2q “ p2, 1q ` p1, 2q, ψpmnq “
ÿ

uPC1n

p´1qppuq u.

Here C1n is the set of all cacti u : t1, . . . , 2n ´ 2u Ñ t1, . . . , nu P Cpnqn´2 that contain no subse-
quences of the form pi, j, iq with j “ i` 1 or j ă i.

In low degrees we have

(3) m2 ÞÑ
1 2

`
12
, m3 ÞÑ

2 1

3

´ 21

3

.

as we saw above. The remainder of the paper is dedicated to the proof of the theorem, and in
particular to making explicit the signs. For this we will need not only the operad A8 but also an

operad Ap2q8 codifying homotopy matching dialgebras [17].

An alternative description of C1n is as follows. It is the set of cacti with no triple intersections
between the n lobes, such that if the lobe labelled j is above the lobe labelled i then j ´ i ě 2.
The condition on the lobe labels is just the forbidden subsequence condition, which in particular
implies that lobes 1 and 2 must intersect at the root. The maximum possible degree of a cactus
in Cpnq satisfying this condition is n ´ 2, which is obtained if and only if there are no triple
intersections between lobes.

The value n can occur only once in any sequence u P C1n, as there are no lobes above the one
labelled n. For n ě 3 we deduce that, since three lobes cannot intersect, u must have the form

p1, . . . , r, n, r, . . . , 2q or p2, . . . , r, n, r, . . . , 1q

for some r ď n´ 2.
Our proof of Theorem 4 is based on the following inductive construction.

Definition 5. If u is a cactus in Cpnqk such that u´1ptnuq “ tiu, we let

u˝ “
ÿ

jăi

p´1qk`|u|j 8uj , u‚ “ ´
ÿ

jąi

p´1qk`|u|j 8uj ,

Here 8uj P Cpn` 1qk`1 is the sequence obtained from u by replacing upjq with pupjq, n` 1, upjqq,
and |u|j is the relative degree of pup1q, . . . , upjqq in u. This definition is extended linearly to the
submodule of Cpnq spanned by those cacti u with u´1ptnuq a singleton.

It is clear that the terms 8uj of u˝ and u‚ are elements of C1n`1 if u is an element of C1n, since
they are obtained from adding a lobe labelled n` 1 above any lobe except that which is labelled
n. Conversely any element v P C1n`1 appears as a term of u˝ or u‚, where u P C1n is obtained by
removing the lobe labelled n` 1 from v.
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Lemma 6. For n ě 3,

(4) |C1n| “ 2p2n´ 5q!! “ 2 ¨ p2n´ 5q ¨ p2n´ 7q . . . 5 ¨ 3 ¨ 1.

Proof. Observe that the set C12 has just two elements, p1, 2q and p2, 1q. Now for each element
pup1q, . . . , up2n ´ 2qq P C1n the construction in Definition 5 gives 2n ´ 3 terms in u˝ and u‚. For
distinct u P C1n these terms are distinct elements of C1n`1 and every element of C1n`1 appears in
this way. Therefore |C1n`1| “ p2n´ 3q|C1n| and the result follows by induction. �

The operations u˝ and u‚ behave nicely with respect to the differential and the operadic com-
position.

Proposition 7. For any cactus u P Cpnqk such that u´1ptnuq is a singleton,

u˝ ´ u‚ “ p´1qkp1, 2, 1q ˝1 u ´ u ˝n p1, 2, 1q,

δpu˝q ´ pδuq
˝
“ p´1qk pp2, 1q ˝1 u´ u ˝n p2, 1qq

δpu‚q ´ pδuq
‚
“ p´1qk pp1, 2q ˝1 u´ u ˝n p1, 2qq

Proof. Suppose u´1ptnuq “ tiu. For the first equation, observe from Example 2 and Definition 5
that the difference between p´1qkp1, 2, 1q ˝1 u and u˝ ´ u‚ is just the term

u ˝n p1, 2, 1q “ p´1qk´|u|i 8ui.

Taking the differential of the first equation gives

δpu˝q ´ δpu‚q “ p´1qkpp2, 1q ´ p1, 2qq ˝1 u ´ p´1qku ˝n pp2, 1q ´ p1, 2qq

`p´1qk´1 p1, 2, 1q ˝1 δu ´ δu ˝n p1, 2, 1q.

Now we can use the first equation again for each term v in δu, since still n appears only once in
v. Hence

δpu˝q ´ δpu‚q “ p´1qkpp2, 1q ˝1 u´ p1, 2q ˝1 u´ u ˝n p2, 1q ` u ˝n p1, 2qq

`pδuq˝ ´ pδuq‚.

In any of the terms in this equation, each of the values n and n ` 1 appear once only, and the
equation splits into the two equations we require. On the left hand side, a term v belongs to the
expression δpu˝q if the value n ` 1 appears before the value n in the sequence v, and it belongs
to the expression δpu‚q if the value n ` 1 appears after the value n. On the right hand side, the
value n` 1 appears before the value n in the terms of pδuq˝, p2, 1q ˝1 u or u ˝n p2, 1q, and the value
n` 1 appears after the value n in the terms of pδuq‚, p1, 2q ˝1 u or u ˝n p1, 2q. �

Proposition 8. For any cacti u1 P Cppqk, u2 P Cpqq`, such that u1
´1
ptpuq, u2

´1
ptquq are single-

tons,

pu1 ˝i u
2q˝ “ p´1q`u1˝ ˝i u

2, pu1 ˝p u
2q˝ “ p´1q`u1˝ ˝p u

2 ` u1 ˝p u
2˝

pu1 ˝i u
2q‚ “ p´1q`u1‚ ˝i u

2, pu1 ˝p u
2q‚ “ p´1q`u1‚ ˝p u

2 ` u1 ˝p u
2‚

for i ď p´ 1.

Proof. By Proposition 7, we have

pu1 ˝i u
2q˝ ´ pu1 ˝i u

2q‚ “ p´1qk``p1, 2, 1q ˝1 pu
1 ˝i u

2q ´ pu1 ˝i u
2q ˝p`q´1 p1, 2, 1q

and by the operadic relations this can be rewritten as

p´1qk``pp1, 2, 1q ˝1 u
1q ˝i u

2 ´ p´1q`pu1 ˝p p1, 2, 1qq ˝i u
2 pi ă pq

p´1qk``pp1, 2, 1q ˝1 u
1q ˝p u

2 ´ u1 ˝p pu
2 ˝q p1, 2, 1qq pi “ pq

Now the operadic relation pu1 ˝p p1, 2, 1qq ˝p u
2 “ u1 ˝p pp1, 2, 1q ˝1 u

2q implies

pu1 ˝i u
2q˝ ´ pu1 ˝i u

2q‚ “

#

p´1q`pu1˝ ´ u1‚q ˝i u
2 pi ă pq

p´1q`pu1˝ ´ u1‚q ˝p u
2 ` u1 ˝p pu

2˝ ´ u2‚q pi “ pq
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This equation splits into the black and white parts as required. On the left hand side a term
belongs to pu1 ˝i u

2q˝ if and only if p ` q appears before p ` q ´ 1. On the right hand side p ` q
appears before p` q ´ 1 in the terms of u1˝ ˝i u

2 because p` 1 appears before p in u1˝, and also
in the terms of u1 ˝p u

2˝ because q ` 1 appears before q in u2˝. �

3. Homotopy matching dialgebras

The operad of matching dialgebras Ap2q was defined in [17, 18], compare [11, Exercise 9.7.4].
It is a generalisation of the associative operad A codifying two binary operations ˝, ‚ with four
associative laws. It is a binary, quadratic, Koszul and self-dual operad. The definition of the

differential graded operad Ap2q8 of homotopy matching dialgebras can be expressed as follows.

Definition 9. Let Ap2q8 be the free operad on generators mξ P Ap2qpnqn´2 for each string ξ “
pξ1, . . . , ξn´1q P t˝, ‚u

n´1, n ě 2. The differential is defined by

Bpmξq “

n
ÿ

i“1

p´1qpi´1q
ÿ

ξ1˝iξ2“ξ

p´1qqpp´iqmξ1 ˝i mξ2(5)

where p` q ´ 1 “ n, ξ1 P t˝, ‚up´1, ξ1 P t˝, ‚uq´1 and we write

ξ1 ˝i ξ
2 “ pξ11, . . . , ξ

1
i´1, ξ

2
1 , . . . , ξ

2
q´1, ξ

1
i, . . . , ξ

1
p´1q P t˝, ‚un´1.

The definition of the classical homotopy associative operad A8 may be given for comparison
as the free operad with generators mn P Apnqn´2, n ě 2 and differential

Bpmnq “

n
ÿ

i“1

p´1qpi´1q
ÿ

p`q´1“n

p´1qqpp´iqmp ˝i mq.(6)

The following result is clear.

Lemma 10. There is a morphism of differential graded operads

φ : A8 ÝÑ Ap2q8

given on generators by

φpmnq “
ÿ

ξPt˝,‚un´1

mξ.

Theorem 4 therefore follows from the following result.

Theorem 11. There is a morphism of differential graded operads

µ : Ap2q8 ÝÑ C

defined inductively on the generators by

µpm˝q “ p2, 1q, µpm‚q “ p1, 2q,

µpmξ˝q “
`

µpmξq
˘˝
, µpmξ‚q “

`

µpmξq
˘‚
.

Proof. Since Ap2q8 is free as a graded operad, we need only show µ commutes with the differentials,
which will follow inductively from the relations

δµpmξ˝q ´ pδµpmξqq
˝ “ µBpmξ˝q `

`

µBpmξq
˘˝

δµpmξ‚q ´ pδµpmξqq
‚ “ µBpmξ‚q `

`

µBpmξq
˘‚

We prove these in the following Lemma. �
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Lemma 12. If ξ P t‚, ˝un´1 then

δ
`

µpmξ˝q
˘

´
`

δpµpmξq
˘˝

“ p´1qn
´

µpm˝q ˝1 µpmξq ´ µpmξq ˝n µpm˝q

¯

δ
`

µpmξ‚q
˘

´
`

δpµpmξq
˘‚

“ p´1qn
´

µpm‚q ˝1 µpmξq ´ µpmξq ˝n µpm‚q

¯

µBpmξ˝q ´ pµBmξq
˝ “ p´1qn

´

µpm˝q ˝1 µpmξq ´ µpmξq ˝n µpm˝q

¯

µBpmξ‚q ´ pµBmξq
‚ “ p´1qn

´

µpm‚q ˝1 µpmξq ´ µpmξq ˝n µpm‚q

¯

Proof. The first two equations follow by applying Proposition 7 to each cactus u which appears
as a term of µpmξq.

For ξ1 P t˝, ‚up´1, ξ2 P t˝, ‚uq´1, p, q ě 2, we observe that

pµpmξ1 ˝i mξ2qq
˝ “

#

µ
`

p´1qqmξ1˝ ˝i mξ2
˘

pi ă pq

µ
`

p´1qqmξ1˝ ˝p mξ2 `mξ1 ˝p mξ2˝q
˘

pi “ pq

by applying Proposition 8 to each term u1 ˝i u
2 of µmξ1 ˝i µmξ2 . Hence

pµBmξq
˝ “ µ

ˆ

ÿ

p´1qqpp´i`1q`i´1mξ1˝ ˝i mξ2 ` p´1qp´1mξ1 ˝p mξ2˝

˙

where the sum is over all decompositions ξ “ ξ1 ˝i ξ
2, 1 ď i ď p as in (5). On the other hand, the

possible decompositions of ξ˝ are ˝ ˝1 ξ, ξ ˝n ˝, ξ1˝ ˝i ξ
2 and ξ1 ˝p ξ

2˝ with ξ1, ξ2 a decomposition
of ξ as before, and in the formula for Bpmξ˝q these four types of decomposition appear with the
following signs:

p´1qnm˝ ˝1 mξ, p´1qn´1mξ ˝n m˝, p´1qqpp´i`1q`i´1mξ1˝ ˝i mξ2 , p´1qp´1m1ξ ˝p mξ2˝.

We therefore obtain the third equation

µBmξ˝ ´ pµBmξq
˝ “ p´1qn pµm˝ ˝1 µmξ ´ µmξ ˝n µm˝q

as required. The computations for the fourth equation are identical. �

We end with a calculation of µpmξq in arities 3, 4 and 5. We omit all commas from the notation.

mξ maps to a linear combination of u P C1n
m‚‚... ÞÑ 0
m˝˝... ÞÑ 0
m‚˝ ÞÑ p1312q
m˝‚ ÞÑ ´p2131q
m‚˝‚ ÞÑ ´p131412q ´ p131242q
m‚˝˝ ÞÑ ´p141312q
m˝‚‚ ÞÑ `p213141q
m˝‚˝ ÞÑ `p242131q ` p214131q
m‚˝‚‚ ÞÑ `p13141512q ` p13141252q ` p13124252q
m‚˝‚˝ ÞÑ ´p15131412q ` p13531412q ` p13151412q ´ p15131242q

`p13531242q ` p13151242q ` p13125242q
m‚˝˝‚ ÞÑ `p14131252q ` p14131512q ` p14135312q ´ p14151312q
m‚˝˝˝ ÞÑ ´p15141312q
m˝‚‚‚ ÞÑ ´p21314151q
m˝‚‚˝ ÞÑ `p25213141q ` p21513141q ´ p21353141q ´ p21315141q
m˝‚˝‚ ÞÑ `p24252131q ` p24215131q ´ p24213531q ´ p24213151q

`p21415131q ´ p21413531q ´ p21413151q
m˝‚˝˝ ÞÑ `p25242131q ` p25214131q ` p21514131q
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