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Abstract

We prove lower semicontinuity and lower bounds for a Chen-Lubensky
energy describing nematic/smectic liquid crystals with physically re-
alistic boundary conditions. The Chen-Lubensky energy captures sta-
ble phases of the liquid crystal material, ranging from purely nematic
or smectic states to coexisting nematic/smectic states. By including
appropriate additional terms, the model includes the effects of ap-
plied electric or magnetic fields, and/or electrical self-interactions in
the case of polarized liquid crystals. As a consequence of our results,
we establish existence of minimizers with weak or strong anchoring of
the director field (describing molecular orientation) at the boundary,
and Dirichlet or Neumann boundary conditions on the smectic order
parameter for the liquid crystal material.
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1 Introduction

1.1 Background on Liquid Crystals

Liquid crystals are intermediate states between liquid and solid (crystal)
states that occur in a certain class of anisotropic materials, and are typi-
cally made up of elongated ”rod-like” molecules. In the nematic phase for
a liquid crystal, which occurs when the temperature is lowered from that of
the (isotropic) liquid state, the molecules tend to be aligned along their long
axes, but with no positional order in their center of masses. Further lowering
of the temperature yields the smectic A phase, in which the molecules tend
to align in layers with the long axes parallel to the layer normals. At a lower
temperature, the molecules still tend to align in layers but their long axes
have a preferred (nonzero) tilt angle with the layer normal; this is called the
smectic C phase. (See Figure 1.) Stable states of liquid crystals need not
be uniform. A smectic phase can locally melt into a different smectic phase
or a less ordered phase. This can occur if the liquid crystal is subjected
to external stresses thereby introducing defects into the layer structure or
locally altering the tilt angle. Applications of electric or magnetic fields,
temperature fluctuations, or external influences at the boundary can cause
phase transitions in the liquid crystal between nematic and smectic phases,
including mixed (coexisting) states with nonempty nematic/smectic subre-
gions within the liquid crystal. (See [8, 12, 20, 25, 30].)

A variational model for which local minimizers represent stable states of
a liquid crystal material at a constant temperature (allowing pure and mixed
nematic/smectic states) was formulated by Chen and Lubensky [8] in 1976.
(See also Renn and Lubensky [20] for a modification of the energy to include
chiral nematic/smectic C liquid crystals.) The energy developed by Chen
and Lubensky accounts for phase transitions between nematic and smectic
A or smectic C phases. It is an extension of an earlier formulation due to
de Gennes [10] which modeled nematic-to-smectic A phase transitions only.

The de Gennes energy for nematic/smectic A liquid crystals combined
an Oseen-Frank energy term for a unit vector field, n(x), representing the
average local orientation of the liquid crystal molecule, and a Ginzburg-
Landau term involving the covariant derivative of a complex-valued order
parameter, ψ(x), related to the local smectic layers. It was shown in [2]
by Bauman, Calderer, Liu, and Phillips that de Gennes’ energy is coercive
and lower semicontinuous among admissible families of functions in an ap-
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propriate Sobolev space with physically realistic boundary conditions. In
addition, it was shown that nematic versus smectic phases correspond to
different temperature regimes, which can be described by conditions on the
coefficients and material parameters, related to a ”critical temperature” sep-
arating purely nematic and nematic/smectic states.

For the Chen-Lubensky energy accounting for nematic/smectic C liq-
uid crystals, not even existence of minimizers (with appropriate boundary
conditions) has been shown. The difficulty is a lack of apparent coercivity
and weak lower semicontinuity, since second-order derivatives of the order
parameter in the energy involve covariant second derivatives that do not
control second derivatives of the order parameter in the direction of the
director field. To overcome this, Luk’yanchuk modified the second-order
term in the Chen-Lubensky energy (see [21]) by making the second-order
gradient term isotropic. Existence of minimizers and an analysis of ne-
matic/smectic C phase transitions for this energy was proved by Joo and
Phillips in [17], assuming that the order parameter ψ is zero on the bound-
ary. Subsequently, Calderer and Park in [24] proved existence of minimizers
for the Luk’yanchuk energy among restricted classes of boundary values for
domains that are ”vortex tubes” with boundary conditions related to the
domain structure.

In this paper we prove existence of minimizers, as well as weak lower
semicontinuity and coercivity, for the Chen-Lubensky energy (in divergence-
form) among admissible functions in a general class of physically realistic
boundary conditions. The boundary conditions include weak or strong an-
choring at the boundary, and boundary values that naturally result in mixed-
state nematic/smectic minimizers.

1.2 The Chen-Lubensky Energy

Before stating our results in more detail, let us first describe the divergence-
form of the Chen-Lubensky energy and some observations about its struc-
ture. Let Ω ⊂ Rn be a connected bounded Lipschitz domain in R3 which
represents the region occupied by the liquid crystal. The domain Ω repre-
sents the liquid crystal body. The energy is a sum of two terms,∫

Ω
(fCL(ψ,n) + fN (n)),

Here, ψ : Ω → C and n : Ω → S2. The vector, n(x), is the director,
which is a unit vector representing the direction of the local average of
the principal molecular axes near x. The function, ψ, is a complex-valued
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order parameter; formally writing ψ(x) = ρ(x)eiω(x), ρ(x) is an amplitude
of smectic layering and measures how well the smectic phase has developed
near x. In particular, the material is in the nematic phase at x if ψ(x) = 0.
Smectic layers near x are contained in level sets of ω near x.

In the case of uniform layers as in Figure 1, the layer spacing is equal
to d0 and the layer spacing in the corresponding untilted phase would be
d̄ = d0

cos θ0
.

0d
d

θ0 n
layer normal

Figure 1: Layer spacing and tilt angle in uniform layer structure

Wave numbers are defined as q0 = 2π
d0

and q̄ = 2π
d̄

respectively. The
energy is expressed in terms of the covariant derivative Dψ = ∇ψ − iq̄nψ,
where components parallel and perpendicular to n(x) are D‖ψ = (n · ∇ψ −
iq̄ψ)n and D⊥ψ = Dψ −D‖ψ. The C-L energy density is then

fCL = a⊥|D ·D⊥ψ|2 + a‖|D ·D‖ψ|2 − c⊥|D⊥ψ|2 (1)

+c‖|D‖ψ|2 − r′|ψ|2 + g|ψ|4,

where a⊥, a‖, c‖, g > 0, such that c⊥ > 0 for the SmC phase and c⊥ ≤ 0 for
SmA. The energy density measures the cost of distortions in the smectic
layer structure as well as variations in the angle between n and the layer
normal relative to the bulk tilt angle θ0. Letting ψ = ρeiω, we have

fCL = a⊥

[(
div∇⊥ρ− ρ|∇⊥ω|2

)2
+
(
∇⊥ω · ∇⊥ρ+ div(ρ∇⊥ω)

)2]
+a‖

[(
div∇‖ρ−ρ(∇ω · n− q̄)2

)2
+
(

(∇‖ω − q̄n) · ∇‖ρ+ div[ρ(∇‖ω − q̄n)]
)2]

−c⊥
[
|∇⊥ρ|2 + ρ2|∇⊥ω|2

]
+ c‖

[
|∇‖ρ|2 + ρ2|∇‖ω − q̄n|2

]
− r′ρ2 + gρ4,
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where ∇‖h = (∇h · n)n and ∇⊥h = ∇h−∇‖h for a function h.
Away from defects or near the boundary, the amplitude ρ should vary

slowly relative to the layer structure given by ω. Thus if we examine states
with constant ρ it follows that

fCL=a⊥ρ
2
(
div(∇⊥ω)

)2
+a‖ρ

2
(
div((∇ω · n− q̄)n)

)2
+a‖ρ

2(∇ω · n− q̄)4

+a⊥ρ
2

(
|∇⊥ω|2 −

c⊥
2a⊥

)2

+ c‖(∇ω · n− q̄)2 −
(
r′ +

c2
⊥

4a⊥

)
ρ2 + gρ4.

The first two terms are elastic energy densities for layer bending, which
we note vanish for pure SmA configurations, i.e. if q̄n = ∇ω. The next
three terms measure variations in layer thickness and deviation in the tilt
angle relative to bulk values. In order to see this we consider uniform states
with ∇ω and n constant. If c⊥ ≥ 0 then a pair (ρeiω,n) minimizes these
four terms provided ∇ω · n = q̄ and |∇⊥ω|2 = c⊥

2a⊥
. This corresponds to

the SmC phase with tan2 θ0 = c⊥
2a⊥q̄2

. If c⊥ < 0, then (ρeiω,n) minimizes

the four terms provided |∇⊥ω| = 0, corresponding to θ0 = 0, characterizing
the SmA phase. We next consider the amplitude ρ. A bulk state is either

nematic or smectic if and only if ρ = 0 or ρ > 0 respectively. Set r = r′+
c2⊥

4a⊥
if c⊥ ≥ 0, and r = r′ if c⊥ < 0. It follows that minimizing bulk states for fCL
satisfy ρ = 0 or ρ > 0 if and only if r ≤ 0 or r > 0 respectively. Moreover if
r > 0 then ρ = r

2g .
In the classic model r and c⊥ are taken to be temperature dependent such

that for critical temperatures TAC < TNA, we have r(T ) < 0 if TNA < T ,
0 < r(T ) if T < TNA, c⊥(T ) < 0 if TAC < T , and 0 < c⊥(T ) if T < TAC .
Then as T decreases, the minimizing uniform bulk states (ground states)
progress from N → SmA → SmC. The first and second terms in (1) are
modifications of the energy from [8] where D⊥ · (D⊥ψ) and D‖ · (D‖ψ) are
used in place of D · (D⊥ψ) and D · (D‖ψ) respectively. The energies measure
smectic layer distortion in similar ways. The Oseen-Frank energy density is

fN = K1(∇ · n)2 +K2(n · ∇ × n + τ)2 +K3|n× (∇× n) + b|2

+(K2 +K4)(tr(∇n)2 − (∇ · n)2) (2)

where the elastic constants satisfy

0 < c0 ≤ K2 +K4 ≤ c1,K2 +K4 ≤ min(K1,K3),K4 ≤ 0, (3)

with τ ∈ R,b ∈ L2(Ω). The energy density fN measure the cost per unit
volume of variations in n.

We consider two types of domains Ω ⊂ R3.
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1. Let Ω be a bounded open connected set with the boundary ∂Ω of class
C1.

2. Let Ω be the cell

Ω = {(x, y, z)| − h < z < h,−l < x < l,−m < y < m} .

In the first case, we can view the liquid crystal as a droplet surrounded by
another material. For the second case we imagine the liquid crystal filling the
cell between two plates z = ±h. For case 2, throughout this paper we assume
that the functions ψ,∇ψ, and n are 2l−periodic in x and 2m−periodic in
y. Thus from the standpoint of PDE estimates, we can treat ∂Ω as of class
C1 and compact. The original motivation for introducing the energy

F (ψ,n) =

∫
Ω

(fCL + fN )

was to study nematic-smectic transitions [8, 20, 25]. In these papers, Ω = R3

and the analyses addressed eigenfunctions and the spectrum for D2F (0,n)
at a given nematic state (0,n). Questions related to the existence of equi-
libria or minimizers in an appropriate space were not considered. The en-
ergy was subsequently used in a series of papers as a basis from which
to construct models incorporating the energetic effects of boundary condi-
tions, polarizations, and electromagnetic fields on smectic layer structures
[18, 27, 28, 30, 31]. Here we focus on the problem of introducing boundary
conditions. In practice it is observed that as a liquid crystal is slowly cooled
from one phase to another the layer structure at the boundary is either
retained or has to overcome an energy barrier in order to change [6, 27].
These situations can be modeled with strong or weak anchoring boundary
conditions respectively. The mismatch between the bulk smectic structures
in the new phase and the smectic structures retained at the boundary leads
to defects in the otherwise near-uniform smectic layers of solutions.

From a purely variational perspective, some form of anchoring condition
is needed since the energy (1) with c⊥ > 0 is not bounded below on classes
of functions for which |ψ| is allowed to vary. To illustrate this we consider
the case of the cell

Ω = {(x, y, z) : |z| < 1, |x| < π, |y| < π} , (4)

and the sequence {(ψm,nm);m = 1, 2, · · · } such that{
ψm(x, y, z) = cosh(mz)eimx

cosh(m) ,

nm = e2

(5)
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In this case, we obtain

D‖ψm = (0,−iq̄ψm, 0), D⊥ψm = (∂xψm, 0, ∂zψm),

D · (D⊥ψm) = ∂2
xψm + ∂2

zψm = 0, D · (D‖ψm) = −q̄2ψm.

It follows that

F (ψm,nm) = −8c⊥mπ
2 +O(

1

m
) as m→∞.

Here the smectic structure diminishes within Ω in favor of energy concen-
tration near ∂Ω.

We next rewrite the bulk energy in a way that illustrates how anchoring
conditions can prevent energy diverging by concentrating near ∂Ω. Let

A =
{

(ψ,n) ∈ H1(Ω;C)×H1(Ω; S2) : D⊥ψ,D‖ψ ∈ H(div; Ω)
}
.

where

H(div; Ω) =
{
v ∈ L2(Ω;C3) : div v ∈ L2(Ω)

}
.

We say that {(ψj ,nj)} ⊂ A converges weakly to (ψ,n) ∈ A if (ψj ,nj) ⇀
(ψ,n) in H1(Ω) and (D⊥ψ,D‖ψ) ⇀ (D⊥ψ,D‖ψ) in H(div; Ω).

Recall that if v ∈ H(div; Ω), then its trace v · ν ∈ H−
1
2 (∂Ω) where ν is

the outward normal to ∂Ω [14]. We then write for w ∈ H1(Ω)

< v · ν, w >=

∫
Ω
w div v +

∫
Ω
v · ∇w

where < u, v >=< u, v >
H−

1
2 (∂Ω),H

1
2 (∂Ω)

for u ∈ H−
1
2 (∂Ω) and v ∈ H

1
2 (∂Ω).

Note that D⊥ψ = ∇⊥ψ and D · ∇⊥ψ = div(∇⊥ψ). Setting v = ∇⊥ψ and
w = ψ∗ ∫

Ω
∇⊥ψ · ∇⊥ψ∗ =

∫
Ω
∇⊥ψ · ∇ψ∗

=< ∇⊥ψ · ν, ψ∗ > −
∫

Ω
ψ∗div(∇⊥ψ).

We can write∫
Ω
fCL =

∫
Ω

(
a⊥

∣∣∣∣D ·D⊥ψ +
(c‖ + c⊥)

2a⊥
ψ

∣∣∣∣2 + a‖|D ·D‖ψ|2 (6)

+c‖|Dψ|2 −

(
r′ +

(c‖ + c⊥)2

4a⊥

)
|ψ|2 + g|ψ|4

)
−(c⊥ + c‖)Re < ∇⊥ψ · ν, ψ∗ >,
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where Re(z) denotes the real part of a complex number z. Since g > 0, the
integral over Ω is bounded below. We next consider

F(ψ,n) =

∫
Ω

(fCL + fN ) +

∫
∂Ω
fS(n),

where fS is given by the Rapini-Papoular energy density

fS = β
(
1− α0(n · ν)2

)
, β ≥ 0, 1 > α0 > 0 (7)

and seek minimizers for F in several settings.
From the assumption (3), there exist constants C,M > 0 so that

C||n||2H1(Ω) ≤
∫

Ω
fN (n) +M (8)

for all n ∈ H1(Ω; S2). Moreover if {nj} ⊂ H1(Ω;S2),nj ⇀ n0, then∫
Ω
fN (n0) +

∫
∂Ω
fS(n0) ≤ lim inf

j→∞

{∫
Ω
fN (nj) +

∫
∂Ω
fS(nj)

}
.

(See [2].) Thus the total energy is bounded below if we can rule out energy
concentrating at ∂Ω as in (5), and it suffices then to examine coercivity and
lower semicontinuity properties for

∫
Ω fCL.

1.3 Main Results

We examine the issues of coercivity and lower semicontinuity in three dif-
ferent physical scenarios. In Section 2 we consider the case when the the
material temperature is such that the liquid crystal is deep within a smectic
phase. In this case it is energetically expensive to alter the smectic ordering.
This is modeled by considering only states such that |ψ| ≡ ρ0 for a fixed con-
stant ρ0. We call these uniformly smectic states. (See (9).) We prove that
the minimum problem for F over any nonempty, weakly sequentially closed
subset of such states is well posed. (See Corollary 2.3.) A central point that
we expand on in this paper is the relevance of appropriate boundary con-
ditions. The example (5) above demonstrates that when general states are
allowed, the smectic structure must be imposed or restricted at the bound-
ary in order to guarantee a minimal smectic C state. In Section 3 we prove
that if ψ and (or) ∇⊥ψ · ν are fixed at ∂Ω (strong anchoring) then minimiz-
ers for F exist. (See Theorem 3.1.) One expects, however, that the smectic
structure at ∂Ω is not mechanically fixed but instead just weakly anchored.
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In Section 4 we analyze the minimum problem for the energy with weak
anchoring

F̃(ψ,n) = F(ψ,n) + α1

∫
∂Ω
|ψ − g1|2 + α2

∫
∂Ω
|∇⊥ψ · ν − g2|2,

where α1 ≥ 0, α2 ≥ 0, and g1, g2 ∈ L2(∂Ω). Our main result is that the
minimum problem for F̃ is well posed provided α2 > 0, while if α2 = 0
the energy is not bounded from below in general. (See Theorem 4.1.) The
motivation for posing and studying minimizers among uniformly smectic C
states is the expectation that the full problem will have a minimizer near
by (i.e. with |ψ| ≈ ρ0). Our work shows that the full problem may not have
a minimizer at all without taking into account appropriate boundary condi-
tions. Finally in Section 5 we examine generalizations to include electronic
interactions.

2 Uniformly Smectic States

We consider the set

A0 =
{

(ψ,n) ∈ A : |ψ| = ρ0 a.e. in Ω
}
. (9)

This is a family of uniformly smectic states. We show that boundary con-
ditions are not needed for coercivity and lower semicontinuity properties
within A0.

Lemma 2.1. If (ψ,n) ∈ A0, then Re < ∇⊥ψ · ν, ψ∗ >= 0.

Proof. Let Ω0 b Ω := Ω1 be a subdomain such that ∂Ω0 is regular and such
that {Ωt; 0 < t ≤ 1} is a smoothly varying, nested family of subdomains.
For almost every t we have ∇⊥ψ · νt ∈ L2(∂Ωt) and

Re < ∇⊥ψ · νt, ψ∗ >
H−

1
2 (∂Ωt),H

1
2 (∂Ωt)

= Re
∫
∂Ωt

(∇⊥ψ · νt)ψ∗. (10)

We have Re(ψ∗∇ψ) = 1
2∇|ψ|

2 = 0 almost everywhere in Ω. Thus for almost
every t satisfying (10) we have

Re < ∇⊥ψ · νt, ψ∗ >
H−

1
2 (∂Ωt),H

1
2 (∂Ωt)

= 0.

Since

Re < ∇⊥ψ · ν, ψ∗ >
H−

1
2 (∂Ω),H

1
2 (∂Ω)

= lim
t↓0
Re < ∇⊥ψ · νt, ψ∗ >

H−
1
2 (∂Ωt),H

1
2 (∂Ωt)

the lemma is proved.
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Theorem 2.2. The energy functional F is coercive and weakly lower semi-
continuous on A0.

Proof. From (6), (8), and lemma 2.1 we see that there exist constants
C,M > 0 such that

C
(
||D⊥ψ||2H(div;Ω) + ||D‖ψ||2H(div;Ω) + ||ψ||4L4(Ω) + ||n||2H1(Ω)

)
≤ F(ψ,n) +M,

for all (ψ,n) ∈ A0. Next, if (ψj ,nj) is a sequence that satisfies, for j →∞,

(ψj ,nj) ⇀ (ψ,n) in H1(Ω),

D⊥ψj , D‖ψj ⇀ g⊥, g‖ in H(div; Ω),

then using D⊥ψj = ∇ψj − (n · ∇ψj)nj , it is clear that

D‖ψj ⇀ D‖ψ and D⊥ψj ⇀ D⊥ψ in L2(Ω).

Whence g⊥ = D⊥ψ, g‖ = D‖ψ, and from (6) and lemma 2.1 we see that∫
Ω
fCL(ψ,n) ≤ lim inf

j→∞

∫
Ω
fCL(ψj ,nj).

A subset K of a normed linear space is weakly sequentially closed if the
weak limit of any weakly converging sequence in K is also in K.

Corollary 2.3. If K is a non-empty, weakly sequentially closed subset of
A0, then there exists (ψ̃, ñ) ∈ K such that

F(ψ̃, ñ) = inf
(ψ,n)∈K

F(ψ,n).

3 Strong Anchoring Boundary Conditions

We next consider the case where ψ and (or) ∇⊥ψ ·ν are fixed in H
1
2 (∂Ω) and

H−
1
2 (∂Ω) respectively. For simplicity we focus on the problem of minimizing

F in

A1 =
{

(ψ,n) ∈ A : ψ − ψ0 ∈ H1
0 (Ω)

}
.
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Theorem 3.1. There exists (ψ̃, ñ) ∈ A1 such that

F(ψ̃, ñ) = inf
(ψ,n)∈A1

F(ψ,n).

Proof. From (6) and (8), we see that there exist constants C1, C2 > 0 such
that

C1

(
||D⊥ψ||2H(div;Ω) + ||D‖ψ||2H(div;Ω) + ||n||2H1(Ω) + ||ψ||44,Ω

)
−(c⊥ + c‖)Re < ∇⊥ · ν, ψ∗ >≤ F̃(ψ,n) + C2.

To obtain a coercivity estimate, it suffices to establish that

|(c⊥ + c‖)Re < ∇⊥ψ · ν, ψ∗ > | ≤
C1

2
||D⊥ψ||2H(div;Ω) +M,

for some constant M and all (ψ,n) ∈ A1.
For any (ψ,n) ∈ A1, we have

| < ∇⊥ψ · ν, ψ∗ > | = | < D⊥ψ · ν, ψ∗0 > | ≤ ||D⊥ψ||H(div;Ω)|| · ||ψ0||H1(Ω)

≤ ε||D⊥ψ||2H(div;Ω) +M(ε),

for any ε > 0. It follows that if {(ψj ,nj)} is a minimizing sequence for F in
A1 it has a weakly converging subsequence with its limit in A1. In order to
prove weak sequential lower semicontinuity for F , it suffices to prove that

Re < ∇⊥ψj · ν, ψ∗j >→ Re < ∇⊥ψ · ν, ψ∗ >

whenever {(ψj ,nj)} are such that

(ψj ,nj) ⇀ (ψ,n) in A1 as j →∞.

In fact, for each j, we have

< ∇⊥ψj · ν, ψ∗j >=< ∇⊥ψj · ν, ψ∗0 >

and that the mapping

g ∈ H(div; Ω)→< g · ν, ψ∗0 >

is weakly continuous. Thus our assertion follows.
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Figure 2: Layer shrinkage from SmA to SmC

4 Weak Anchoring Conditions

We now examine weak anchoring conditions for smectic structures. As the
temperature of a liquid crystal is lowered through the SmA-SmC tempera-
ture transition, TAC , the bulk layer thickness shrinks from d̄ to d0 = cos θ0d̄.
In the case that Ω is a cell, the transition from the bookshelf layering in
the SmA phase (Figure 2(L))to either the formation of tilted layers (Figure
2(M)), or chevron structures (Figure 2(R)), in the SmC phase is possible.
In the first case, the layers detach at the surface and slide to the tilted equi-
librium. In the second case, the boundary layer structure tends to remains
intact. To reduce layer thickness then the layer tilts away from each wall
so as to form a chevron within the cell. A weak anchoring energy allows
either of these states to be accessible through a quasi-static evolution. (See
[6, 11, 26].)

We set

A2 =
{

(ψ,n) ∈ A : ∇⊥ψ · ν ∈ L2(∂Ω)
}
.

Let (ψ,n) ∈ A2 and consider

F̃(ψ,n) = F(ψ,n) + α1

∫
∂Ω
|ψ − g1|2 + α2

∫
∂Ω
|∇⊥ψ · ν − g2|2,

where α1 ≥ 0, α2 > 0, and g1, g2 ∈ L2(∂Ω).
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Theorem 4.1. There exists (ψ̃, ñ) ∈ A2 such that

F̃(ψ̃, ñ) = inf
(ψ,n)∈A2

F̃(ψ,n).

Note that having α2 > 0 is necessary in general. Indeed, if α2 = 0, then
F̃(ψm,nm) → −∞ as m → ∞, where {(ψm,nm)} is defined in (5). Thus a
first order weak anchoring energy barrier is required for an existence theory.

Proof. We first show that F̃ is coercive on A2. Since ∇⊥ψ · ν ∈ L2(∂Ω), we
have

< ∇⊥ψ · ν, ψ∗ >=

∫
∂Ω

(∇⊥ψ · ν)ψ∗. (11)

Thus,

| < ∇⊥ψ · ν, ψ∗ > | ≤ ||∇⊥ψ · ν||2,∂Ω · ||ψ||2,∂Ω

≤ C||∇⊥ψ · ν||2,∂Ω · ||ψ||
1
2

H1(Ω)
· ||ψ||

1
2
2,Ω

≤ ε
(
||∇⊥ψ · ν||22,∂Ω + ||ψ||2H1(Ω)

)
+ C(ε)||ψ||22,Ω,

for any ε > 0. Using (6) for ε sufficiently small, we have

C1

(
||D⊥ψ||2H(div;Ω) + ||D‖ψ||2H(div;Ω) + ||n||2H1(Ω) + ||ψ||44,Ω + ||∇⊥ψ · ν||22,∂Ω

)
≤ F̃(ψ,n) +M,

for fixed positive constants C1,M. If {(ψj ,nj)} is a minimizing sequence
for F̃ in A2, it must contain a subsequence {(ψjm ,njm)} that is weakly
converging in A2 to some (ψ̃, ñ). In order to prove that

F̃(ψ̃, ñ) ≤ lim inf
m→∞

F̃(ψjm ,njm),

it suffices to establish that

lim
m→∞

< ∇⊥ψjm · ν, ψ∗jm >= lim
m→∞

∫
∂Ω

(∇⊥ψjm · ν)ψ∗jm

=

∫
∂Ω

(∇⊥ψ̃ · ν)ψ̃∗.

The first equality follows from (11) and the second one follows from the fact
that

∇⊥ψjm · ν ⇀ ∇⊥ψ̃ · ν in L2(∂Ω),

ψjm → ψ̃ in L2(∂Ω),

as m→∞. This completes the proof.
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Remark 4.2. We note that if (ψ,n) ∈ A then ψ ∈ H2
loc(Ω). Indeed we have

D ·Dψ = D ·D⊥ψ+D ·D‖ψ ∈ L2(Ω). Furthermore D ·Dψ = ∆ψ+ g where

by Sobolev’s theorem g ∈ L
3
2 (Ω). Thus ψ ∈ W

2, 3
2

loc (Ω). Applying Sobolev’s
theorem to g two more times gives ψ ∈ H2

loc(Ω). In particular if B is a
bounded set in A and Ω′ b Ω then there is a constant C(B,Ω′) so that if
(ψ,n) ∈ B then

||ψ||H2(Ω′) ≤ C.

We have shown in the case of a SmC ground state (i.e. if c⊥ > 0) that
variations in |ψ| allows for energy to concentrate near ∂Ω, that this can
lead to the nonexistence of minimizers, and that the concentrations can be
suppressed by anchoring the layer structure at ∂Ω. We can then ask if it
would suffice to limit ∇⊥|ψ|2 · ν instead? Anchoring this term alone would
not affect the layer structure at ∂Ω. The answer however is that this is too
weak a condition. The reason for this is that the function

ψ ∈ A →< ∇⊥ψ · ν, ψ∗ >

is not weakly continuous. We illustrate our point by considering the follow-
ing example. Let Ω be the cell from (4), K = K1 = K2 = K3 > 0, K4 = 0

in (3), r′ =
c2⊥

4a⊥
in (6), and β = 0 in (7). Set

A3 =
{

(ψ,n) ∈ A : Re∇⊥ψ · νψ∗ ∈ L2(∂Ω)
}

and consider the energy

F(ψ,n) +

∫
∂Ω
|Re∇⊥ψ · νψ∗|2 for (ψ,n) ∈ A3.

Up to a constant this can be rewritten as

G(ψ,n) =

∫
Ω

(
a⊥

∣∣∣∣D ·D⊥ψ +
c⊥

2a⊥
ψ

∣∣∣∣2 + a‖|D ·D‖ψ|2

+c‖|D‖ψ|2 + g|ψ|4 +K|∇n|2
)

+

∫
∂Ω

∣∣∣Re∇⊥ψ · νψ∗ − c⊥
2

∣∣∣2.
Clearly G(ψ,n) ≥ 0 and G(ψ,n) = 0 is not possible. However the sequence{

ψm(x, y, z) =
(

c⊥
2m sinh(m) cosh(m)

)1/2
cosh(mz)eimx,

nm = e2

(12)

is such that (ψm,nm) ∈ A3 and G(ψm,nm)→ 0 as m→∞. Thus G has no
minimizer in A3.
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Finally we point out that by using the sequences (5) and (12) respec-
tively, a similar argument shows that we can not weaken the Dirichlet condi-
tions in Section 3 to those of prescribing weaker boundary conditions, such
as fixing |ψ| or ∇⊥|ψ|2 · ν at ∂Ω.

5 Energy associated with ferroelectricity

In this section, we include ferroelectric effects. The special feature here is
the appearance of a spontaneous or permanent polarization field. The po-
larization field P has its orientation determined with respect to the director
field and the smectic layer normal where this is a consequence of molecular
packing and is influenced by the particular physical and electrostatic shapes
of the liquid crystal molecules assumed in the model. To characterize this
for a given ψ, we define Nψ by

Nψ = − i
2

(ψ∗∇ψ − ψ∇ψ∗) .

Note by Remark 4.2, if B is a bounded set in A, Ω′ b Ω, and (ψ,n) ∈ B then
||Nψ||H1(Ω′) ≤ C(B,Ω′). If we set ψ = ρeiω, then Nψ = ρ2∇ω is parallel to
the smectic layer normal. The ground state orientation is depicted in Figure
3, here P is orthogonal to n and makes an angle φ0 with Nψ×n. We enforce

θ

φ

Nψn

0

n

P

Nψ

Figure 3: n−Nψ −P orientation

this orientation by adding a penalty term to the total energy that is as a
generalized version of such a term from [1],

fO =
1

2
Kc

[
(n×Nψ ·P)2(n ·Nψ)2 − χ2

0|P|2|Nψ|4
]2

(13)

where χ0 = cosφ0 sin θ0 cos θ0 . Thus once the smectic tilt angle θ0 between
n and Nψ is determined by fCL, (see Section 1) it follows from (13) that the
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molecules orient in such a way that the angle between P and Nψ×n tend to
have a fixed value | cosφ0| as in Figure 3. In the case of classic chiral smectic
C liquid crystals, SmC∗ one has that φ0 = 0 or π [19], and in the case of
smectic C materials made up of bent-core molecules experiments show that
φ0 can be any fixed value [3, 16].

The reason for the interest in ferroelectric liquid crystals is that their
polar fields are are highly sensitive to electro-magnetic forces and thus by
reorienting P one can effectively reorient n. The polarization vector P
induces a local charge density ∇ · P in these materials, and this generates
both an electrostatic energy and an energy from electric self-interactions
described by Maxwell’s equations. The simplest form of the electrostatic
energy is

fP = B|∇P|2 +Kp(∇ ·P− γ)2 +
1

η2
(|P|2 − P 2

0 )2,

for constants γ, Kp > 0 , B > 0, and η > 0. The first term is the polarization
gradient which is a typical interfacial energy between uniform states. The
Kp-term describes the energy from local dipole-dipole interactions [1, 7,
9]. In particular, these energy terms are responsible for the modulated
polarization phases which exhibit stripe patterns in the SmC∗ and bent-
core molecules [7, 9, 15]. Deep within a ferroelectric phase one has |P| ≈ P0

for a fixed P0 > 0 and the third term enforces this for 0 < η � 1.
The energy for electric self-interactions is

fE = −1

2

(
ε⊥|∇ϕ|2 + εa(n · ∇ϕ)2

)
−P · ∇ϕ,

subject to the Maxwell’s equations{
∇ · [(ε⊥I + εan⊗ n)∇ϕ+ P] = 0 in Ω,

ϕ = ϕa on Γ,
(14)

where ε⊥ > |εa|, Γ ⊂ ∂Ω, ϕa ∈ H
1
2 (Γ), and E = ∇ϕ denotes electric field.

As discussed in [24], the term −P · ∇ϕ can be viewed as a charge-charge
interaction.

The surface energy related with the polarization is the typical Rapini-
Papoular anchoring energy of polar and nonpolar effects [22] given by

fR = ωp [|P| − (P · ν)] + ωr

[
|P|2 − (P · ν)2

]
,

for some constants ωp > 0 and ωr > 0.
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Let us now discuss the vector b appearing in the Oseen-Frank energy (2).
It is the spontaneous bending due to the loss of mirror symmetry, i.e. the
appearance of a nonzero polarization. In this section, we let b = b0P with a
constant b0. As a special case, in the SmC∗ phase c0 (n×Nψ) is often used in
place of b in the literature with c0 representing the tendency of spontaneous
bend [11, 19]. We note that in bent-core molecules the asymmetry of the
molecular shape can induce the converse of this effect which is called the
flexoelectric effect [11]. Our setting is more general in the sense that the K3-
term includes a flexoelectric effect and also interacts with the electrostatic
energy through Maxwell’s equation (14).

The constant τ in the K2-term in (2) is a material parameter reflecting
the spontaneous twist arising from the chirality of molecules. A combination
of the spontaneous twist and bend gives rise to various physical effects in
real systems of ferroelectric liquid crystals. For example, it is observed in
the literature [11, pp. 384] that their equal contribution to the structure
results in uniform configurations although τ 6= 0.

For a bounded open subset Ω in R3 with a C1 boundary, let

V1 =
{
ϕ ∈ H1(Ω) : ϕ = ϕa on ∂Ω

}
,

where ϕa is a given function in H
1
2 (∂Ω). If Ω is the cell discussed in Section

1, we define

Hper(Ω) = {ϕ ∈ H1(Ω) : ϕ(−l, y, z) = ϕ(l, y, z), ϕ(x,−m, z) = ϕ(x,m, z)

for x ∈ (−l, l), y ∈ (−m,m), and z ∈ (−h, h)},
V2 = {ϕ ∈ Hper(Ω) : ϕ = ϕa on z = ±h},

where ϕa satisfies periodic conditions in Hper for each z = ±h. Given a
domain Ω, we take as an admissible set

Ā = {(n,P, ψ, ϕ) : (n, ψ) ∈ A,P ∈ H1(Ω,R3),P · ν ∈ H
1
2 (∂Ω),

ϕ ∈ V, and (n,P, ϕ) satisfies (14) },

where A ∈ {A0,A1,A2}, and V ∈ {V1,V2} are chosen according to the type
of the domain Ω.

Theorem 5.1. The energy functional

F =

∫
Ω

(fCL + fN + fO + fP + fE) +

∫
∂Ω

(fR + fS)

achieves its minimum on Ā.
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Proof. One sees that F is coercive. Since we already know that
∫

Ω(fN +
fCL) +

∫
∂Ω fS is lower semicontinuous, it remains to show that the energy

associated with the polarization is lower semicontinuous. For this, we let
{(nj ,Pj , ψj , ϕj)} be a minimizing sequence. We may assume that infĀ F is
finite. Otherwise, lower semicontinuity is trivial.

Passing to a subsequence if necessary, we obtain a weak limit (ψ∞,n∞,P∞, ϕ∞)
so that as j →∞

Nψj
→ Nψ∞ in L2

loc(Ω),

∇Pj ⇀ ∇P∞ in L2(Ω),

Pj → P∞ in Lr(Ω)(1 < r < 6),

Pj ⇀ P∞ in L6(Ω),

Pj · ν → P∞ · ν in L2(∂Ω),

∇ϕj ⇀ ∇ϕ∞ in L2(Ω),

For each j, set

Gj =
[
(nj ×Nψj

·Pj)
2(nj ·Nψj

)2 − χ2
0|Pj |2|Nψj

|4
]2
.

Since Gj converges to G∞ pointwise a.e., it follows from Fatou’s lemma that∫
Ω
G∞ ≤ lim inf

j→∞

∫
Ω
Gj .

Writing fE = −1
2P · ∇ϕ by (14), we see that

∫
Ω(fP + fE) +

∫
∂Ω fR is lower

semicontnuous. Therefore, we have

F(n∞,P∞, ψ∞, ϕ∞) ≤ lim inf
j→∞

F(nj ,Pj , ψj , ϕj).

Furthermore, (n∞,P∞, ϕ∞) satisfies (14) (see theorem 3.3 in [24]) so that

(n∞,P∞, ϕ∞) ∈ Ā.

Therefore there exists a minimizer of F on Ā.

Our result in this section is an extension of the previous work in [29]
where the authors studied 2−D structures of the bent-core molecules in
the polarization modulated and layer undulated phase without Maxwell’s
equations.
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