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Abstract

Recently it was shown that a wave profile which minimises total energy, elastic

plus hydrodynamic, subject to the vorticity distribution being prescribed, gives rise

to a steady hydroelastic wave. Using this formulation, the existence of non-trivial

minimisers leading to such waves was established for certain non-zero values of

the elastic constants. Here we show that when these constants are zero, global

minimisers do not exist except in a unique set of circumstances.

Introduction

In two recent papers [2, 3] it was shown that minimisers of energy, expressed as a function
of an unknown flow domain and a stream function with prescribed vorticity distribution,
yield idealised, two-dimensional, steady, hydroelastic waves. This shape-optimisation
formulation led to the existence of waves for which the surface is not flat for a range of
positive surface-elasticity coefficients. However, classical water waves, with and without
vorticity but with zero surface energy, were not accounted for by these methods, even
though there are extensive alternative (but non-variational) global theories of existence.
The purpose here is to show that, without surface energy, global minimisers do not exist,
except for a single set of prescribed data for which the question is trivial.

To be precise, in the absence of surface elasticity, a minimiser of the energy in [3] exists
if, and only if, the given data (ζQ, µ) (ζQ prescribes the vorticity distribution and µ the
surface circulation per period) are (0, 0), and a minimiser in [2] exists if, and only if, the
given data (ζQ, µ, ν) (ν prescribes the horizontal momentum per period) are (0, µ, Qµ).
Thus, in the absence of surface energy effects, the steady water waves found by non-
variational methods [1, 4, 5, 6, 7, 9, 10, 11] are not global minimisers of the hydrodynamic
energy in [2, 3]. They are, presumably, critical points in some other sense, but their nature
in a variational setting remains unexplored. In the irrotational case there is a rich theory
of Morse indices [8] which, for the moment, seems inaccessible in the presence of vorticity.
However, without surface energy there is no satisfactory global theory of the existence of
water waves, with or without vorticity, by variational methods.
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Parallel flows do arise by variational methods because the arguments of [2, 3], when
restricted to parallel-flow admissible functions with prescribed vorticity distribution, lead
to the existence of mimimisers in that class. However the surface is flat and elasticity plays
no role. A complete account of possible parallel-flow minimisers (which are not energy
minimisers over general domains) is given in [12]. The following simple observation is the
key to the non-existence of minimisers when general domains are admissible.

Estimates for a Boundary-value Problem

Let Ω be a P -periodic domain which is bounded below by the real axis and above by a
Jordan curve S which is P -periodic in the x-direction ((P, 0) + S = S ). Let S, which
is one period of S , be the upper boundary of Ω, which is one period of Ω . For given
P -periodic ζ ∈ L2

loc(Ω), and for µ ∈ R, consider the boundary-value problem

−∆ψ = ζ on Ω ,

ψ = 0 on R× {0}, ψ is P -periodic,

ψ = C on S ,

∫

S

∇ψ · n dS = µ,





(1) BVP

for some constant C. This problem has a unique solution (ψ,C), which is the maximiser
of

min
ψ∈A(Ω)

{∫

Ω

(
−
1

2
|∇ψ|2 + ζψ

)
dxdy + µC(ψ)

}
, (2) minim

where

A(Ω) =

{
ψ ∈ W 1,2

loc (Ω) : ψ is P -periodic,
ψ = 0 on R× {0} and ψ = C(ψ), a constant, on S .

}

The aim is to construct a sequence of domains Ωk of the kind described above such that
each Ωk has the same specified area, and a sequence of P -periodic functions ζk ∈ L2

loc(Ω),
each with the same prescribed norm ‖ζk‖L2(Ωk), such that the corresponding solutions of
(1) have |C(ψk)|+ ‖∇ψk‖L2(Ω) → 0 as k → ∞.

Domains

Let P, Q > 0 be fixed, let n ∈ N, σ ∈ (0, Q), δ ∈ (0, 1), and let h denote the (P/n)-periodic
extension of the lower semicontinuous function defined on [−P/2n, P/2n] by

h(x) =





q :=
Q− σδ

1− δ
> Q, x ∈ (−(1− δ)P/2n, (1− δ)P/2n)

σ, x ∈ [−P/2n,−(1− δ)P/2n] ∪ [(1− δ)P/2n, P/2n]



 .

Let Ω = {(x, y) : y ∈ (0, h(x)), x ∈ R}. Then Ω is an open, P -periodic domain with
Lipschitz boundary. For convenience let

Ω = Ω ∩
(
(−P/2, P/2)× (0,∞)

)
, ∂ΩB = (−P/2, P/2)× {0},

2



y = q

y = σ

− P
2n

P
2n− (1−δ)P

2n
(1−δ)P

2n0

Figure 1. The domain ω.

∂ΩT =
(
∂Ω \ R× {0}

)
∩
(
(−P/2, P/2)× (0,∞)

)

and
ω = Ω ∩

(
(−P/2n, P/2n)× (0,∞)

)
, ∂ωB = (−P/2n, P/2n)× {0},

∂ωT = ∂ΩT ∩
(
(−P/2n, P/2n)× (0,∞)

)
.

By construction meas Ω = n(measω) = PQ.

r1 Remark 1. Let ζ ∈ L2
loc(Ω) be P/n-periodic and µ ∈ R. Then (1) has a solution which,

by uniqueness, coincides on ω with the unique solution of the boundary-value problem

−∆ψ = ζ on ω,

ψ = 0 on ∂ωB, ψ is P/n-periodic,

ψ = is constant on ∂ωT ,

∫

∂ωT

∇ψ · n dS =
µ

n
,





(3) bvp

which maximises of the analogue of (2) on ω.

LC Lemma 2. For given µ ∈ R, n ∈ N and a P/n-periodic function ζ, the solution of (1)
satisfies

|C| 6
2σµ

Pδ
+ ‖ζ‖L2(ω)

√
2nσ

Pδ

√

2

(
P (1− δ)

2n

)2

+ 4q(1− δ)
σ

δ
+ σ2, (4) C

‖∇ψ‖2L2(Ω) 6 2‖ζ‖2L2(Ω)

{
2

(
P (1− δ)

2n

)2

+ 4q(1− δ)
σ

δ
+ σ2

}
+

4σµ2

Pδ
. (5) D

Proof. Let K = ‖∇ψ‖L2(ω) and note that

Pδ|C|

2n
=

∣∣∣∣∣

∫ P
2n

(1−δ)P
2n

∫ σ

0

ψy(x, y) dxdy

∣∣∣∣∣ 6 K

√
Pδσ

2n
.

Hence

|C| 6 K

√
2nσ

Pδ
. (6) CC
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Next note that for x ∈ (−(1− δ)P/2n, (1− δ)P/2n), y ∈ (σ, q),

|ψ(x, y)| =

∣∣∣∣∣
1

2

∫ x

−(1−δ)P
2n

ψx(t, y) dt−
1

2

∫ (1−δ)P
2n

x

ψx(t, y) dt+ C

∣∣∣∣∣

6
1

2

∫ (1−δ)P
2n

−(1−δ)P
2n

|ψx(x, y)| dx+ |C|.

Since (a+ b)2 6 2(a2 + b2), for x ∈ (−(1− δ)P/2n, (1− δ)P/2n),

∫ q

σ

|ψ(x, y)|2 dy 6
1

2

∫ q

σ

(∫ (1−δ)P
2n

−(1−δ)P
2n

|ψx(x, y)| dx

)2

dy + 2q|C|2

6
(1− δ)P

2n

∫ q

σ

∫ (1−δ)P
2n

−(1−δ)P
2n

|ψx(x, y)|
2 dxdy + 2q|C|2

6
(1− δ)P

2n
K2 + 2q|C|2.

Therefore

∫ (1−δ)P
2n

−(1−δ)P
2n

∫ q

σ

|ψ(x, y)|2 dxdy 6 2

(
P (1− δ)K

2n

)2

+
2Pq(1− δ)|C|2

n
. (7) est1

Also, for x ∈ (−P/2n, P/2n), y ∈ (0, σ),

|ψ(x, y)|2 =

∣∣∣∣
∫ y

0

ψy(x, s)ds

∣∣∣∣
2

6 σ

∫ σ

0

|ψy(x, y)|
2dy.

Hence, for y ∈ (0, σ),

∫ P/2n

−P/2n

|ψ(x, y)|2dx 6 σ

∫ P/2n

−P/2n

∫ σ

0

|ψy(x, y)|
2dxdy 6 σK2

and so ∫ σ

0

∫ P/2n

−P/2n

|ψ(x, y)|2dxdy 6 σ2K2. (8) est2

Therefore, by (6), (7) and (8),

∫

ω

|ψ(x, y)|2 dxdy 6 K2

{
2

(
(1− δ)P

2n

)2

+ 4q(1− δ)
σ

δ
+ σ2

}
. (9) est3

From (3), (6) and (9) it follows that

K2 =

∫

ω

|∇ψ|2dxdy =

∫

ω

ζψ dxdy +
µC

n

6 K‖ζ‖L2(ω)

√

2

(
P (1− δ)

2n

)2

+ 4q(1− δ)
σ

δ
+ σ2 +Kµ

√
2σ

nPδ
. (10) sq
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Cancelling K and substituting in (6) gives (4), and squaring (10) gives

K2
6 2‖ζ‖2L2(ω)

{
2

(
P (1− δ)

2n

)2

+ 4q(1− δ)
σ

δ
+ σ2

}
+

4σµ2

nPδ
.

Since ζ is (P/n)-periodic, it follows by Remark 1 that

∫

Ω

|∇ψ|2dxdy = nK2
6 2‖ζ‖2L2(Ω)

{
2

(
P (1− δ)

2n

)2

+ 4q(1− δ)
σ

δ
+ σ2

}
+

4σµ2

Pδ
,

which proves (5).

Remark. An almost identical calculation leads to the same conclusion when the Lipschitz
domains Ω are replaced by C∞ or real-analytic domains. Smoothness is not the issue.

Minimising Sequences

Denote the sets Ω, ω and the parameter q above by Ωk, ωk and qk when n = k, δ = 1/k,
σ = 1/k2, k > 2. See Figure 2 for Ωk and note that qk → Q as k → ∞. Let Sk = ∂ΩkT

.

Suppose ζQ is any prescribed P -periodic, locally square-integrable function on ΩQ :=
R × (0, Q). Let ΩQ = (−P/2, P/2) × (0, Q) and, for Ω with measΩ = PQ, let RQ(Ω)
denote the rearrangements on Ω of ζQ

∣∣
ΩQ

.

Let ζk ∈ RQ(Ωk) be P/k-periodic and let (ψk, Ck) be the corresponding solution of (1)
on Ωk. By Remark 1, ψk is a solution of (3) on ωk.

Figure 2. Ωk is P/k periodic; meas (Ωk) = PQ;
troughs at y = 1/k2; trough width = 1/k2.

Ωk

cor Corollary 3. With ζ = ζk and Ω = Ωk in Lemma 2,

|Ck| → 0 and

∫

Ωk

|∇ψk|
2 → 0 as n→ ∞.

Proof. This is immediate since ‖ζk‖L2(Ωk) = ‖ζQ‖L2(ΩQ) for all k, qk → Q as k → ∞, and
the right sides of (4) and (5) tend to zero when n = k, σ = 1/k2 and δ = 1/k.
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Without surface energy in [3]

In the notation of [3], P = 2π and the infimum of the energy is

M := infΩ, ζ

{
max
ψ∈A(Ω)

{∫

Ω

(
−
1

2
|∇ψ|2 + ζψ

)
dxdy + µC(ψ)

}
+ g

∫

Ω

y dxdy

}
,

over all admissible domains Ω with area 2πQ and all ζ ∈ RQ(Ω). We have observed that

M 6 infn>2

∫

Ωk

(
1

2
|∇ψk|

2 + gy

)
dxdy where ψk satisfies (1) with ζ = ζk on Ωk.

Since it is obvious that
∫

Ωk

y dxdy →

∫ π

−π

∫ Q

0

y dxdy = πQ2,

it follows from Corollary 3 that

∫

Ωk

(
1

2
|∇ψk|

2 + gy

)
dxdy → πgQ2

and hence that M 6 πgQ2. On the other hand,

M > g

∫

Ω

y dxdy > g

∫

ΩQ

y dxdy = gπQ2.

by [3], Lemma 4.6. Hence M = πgQ2. If it is attained by (Ω, ψ, ζ), then ∇ψ = 0 almost
everywhere and Ω = ΩQ. Hence ψ does not satisfy (1) if Ω 6= ΩQ and (ζQ, µ) 6= (0, 0).

The conclusion is that M is not attained when (ζQ, µ) 6= (0, 0). Obviously if (ζQ, µ) =
(0, 0), then ψ ≡ 0 attains the infimum M .

Without surface energy in [2]

With Ω = Ωk in Lemma 2, let ψ̂k denote ψ when ζ = 0 and µ = 1, ψk denote ψ when

ζ = ζk and µ = 0, and let ψ̃k(x, y) = y. Note that

∫

Ωk

∂ψ̂k
∂y

= ĈkP where ψ̂k = Ĉk on Sk,

∫

Ωk

∂ψk
∂y

= CkP where ψk = Ck on Sk,

∫

Ωk

∂ψ̃k
∂y

= PQ and

∫

Sk

∇ψ̃k · ndS = P.

Let ψk = akψ̂k +ψk + bkψ̃k and, in the notation of [2], let ξk = ψk
∣∣
Sk
. Then for given real

numbers µ and ν, the triple (Ωk, ξk, ζk) is admissible for the variational problem in [2] if

ak + Pbk = µ; ĈkPak + PQbk = ν − CkP,
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and hence (
ak
bk

)
=

1

P (Q− ĈkP )

(
PQ − P

−ĈkP 1

)(
µ

ν − CkP

)
(11) ab

if Q 6= ĈkP . However Ĉk depends only on Ωk and, by Lemma 2, Ĉk → 0 as n → ∞.
Hence (ak, bk) is uniquely determined when k is sufficiently large. Similarly from Lemma

2, Ck → 0 as k → ∞. Moreover akψ̂k + ψk coincides with ψ in Lemma 2 when µ = ak
and ζ = ζk. Hence

∫

Ωk

|∇(akψ̂k + ψk)|
2dxdy → 0 and

∫

Ωk

|bk∇ψ̃k|
2dxdy →

ν2

PQ
as k → ∞.

Hence, in the notion of[2], the infimum of the energy in the absence of surface elasticity,
is

m := inf{L(Ω, ξ, ζ) : Ω ∈ O, ξ ∈ H
1/2
loc (S), ζ ∈ RQ(Ω), C = µ, I = ν}

6 inf
k>2

{
1

2

∫

Ωk

|∇ψk|
2dxdy + g

∫

Ωk

ydxdy

}
6

1

2

(
ν2

PQ
+ gPQ2

)
. (12)

However, by the Cauchy-Schwarz inequality, for Ω ∈ O and any admissible ψ,

ν =

∫

Ω

∂ψ

∂y
dxdy implies that

1

2

∫

Ω

|∇ψ|2dxdy >
1

2

(
ν2

PQ

)
.

Since, as before,

g

∫

Ωk

ydxdy >
gPQ2

2
, it follows that m >

1

2

(
ν2

PQ
+ gPQ2

)
.

This shows that

m =
1

2

(
ν2

PQ
+ gPQ2

)

and this value is attained if and only if ψ(x, y) = νy/PQ and Ω = ΩQ and ζQ = 0.
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