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Abstract

We present a global, closed-loop, multi-scale mathematical model for the human circulation in-
cluding the arterial system, the venous system, the heart, the pulmonary circulation and the micro-
circulation. A distinctive feature of our model is the detailed description of the venous system, par-
ticularly for intra- and extra-cranial veins. Medium to large vessels are described by one-dimensional
hyperbolic systems while the rest of the components are described by zero-dimensional models rep-
resented by differential algebraic equations. Robust, high-order accurate numerical methodology is
implemented for solving the hyperbolic equations, which are adopted from a recent reformulation that
includes variable material properties. Due to the large inter-subject variability of the venous system,
we perform a patient-specific characterisation of major veins of the head and neck using MRI data.
Computational results are carefully validated using published data for the arterial system and most
regions of the venous system. For head and neck veins validation is carried out through a detailed
comparison of simulation results against patient-specific Phase-Contrast MRI flow quantification
data. A merit of our model is its global, closed-loop character; the imposition of highly artificial
boundary conditions is avoided. Applications in mind include a vast range of medical conditions. Of
particular interest is the study of some neurodegenerative diseases, whose venous haemodynamics
connection has recently been identified by medical researchers.

1 Introduction

The present work is in part motivated by recent interest shown by the medical community on the
venous system and its potential role in the development and clinical course of neurodegenerative dis-
eases [39]. In particular, applications in mind include a theoretical study of two empirically discovered
conditions, namely Chronic Cerebrospinal Venous Insufficiency [97] and Idiopathic Parkinson’s Disease
[40]. These motivating examples set two requirements on our model. First, the description of head and
neck veins should be sufficiently detailed, including the numerous collateral pathways of cerebral venous
return [73]. Second, the model should include the main systemic veins in order to take into account
some specific characteristics of the pathologies under study. We have therefore chosen to construct a
closed-loop model of the entire cardiovascular system with emphasis on the venous district.

In 1969, the journal IEEE Transactions on Bio-medical Engineering published an entire issue on the
venous system. Main points identified by contributors included a description of mechanical properties of
veins, their functioning and, consequently, their modelling. At that time the modelling community was
well aware of the difficulties to be faced in order to model the venous system. The most relevant problems,
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or differences, compared to the arterial counterpart, concerned the collapsibility of veins and the effect
of external forces, such as gravity and external pressure, on venous flow [17]. In their introductory letter
to that issue, Noordergraaf and Kresch [65] put in evidence the increasing interest in the role played by
the venous system in heart dynamics and circulation in general. They concluded prospecting a renewed
interest in the modelling community in this research field. Two remarkable contributions of the 1969 issue
of IEEE Transactions on Bio-medical Engineering are the works by Snyder & Rideout [78] and by Moreno
et al. [56]. Both contributions represented early attempts to model the complete cardiovascular system,
giving special attention to the description of the venous district. Snyder and Rideout [78] proposed a
closed-loop lumped parameter model including vessel collapse, external pressure by respiration, venous
tone regulation and gravity.

Unfortunately, not much progress has been made since those early days in the field of venous haemo-
dynamics modelling. Most of the available work concerns the description of flow in collapsible tubes
[74, 45, 32] and related numerical applications to rather simple problems [71, 15, 16]. Recently, some
interesting work has been published regarding the construction of tube laws for veins [10] and its ap-
plication to one-dimensional modelling of blood flow in veins of the lower limb [37, 54]. Some work on
modelling of venous networks with one-dimensional approaches is available in the literature. Zagzoule
and MarcVergnes [96] presented a model for cerebral circulation with major arteries, intracranial veins
and the jugular veins. Cirovic et al. [22] modelled cerebral blood flow using the network proposed in [96]
and including high gravitational acceleration, observing jugular vein collapse. Sheng et al. [75] presented
an open-loop model with a one-dimensional description of arteries, veins and capillaries. Following the
work of Sheng et al., Alirezaye-Davatgar [3] proposed a similar model; no emphasis on results for the
venous system were given. Vassilevski et al. [90] proposed a closed-loop model of the cardiovascular
system with a one-dimensional description of veins; no details on the construction of the venous network
were provided. Finally, Ho et al. [42] reported the construction of a patient-specific one-dimensional
model of the cerebral venous system, imposing artificial boundary conditions at the level of the superior
vena cava and terminal veins.

Closed-loop models of the cardiovascular system with a one-dimensional description of major vessels
are rare. Two prominent examples are the closed-loop models proposed by Liang et al. [51] and by
Blanco et al. [12]. In both cases the arterial system is modelled using a one-dimensional approach, while
the heart, pulmonary circulation, capillaries and veins are treated as lumped parameter compartments.
We note that at the refereeing stage of this paper we were made aware of an excellent and relevant piece
of work concerning a closed-loop model and one-dimensional representation of the venous system; see
Mynard [62]. Our model is a step forward in the context of closed-loop models since it includes a detailed
one-dimensional description of the venous district. This model will constitute the basis on which the
above discussed challenges of the venous system will be approached and, hopefully, resolved.

Variation of mechanical and geometrical properties of vessels along their longitudinal axis gives rise
to geometrical-type source terms. These source terms cause severe problems if a naive discretisation is
used. We chose to adopt a reformulation of the classical equations governing one-dimensional blood flow
proposed in [86], where the system is written in quasi-linear form. Concerning the numerical method for
solving the one-dimensional blood flow equations in veins and arteries, we adopt the ADER framework
[85]. This framework allows the construction of non-linear schemes, to circumvent Godunov’s theorem,
of high order of accuracy in both space and time, while maintaining the necessary robustness required
by the highly non-linear behaviour of veins. High order of accuracy in space and time is mandatory;
it is in fact an efficiency requirement, most relevant for the simulation of complex systems, such as the
human circulation. See [57] and [59] for the case of one-dimensional blood flow models, where an analysis
of convergence rates, errors and CPU time is carried out. ADER finite volume schemes consist of two
building blocks: (i) a non-linear spatial reconstruction operator and (ii) the solution of the Generalized
Riemann Problem (GRP) at each cell interface to compute numerical fluxes [87]. For the solution of the
GRP we adopt the Dumbser-Enaux-Toro (DET) solver [28, 27, 29]. All GRP solvers available, see [55],
require a classical Riemann solver. Here we use the Dumbser-Osher-Toro (DOT) Riemann solver [30],
as proposed in [59]. This numerical scheme is able to treat venous collapse, as well as transcritical flows
[57], which might verify in veins [77]. For background on the ADER approach and recent developments
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see chapters 19 and 20 of [88] and references therein.
A distinctive aspect of this work, is the performance of a patient-specific characterization of major

veins of the head and neck. This approach is motivated by the great inter-subject variability of the
venous system [73, 93]. In order to achieve this goal, we represent major head and neck veins of our
venous network using Magnetic Resonance Imaging derived geometrical information [89]. Moreover, we
are able to compare our computational results with MRI-derived time-resolved flow quantification data
[33], again, in a patient-specific manner. This is possible because MRI imaging of venous structures and
flow quantification are made within the same MRI session.

The rest of the paper is structured as follows. In section 2 we present the mathematical models
used to treat each compartment, whereas in section 3 we describe numerical schemes to compute the
solution of the appropriate differential equations. In section 4 we report all parameters necessary to
define the model. Next, in section 5 we show computational results for the heart, arterial and venous
system, comparing them to literature data and to MRI-derived flow quantification data, where available.
In section 6 we discuss results presented and future work. We conclude with section 7, where final
considerations are made.

2 Mathematical models

Our closed-loop mathematical model is composed of a one-dimensional network of major arteries,
see figure 1, a one-dimensional network of major veins, see figure 2, and lumped parameter models for
heart and pulmonary circulation, see figure 3, and for arterioles, capillaries and venules, see figure 4.
The numbering in the figures is a guide to the reader to find the geometrical and mechanical properties
of vessels in the referred tables.

In the following sections we describe the mathematical models used for each one of these compart-
ments.

2.1 Blood flow in arteries and veins: one-dimensional model

One-dimensional blood flow models result from averaging the incompressible Navier-Stokes equations
over the vessel cross-section under some assumptions, including axial symmetry. Also, the structural
mechanics of the vessel wall is simplified; relevant assumptions are radial displacement and elastic ma-
terial properties. For a full derivation of the model see, for example, [35]. Even under such strong
simplifications of reality, these models preserve the essential physical features of wave propagation in
compliant vessels. The resulting one-dimensional equations for blood flow in elastic vessels are given by
the following first-order, non-linear hyperbolic system

∂tA+ ∂xq = 0 ,

∂tq + ∂x

(
α̂
q2

A

)
+
A

ρ
∂xp = −f ,

(1)

where x is the axial coordinate along the longitudinal axis of the vessel; t is the time; A(x, t) is the
cross-sectional area of the vessel; q(x, t) is the flow rate; p(x, t) is the average internal pressure over a
cross-section; f(x, t) is the friction force per unit length of the tube; ρ is the fluid density and α̂ is a
coefficient that depends on the assumed velocity profile. Throughout this work we will take α̂ = 1, which
corresponds to a blunt velocity profile.

To close the system we adopt a tube law, whereby the internal pressure p(x, t) is related to the
cross-sectional area A(x, t) and other parameters, namely

p(x, t) = pe(x, t) + ψ(A;A0,K, P0) . (2)

Here pe(x, t) is the external pressure, prescribed, and ψ(x, t) is the transmural pressure, assumed of the
form

ψ(A(x, t);K(x), A0(x), P0) = K(x)φ(A(x, t);A0(x)) + P0 . (3)
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Figure 1: Arterial network composed of 85 arteries, taken from [50] (left). Detail of head and neck
arteries (right). Numbers refer to table 3, where geometrical and mechanical parameters for each vessel
are reported.

K(x) = K(E(x), h0(x)) is a positive function that contains the combined variation in x of E(x), the
Young modulus, and of h0(x), the wall thickness; see [15] for details. P0 is the reference pressure for
which A = A0, consequently, A0 is a reference cross-sectional area. The function φ(A, x) is assumed of
the form

φ(A(x, t);A0(x)) =

(
A(x, t)

A0(x)

)m
−
(
A(x, t)

A0(x)

)n
. (4)

The parameters m and n are obtained from higher-order models or simply computed from experi-
mental measurements. We remark that there are mathematical constraints for the choice of m and n
to satisfy hyperbolicity of the equations and for the genuinely non-linear character of the characteristic
fields associated with the pressure related eigenvalues; full details are given in [86]. Throughout this
work we assume m > 0 and n ∈ (−2, 0). In the next section we discuss the values that K, m and n may
assume for different vascular districts.

If one takes into account the spatial variability of A0, K and pe and substitutes (2) into (1), the
resulting momentum equation reads

∂tq + ∂x

(
α̂
q2

A

)
+
A

ρ
KφA∂xA = −A

ρ
(∂xpe +KφA0∂xA0 + φ∂xK)− f , (5)
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Figure 2: Schematic representation of venous network (left). Detail of head and neck veins (right).
Numbers refer to table 8, where geometrical and mechanical parameters for each vessel are reported.

where

φA =
∂φ

∂A
, φA0

=
∂φ

∂A0
. (6)

The right-hand-side of the momentum balance equation includes geometric-type source terms. It is a
well-documented fact that a naive discretization of such terms may lead to serious numerical difficulties
and hence a careful treatment of these is required [69, 60, 59]. To this end we adopt a reformulation of
system (1) proposed in [86], namely

∂tQ + A(Q)∂xQ = S(Q) , (7)

where the state vector Q is given by

Q =
[
A, q,K,A0, pe

]T
(8)

and the coefficient matrix A(Q) is

A(Q) =


0 1 0 0 0

c2 − u2 2u A
ρ φ K A

ρ φA0

A
ρ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (9)

Here u = q/A is the cross-sectional averaged velocity of the fluid, S(Q) is a source term vector

S(Q) = [0,−f, 0, 0, 0]T (10)
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84

198

Pulmonary circulation

RA RV LVLA
TriV PulV MitV AorV

Pc

Pit

Heart chambers and valves

Figure 3: Lumped parameter model for heart and pulmonary circulation. RA,LA: right and left atrium;
RV,LV : right and left ventricles. TriV, PulV,MitV,AorV : tricuspid, pulmonary, mitral and aortic
valves. Pc and Pit are pericardium and intra-thoracic pressures, respectively. In the present work both
pressures are put equal to zero.

Figure 4: Lumped parameter network for a simple artery-vein connection. Arteries are connected to
veins via arterioles, capillaries and venules. For each compartment we specify compliance C, inductance
L and resistance R.

and c is the wave speed

c =

√
A

ρ

∂ψ

∂A
. (11)

Note that all geometric source terms have disappeared from the right hand side and are now in the
principal part of the equations.

The eigenvalues of (9) are

λ1 = u− c , λ2 = λ3 = λ4 = 0 , λ5 = u+ c (12)

and the corresponding right eigenvectors of A(Q) are

R1 = γ1


1

u− c
0
0
0

 , R2 = γ2


A
ρ

φ
u2−c2
0
1
0
0

 , R3 = γ3


A
ρ

KφA0

u2−c2
0
0
1
0

 ,

R4 = γ4


A
ρ

1
u2−c2
0
0
0
1

 , R5 = γ5


1

u+ c
0
0
0

 ,
(13)

where γi, for i = 1, ..., 5, are arbitrary scaling factors.
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Under a suitable assumption for coefficients m and n, system (7) is hyperbolic, though not strictly
hyperbolic. Hyperbolicity is lost when |u| = c, leading to resonance. As noted in [86] there is a possible
loss of uniqueness. These aspects of the mathematical model are currently subject of study.

The first and fifth characteristic fields are genuinely non-linear and are associated with shocks and
rarefactions, whereas the remaining fields are linearly degenerate and are associated with stationary
contact discontinuities. See [86] for conditions on parameters m and n for this to be true. At this point
we introduce the Riemann invariants associated with the genuinely non-linear fields

Γ1 = u−
∫ A

A∗

c(τ)

τ
dτ , Γ5 = u+

∫ A

A∗

c(τ)

τ
dτ , (14)

and the linearly degenerate fields (LD)

ΓLD1 = p+
1

2
ρu2 , ΓLD2 = q , (15)

where A∗ is the cross-sectional area at a reference state. These will be needed in discussing boundary
conditions.

2.2 Mechanical properties of vessels and tube laws

Transmural pressure for arteries is commonly defined as

ψa(x, t) = Ka(x)φa(A(x, t);A0(x)) + P0 = Ka(x)

((
A(x, t)

A0(x)

) 1
2

− 1

)
+ P0 , (16)

where A0(x) is the vessel cross-sectional area for which the transmural pressure ψa = P0. Ka is given by

Ka(x) =
E(x)h0(x))

(1− ν2)R0(x)
, (17)

where ν is the Poisson ratio, equal to 1/2 for incompressible solids and R0 is the vessel radius at reference
configuration. Relation (16), in combination with (17) are derived by considering static equilibrium of
the vessel wall and small vessel deformations. See [35] for details.

Relation (16) correctly describes wave propagation patterns in arterial networks as extensively con-
firmed by existing literature, see [8, 1]. Therefore, we use (16) for describing the behaviour of arteries.

On the other hand, transmural pressure for veins is commonly described by

ψv(x, t) = Kv(x)φv(A(x, t);A0(x)) + P0 = Kv(x)

((
A(x, t)

A0(x)

)m
−
(
A(x, t)

A0(x)

)n)
+ P0 . (18)

Typical values for collapsible tubes, such as veins, are: m = 10, n = −1.5, see [74]. The vessel stiffness
of veins Kv is

Kv(x) =
E(x)

12 (1− ν2)

(
h0(x)

R0(x)

)3

. (19)

.
Relation (19) derives from considerations made for the collapse of thin-walled elastic tubes. When a

thin-walled tube collapses, there is a contact region of the internal vessel walls which divides the ross-
section into two tubes running in parallel. Flaherty et al. [34] derived an exact solution for this buckling
behaviour which relates pressure and area as

− p− pe
Kv

=

(
A(x, t)

A0(x)

)− 3
2

. (20)

The validity of relation (20) for thin-walled latex tubes was confirmed in [74], for A ≤ A0. In practice,
one commonly assigns a high value to m, so that for A ≤ A0 relation (18) behaves as (20).
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In order to better understand the implications of using (18) in our mathematical model let us consider
an example. Anliker et al. [4] measured the speed of pressure waves in the abdominal vena cava of a
dog, obtaining values for wave speed c in the range of 2 to 3 m/s. Nippa et al. [64] measured wave
speeds in different regions of a human in supine position, obtaining values ranging from 0.6 to 3 m/s.
This experimental evidence suggests that wave speed values in the venous system range, roughly, from
1 to 3 m/s, as reported in [18]. Let us take numerical values reported in the literature necessary for
computing c for a vein: E = 1 × 105 Pa (table I of [18]) and h/R0 = 0.01. With these values we obtain
that Ka = 1333.33Pa and Kv = 0.0111Pa. Taking these parameters, wave speeds for physiological
pressure values lay within the above mentioned ranges for both tube laws. For example, for a pressure
p = 5mmHg we have ca = 0.875ms−1 and cv = 2.0ms−1. However, the behaviour of tube law (18) is
drastically different from the one obtained using (16). Figure 5 shows pressure vs non-dimensional area
α = A/A0 for the tube laws for arteries and veins, as well as their respective operative pressure ranges.
The highly non-linear behaviour of the curve for veins contrasts sharply with that for arteries; veins
are tremendously deformable, as compared to arteries; veins collapse while arteries do not. The highly
non-linear behaviour of veins implies a judicious choice of numerical methods, on which the robustness
of the full model depends.

For a subject in supine position, pressure changes along the venous system are small and deviations
from a reference state will be small as well. Therefore, for this posture we expect that the global model
will not be excessively sensitive to mechanical properties of veins. On the other hand, changes in posture
will induce significant changes in pressure and consequently in the geometry of veins. Above the right
atrium, neck veins will collapse and there will be a displacement of around 500−600ml of blood from the
upper part of the body to the lower limbs [48]. These changes will crucially depend on the mechanical
properties of veins.

It is important to remark that experimental evidence shows that the behaviour of veins in the collapse
region is not as extreme as described by relation (18) with stiffness coefficient (19). Bassez et al. [10]
measured pressure-area relations for lower limb veins, showing a slower collapse process. Even though
they did not measured pressure directly, they extrapolated it from height differences between the point
where the cross-section of the vein was measured and the right atrium, the validity of the description
of the shape of the pressure-area relationship remains. Drzewiecki et al. [26] provide the same kind of
evidence for a canine jugular vein, though here the non-linear character of the vein collapse is stronger
than for lower limb veins. Moreover, Bassez et al. [10] performed an in-vitro study in which they
assessed the influence of a surrounding gel on the collapse dynamics of thin-walled tubes. They showed
that collapse tends to be less abrupt as the Young modulus of the surrounding gel increases. This fact
confirms in-vivo measurements mentioned above, indicating that the fact that veins are attached to
external tissue, or at least surrounded by it, will attenuate the collapse dynamics.

Considering the lack of data on mechanical properties of veins we have chosen to use, as a first
approach, tube law (18) with coefficients m = 10 and n = −3/2. Taking into account the considerations
made in the previous paragraph, vessel stiffness Kv will not be computed using (19), but will be estimated
from pulse wave velocities, following a similar approached as the one used in [62]. We define a function
for reference wave speeds in veins as

c0 = c0,max − (c0,max − c0,min)

(
r − rmin

rmax − rmin

) 1
4

, (21)

where rmin and rmax are the minimum and maximum vein radii in the network; c0,max = 3ms−1 and
c0,min = 1ms−1. Note that reference wave speed c0 is

c0 =

√
Kv

ρ
(m− n) . (22)

We set the reference pressure to be used in tube law (18) to P0 = 5mmHg. Therefore, we estimate
Kv from radii reported in table 8, corresponding to reference pressure P0, and wave speeds c0 computed
using relation (21). Using this kind of approach, the values for Kv range between 100 and 400 Pa. The
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shape of tube law (18) using Kv with values of this order of magnitude can be seen in figure 5. The
collapse behaviour of the resulting tube law is still highly non-linear, but not as extreme as the one
obtained with Kv computed using relation (19).

The definition of mechanical properties of veins and closure relations remains the major weak point
of our model and must be improved in the future. Therefore, we foresee to perform a study as the one
presented in [10], especially for neck veins.

0 1 2 3 4 5
α

150

100

50

0

50

100

150

p
[m
m
H
g]

Figure 5: Pressure vs non-dimensional cross-sectional area for tube law (16) with KA = 50000Pa and
P0 = 0mmHg (dotted line), for tube law (18) with KV = 0.011Pa and P0 = 0mmHg (dashed line)
and for tube law (18) with KV = 91.3Pa and P0 = 5mmHg (continuous line). The top and middle
rectangles represent physiological pressure ranges for arteries and veins, respectively.

2.3 Lumped parameter models

Blood flow in arterioles, capillaries and venules is modelled using lumped parameter models, also
called 0-D models. These models can be derived from averaging the one dimensional model (1) over
the length of a vessel and making several assumptions, such as neglecting the convective term of the
momentum equation (see [35] for background). Figure 6 shows a single compartment, composed by a
capacitor, a resistor and an inductor. In such a compartment the following equations hold

dP

dt
=

1

C
(Qin −Q) +

dPe
dt

,

dQ

dt
=

1

L
(P −QR− Pout) ,

(23)

where Q(t) and P (t) are the state variables of the lumped compartment, that is flow rate and pressure,
whereas R, L and C are its resistance, inductance and capacitance, respectively. Moreover, Pe represents
the external pressure, which will be assumed to be zero if not specified. Qin and Pout are variables
belonging to other lumped compartments or deriving from boundary conditions, as we shall see later on.
Single compartments are then combined to form peripheral beds that connect arteries to veins.

2.4 Heart and pulmonary circulation

For the heart and pulmonary circulation we use a slightly modified version of the lumped parameter
model proposed in [83] and extended in [51]. Figure 3 shows the various components of the model,
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Figure 6: Single compartment used for lumped parameter models. The electric circuit analog comprises
a capacitor with capacitance C, a resistor with resistance R and an inductor with inductance L.

including the four heart chambers and corresponding cardiac valves, as well as a simplified compartmental
description of the pulmonary circulation, divided in arteries, capillaries and veins.

The model proposed in [51] is based on a prescribed variation in time of heart chambers elastances.
Pressure in a cardiac chamber Pch(t) is given by

Pch(t) = Pe + (EAe(t) + EB)(Vch − Vch,0) + S
dVch
dt

, (24)

where EA and EB are the amplitude and baseline values of the elastance, Vch and Vch,0 are the current
chamber volume and dead chamber volume and S is the viscoelasticity coefficient of the cardiac wall and
e(t) is a normalized time-varying function that represents the forcing source for the closed-loop model.
The function e(t) differs for ventricles and atria. For atria we use

ea(t) =



1

2
{1 + cos [π(t+ T − tar)/Tarp]} 0 ≤ t ≤ tar + Tarp − T ,

0 tar + Tarp − T < t ≤ tac ,
1

2
{1− cos [π(t− tac)/Tacp]} tac < t ≤ tac + Tacp ,

1

2
{1 + cos [π(t− tar)/Tarp]} tac + Tacp < t ≤ T

(25)

and for the ventricles

ev(t) =


1

2
[1− cos(πt/Tvcp)] 0 ≤ t ≤ Tvcp ,

1

2
{1 + cos [π(t− Tvcp)/Tvrp]} Tvcp < t ≤ Tvcp + Tvrp ,

0 Tvcp + Tvrp < t ≤ T0 .

(26)

T0 is the duration of a cardiac cycle; Tacp, Tvcp, Tarp, and Tvrp represent the duration of atrial/ventricular
contraction/relaxation, respectively; tac and tar are the times within the cardiac cycle at which atrial
contraction and relaxation begin.

The flow rate through cardiac valves is modelled using the relation proposed in [51], which describes
its time variation as

dQcv
dt

=
1

Lcv
(∆Pcv −RcvQcv −BcvQcv|Qcv|) , (27)

where Lcv, Rcv and Bcv are coefficients for inertial terms, viscous losses and flow separation, respectively.
Pulmonary circulation is divided into arteries, capillaries and veins. Pressure in each pulmonary

compartment is modelled using relation
P = EΦ , (28)

where Φ is a volume constant and the elastance E is given by

E = E0e
V/Φ , (29)

with E0 being a baseline elastance and V the current volume of the pulmonary compartment. Fluid is
exchanged between pulmonary compartments using the second equation in (23). Mass fluxes are then
used to update the compartment volume by imposing mass conservation.
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In the next section we will describe how each of the mathematical models presented in this section
are solved numerically.

3 Numerical methods

As we have seen in section 2, our closed-loop model is composed of a dimensionally heterogeneous
spatial domain, comprising one-dimensional and lumped parameter models. The equations for the one-
dimensional model are solved using state-of-the-art, high order numerical schemes. Moreover, we have to
deal with junctions that may connect several one-dimensional vessels and also with the coupling between
one-dimensional and lumped parameter models.

3.1 Numerical scheme for one-dimensional blood flow

System (7) is solved using a high order finite volume-type numerical scheme. High order in space and
time is mandatory because of efficiency requirements in order to achieve accurate results at a low cost,
as shown in [57] and [59] for the case of one-dimensional blood flow models.

High order accuracy in space and time is achieved by adopting the ADER framework [85]. ADER
finite volume schemes consist of two building blocks: a non-linear spatial reconstruction operator and
solution of the Generalized Riemann Problem (GRP) at each cell interface to compute numerical fluxes
[87]. See also [55] for a discussion on different GRP solvers available. For the solution of the GRP we
adopt the Dumbser-Enaux-Toro (DET) solver. This solver was proposed in [28] and extended to non-
conservative systems in [27] and [29]. All GRP solvers available, see [55], require a classical Riemann
solver (piece-wise constant data). Here we use the Dumbser-Osher-Toro (DOT) Riemann solver [30],
as proposed in [59]. The resulting high-order ADER scheme is able to treat venous collapse, as well as
transcritical flows [57, 58]. For background on the ADER approach and recent developments see chapters
19 and 20 of [88] and references therein. For alternative approaches see the recent work reported in [20].

As we anticipated in section 2.1, in order to correctly account for the presence of geometric-type source
terms we have chosen to adopt a reformulation of the classical equations for one-dimensional blood flow
models, which implies the use of a well-balanced numerical scheme for this non-conservative system.
Therefore, for the computation of a first order monotone numerical flux we use the Dumbser-Osher-Toro
(DOT) Riemann solver, put forward in [30] as a modified version of the Osher-Solomon Riemann solver
[67] for a conservative hyperbolic system. The DOT scheme has also been extended in [31] to deal with
non-conservative hyperbolic systems.

The scheme used in this work was proposed in [59] and is a modification of the original DOT solver,
that correctly solves (7). This solver is inspired by the mathematical theory developed by Dal Maso,
LeFloch and Murat [23] and may be seen as a path-conservative scheme, as defined in [68].

A finite volume-type path-conservative scheme may be constructed by integrating (7) in space and
time in the control volume [xi− 1

2
, xi+ 1

2
]× [tn, tn+1], leading to

Qn+1
i =Qn

i −
∆t

∆x

(
D−
i+ 1

2

+ D+
i− 1

2

)
+ ∆tSi −∆tGn

i , (30)

where

Qn
i =

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn) dx , (31)

Gn
i =

1

∆t∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

A(Q)∂xQdxdt , (32)

Si =
1

∆t∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

S(Q(x, t))dxdt (33)

11



and

D±
i+ 1

2

=
1

∆t

∫ tn+1

tn
D±
i+ 1

2

(
Q−
i+ 1

2

(t),Q+
i+ 1

2

(t),Ψ(s)
)
dt . (34)

Here ∆x = xi+ 1
2
− xi− 1

2
; ∆t = tn+1 − tn; Q±

i+ 1
2

(t) are limiting data states from left and right arising in

the GRP for system (7) at cell interface xi+ 1
2
. Given left and right data Q− and Q+ for the Riemann

problem at the cell interface xi+ 1
2
, D± (Q−,Q+,Ψ(s)) are defined as fluctuations that depend on a path

Ψ(s). We refer the reader to [59] for a detailed description of the numerical scheme. This reference
provides a detailed explanation of all the steps necessary to implement the DET solver, as well as to
perform the numerical computation of fluctuations via the DOT solver.

3.1.1 Empirical convergence rate

In order to verify that the expected order of accuracy is reached, we perform a numerical convergence
rate study. We prescribe a smooth function Q̂(x, t) to be the exact solution. Q̂(x, t) is

Q̂(x, t) =


Â(x, t)
q̂(x, t)

K̂(x)

Â0

p̂e(x)

 =


Ã+ ã sin

(
2π
L x
)
cos
(

2π
T0
t
)

q̃ − ã L
T0
cos
(

2π
L x
)
sin
(

2π
T0
t
)

K̃ + k̃ sin
(

2π
L x
)

Ã0 + ã0 sin
(

2π
L x
)

P̃e + p̃e sin
(

2π
L x
)

 . (35)

Replacing (35) into (7) we obtain

∂tQ + A(Q)∂xQ = Ŝ(x, t) . (36)

Source term Ŝ(x, t) includes terms resulting from the fact that (35) is not a solution of the original

system (7). Ŝ(x, t) is computed exactly using algebraic manipulators and is not reproduced here for the
sake of brevity. For the convergence rate study the following parameters are used: L = 1.0m, T0 = 1.0 s,
Ã = 4.0 × 10−4m2, ã = 4.0 × 10−5m2, q̃ = 0.0m3 s−1 , K̃ = 50.0KPa, k̃ = 500.0Pa, P̃e = 0.0Pa,
p̃e = 50.0Pa, m = 1/2 and n = 0. Since we use an explicit numerical scheme, the so called Courant-
Friedrichs-Lewy (CFL) condition must be satisfied. In practice, we define our time step by ensuring that
the CFL number is smaller than a given threshold. The CFL number is computed as

CFL = λnmax
∆t

∆x
, (37)

where λnmax is the maximum magnitude of eigenvalues (12) in the entire spatial domain at time t = tn.
For this test we use a CFL = 0.9.

Table 1 displays the empirical convergence rates for the proposed numerical scheme up to fifth-
order of accuracy in space and time. Errors were measured in the norms L1, L2 and L∞. The expected
convergence rates are reached for all norms. Note that highly accurate computations mean computational
efficiency. For a fixed mesh a low order scheme will generally be faster than its higher order extension.
On the other hand, if one fixes a given error to be acceptable, high order schemes will satisfy this
requirement with considerably less computational effort. Figure 7 shows error versus CPU time for the
second and fifth-order implementations of the ADER schemes presented in this paper. The CPU time
is that resulting from a sequence of successively refined meshes. It is seen that, for example, given an
acceptable error of E = 10−9, the fifth-order ADER method will be at least one order of magnitude more
efficient than the second-order ADER method.
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Scheme N L1 L2 L∞ O(L1) O(L2) O(L∞) tCPU [s]

ADER-O2 4 1.07e-05 1.23e-05 2.53e-05 - - - 0.14
8 2.47e-06 2.93e-06 7.75e-06 2.1 2.1 1.7 0.42
16 5.69e-07 6.98e-07 2.02e-06 2.1 2.1 1.9 1.53
32 1.34e-07 1.69e-07 5.12e-07 2.1 2.0 2.0 3.27

ADER-O3 4 4.24e-06 4.79e-06 8.46e-06 - - - 0.39
8 5.62e-07 6.89e-07 1.46e-06 2.9 2.8 2.5 0.86
16 7.16e-08 8.95e-08 1.97e-07 3.0 2.9 2.9 1.90
32 8.99e-09 1.13e-08 2.51e-08 3.0 3.0 3.0 4.13

ADER-O4 4 6.66e-06 1.64e-06 1.65e-05 - - - 0.68
8 4.028e-07 4.88e-07 1.21e-06 4.0 4.0 3.8 1.36
16 1.92e-08 2.29e-08 6.43e-08 4.4 4.4 4.2 2.24
32 9.73e-10 1.19e-09 3.69e-09 4.3 4.3 4.1 5.89

ADER-O5 4 1.80e-06 2.02e-06 3.39e-06 - - - 7.20
8 6.88e-08 8.39e-08 1.71e-07 4.7 4.6 4.3 1.38
16 2.27e-09 2.81e-09 6.01e-09 4.9 4.9 4.8 3.64
32 8.13e-11 9.72e-11 2.11e-10 4.8 4.9 4.8 9.08

Table 1: Convergence results for the ADER scheme. N is the number of cells. Errors are computed for
variable A. CPU times are reported for all tests.

3.1.2 Test with exact solution including an elastic jump

We solve a Riemann problem that intends to resemble the effect of an (idealized) Valsava manoeuvre
on an internal jugular vein with incompetent valve and discontinuous mechanical properties. Note that
while this test does not correspond to a physiological situation, it is still valid for testing the robustness
of the numerical scheme for parameter ranges that are those of human veins.

The vessel length is L = 0.2m. Initial conditions are discontinuous at x = 0.06m. States to the left of
the discontinuity are AL = 0.5AL0 , UL = 0.0ms−1, KL = Kref , AL0 = 1.0Aref , pLe = 0.0mmHg, while
to the right of the discontinuity we set AR = 1. AR0 , UR = 0.0ms−1, KR = 10Kref , AR0 = 1.0Aref ,
pRe = 20.0mmHg. Reference values for vessel stiffness and cross-sectional area are Kref = 300.0Pa and
Aref = 1.0×10−4m2. Initial conditions correspond to a vessel with discontinuous mechanical properties.
Moreover, the portion of the vessel to the right of the discontinuity is compressed. Transmural pressure
is sub-atmospheric to the left of the discontinuity and 20mmHg in the rest of the vessel. The exact
solution of this problem was computed using an implementation of the exact Riemann solver presented
in [86].

The problem was solved numerically using first and third order versions of the numerical schemes
considered in this work, using 100 computational cells and a CFL = 0.9. Results are shown in figure
8. For t > 0 s an elastic jump starts travelling to the left of the initial discontinuity, while a rarefaction
wave is directed in the opposite direction. Finally, a stationary contact discontinuity is observed in
correspondence of discontinuous variations of mechanical properties. Both, the first and high order
numerical solutions correctly capture the propagation velocity of non-linear waves (elastic jump and
rarefaction) and the states to both sides of the stationary contact discontinuity. The better description
of the elastic jump by the third order scheme, as compared to the one given by the first order scheme,
is clearly observable.

13



100 101 102

CPU time [s]
10-10

10-9

10-8

10-7

10-6

Er
ro

r

ADER-O2
ADER-O5

Figure 7: Error versus CPU time for second and fifth-order implementations of the ADER scheme.

3.2 Junctions

The coupling of several one-dimensional vessels at branching points (for arteries) and merging points
(for veins) is treated using the methodology proposed in [76], which we formulate here for the case of
NP vessels converging at node P . The computational cell involved in the coupling of the k − th vessel,
with k = 1, ..., NP , will provide the state Qnk = [Ank , q

n
k ]T at time tn.

In order to couple the NP vessels, we have to compute the unknowns cross-sectional area A∗k and
velocity u∗k for each vessel converging at node P , which means that we have 2NP unknowns. Quantities
A∗k, u

∗
k will be used to compute fluxes at the terminal interface of the k-th vessel.

Let vessel k be discretised by Nk cells so that its local numbering is i = 1, ..., Nk. We define the
auxiliary function

gk(Ik) =

{
1 , if Ik = Nk ,

− 1 , if Ik = 1 ,
(38)

where Ik is the index of the computational cell of vessel k that converges to node P .
The first NP equations are given by imposing conservation of mass

NP∑
k=1

gkA
∗
ku
∗
k = 0 (39)

and total pressure

p(A∗1) +
1

2
ρ(u∗1)2 − p(A∗k)− 1

2
ρ(u∗k)2 = 0, k = 2, ..., NP . (40)

The remaining NP relations are obtained by enforcing that characteristics leave the one-dimensional
domain undisturbed

unk + gk

∫ An
k

A0,k

c(τ)

τ
dτ − u∗k − gk

∫ A∗
k

A0,k

c(τ)

τ
dτ = 0 k = 1, ..., NP . (41)

Equations (39) to (41) constitute a non-linear system with 2NP unknowns and is solved using Newton
method.

The main requirements for this procedure to work are that the flow regime is sub-critical and that
no elastic jumps reach node P . In fact, numerical investigations not reported in this work have shown
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Figure 8: Exact solution and numerical results for the Riemann problem described in section 3.1.2
regarding the effect of an (idealized) Valsava maneuver on an internal jugular vein with incompetent
valve and discontinuous mechanical properties. Results for first and third order versions of the numerical
schemes used in this work. Results shown for non-dimensional cross-sectional area (α = A/Aref ) (left)
and velocity (right) versus non-dimensional length (ξ = x/L).

that this algorithm fails to converge in the case of fast postural changes. Besides the lack of blood flow
regulatory mechanisms, this algorithm remains the mayor limitation of the present model in order to be
able to perform simulations including postural changes.

3.3 Arterioles, capillaries and venules and 1D-0D matching

For most terminal vessels, arteries are linked to veins via lumped parameter models that include
arterioles, capillaries and venules, as shown in figure 4. We call this type of artery-vein connection a
simple connection, since, as we will see later, some peripheral beds are formed by slightly more complex
networks. The resistance of distal arteries, Rda is set to be equal to the characteristic impedance of the
terminal artery in order to avoid non-physiological wave reflections, as suggested in [2]. The variables to
be computed for each circuit are

• boundary conditions for the 1D-0D interface (artery-distal arteries): P ∗art and Q∗art,

• state variables for each lumped compartment: Pal, Qal, Pcp, Qcp , Pvn and Qvn.

In order to correctly couple terminal arteries to arterioles we follow the methodology proposed in [2].
First, we impose that forward travelling waves leave the arterial domain undisturbed

Γ5(Part, Qart)− Γ5(P ∗art, Q
∗
art) = 0 , (42)

where Γ5 are Riemann invariants associated to forward travelling characteristics and Part, Qart are
pressure and flow rate values for the last computational cell of the one-dimensional domain of the terminal
artery. Moreover, we note that, for the pressure drop across Rda, the following relation must hold

Q∗art =
P ∗art − Pal

Rda
. (43)

For state variables in lumped compartments we discretise equations (23) using a backward Euler
scheme. For the 0D-1D interface (venules-veins), we impose Pout = Pvein and Qvein = Qvn.

Equations (42), (43), together with a backward Euler discretization of equations (23) for arterioles,
capillaries and venules, yield a differential-algebraic system with 8 unknowns which is solved at each
time step using a Newton method.
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3.4 Boundary conditions

Boundary conditions other than branching and merging points are treated using the same approach
applied to junctions. That is, we impose that the characteristic that leaves the one-dimensional domain
is not disturbed by boundary conditions, while we impose a given flow rate q∗bc or a pressure p(A∗bc). In
the case of fixed flow rate q∗bc we compute A∗bc by imposing that

qn1D
An1D

+ g1D

∫ An
1D

A0,1D

c(τ)

τ
dτ − q∗bc

A∗bc
− g1D

∫ A∗
bc

A0,1D

c(τ)

τ
dτ = 0 , (44)

where qn1D and An1D are flow rate and pressure at the terminal computational cell of the vessel and
g1D is given by (38). On the other hand, if we need to prescribe a pressure p(A∗bc), we solve (44) for q∗bc.
This type of boundary conditions is applied to the proximal end of the ascending aorta, to distal ends
of terminal veins and to the proximal end of the cavas at their interface with the right atrium.

In the next section we will present all parameters necessary for the description of the arterial and
venous networks, as well as for the various lumped parameter models used in this work.

4 Physiological data

One-dimensional vessels are characterized by a network topology, vessel geometry and mechanical
properties. Moreover, lumped parameter models presented in section 2 make use of several parameters.
In this section we present all parameters necessary for the implementation of our closed-loop model.

4.1 Geometry and parameters

Arteries. The arterial network, shown in figure 1, is composed by 85 arteries and was entirely taken
from [50] and references therein. Table 3 reports geometrical parameters and wave speed c0 assigned to
each artery. Reported radii correspond to a baseline internal pressure P0 = 85.mmHg and therefore to
A = A0, as proposed in [51]. Mechanical parameters are obtained from c0, by solving (11) for K, with
tube law (16) and A = A0. Table 2 reports the reference of location codes appearing in the next-to-last
column of table 3.

Code Location

1 Dural sinuses
2 Extra-cranial
3 Neck
4 Thorax
5 Abdomen
6 Upper limbs
7 Lower limbs
8 Pelvis
9 Intra-cranial

Table 2: Location codes indicated in tables 3 and 8.

Heart and pulmonary circulation. Parameters for heart and pulmonary circulation were taken from
[51] and [83] and are reported in tables 4 and 5, respectively.

Terminal segments. Most arteries are connected to veins via a simple artery-vein connection. How-
ever, for several compartments there is a distribution of flow from one systemic artery to multiple veins
or single arteries feeding more veins. These compartments are denoted as lumped models A to G. Figures
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9 to 11 show the corresponding circuits, whereas tables 6 and 7 report the value of parameters for each
compartment.

Veins.
The venous network is shown in figure 2. Geometrical and mechanical parameters are reported in

table 8. The last column of this table reports the source from which geometrical information for each
venous segment was extracted. Reported radii correspond to a baseline internal pressure P0 = 5.mmHg
and therefore to A = A0. c0 is the wave speed (21), from which Kv can be estimated. Note that relation
(21) is used for all veins expect for dural sinuses, for which a c0 = c0,max was used.

Since a major motivation of this work regards the study of neurovascular diseases recently linked
to the venous vasculature of the head and neck, as explained in section 1, this area is described with
more emphasis compared to other regions of the venous network. Most of the major veins of this
region were obtained via a segmentation procedure on a patient-specific basis. Medical imaging data
used in this paper has been provided by the Magnetic Resonance Research Facility at the Wayne State
University, Detroit, USA. In particular, we used 2D Time-of-Flight (TOF) and 3D contrast-enhanced
MR-Venography (CE-MRV) sequences of the head and neck of healthy controls. Figure 12 (top) shows
a Maximum Intensity Projection (MPI) of a TOF image for a healthy control. The geometry of major
vessels was extracted using the open-source segmentation tool Vascular Modelling Toolkit (VMTK) [5].
Once the 3D domain is available, VMTK allows to compute centerlines and vessel cross-sectional area
(CSA) for user-defined vessels. Figure 12 (bottom) shows segmentation results, as well as the centerline
for a left internal jugular vein (IJV). The geometry of major head and neck veins presented in this work
is from a single healthy control. The characterization of the model with patient-specific head and neck
veins can be easily carried out within a few hours.

Venous valves are described by the same model used for cardiac valves, with parameters: R =
0.003mmHg sml−1, L = 0.0025mmHg s2ml−1 and B = 0.000025mmHg s2ml−2. These parameters
are similar to the ones used for cardiac valves but allow for a faster opening/closure of the venous valve.
Table 9 shows the location of valves in the venous network.

17



No. Vessel name L [cm] r0 [cm] r1 [cm] c0 [m/s] Loc. Ref.

1 Ascending aorta 2.00 1.525 1.420 5.110 4 [51]
2 Aortic arch I 3.00 1.420 1.342 5.110 4 [51]
3 Brachiocephalic a. 3.50 0.650 0.620 5.910 4 [51]
4 R. subclavian a. I 3.50 0.425 0.407 5.290 6 [51]
5 R. carotid a. 17.70 0.400 0.370 5.920 3 [51]
6 R. vertebral a. 13.50 0.150 0.136 11.900 3 [51]
7 R. subclavian a. II 39.80 0.407 0.230 5.380 6 [51]
8 R. radius 22.00 0.175 0.140 10.120 6 [51]
9 R. ulnar a. I 6.70 0.215 0.215 8.780 6 [51]
10 Aortic arch II 4.00 1.342 1.246 5.110 4 [51]
11 L. carotid a. 20.80 0.400 0.370 5.920 3 [51]
12 Thoracic aorta I 5.50 1.246 1.124 5.110 4 [51]
13 Thoracic aorta II 10.50 1.124 0.924 5.110 4 [51]
14 Intercostal a. 7.30 0.300 0.300 7.130 4 [51]
15 L. subclavian a. I 3.50 0.425 0.407 5.290 6 [51]
16 L. vertebral a. 13.50 0.150 0.136 11.900 3 [51]
17 L. subclavian a. II 39.80 0.407 0.230 5.380 6 [51]
18 L. ulnar a. I 6.70 0.215 0.215 8.780 6 [51]
19 L. radius 22.00 0.175 0.140 10.120 6 [51]
20 Celiac a. I 2.00 0.350 0.300 5.860 5 [51]
21 Celiac a. II 2.00 0.300 0.250 6.540 5 [51]
22 Hepatic a. 6.50 0.275 0.250 6.860 5 [51]
23 Splenic a. 5.80 0.175 0.150 7.220 5 [51]
24 Gastric a. 5.50 0.200 0.200 6.400 5 [51]
25 Abdominal aorta I 5.30 0.924 0.838 5.110 5 [51]
26 Sup. mesenteric a. 5.00 0.400 0.350 5.770 5 [51]
27 Abdominal aorta II 1.50 0.838 0.814 5.110 5 [51]
28 R. renal a. 3.00 0.275 0.275 6.050 5 [51]
29 Abdominal aorta III 1.50 0.814 0.792 5.110 5 [51]
30 L. renal a. 3.00 0.275 0.275 6.050 5 [51]
31 Abdominal aorta IV 12.50 0.792 0.627 5.110 5 [51]
32 Inf. mesenteric a. 3.80 0.200 0.175 6.250 5 [51]
33 Abdominal aorta V 8.00 0.627 0.550 5.110 5 [51]
34 R. com. iliac a. 5.80 0.400 0.370 5.500 8 [51]
35 R. ext. iliac a. 14.50 0.370 0.314 7.050 8 [51]
36 R. int. iliac a. 4.50 0.200 0.200 10.100 8 [51]
37 R. deep femoral a. 11.30 0.200 0.200 7.880 7 [51]
38 R. femoral a. 44.30 0.314 0.275 8.100 7 [51]
39 R. ext. carotid a. I 4.10 0.200 0.150 8.900 2 [51]
40 L. int. carotid a. I 17.60 0.250 0.200 7.900 3 [51]
41 R. post. tibial a. 34.40 0.175 0.175 11.980 7 [51]
42 R. ant. tibial a. 32.20 0.250 0.250 9.780 7 [51]
43 R. interosseous a. 7.00 0.100 0.100 15.570 6 [51]
44 R. ulnar a. II 17.00 0.203 0.180 12.530 6 [51]
45 L. ulnar a. II 17.00 0.203 0.180 12.530 6 [51]
46 L. interosseous a. 7.00 0.100 0.100 15.570 6 [51]
47 R. int. carotid a. I 17.60 0.250 0.200 7.900 3 [51]
48 L. ext. carotid a. I 4.10 0.200 0.150 8.900 3 [51]
49 L. com. iliac a. 5.80 0.400 0.370 5.500 8 [51]
50 L. ext. iliac a. 14.50 0.370 0.314 7.050 8 [51]
51 L. int. iliac a. 4.50 0.200 0.200 10.100 8 [51]
52 L. deep femoral a. 11.30 0.200 0.200 7.880 7 [51]
53 L. femoral a. 44.30 0.314 0.275 8.100 7 [51]
54 L. post. tibial a. 34.40 0.175 0.175 11.980 7 [51]
55 L. ant. tibial a. 32.20 0.250 0.250 9.780 7 [51]
56 Basilar a. 2.90 0.162 0.162 9.330 1 [50]
57 R. post. cerebral. a. I 0.50 0.107 0.107 12.930 1 [50]
58 R. post. cerebral. a. II 8.60 0.105 0.105 13.130 1 [50]
59 R. post. communicating a. 1.50 0.073 0.073 17.240 1 [50]
60 R. int. carotid a. II 0.50 0.200 0.200 8.260 1 [50]
61 R. mid. cerebral a. 11.90 0.143 0.143 10.230 1 [50]
62 R. ant. cerebral a. I 1.20 0.117 0.117 12.030 1 [50]
63 R. ant. cererbal a. II 10.30 0.120 0.120 11.770 1 [50]
64 Ant. communicating a. 0.30 0.100 0.100 17.080 1 [50]
65 L. ant. cerebral a. II 10.30 0.120 0.120 11.770 1 [50]
66 L. ant. cerebral a. I 1.20 0.117 0.117 12.030 1 [50]
67 L. mid. cerebral a. 11.90 0.143 0.143 10.230 1 [50]
68 L. int. carotid a. II 0.50 0.200 0.200 8.260 1 [50]
69 L. post. communicating a. 1.50 0.073 0.073 17.240 1 [50]
70 L. post. cerebral a. II 8.60 0.105 0.105 13.130 1 [50]
71 L. post. cerebral a. I 0.50 0.107 0.107 12.930 1 [50]
72 L. ext. carotid a. II 6.10 0.200 0.200 8.530 3 [50]
73 R. ext. carotid a. II 6.10 0.200 0.200 8.530 3 [50]
74 L. sup. thyroid a. 10.10 0.100 0.100 16.570 3 [50]
75 R. sup. thyroid a. 10.10 0.100 0.100 16.570 3 [50]
76 L. superf. temporal a. 6.10 0.160 0.160 9.620 2 [50]
77 R. superf. temporal a. 6.10 0.160 0.160 9.620 2 [50]
78 L. maxillary a. 9.10 0.110 0.110 15.090 2 [50]
79 R. maxillary a. 9.10 0.110 0.110 15.090 2 [50]
80 L. superf. temp. fron. bran. 10.00 0.110 0.110 15.090 2 [50]
81 R. superf. temp. fron. bran. 10.00 0.110 0.110 15.090 2 [50]
82 L. superf. temp. pari. bran. 10.10 0.110 0.110 15.090 2 [50]
83 R. superf. temp. pari. bran 10.10 0.110 0.110 15.090 2 [50]
169 R. facial a. 11.60 0.130 0.130 15.090 2 [50]
170 L. facial a. 11.60 0.130 0.130 15.090 2 [50]

Table 3: Physiological data for arteries, taken from [50] and references therein. L: length; r0: inlet
radius; r1: outlet radius; c0: wave speed for A = A0; Loc: location in the body according to table 2;
Ref : bibliographic source.
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RA RV LA LV TriV PulV MitV AorV

EA [mmHg ml−1] 0.06 0.55 0.07 2.75 – – – –

EB [mmHg ml−1] 0.05 0.05 0.09 0.08 – – – –
Tcp [s] 0.17 0.30 0.17 0.30 – – – –
Trp [s] 0.17 0.15 0.17 0.15 – – – –
tc [s] 0.80 0.00 0.80 0.00 – – – –
Tr [s] 0.97 0.30 0.97 0.30 – – – –

S [mmHg sml−1] Pra× 0.00050 Pra× 0.00050 Pra× 0.00050 Pra× 0.00050 – – – –

B [mmHg s2 ml−2] – – – – 0.000016 0.000025 0.000016 0.000025

R [mmHg sml−1] – – – – 0.001 0.003 0.001 0.003

L [mmHg s2 ml−1] – – – – 0.0002 0.0005 0.0002 0.0005

Table 4: Parameters for heart chambers and cardiac valves, modified from [50] and references therein.
RA: right atrium; RV : right ventricle; LA: left atrium; LV : left ventricle; TriV : tricuspid valve; PulV :
pulmonary valve; MitV : mitral valve; AorV : aortic valve.

E0 [mmHg ml−1] Φ [ml] R [mmHg sml−1] L [mmHg s2 ml−1] S [mmHg sml−1]

Artery 0.02 20.0 0.040 0.0005 0.01
Capillary 0.02 60.0 0.040 0.0005 0.01
Vein 0.02 200.0 0.005 0.0005 0.01

Table 5: Parameters for pulmonary circulation, modified from [50] and [83]. E0: baseline elastance; Φ:
volume constant; R: resistance; L: inductance; S: viscoelasticity.

A. index V. index Rda Ral Lal Cal Rcp Lcp Ccp Rvn Lvn Cvn

8 187 13.5055 17.0300 0.0180 0.0140 6.5500 0.0029 0.0014 2.1000 0.0052 0.0430
43 188 39.4048 393.7000 0.0700 0.0043 151.4000 0.0117 0.0004 48.5000 0.0209 0.0129
44 189 9.9182 19.6900 0.0180 0.0140 7.5700 0.0029 0.0014 2.4200 0.0052 0.0430
45 190 9.9182 19.6900 0.0180 0.0140 7.5700 0.0029 0.0014 2.4200 0.0052 0.0430
46 191 39.4048 393.7000 0.0700 0.0043 151.4000 0.0117 0.0004 48.5000 0.0209 0.0129
19 192 13.5055 17.0300 0.0180 0.0140 6.5500 0.0029 0.0014 2.1000 0.0052 0.0430
41 251 9.9001 30.4400 0.0210 0.0500 11.7100 0.0035 0.0010 3.7500 0.0062 0.0310
42 214 3.9602 14.0300 0.0140 0.1150 5.4000 0.0023 0.0023 1.7300 0.0042 0.0680
37 179 4.9857 13.3700 0.0140 0.1150 5.1400 0.0023 0.0023 1.6500 0.0042 0.0680
55 215 3.9602 14.0300 0.0140 0.1150 5.4000 0.0023 0.0023 1.7300 0.0042 0.0680
54 256 9.9001 30.4400 0.0210 0.0500 11.7100 0.0035 0.0010 3.7500 0.0062 0.0310
52 180 4.9857 13.3700 0.0140 0.1150 5.1400 0.0023 0.0023 1.6500 0.0042 0.0680
36 184 6.3903 23.4800 0.0180 0.0182 9.0300 0.0030 0.0014 2.8900 0.0054 0.1080
51 183 6.3903 23.4800 0.0180 0.0182 9.0300 0.0030 0.0014 2.8900 0.0054 0.1080
32 211 4.8972 30.7400 0.0200 0.0178 11.8500 0.0033 0.0011 3.7800 0.0060 0.0330
28 208 2.0247 4.3100 0.0080 0.0680 1.6600 0.0014 0.0067 0.5300 0.0024 0.2000
30 207 2.0247 4.3100 0.0080 0.0680 1.6600 0.0014 0.0067 0.5300 0.0024 0.2000
169 234 22.5976 119.6200 0.0170 0.0150 46.0070 0.0029 0.0015 14.7220 0.0051 0.0450
170 235 22.5976 119.6200 0.0170 0.0150 46.0070 0.0029 0.0015 14.7220 0.0051 0.0450
14 250 2.0050 5.6100 0.0090 0.1390 2.1600 0.0015 0.0139 0.6900 0.0027 0.4170

Table 6: Parameters for simple artery-vein connections, modified from [50] and references therein. The
first two columns show the indexes of the linked artery and the linked vein, according to tables 3 and 8.
The third column shows the resistance of distal arteries Rda [mmHgml−1], while the remaining columns
report resistance R [mmHgml−1], inductance L [mmHg s2ml−1] and capacitance C [mlmmHg−1] for
arterioles, capillaries and venules respectively.
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Figure 9: Lumped models A to C. The figure shows the indexes of feeding arteries, to the left, and
collecting veins, to the right. Parameters for resistances, inductors and capacitors are found in table 7.

20



78

82

80

116

128

D

70 109

107

151

E

58 110

108

150

F
Figure 10: Lumped models D to F. The figure shows the indexes of feeding arteries, to the left, and
collecting veins, to the right. Parameters for resistances, inductors and capacitors are found in table 7.
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Figure 11: Lumped model G. The figure shows the indexes of feeding arteries, to the left, and collecting
veins, to the right. Parameters for resistances, inductors and capacitors are found in table 7.

Parent/daughter vessel Rda Ral Lal Cal Rcp Lcp Ccp Rvn Lvn Cvn

Lumped model A
22 2.7594 16.2400 0.0150 0.0210 6.2400 0.0024 0.0021 – – –
26 1.1634 3.8500 0.0070 0.0810 1.4800 0.0012 0.0081 – – –
23 7.8931 21.3300 0.0180 0.0140 8.2000 0.0030 0.0014 – – –
24 4.0493 8.9100 0.0120 0.0330 3.4300 0.0019 0.0032 – – –
199 – – – – – – – 0.2550 0.0013 0.5270

Lumped model B
74 41.9356 119.6200 0.0878 0.0037 46.0070 0.0140 0.0004 – – –
75 41.9356 119.6200 0.0878 0.0037 46.0070 0.0140 0.0004 – – –
223 – – – – – – – 7.3610 0.0129 0.0225

Lumped model C
79 31.5620 101.8600 0.0748 0.0037 78.3560 0.0244 0.0004 – – –

– – – – 78.3560 0.0244 – – – –
81 31.5620 101.8600 0.0748 0.0037 39.1780 0.0122 0.0004 – – –
83 31.5620 102.5100 0.0753 0.0037 39.4200 0.0123 0.0004 – – –
115 – – – – – – – 25.0740 0.0440 0.0056
127 – – – – – – – 5.0260 0.0088 0.0281

Lumped model D
78 31.5620 101.8600 0.0748 0.0037 78.3560 0.0244 0.0004 – – –

– – – – 78.3560 0.0244 – – – –
82 31.5620 101.8600 0.0748 0.0037 39.1780 0.0122 0.0004 – – –
80 31.5620 102.5100 0.0753 0.0037 39.4200 0.0123 0.0004 – – –
116 – – – – – – – 25.0740 0.0440 0.0056
128 – – – – – – – 5.0260 0.0088 0.0281

Lumped model E
70 30.1402 18.7300 0.0138 0.0070 7.2000 0.0022 0.0007 – – –
common param. – – – – – – – – – 0.0018
107 – – – – – – – 18.4400 0.0324 –
109 – – – – – – – 18.4400 0.0324 –
151 – – – – – – – 3.0700 0.0054 –

Lumped model F
58 30.1402 18.7300 0.0138 0.0070 7.2000 0.0022 0.0007 – – –
common param. – – – – – – – – – 0.0018
108 – – – – – – – 18.4400 0.0324 –
110 – – – – – – – 18.4400 0.0324 –
150 – – – – – – – 3.0700 0.0054 –

Lumped model G
63 20.6859 24.4500 0.0179 0.0070 18.8100 0.0059 0.0007 – – –

– – – – 18.8100 0.0059 – – – –
65 20.6859 24.4500 0.0179 0.0070 18.8100 0.0059 0.0007 – – –
61 12.6609 10.5700 0.0078 0.0140 18.8100 0.0059 0.0014 – – –

– – – – 4.0700 0.0013 – – – –
67 12.6609 10.5700 0.0078 0.0140 4.0700 0.0013 0.0014 – – –
105 – – – – – – – 3.7800 0.0066 0.0210
165 – – – – – – – 0.6900 0.0016 0.0210

Table 7: Parameters for complex artery-vein connections, shown in figures 9 to 11, derived from [51].
Parameter units are the same as the ones used in table 6.
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Figure 12: MIP-TOF for a healthy patient (top) and patient-specific segmented geometry and centerline
extraction for head and neck veins (bottom).
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Table 8: Geometrical and mechanical parameters for the venous system. L: length; r0: inlet radius;
r1: outlet radius; c0: wave speed for A = A0; Loc location in the body according to table 2; Ref :
bibliographic source or MRI imaging segmented geometry.

No. Vessel name L [cm] r0 [cm] r1 [cm] c0 [m/s] Loc. Ref.

84 Sup. vena cava I 1.50 0.800 0.800 1.000 4 MRI
85 Sup. vena cava II 2.00 0.800 0.800 1.000 4 MRI
86 R. brachiocephalic v. 4.00 0.564 0.564 1.360 4 MRI
87 L. brachiocephalic v. 7.50 0.535 0.535 1.410 4 MRI
88 L. subclavian v. I 3.00 0.564 0.564 1.360 6 [36], [75]
89 R. subclavian v. I 3.00 0.564 0.564 1.360 6 [36], [75]
90 R. ext. jugular v. 20.00 0.252 0.252 2.022 3 MRI
91 L. ext. jugular v. 20.00 0.252 0.357 1.883 3 MRI
92 R. int. jugular v. I 2.50 0.399 0.399 1.669 3 MRI
93 L. int. jugular v. I 2.50 0.564 0.618 1.315 3 MRI
94 L. vertebral v. II 11.00 0.138 0.160 2.381 3 MRI
95 R. vertebral v. II 11.00 0.138 0.160 2.381 3 MRI
96 R. deep cervical v. 13.00 0.160 0.160 2.333 3 MRI
97 L. deep cervical v. 13.00 0.160 0.160 2.333 3 MRI
98 Vertebral venous plexus 71.00 0.368 0.368 1.735 3 [82]
99 R. sigmoid sinus II 3.50 0.252 0.252 3.000 1 MRI
100 L. sigmoid sinus II 3.50 0.357 0.378 3.000 1 MRI
101 R. trans. sinus I 3.50 0.218 0.178 3.000 1 MRI
102 L. trans. sinus I 3.50 0.437 0.309 3.000 1 MRI
103 Sup. sagittal sinus I 10.00 0.319 0.367 3.000 1 MRI
104 Straight sinus 4.00 0.250 0.250 3.000 1 MRI
105 Inf. sagittal sinus 11.00 0.160 0.160 3.000 1 MRI
106 Vein of Galen 1.60 0.309 0.400 1.765 9 MRI
107 L. int. cerebral v. 5.00 0.126 0.126 2.494 9 MRI
108 R. int. cerebral v. 5.00 0.126 0.126 2.494 9 MRI
109 L. basal v. of Rosenthal I 1.00 0.126 0.126 2.494 9 MRI
110 R. basal v. of Rosenthal I 1.00 0.126 0.126 2.494 9 MRI
111 R. sup. petrosal sinus 5.70 0.149 0.149 3.000 1 MRI
112 L. sup. petrosal sinus 5.70 0.149 0.149 3.000 1 MRI
113 R. inf. petrosal sinus 3.20 0.080 0.160 3.000 1 MRI
114 L. inf. petrosal sinus 3.20 0.080 0.160 3.000 1 MRI
115 R. post. auricular v. 5.00 0.080 0.080 3.000 2 MRI
116 L. post. auricular v. 5.00 0.080 0.080 3.000 2 MRI
117 R. post. retromandibular v. 3.52 0.250 0.250 2.028 2 [92]
118 L. post. retromandibular v. 3.52 0.250 0.250 2.028 2 [92]
119 R. ant. retromandibular v. 3.15 0.235 0.235 2.072 2 [92]
120 L. ant. retromandibular v. 3.15 0.235 0.235 2.072 2 [92]
121 R. retromandibular v. 4.50 0.260 0.260 2.000 2 [92]
122 L. retromandibular v. 4.50 0.260 0.260 2.000 2 [92]
123 R. facial v. II 6.00 0.132 0.178 2.355 2 MRI
124 L. facial v. II 6.00 0.132 0.178 2.355 2 MRI
125 R. com. facial v. 0.90 0.180 0.180 2.255 2 MRI
126 L. com. facial v. 0.90 0.180 0.180 2.255 2 MRI
127 R. superf. temp. v. 5.00 0.190 0.190 2.218 2 [92]
128 L. superf. temp. v. 5.00 0.190 0.190 2.218 2 [92]
129 R. maxillary v. 1.00 0.175 0.175 2.274 2 [92], MRI
130 L. maxillary v. 1.00 0.175 0.175 2.274 2 [92], MRI
131 R. deep facial v. 0.90 0.250 0.250 2.028 2 –
132 L. deep facial v. 0.90 0.250 0.250 2.028 2 –
133 R. emissary v. 3.00 0.100 0.100 2.667 2 [84]
134 L. emissary v. 3.00 0.100 0.100 2.667 2 [84]
135 R. pterygoid plexus 0.90 0.150 0.150 2.376 2 [79]
136 L. pterygoid plexus 0.90 0.150 0.150 2.376 2 [79]
137 R. marginal sinus 4.00 0.100 0.100 3.000 1 [19]
138 L. marginal sinus 4.00 0.100 0.100 3.000 1 [19]
139 Occipittal sinus 3.50 0.235 0.235 3.000 1 [9]
141 R. mastoid emissary v. 7.20 0.175 0.175 2.274 2 [93, 53]
142 L. mastoid emissary v. 7.20 0.175 0.175 2.274 2 [93, 53]
143 R. post. condylar v. 3.00 0.315 0.315 1.857 2 MRI, [19]
144 L. post. condylar v. 3.00 0.315 0.315 1.857 2 MRI, [19]
145 R. subocc. sinus 1.00 0.450 0.450 1.566 2 [19]
146 R. lat. ant. condylar v. 3.00 0.315 0.315 1.857 2 [19]
147 L. lat. ant. condylar v. 3.00 0.315 0.315 1.857 2 [19]
150 R. Labbe v. 5.00 0.126 0.126 2.494 9 MRI
151 L. Labbe v. 5.00 0.126 0.126 2.494 9 MRI
154 L. cavernous sinus 1.50 0.100 0.100 3.000 1 MRI
155 R. cavernous sinus 1.50 0.100 0.100 3.000 1 MRI
156 Occipittal v. 5.00 0.126 0.126 2.494 2 MRI
160 Azygos v. I 2.00 0.425 0.425 1.616 4 MRI, [47]
163 R. vertebral v. I 5.00 0.160 0.160 2.333 3 MRI
164 L. vertebral v. I 5.00 0.160 0.160 2.333 3 MRI
165 Sup. sagittal sinus III 13.00 0.200 0.319 3.000 1 MRI
166 L. subocc. sinus 1.00 0.450 0.450 1.566 2 [19]
167 R. anastomotic v. 2.00 0.100 0.100 2.667 3 [19], [6]
168 L. anastomotic v. 2.00 0.100 0.100 2.667 3 [19], [6]
171 R. great saphenous v. I 7.50 0.222 0.230 2.100 7 [95], [3]
172 L. great saphenous v. I 7.50 0.222 0.230 2.100 7 [95], [3]
173 L. post. tibial v. I 17.30 0.150 0.150 2.376 7 [46], [3]
174 L. ant. tibial v. I 16.00 0.150 0.150 2.376 7 [46], [3]
175 R. popliteal v. 19.00 0.340 0.340 1.798 7 [41], [3]
176 L. popliteal v. 19.00 0.340 0.340 1.798 7 [41], [3]
177 L. femoral v. 25.40 0.350 0.350 1.775 7 [41], [3]
178 R. femoral v. 25.40 0.350 0.350 1.775 7 [41], [3]
179 R. deep femoral v. 12.60 0.350 0.350 1.775 7 [3]
180 L. deep femoral v. 12.60 0.350 0.350 1.775 7 [3]
181 R. ext. iliac v. 14.40 0.500 0.500 1.472 8 [41], [3]
182 L. ext. iliac v. 14.40 0.500 0.500 1.472 8 [41], [3]
183 L. int. iliac v. 5.00 0.150 0.150 2.376 8 [41], [3]
184 R. int. iliac v. 5.00 0.150 0.150 2.376 8 [41], [3]
185 R. com. iliac v. II 2.00 0.575 0.575 1.342 8 [66], [3]
186 L. com. iliac v. II 2.00 0.575 0.575 1.342 8 [66], [3]
187 R. radial v. 40.60 0.200 0.200 2.184 6 [3]
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Table 8 – continued from previous page

No. Vessel name L [cm] r0 [cm] r1 [cm] c0 [m/s] Loc. Ref.

188 L. interosseous v. 7.00 0.100 0.100 2.667 6 [3]
189 R. ulnar v. II 30.60 0.200 0.200 2.184 6 [3]
190 L. ulnar v. II 30.60 0.200 0.200 2.184 6 [3]
191 L. interosseous v. 7.00 0.100 0.100 2.667 6 [3]
192 L. radial v. 40.60 0.200 0.200 2.184 6 [3]
193 L. subclavian v. III 27.00 0.520 0.520 1.437 6 [36], [75]
194 R. subclavian v. III 27.00 0.520 0.520 1.437 6 [36], [75]
195 L. subclavian v. II 3.00 0.520 0.520 1.437 6 [36], [75]
196 R. subclavian v. II 3.00 0.520 0.520 1.437 6 [36], [75]
197 L. ulnar v. I 10.00 0.200 0.200 2.184 6 [3]
198 Inf. vena cava I 2.00 0.762 0.762 1.053 5 [24], [3]
199 Hepatic v. 6.80 0.485 0.485 1.500 5 [25], [3]
200 Inf. vena cava II 1.50 0.762 0.762 1.053 5 [24], [3]
201 inf. vena cava III 1.50 0.762 0.762 1.053 5 [24], [3]
202 Inf. vena cava IV 12.50 0.762 0.762 1.053 5 [24], [3]
203 Inf. vena cava V 8.00 0.762 0.762 1.053 5 [24], [3]
204 R. com. iliac v. I 3.80 0.575 0.575 1.342 8 [66], [3]
205 L. com. iliac v. I 3.80 0.575 0.575 1.342 8 [66], [3]
206 R. ulnar v. I 10.00 0.200 0.200 2.184 6 [3]
207 L. renal v. 3.20 0.250 0.250 2.028 5 [3]
208 R. renal v. 3.20 0.250 0.250 2.028 5 [3]
209 Ascending lumbar v. 23.00 0.200 0.200 2.184 5 [79]
210 hemiazygos v. 23.00 0.280 0.280 1.946 5 [79]
211 Inf. mesenteric v. 6.00 0.450 0.450 1.566 5 [3]
212 R. post. tibial v. I 17.30 0.150 0.150 2.376 7 [46], [3]
213 R. ant. tibial v. I 16.00 0.150 0.150 2.376 7 [46], [3]
214 R. ant. tibial v. II 2.00 0.600 0.600 1.300 7 [46], [3]
215 L. ant. tibial v. II 2.00 0.600 0.600 1.300 7 [46], [3]
216 R. lumbar v. 3.80 0.100 0.100 2.667 5 [79]
217 L. lumbar v. 3.80 0.100 0.100 2.667 5 [79]
218 R. sup. thyroid v. 4.00 0.150 0.150 2.376 3 MRI, [91]
219 L. sup. thyroid v. 4.00 0.150 0.150 2.376 3 MRI, [91]
220 R. mid. thyroid v. 3.00 0.100 0.100 2.667 3 MRI, [91]
221 L. mid. thyroid v. 3.00 0.100 0.100 2.667 3 MRI, [91]
222 Inf. thyroid v. 7.00 0.126 0.126 2.494 3 MRI
223 Thyroid connection 2.00 0.160 0.160 2.333 3 –
224 R. int. jugular v. II 3.00 0.357 0.357 1.759 3 MRI
225 L. int. jugular v. II 3.00 0.564 0.564 1.360 3 MRI
226 R. int. jugular v. III 2.70 0.252 0.357 1.883 3 MRI
227 L. int. jugular v. III 2.70 0.564 0.564 1.360 3 MRI
228 R. int. jugular v. IV 6.80 0.252 0.252 2.022 3 MRI
229 L. int. jugular v. IV 6.80 0.399 0.564 1.506 3 MRI
230 R. sigmoid sinus I 1.50 0.252 0.252 3.000 1 MRI
231 L. sigmoid sinus I 1.50 0.378 0.399 3.000 1 MRI
232 R. trans. sinus II 3.50 0.178 0.252 3.000 1 MRI
233 L. trans. sinus II 3.50 0.309 0.357 3.000 1 MRI
234 R. facial v. I 2.00 0.113 0.132 2.514 2 MRI
235 L. facial v. I 2.00 0.113 0.132 2.514 2 MRI
236 Sup. sagittal sinus II 2.00 0.319 0.319 3.000 1 MRI
240 Intra-cavernous sinus 2.00 0.126 0.126 3.000 1 [79], [19]
242 R. int. jugular v. V 1.00 0.399 0.399 1.669 3 MRI
243 L. int. jugular v. V 1.00 0.618 0.618 1.271 3 MRI
244 Azygos v. II 28.00 0.425 0.425 1.616 4 MRI, [47]
245 Inf. vena cava VI 13.30 0.762 0.762 1.053 5 [66], [3]
246 L. basal v. of Rosenthal II 7.00 0.126 0.126 2.494 9 MRI
247 R. basal v. of Rosenthal II 7.00 0.126 0.126 2.494 9 MRI
250 Intercostal v. 2.00 0.400 0.400 1.667 4 [79]
251 R. post. tibial v. II 17.30 0.150 0.150 2.376 7 [46], [3]
252 R. ant. tibial v. II 16.00 0.150 0.150 2.376 7 [46], [3]
253 R. great saphenous v. II 37.50 0.145 0.188 2.308 7 [95], [3]
254 L. great saphenous v. II 37.50 0.145 0.188 2.308 7 [95], [3]
255 L. ant. tibial v. II 16.00 0.150 0.150 2.376 7 [46], [3]
256 L. post. tibial v. I 17.30 0.150 0.150 2.376 7 [46], [3]
257 R. great saphenous v. III 30.00 0.188 0.222 2.168 7 [95], [3]
258 L. great saphenous v. III 30.00 0.188 0.222 2.168 7 [95], [3]
259 Confluence of sinuses 1.00 0.010 0.010 3.000 1 MRI

4.2 Flow measurements

In addition to morphological data, Phase-Contrast (PC) MRI flow quantification data was gathered
by the MR Research Facility at the Wayne State University, Detroit (USA) and made available for the
validation of our model. Flow was acquired in the neck at three levels and for dural sinuses, including
the Superior Sagittal Sinus, the Straight Sinus and both Transverse Sinuses. Figure 13 shows the three
acquisition planes for neck veins and the acquisition plane for dural sinuses. Flow measurements were
performed in the same MRI session when TOF and CE-MRV sequences were acquired, so that mor-
phological and flow quantification data are patient-specific. PC-MRI sequences were processed with an
in-house tool of the MR Research Facility in order to extract time resolved flow rates over the cardiac
cycle [33]. A maximum encoding velocity (VENC) of 50 cms−1 was used. For a detailed description of
the acquisition procedure refer to [33].

After having presented physiological data necessary for the construction of our closed-loop model,
we proceed in the next section with a thorough validation of our computational results, comparing them
versus literature data and to PC-MRI flow quantification data.
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No. Left vessel index Right vessel index

1 193 195
2 194 196
3 244 160
4 257 171
5 258 172
6 253 257
7 254 258
8 175 178
9 176 177
10 251 212
11 256 173
12 252 213
13 255 174
14 92 242
15 93 243

Table 9: Location of valves in the venous network shown in figure 2. Valves allow flow from left to right
vessel.

5 Computational results

In this section we present computational results in order to perform a thorough validation of our
closed-loop model. The one-dimensional domain was divided into cells with a length of ∆x = 1 cm,
imposing however a minimum of 3 computational cells in each vessel. Setting the CFL number of
CFL = 0.9, the average time step was equal to 1.5 × 10−4 s. We note that the time step is computed
at each computational step. Other relevant parameters are blood viscosity µ = 0.0045Pa s and density
ρ = 1050 kgm−3. Initial velocity was set to u = 0ms−1 everywhere and initial pressures were chosen
as reported in table 10. We note that the specification of initial conditions is crucial, especially in the
case of a closed-loop model, since they will define the periodic condition that the model will reach. The
model reached a periodic state after approximately 15 cardiac cycles. For friction loses we assume a
Poiseuille velocity profile so that f = 8πµu/ρ. All computations were performed using a third order
accurate version of our numerical scheme.

Compartment Pini [mmHg]

Arteries 70.0
Veins 5

Heart chambers & pulmonary compartments 10.0
Arterioles 45.0
Capillaries 25.0

Venules 10.0

Table 10: Inital pressure values for all compartments.

5.1 Heart

Figure 14 shows computed pressures and volumes for each cardiac chamber. Pressure variation
over the cardiac cycle well represents physiological conditions, for both atria and ventricles. The same
observation is valid for volume curves. Stroke volume of the left ventricle is around 80ml, in accordance
with physiological values [48].
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Figure 13: Planes at which PC-MRI flow measures were acquired for neck veins at C2-C3, C5-C6 and C7-
T1 levels (left) and for dural sinuses (right). The three acquisition planes along the neck allow to evaluate
how flow rate increases as tributary veins merge the internal jugular veins, whereas the acquisition plane
for dural sinues allows the evaluation of flow for the Superior Sagittal Sinus, the Straight Sinus and both
Transverse Sinuses.

5.2 Arteries

Figures 15 and 16 show a comparison between computational results and data reported in the litera-
ture for average flow rates in major systemic arteries and cerebral arteries, respectively. The agreement
is satisfactory in both cases, with computational results always located within physiological ranges.

Figures 17 and 18 show computed pressure and flow rate along the aorta and major leg arteries.
Pressure waveforms in systemic arteries well reproduce physiological patterns, with steepening of the
wave and increase in systolic peak pressure as the wave travels away from the heart. Pressure ranges in
the arterial system fall within normal values. Pulse pressure in the ascending aorta is equal to 40mmHg,
while it reaches a value of 66mmHg in the femoral artery.

Computed pressure and flow rate in head and neck arteries are shown in figure 19. While correct flow
distribution was already assessed in figure 16, flow waveforms correspond to measurements reported in
[38] and [72].

5.3 Capillary beds

Figure 20 shows computed pressure in arterioles, capillaries and venules at selected locations in
lumped compartments E to G. Pressure values in all compartments vary around physiologically reasonable
values: 40− 60mmHg for arterioles, 20− 30mmHg for capillaries and 13− 17mmHg for venules.

5.4 Veins

Figure 21 shows a comparison of computed mean flow rates in selected systemic veins vs data reported
in the literature. The agreement is satisfactory, showing a correct distribution of venous return between
superior vena cava (SVC) and inferior vena cava (IVC).

Regarding average flow rates in head and neck veins, in figure 22 we compare our computational re-
sults with patient-specific PC-MRI flow quantification data. Flow distribution between Superior Sagittal
Sinus (SSS) and Straight Sinus (StS) and consequently between both Transverse Sinuses (TS) matches
measured data. Flow distribution between left and right Internal Jugular Veins (IJVs) correctly repre-
sents measurements, with an increase of flow as we move from C2-C3 level to C5-C6 level. The increased
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Figure 14: Computed pressures (top) and volumes (bottom) for the four cardiac chambers. RA: Right
Atrium; RV: Right Ventricle; LA: Left Atrium; LV: Left Ventricle.

flow rate is related to the contribution of collaterals, such as the common facial vein and thyroid veins.
Pressure and flow rate waveforms in systemic veins are shown in figure 23. Blood flow in systemic

veins is highly pulsatile, with a biphasic behaviour. By biphasic we mean that, contrary to what happens
in arteries, there are two marked peaks in both, pressure and flow. This pulsatility is due to the direct
connection of caval veins to the right atrium and the consequent retrograde pressure pulses traveling
opposite to blood flow direction [48, 70]. The first flow peak, which is normally the highest one, is due
to atria relaxation and consequently filling of this chamber, whereas the second one is related to the
opening of the tricuspid valve. Depending on the degree of valvular competence, flow may be retrograde
after the second peak. Computed flow waveforms resemble the expected biphasic behaviour and reflect
the great influence of the right atrium in systemic venous flow patterns.

In the case of dural sinuses (major intracranial veins) and neck veins, time-resolved PC-MRI flow
rate data is available. Computed pressure and flow rate, as well as PC-MRI flow measurements are
shown in figures 24 to 26. We note that flow rate measurements correspond to the same patient for
which major head and neck veins were characterized. Computed flow rate waveforms well reproduce
measured ones, with a biphasic behaviour and the highest peak in correspondence of ventricular systole.
There are however expected discrepancies between our computational results and PC-MRI flow data.
In particular, there is a mismatch in average flow rate at C5-C6 and C7-T1 levels for the left internal
jugular vein (figures 25(l) and 26(f)). This missing mass influences also the matching between time
resolved measurements and computational results at those locations. The mass mismatch is due to the
fact that cerebral blood flow is not imposed in the model, but is a result of computations. Since we are
characterizing only major head and neck veins, while using a standard network of arteries, veins and
capillary bed, this kind of results is expected.

There are certainly other factors that will influence venous waveforms which were not taken into
account in the present model. In the next section we identify these factors and discuss their potential
influence.
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Figure 15: Blood flow distribution along the aorta and major leg arteries: computational results vs
literature data (average and standard deviation). Asc. Ao.: Ascending Aorta; Kidneys: sum of both
Renal Arteries; Tho. Ao.: Thoracic Aorta; Abd. Ao.: Abdominal Aorta; Ext. Il. A.: External Iliac
Artery; Fem. A.: Femoral Artery. Vessel numbers refer to table 3 and figure 1. References: aMurgo et
al. [61]; bWolf et al. [94]; cZitnik et al. [98]; dCheng et al. [21]; eItzchak et al. [43]; fLewis et al. [49].

6 Discussion and future work

Closed-loop models make it possible to study a wide range of physiological and pathological conditions
[51, 12], avoiding the imposition of boundary conditions. On the other hand, their construction requires
the characterization of a complex multi-scale set of models and their coupling. Therefore, such models
have to be thoroughly validated, comparing computational results to physiological realistic situations and,
ideally, to measurements. In section 5 we have presented computational results for major compartments
described by the proposed model, comparing them to physiological data reported in the literature and
to MRI derived flow quantification data. We have seen that heart dynamics are well described, with
a correct interaction among heart chambers and between the left ventricle and the ascending aorta.
Waveform patterns in the arterial system are in accordance with general physiological data and blood
flow distribution among organs is reasonable.

The same conclusions made for the arterial system can be drawn for the venous circulation. The one-
dimensional description of the venous district of our model is in fact a novel aspect of the present work.
The emphasis given to the venous system in this work can not be found in previous works that presented
models with a one-dimensional description of this cardiovascular district [75, 3], even in the context of
closed-loop models [90]. Always with regard to the venous system, a distinctive aspect of the present
work is represented by the detailed description of head and neck veins, which takes into account collateral
pathways for cerebral venous drainage. This choice is motivated by the future applications envisaged in
the context of this work with regard to the performance of a computational study of haemodynamical
aspects of CCSVI [97].

Our experience, derived from modelling several patients for which MRI-derived geometry and PC-MRI
time-resolved flow rate measurements were available, suggests us that a patient-specific characterization
of major head and neck veins via medical imaging-derived geometries is necessary to satisfactorily repro-
duce measurements. In order to illustrate this fact we report a limited number of computational results
for a second healthy control. The model is kept as described in section 4, except for some major head
and neck veins, which are modified according to patient-specific MRI-derived geometrical information.
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Figure 16: Blood flow in head and neck arteries: computational results vs literature data (average and
standard deviation). Brain: sum of average flow rate in both internal carotid and vertebral arteries;
ICA: Internal Carotid Artery; MCA: Middle Cerebral Artery; BA: Basilar Artery; VA: Vertebral Artery.
Vessel numbers refer to table 3 and figure 1. References: aStoquart-ElSankari et al. [81]; bStock et al.
[80]; cBoorder et al. [14].

Modified vessels are reported in table 11. In figure 27 we compare measured and computed average flow
rates at two levels of internal jugular veins (unfortunately no measurement for dural sinuses are available
for this patient). We can see that measured average flow at these locations is different from the one pre-
viously reported (see figure 22). We can also observe that modifying the venous network in this region
is sufficient for obtaining a satisfactory agreement between measured and computed flow distribution.
In figure 28 we show time-resolved flow measurements and computed flow rates in two veins. As for the
healthy control presented in section 5, also in this case the amplitude of the first peak in the flow rate
waveform is satisfactorily reproduced.
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Figure 17: Computed pressure and flow rate along the aorta.
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Figure 18: Computed pressure and flow rate in the aorta and major leg arteries.
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Figure 19: Computed pressure and flow rate in head and neck arteries.

33



0.0 0.5 1.0
t [s]

0

20

40

60
p

[m
m
H
g]

p1_70
p2_70
pVenule

(a)

0.0 0.5 1.0
t [s]

0

20

40

60

p
[m
m
H
g]

p1_58
p2_58
pVenule

(b)

0.0 0.5 1.0
t [s]

0

20

40

60

80

p
[m
m
H
g]

p1_67
p2_67
pVenule_165

(c)

0.0 0.5 1.0
t [s]

0

20

40

60

80

p
[m
m
H
g]

p1_65
p2_65
pVenule_105

(d)

Figure 20: Computed pressure values for arterioles, capillaries and venules for selected elements of lumped
compartments E (top left), F (top right) and G (bottom row). p1 stands for arterioles, p2 for capillaries
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Figure 21: Blood flow in selected systemic veins: computational results vs literature data (average and
standard deviation). SVC: Superior Vena Cava; IVC: Inferior Vena Cava; AzG V.: Azygos Vein; SCV:
Subclavian Vein. Vessel numbers refer to figure 2 and table 8. References: a Be’eri et al. [11]; b Cheng
et al. [21]; c Nabeshima et al. [63]; d Fortune & Feustel [36].
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Figure 22: Blood flow in head and neck veins: computational results vs MRI flow quantification data.
SSS: Superior sagittal Sinus; StS: Straight Sinus; TS: Transverse Sinus; IJV: Internal Jugular Vein.
Vessel numbers refer to figure 2 and table 8.
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Figure 23: Computed pressure and flow rate in selected systemic veins.
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Figure 24: Computed pressure and flow rate in dural sinuses. PC-MRI flow quantification data is shown
with symbols and dashed lines.
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Figure 25: Computed pressure and flow rate in internal jugular veins. PC-MRI flow quantification data
is shown with symbols and dashed lines.
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Figure 26: Computed pressure and flow rate in internal jugular veins (cont. from figure 25). PC-MRI
flow quantification data is shown with symbols and dashed lines.
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Table 11: Geometrical and mechanical parameters for modified head and neck veins of alternative venous
network. L: length; r0: inlet radius; r1: outlet radius; c0: wave speed for A = A0; Loc location in the
body according to table 2; Ref : MRI imaging derived segmented geometry.

No. Vessel name L [cm] r0 [cm] r1 [cm] c0 [m/s] Loc. Ref.

92 R. int. jugular v. I 2.50 0.472 0.505 1.494 3 MRI
99 R. sigmoid sinus II 3.50 0.309 0.252 3.000 1 MRI
101 R. trans. sinus I 3.50 0.219 0.219 3.000 1 MRI
102 L. trans. sinus I 3.50 0.334 0.178 3.000 1 MRI
224 R. int. jugular v. II 3.00 0.437 0.472 1.558 3 MRI
226 R. int. jugular v. III 2.70 0.357 0.437 1.673 3 MRI
227 L. int. jugular v. III 2.70 0.399 0.564 1.506 3 MRI
228 R. int. jugular v. IV 6.80 0.309 0.357 1.814 3 MRI
229 L. int. jugular v. IV 6.80 0.399 0.399 1.669 3 MRI
230 R. sigmoid sinus I 1.50 0.252 0.309 3.000 1 MRI
232 R. trans. sinus II 3.50 0.219 0.309 3.000 1 MRI
233 L. trans. sinus II 3.50 0.178 0.399 3.000 1 MRI
242 R. int. jugular v. V 1.00 0.505 0.505 1.463 3 MRI
259 Confluence of sinuses 1.00 0.219 0.219 3.000 1 MRI
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Figure 27: Blood flow in neck veins for a venous network modified according to in table 11: computational
results vs MRI flow quantification data. IJV: Internal Jugular Vein. Vessel numbers refer to figure 2 and
table 11.

Computational results for the venous district show that the non-pulsatile character of venous blood
flow is a myth. In fact, we can see how right atrium retrograde pressure waves greatly influence venous
flow, creating a biphasic flow pattern. This behaviour is well-known to the medical community and must
be reproduced by any model of the venous system [70, 48].

The pulsatility of venous blood flow will be further influenced by factors. The most significant ones
are respiration, gravity and venous tone regulation. The satisfactory agreement between computational
results and MRI-derived data for a subject at rest in supine position suggests that none of these factors
plays a crucial role in the determination of venous flow patterns in body regions where measurements were
available. In order to determine the effect of respiration on venous flow pulsatility we have performed a
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Figure 28: Computed pressure and flow rate in internal jugular veins for a venous network modified
according to in table 11 . PC-MRI flow quantification data is shown with symbols and dashed lines.

simulation in which intra-thoracic and intra-abdominal pressures vary, as proposed by [83], according to

Pk =


Pk,a + Pk,b

(
1− exp(− t̂

τ
))

)
if t̂ ≤ tinsp ,

Pk,a + Pk,b exp(− (t̂− tinsp)
τ

)) if t̂ > tinsp ,

with k = th, abd , (45)

where t̂ = mod(t, tresp), tresp is the duration of a respiratory cycle, tinsp is the duration of the inspiration
phase, τ is a decay constant, Pk,a and Pk,b are the baseline pressure and variation amplitude, respectively.
According to [83], the duration of the respiratory cycle is tresp = 5 s, with an inspiration phase of tinsp =
2 s and a decay constant τ = 0.3 s. Moreover, baseline intra-thoracic pressure is Pth,a = −3.7mmHg
and its variation amplitude is Pth,b = −1.8mmHg. For the intra-abdominal cavity we use the same
time coefficients as for the intra-thoracic cavity, while baseline pressure is Pab,a = 1mmHg and variation
amplitude is Pab,b = 1.8mmHg, according to [78]. In figure 29 we show computational results for two
veins, one located in the neck and the other one in the abdomen, for a period of 10 seconds. It can
be clearly seen that while there is a modulation of flow and pressure due to respiration, the shape of
pressure and flow waves is chiefly determined by the right heart. However, we expect that in the case
of respiratory manoeuvres, such as Valsava and Müller manoeuvres, or other situations such as postural
changes and exercise, respiration along with venous tone regulation and muscle compression will play a
crucial role in the determination of venous hemodynamics.

The introduction of gravity during postural changes will introduce transient flow acceleration and
vessel collapse above the right atrium due to negative transmural pressure [7, 44]. Under these cir-
cumstances the wave speed for veins in the collapse region will certainly lead to transcritical flows and
therefore will make the algorithm used to treat junctions unsuitable. This fact was confirmed by pre-
liminary numerical experiments that we do not report here. Therefore, it is necessary to introduce new
methodologies for the treatment of junctions. This subject is in fact being currently investigated by the
authors.
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Figure 29: Computed pressure and flow rate for the right internal jugular vein (top row) and the inferior
vena cava (bottom row). Continuous lines correspond to results obtained without including respiration
and dashed lines represent results obtained including variation of intra-thoracic and intra-abdominal
pressures as specified by equation (6).
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Venous tone regulation due to postural changes will act simultaneously with blood flow regulation in
other compartments, such as arterioles [48]. We plan to include mathematical models of the baroreflex
regulatory system, as the one proposed in [13].

A further aspect that will play a crucial role for the correct description of postural changes is the use
of a realistic tube law (18). The authors are convinced about the fact that the pressure-area relationship
used in this paper has to be improved in order to correctly represent transient phases due to postural
changes.

Having always the motivation of this work in mind, another element to be added to the present model
is that of the interaction between brain parenchyma, cerebro-spinal flow and cerebral vasculature. Some
work attempting to model this complex phenomena is readily available [52] and will be used as a starting
point.

7 Summary and concluding remarks

We have presented a closed-loop, multi-scale model comprising lumped-parameter models for the
heart, the pulmonary circulation and the microvasculature, together with one-dimensional description
of medium to large arteries and veins. A novel feature of the model is the detailed description of the
venous system, particularly that part related to the head and neck. This is so because we are chiefly
interested in the application of the model to the theoretical study of the connection between the venous
vasculature and a class of neurodegenerative diseases. Regarding the lumped-parameter models, their
numerical aspects are well researched. However, concerning the one-dimensional models, the hyperbolic
character of the governing equations poses significant challenges to the numerical modeller. Particular
issues are vessel collapse, choking, elastic jump formation and geometric-type source terms. In this model
we have deployed state-of-the-art numerical methodologies that are able to cope with these challenges.
These issues are particularly relevant to the modelling of the venous system, which is significantly more
challenging than the well-researched arterial system. A systematic assessment and validation exercise
has been carried out, making abundant use of published results, as well as recent measurements of flow in
head and neck veins, kindly provided to us by our collaborators. For this portion of the domain we have
performed a patient-specific characterisation of major vessels. We have shown that this step is necessary
in order to correctly reproduce PC-MRI derived flow patterns in a patient-specific manner. We have
also discussed some potential improvements to the model in order to correctly describe postural changes,
which will be the subject of a forthcoming publication.
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