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ABSTRACT. The Givental action on genus zero cohomological field theories, also known as hypercommutative
algebras, is proved to be equal to the gauge symmetry action on Maurer–Cartan elements of the homotopy Lie
algebra controlling homotopy Batalin–Vilkovisky algebras. This equivalent description allows us to extend the
Givental action to homotopy hypercommutative algebras.
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INTRODUCTION

In this paper, we study in depth symmetries of algebras over the homology operad of the moduli spaces
of genus 0 stable curves H•(M0,n+1), known, in different contexts and with small differences in defini-
tions, under the names of a hypercommutative algebra, a formal Frobenius manifold, or a genus 0 reduc-
tion of Gromov–Witten theory or a genus 0 cohomological field theory, see [Man99]. This structure plays
a crucial role in a range of questions arising in string theory, enumerative algebraic geometry, and inte-
grable hierarchies, and is one of the basic structures underlying the classical mirror phenomena in genus
0. In this paper, we choose to take an algebraic viewpoint on this structure, and refer to its instances as
hypercommutative algebras.

Let us consider the space of hypercommutative algebra structures on a given vector spaceA. Looking at
the universal structure of the localisation formulas in Gromov–Witten theory, Givental observed in [Giv01a,
Giv01b] that this space is equipped with an action of a big group of “formal Taylor loops of GL(A)”,
which we call in this context the Givental group. The Givental group is the main tool used to study various
universal properties of hypercommutative algebras, and is behind important results in cohomological field
theory and its relations to integrable hierarchies, matrix models, mirror symmetry, and homotopical algebra.

Algebraically, the space of hypercommutative algebra structures on A is the space of representations of
the operad HyperCom := H•(M0,n+1) in the endomorphism operad of A. The operad HyperCom
is well studied; for instance, it is proved to be Koszul in [Get95]. For our purposes, it is important
that its internal structure can be described in terms of the intersection theory on the moduli spaces of
curves of genus 0 and that it is a crucial ingredient in the homotopy theory of Batalin–Vilkovisky algebras
[Man99, DV13, KMS12].

Representations of any operad admits a canonical deformation theory, but the resulting group action is
not an action of such a big group. Therefore, some natural questions about the operad HyperCom arise.
First, what is so special about the operad HyperCom that its spaces of representations have so many sym-
metries? Second, does the Givental group have an interpretation in terms of the universal deformation
theory of the operad HyperCom or its resolution(s)? More generally, is the Givental group action natural
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in some sense in the framework of the homotopical algebra for the operad HyperCom? Some hints were
given by the results of our first paper [DSV13] on the subject. This paper now provides a full answer to all
these questions.

To solve this problem, we need to encode these symmetries using the higher concept of homotopy
Lie algebra [Get09] as follows. The first observation is that the structure of a HyperCom-algebra on a
given vector space A is encoded by Maurer–Cartan elements in a certain dg Lie algebra gHyperCom, the
convolution algebra coming from the Koszul model. It so happens that this dg Lie algebra is a subalgebra
of a homotopy Lie algebra lBV, the convolution algebra coming from the minimal model of the operad of
Batalin–Vilkovisky algebras [DV13]. The homotopy Lie algebra lBV is an extension of gHyperCom by a dg
Lie algebra g∆ = z End(A)[[z]], whose degree zero elements form the Lie algebra of the Givental group.
In a homotopy Lie algebra, the degree zero elements define vector fields on the variety of Maurer–Cartan
elements, which are infinitesimal gauge symmetries of the Maurer–Cartan elements [Get09]. The main
result of this paper is the following theorem.

Theorem (Thm. 5). For any hypercommutative structure on a graded vector space A encoded by a
Maurer–Cartan element α ∈ gHyperCom and for any degree 0 element r(z) ∈ g∆, the Givental action
of r(z) on α is equal to the gauge symmetry action:

r̂(z).α = `α1 (r(z)) .

Moreover, this theorem implies that the Givental group action on representations of the operad of hy-
percommutative algebras is just the first visible layer of a natural action of the Givental group on the space
of structures of homotopy hypercommutative algebras. Besides its structural importance for the foun-
dations of the Givental theory, this observation suggests the development of the Gromov–Witten theory
on the chain level: a theory where the space of Gromov–Witten classes may be a chain complex (think
about the evaluations of differential forms rather than the cohomology classes) that produces a homotopy
HyperCom-algebra structure on the cohomology of the target variety.

Layout. The paper is organised as follows. In Section 1, we recall the definitions, constructions, and
results used in the sequel. Since our main result proves that two constructions coming from two fairly
different areas actually coincide, we made that section quite elaborate to benefit readers coming from
either of those areas. Section 2 describes the homotopy Lie algebra encoding skeletal homotopy Batalin–
Vilkovisky algebras. In Section 3, we prove that the Givental action is equal to the gauge symmetry action,
as explained above.

Acknowledgements. The final version of this paper was completed during the programme “Grothendieck–
Teichmüller Groups, Deformation, and Operads” at Newton Institute for Mathematical Sciences at the
University of Cambridge. The authors would like to thank Newton Institute for the excellent working
conditions enjoyed during their stay there. The second author would like to thank A. Losev for the useful
discussion of a possible set-up for the Gromov–Witten theory on the chain level.

1. RECOLLECTIONS

In this section, we recall necessary background information from various areas invoked in this paper.
We assume working knowledge of standard results of homotopical algebra for operads, and encourage the
reader to consult [LV12] for details on that.

Throughout the text, we work over a field K of characteristic 0. We denote by s the suspension operator
of degree 1: (sC)•+1 := sC•. We use the “topologist’s notation” for finite sets, putting n := {1, . . . , n}.
The notation � stands for the ‘symmetric’ tensor product, that is, the quotient of the tensor product under
the permutation of terms.

1.1. Hypercommutative algebras and cohomological field theories.

Definition 1 (Hypercommutative algebra). A hypercommutative algebra is an algebra over the operad
HyperCom := H•(M0,n+1) made up of the homology of the Deligne–Mumford–Knudsen moduli spaces
of stable genus 0 curves.
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Such a structure is given by a morphism of operads H•(M0,n+1) → EndA, and so amounts to a
collection of symmetric multilinear maps µn : A⊗n → A of degree 2(n − 2) for each n ≥ 2 that satisfy
certain quadratic relations, see [Man99]. The first of those relations is the associativity of µ2, and further
ones are higher associativity relations mixing operations together, hence the name “hypercommutative”.

The operad H•(M0,n+1) is Koszul, with the Koszul dual cooperad H•(M0,n+1)¡ = H•+1(M0,n+1),
the cohomology groups of the moduli spaces of genus 0 curves. So the operadic cobar construction

ΩH•+1(M0,n+1)
∼→ H•(M0,n+1)

provides a resolution of the former operad, see [Get95].

Definition 2 (Homotopy hypercommutative algebras). A homotopy hypercommutative algebra is an alge-
bra over the operad ΩH•+1(M0,n+1).

This data amounts to an operadic twisting morphism H•+1(M0,n+1) → EndA. The operations defin-
ing such a structure are parametrised by H•+1(M0,n+1). Hence, a homotopy hypercommutative algebra
structure on a chain complex with trivial differential is made up of an infinite sequence of strata of multi-
linear operations, whose first stratum forms a hypercommutative algebra.

Definition 3 (Genus 0 CohFT [KM94]). Given a graded vector space A, a genus 0 cohomological field
theory (CohFT) on A is defined as a system of classes αn ∈ H•(M0,n+1) ⊗ EndA(n) satisfying the
following properties.

� The classes αn are equivariant with respect to the actions of the symmetric group Sn on the labels
of marked points and on the factors of EndV (n).

� The pullbacks via the natural mappings ρ : M0,n1+1 ×M0,n2+1 →M0,n1+n2
produce the com-

position of the multilinear maps at the point corresponding to the preimage of the node on the first
curve:

ρ∗α0,n1+n2
= α0,n1+1◦̃i α0,n2+1 ,

where ◦̃i incorporates the composition in the endomorphism operad and the Künneth isomorphism.

REMARK. A CohFT is often required to have a unit e1 ∈ A; this corresponds to making use of the natural
mappings π : M0,n+1 → M0,n. We shall not force that, and use all necessary formulae without the
unit. Also, a CohFT in all genera needs A to have a scalar product, and is defined using the language of
modular operads. However, in genus 0, it is possible to eliminate it completely on the stage of applying
the forgetful functor from modular operads to operads. The main advantage for doing so is to incorporate
infinite dimensional spaces. An interested reader is referred to [DSV13, KMS12] for details.

Summing up, the above definitions of a hypercommutative algebra and of a genus 0 CohFT are the same.

1.2. Intersection theory on moduli spaces. The Givental group action, we discuss below, makes use of
the ψ-classes on moduli spaces of curves.

Definition 4 (ψ-classes). Both the moduli spaceM0,n and its compactificationM0,n have n tautological
line bundles Li. The fibre of Li over a point represented by a curve C with marked points x1, . . . , xn is
equal to the cotangent line T ∗xi

C. The cohomology class ψi ofM0,n is defined as the first Chern class of
the line bundle Li: ψi = c1(Li) ∈ H2(M0,n).

Recall that one can define the push-forward maps ρ∗ on the cohomology using the Poincaré duality and
the push-forward on the homology:

H•(M0,n1+1)⊗H•(M0,n2+1)→ H•(M0,n1+1 ×M0,n2+1)→ Hd−•(M0,n1+1 ×M0,n2+1)

→ Hd−•(M0,n1+n2+1)→ H•+2(M0,n1+n2+1) ,

where the dimension d is equal to +2n1 + 2n2 − 8. Throughout the paper, we will only use the gluing
along the point marked by 1 on the first curve and the point marked by 0 on the second one.

The main ingredients needed for computation with ψ-classes are the following formulae. They corre-
spond to the expression the ψ-classes in terms of divisors, see e. g. [Man99, §VI.3.].

Proposition 1. The Poincaré duals βn ∈ H0(M0,n+1) of the fundamental classes of the moduli spaces
satisfy the following properties.
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� For all i1, i2 ∈ n,

(1) ψ0 =
∑

ItJ=n
i1,i2∈I

ρ∗(β|J|+1 ⊗ β|I|) .

� For all i ∈ n,

(2) ψi + ψ0 =
∑

ItJ=n
i∈I

ρ∗(β|J|+1 ⊗ β|I|) .

1.3. Givental action on CohFTs. In the case of genus 0 CohFTs, it is possible to extend the action of
the Lie algebra [Lee09] of the Givental group [Giv01a, Giv01b] to the Lie algebra z End(A)[[z]] dropping
the assumption on (skew-)symmetry of the components of operators [KMS12, Tel12]. Let us recall the
corresponding formulae, which we shall later identify from the homotopy viewpoint. For a genus 0 CohFT
given by a system of classes αn ∈ H•(M0,n+1)⊗ EndA(n), this action is defined by the formula

(3) (r̂kzk.{α})n = (−1)k+1rk ◦1 αn · ψk0 +

n∑
m=1

αn · ψkm ◦m rk+

+
∑

ItJ=n,|I|≥2,
i+j=k−1

(−1)i+1 ρ̃∗

((
α|J|+1 · ψj1

)
⊗
(
rk ◦1 α|I| · ψi0

))
.

Here we assume that the output of every operadic element corresponds to the point marked by 0 on the
curve. In the last term, the map ρ̃∗ is defined by ρ∗ ⊗ ◦1, i.e. an enrichment of the push-forward map on
H•(M0,n+1) with the operadic composition on EndA.

1.4. Trees. A reduced rooted tree is a rooted tree whose vertices have at least one input. We consider the
category of reduced rooted trees with leaves labelled bijectively from 1 to n, denoted by Tree. The trivial
tree | is considered to be part of Tree.

A shuffle tree, see [Hof10, §2.8] and [DK10, §3.1], is a reduced planar rooted tree equipped satisfying
the following condition. Suppose that we put labels on all edges by going down from the leaves to the
root and labelling each edge by the minimum of the labels of the inputs of its top endpoint. Then, for each
vertex, the labels of its inputs, read from left to right, should appear in the increasing order.

6 7

1 4 8 3 5

6

1

2

3

FIGURE 1. Example of a shuffle tree

Shuffle trees provide us with choices of planar representatives for trees in space. In the sequel, we
will need shuffle binary trees, that we denote by SBTn. The labels of the leaves of a shuffle tree t, read
from left to right, provide us with a permutation σt of Sn. In the example of Figure 1, this permutation is
σt = [14823567].

The underlying S-module of the (conilpotent) cofree cooperad T c(M) on an S-module M is given by
the direct sum

⊕
t∈Tree t(M), where t(M) is the treewise tensor module obtained by labelling every vertex

of the tree t with an element of M according to the arity and the action of the symmetric groups. Its
decomposition map is given by cutting the trees horizontally; see [LV12, Chapter 5] for more details.

The subcategory of trees with n vertices is denoted by Tree(n). The number of vertices endows the
cofree cooperad T c(M) ∼=

⊕
n∈N T c(M)(n) with a weight grading.
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1.5. Homotopy BV-algebras and skeletal homotopy BV-algebras. This section is a brief summary of
constructions and results of [GCTV12] and [DV13] that we use.

Definition 5 (dg BV-algebra). A dg BV-algebra (A, d, •,∆) is a differential graded commutative algebra
equipped with a square-zero degree 1 operator ∆ of order at most 2.

Notice that any BV-algebra includes a degree 1 Lie bracket 〈 -, - 〉 defined by

〈 -, - 〉 = ∆(- • -) − (∆(-) • -) − (- •∆(-)) .

This induces a quadratic-linear presentation T (•,∆, 〈 -, - 〉)/(R) for the operad BV encoding BV-algebras,
see [GCTV12, Section 1] for a complete exposition. Its Koszul dual dg cooperad was proved to be equal to

BV¡ ∼= (G¡[δ], dϕ) ,

where G¡ stands for the Koszul dual cooperad of the operad G encoding Gerstenhaber algebras, where
δ := s∆ is a degree 2 element of arity 1 and where dϕ is the unique coderivation extending

s•

s∆

−
s∆

s• −
s∆

s• 7→ s〈 , 〉

.

Theorem 1. [GCTV12, Theorem 6] The operad BV is a nonhomogeneous Koszul operad, i.e. the cobar
construction of BV¡ is a resolution of BV:

BV∞ := Ω BV¡ ∼−→ BV .

Algebras over the Koszul resolution BV∞ are called homotopy BV-algebras. This resolution is already
much smaller than the bar-cobar resolution but is not minimal. Let us explain, following [DV13], how to
derive the minimal resolution from it.

We consider the S-module M made up of the two elements µ and β, both of arity two with trivial
symmetric group action, in degrees 1 and 2 respectively:

M := K2 s•︸︷︷︸
µ

⊕K2 s〈 , 〉︸ ︷︷ ︸
β

.

Let ψ denote the degree one morphism of graded S-modules ψ : T c(M)→M which first projects T c(M)
to the cogenerators M and then takes µ to β and β to zero. The map ψ extends uniquely to a degree one
coderivation dψ of T c(M), which amounts to applying ψ everywhere. So its image is equal to the sum
over the vertices labelled µ of trees where this µ is changed for a β.

The Koszul dual cooperad G¡ is a sub-cooperad of the cofree cooperad T c(M) and the coderivation dϕ
of G¡[δ] is equal to δ−1dψ .

Let t be a binary tree, that is a tree where all the vertices have total valence 3. Any vertex v has some
number of leaves mv above one of its incoming edges, and another number nv above the other. Let the
weight ω(v) be their productmvnv . The sum of the weights of all the vertices of a binary tree with n leaves
is equal to

(
n
2

)
.

Definition 6 (The map H). Let H̄ : M → M be the degree −1 morphism of graded S-modules given by
sending β to µ and µ to 0. We define the map H on a decorated tree with n leaves in T c(M) as a sum
over the vertices. For the vertex v, the contribution to the sum is ω(v)

(n
2)

times the decorated tree obtained by

applying H̄ to v, including the Koszul sign.

So the map H has a similar flavour to extending H̄ as a coderivation, but also includes combinatorial
factors.
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EXAMPLE. The image of

3 5

1 4 2 µ

µ β

β

under the map H is equal to

3

5

3 5

1 4 2 µ

µ β

µ

− 1

5

3 5

1 4 2 µ

µ µ

β

.

Proposition 2 ([DV13]). The mapsH and dψ defined on T c(M) restrict to the sub-cooperadG¡ ⊂ T c(M),
and give rise to the following deformation retract:(

G¡[δ], dϕ = δ−1dψ
)

δH
'' pr // // (T c(δ)⊕ ImHdψ, 0

)
,oooo

where pr is the sum of the projection onto T c(δ) in non-negative δ-degrees and the projection Hdψ in
δ-degree 0.

The right-hand side computes the Quillen homology HQ(BV) of the operad BV, i.e. the homology of
the bar construction of BV. We shall denote it by H ⊕ I for brevity. It can be expressed in terms of the
cohomology of the moduli space of curves of genus 0:

H := H
Q

(BV) ∼= T
c
(δ)⊕ ImHdψ ∼= T

c
(δ)⊕H•+1(M0,n+1) .

In [DV13], the Homotopy Transfer Theorem for homotopy cooperads was used to transfer the dg cooperad
structure of BV¡ to a homotopy cooperad structure on H via the above deformation retract. In operadic
terms, the short exact sequence of homotopy cooperads

T
c
(δ) � H� H•+1(M0,n+1)

is exact, i.e. H is an extension of the (non-unital) cooperads

T
c
(δ) = H•(S1)¡ and H•+1(M0,n+1) = H•(M0,n+1)¡.

Theorem 2 ([DV13]). The cobar construction of the homotopy cooperad H is the minimal model of the
operad BV:

sBV∞ := Ω∞H
∼−→ BV .

Algebras over the minimal model sBV∞ are called skeletal homotopy BV-algebras.

1.6. Homotopy Lie algebra.

Definition 7 (L∞-algebra). An L∞-algebra structure on a dg module (A, dA) is a family of totally skew-
symmetric maps `n : A⊗n → A of degree |`n| = n− 2, for all n ≥ 2, satisfying the relations

∂A(`n) =
∑

p+q=n+1
p,q>1

∑
σ∈Sh−1

p,q−1

sgn(σ)(−1)(p−1)q(`p ◦1 `q)σ , for n ≥ 2 ,
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where ∂A is the differential of EndA induced by dA and where Shp,q−1 denotes the set of (p, q − 1)-
shuffles.

For any shuffle binary tree t with n leaves, we consider its underlying planar binary tree t̄ with n − 1
vertices. To this planar binary tree, we associate a permutation of Sn−1 as follows. First, we put the vertices
on n − 1 distinct upward levels. This means that, among the trees with levels that represent t̄, we choose
the tree whose levels of the vertices, which are at the same level in t̄, go upward when moving from left to
right. We label the levels by {1, . . . , n− 1} from top to bottom and we label the vertices by {1, . . . , n− 1}
from left to right. The assignment which gives the level of each vertex defines a permutation σt̄ of Sn−1.

EXAMPLE.

1 2 3

1 oo

2 oo

3 oo

In this example, the associated permutation is σt̄ = [132].

Theorem 3 (Homotopy Transfer Theorem, see [LV12]). Let (V, dV ) be a homotopy retract of (A, dA):

(A, dA)h
%% p // (V, dV )

i
oo

idA − ip = dAh+ hdA, i quasi-isomorphism .

Let the bracket [ , ] : A⊗2 → A endowA with a dg Lie algebra structure. The maps {`n : V ⊗n → V }n≥2

defined by

`n :=
∑

t∈SBTn

sgn(σt) sgn(σt̄) p t([ , ], h) i⊗n ,

where the notation t([ , ], h) stands for the n-multilinear operation onA defined by the composition scheme
t with vertices labelled by [ , ] and internal edges labelled by h, define an L∞-algebra structure on V .

Moreover, the maps i1 := i and

in :=
∑

t∈SBTn

sgn(σt) sgn(σt̄) h t([ , ], h) i⊗n , for n ≥ 2 ,

define an∞-quasi-isomorphism from the transferred L∞-algebra (V, dV , {`n}n≥2) to the dg Lie algebra
(A, dA, [ , ]).

Proof. Let us make explicit the signs in the proof of [LV12, Theorem 10.3.3]. First one easily checks
that the map ψ yields no sign since one starts from a degree 0 Lie bracket. (The signs coming from
the permutations of the suspensions s and the homotopy h cancel.) The map sϕ has degree 2 and so
produces no sign. Therefore, the only sign is the one coming from the decomposition map of the cooperad
Lie¡ = EndcKs−1 ⊗H Com∗. The decomposition map of the cooperad Com∗ is given by the sum of all the
binary trees, that we choose to represent with shuffle trees. And the decomposition map of the cooperad
EndcKs−1 is given by the sum of all the shuffle binary trees t with coefficient exactly sgn(σt) sgn(σt̄). �
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1.7. Convolution algebras. Let C be a dg cooperad and let P be a dg operad. Recall that the collection
Hom(C,P) := {Hom(C(n),P(n))}n∈N forms an operad called the convolution operad, see [LV12]. This
structure induces a dg pre-Lie algebra structure and hence a dg Lie algebra structure on equivariant maps

HomS(C,P) :=
( ∏
n∈N

HomSn(C(n),P(n)), ∂, [ , ]
)
.

Explicitly, the Lie bracket is given by

[f, g] := γP ◦
(
f ⊗ g − (−1)|f ||g|g ⊗ f

)
◦∆(1) ,

where ∆(1) : C → T (C)(2) is the partial decomposition map of the cooperad C. In this convolution dg Lie
algebra, we consider the Maurer–Cartan equation

∂(α) +
1

2
[α, α] = 0 ,

whose degree −1 solutions are called twisting morphisms and denoted Tw(C,P).
All the dg Lie algebras of this paper are of this form, where the cooperad is the Koszul dual dg cooperad

P ¡ of an operad P and where the operad is the endomorphism operad EndA:

gP :=
( ∏
n∈N

HomS(P ¡(n),EndA(n)), ∂ := (∂A)∗ − (dP¡)∗, [ , ]
)
.

Theorem 4 (“Rosetta Stone”, see [LV12]). The set of homotopy P-algebra structures on a dg module A is
equal to

HomdgOp (ΩP ¡,EndA) ∼= Tw(P ¡,EndA) ∼= Codiff(P ¡(A)) .

If C is a homotopy cooperad with the decomposition map ∆C : C → T (C)(≥2), and P is a dg operad
with the composition map µ̃P : T (P)(≥2) → P , the collection HomS(C,P) is a homotopy operad, called
the convolution homotopy operad. The direct sum of components of this collection

HomS(C,P) :=
( ∏
n∈N

HomSn(C(n),P(n)), ∂, {`n}n≥2

)
.

is an L∞-algebra [VdL02]. This algebra is referred to as the convolution L∞-algebra; its structure maps
`n are given by the formula

(4) `n(f1, . . . , fn) =
∑
σ∈Sn

(−1)sgn(σ,f1,...,fn)µ̃P ◦ (fσ(1) ⊗ · · · ⊗ fσ(n)) ◦∆
(n)
C ,

where ∆
(n)
C is the component of ∆C which maps C to T (C)(n), see [MV09, VdL02].

In such an algebra, we can consider the (generalised) Maurer–Cartan equation∑
n≥1

1

n!
`n(α, . . . , α) = 0 ,

whose degree −1 solutions are called (generalised) twisting morphisms and denoted by Tw(C,P). Notice
that this equation, as well as other formulae throughout this paper, makes sense for homotopy convolution
algebras, since for every element c ∈ C, its image under the decomposition map ∆C is a finite sum.

2. THE HOMOTOPY LIE ALGEBRA ENCODING SKELETAL HOMOTOPY BV-ALGEBRAS

The homotopy Lie algebra encoding skeletal homotopy BV-algebras is defined by, first, transferring a
homotopy cooperad structure on the generators H = H

Q
(BV)/ of the minimal model of the operad BV

and, then, by considering the convolution algebra HomS(H,EndA). The combinatorics of the first step
makes the final description hard to apply in practice. To make it manageable, we go the other way round,
first considering the convolution Lie algebra HomS(BV¡,EndA) associated to the Koszul dual of BV and,
then applying the homotopy transfer theorem for homotopy Lie algebras.
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2.1. The three convolution dg Lie algebras. The general construction of convolution dg Lie algebras
from Section 1.7 can be used to produce three dg Lie algebras that we shall use in this paper. Applying
the general construction to the dg cooperad C = BV¡, we obtain the convolution dg Lie algebra gBV that
encodes homotopy BV-algebras structures. The formulae of Section 1.5 show that

gBV
∼= (gG[[z]], z(dψ)∗),

where z is a degree−2 element. Applying the general construction to the (non-unital) cooperad C = T
c
(δ),

we obtain the convolution dg Lie algebra

g∆ :=
(

Hom(T
c
(δ),End(A)), (∂A)∗

) ∼= (z End(A)[[z]], ∂A
)

that encodes multicomplex structures, see [DSV12]. Notice that this dg Lie algebra is equal to Givental dg
Lie algebra of Section 1.3. Finally, applying the general construction to the cooperad C = HyperCom¡,
we obtain the convolution dg Lie algebra

gHyperCom :=
(

HomS(H•+1(M0,n+1),EndA), (∂A)∗
) ∼= (HomS(ImHdψ,EndA), (∂A)∗

)
,

which encodes homotopy hypercommutative algebra structures.

2.2. The convolution homotopy Lie algebra of skeletal homotopy BV-algebras. Applying the general
construction of convolution homotopy Lie algebras to the homotopy cooperad C = H, we obtain the
convolution L∞-algebra

lBV :=
( ∏
n≥1

HomSn H(n),EndA(n)), (∂A)∗, {`n}n≥2

)
.

Proposition 3 ([DV13]). The set of skeletal homotopy BV-algebra structures on a dg module A is equal
to

HomdgOp(sBV∞,EndA) ∼= Tw(H,EndA) .

Proposition 4. The aboveL∞-algebra structure lBV on HomS(H,EndA) is isomorphic to theL∞-algebra
structure obtained by transferring the dg Lie algebra structure of gBV under the formulae of Theorem 3
and the following deformation retract(

HomS(BV
¡
,EndA), ∂

)
(δH)∗

)) // // (HomS(H,EndA), (∂A)∗
)
,oo

pr∗
oo

Proof. This proposition follows from the following general result: the formulae for the transferred homo-
topy cooperad [DV13, Theorem 3.3] and for the transferred homotopy Lie algebra (Theorem 3) commute
under the convolution homotopy Lie algebra functor

HomS(−,P) : homotopy cooperads→ homotopy Lie algebras ,

given in Section 1.7. Let (C,∆, dC) be a coaugmented dg cooperad and let (P, γ, dP) be a dg operad.
Writing the underlying homology groupsH as a deformation retract of (C, dC)

(C, dC)η
&& π // (H, 0)

ι
oo

allows one to transfer a homotopy cooperad structure as follows. For any tree t ∈ Tree with at least
2 vertices, we consider all the possible ways of writing it by successive substitutions of trees with two
vertices:

t = (((t1 ◦j1 t2) ◦j2 t3) · · · ) ◦jk tk+1 ,

where t ◦j s stands for the substitution of the tree s at the jth vertex of t. The transferred structure map
∆̃t : H → t(H), for t ∈ Tree, is then given by

∆̃t :=
∑
± t(π) ◦

(
(∆tk+1

η) ◦jk (· · · (∆t3η) ◦j2 ((∆t2η) ◦j1 ∆t1))
)
◦ ι ,

where the notation (∆t′η) ◦j ∆t means the composite of ∆t with ∆t′η at the jth vertex of the tree t. The
induced L∞-algebra structure on the convolution algebra HomS(H,P) is then equals to

`n(f1, . . . , fn) : H ι−→ C → T (C)(n) T (π)−−−→ T (H)(n) −→ T (P)(n) γ−→ P ,
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where the map T (H)(n) → T (P)(n) is
∑
σ∈Sn sgn(σ) T (fσ(1), . . . , fσ(n)) and where the map from C to

T (C)(n) is
∑
t∈Tree(n)

∑
±
(
(∆tn−1η) ◦jn−2 (· · · (∆t3η) ◦j2 ((∆t2η) ◦j1 ∆t1))

)
. This latter map is equal

to the iteration of the infinitesimal decomposition map of the cooperad C∑
jk∈{1,...,k+1}

sgn(σj)
(
(∆(1)η) ◦jn−2 (· · · (∆(1)η) ◦j2 ((∆(1)η) ◦j1 ∆(1)))

)
,

where the sign sgn(σj) is given by the permutation associated to the following planar binary tree j with
levels: any sequence of integers (j1, . . . , jn−2) gives rise to a with n−1 vertices such that the binary vertex
at level n− 1− k is at place jk. All the other signs are straightforward applications of the sign rule of the
permutations of graded elements.

On the other hand, the transferred L∞-algebra structure on HomS(H,P) through the pulled-back de-
formation retract

(HomS(C,P), ∂)h:=η∗
&& p:=ι∗ // (HomS(H,P), ∂)

i:=π∗
oo

given by Theorem 3 is

ln :=
∑

t∈SBTn

sgn(σt) sgn(σt̄) i t([ , ], h) (p)⊗n ,

where [ , ] is the bracket of the convolution Lie algebra HomS(C,P) equal to

[f, g] : C
∆(1)−−−→ T (C)(2) T (f,g)−T (g,f)−−−−−−−−−→ T (P )(2) γ−→ P .

So the map given by the labelled trees t([ , ], h) amounts to splitting the elements of C in all possible ways
via iterations of (∆(1)h). In the end, the map ln(f1, . . . , fn) is equal to

ln(f1, . . . , fn) : H ι−→ C → T (C)(n) −→ T (P)(n) γ−→ P ,

where the map T (C)(n) → T (P)(n) is
∑
σ∈Sn sgn(σ) T (fσ(1)π, . . . , fσ(n)π) and where the map from

C to T (C)(n) is
∑
jk∈{1,...,k+1} sgn(σj)

(
(∆(1)η) ◦jn−2 (· · · (∆(1)η) ◦j2 ((∆(1)η) ◦j1 ∆(1)))

)
. The sign

sgn(σt̄) coincides with the sign sgn(σj), the other signs are direct consequences of permutation of graded
elements. Therefore, `n = ln. �

The L∞-algebra lBV whose underlying space satisfies

lBV = g∆ ⊕ gHyperCom

is an extension of the two dg Lie algebras g∆ and gHyperCom in the category of L∞-algebras.

2.3. Gauge symmetries in Lie infinity algebras. Let
(
l, {`n}n≥1

)
be an L∞-algebra, and let α be a

(generalised) Maurer–Cartan element of that algebra. One can twist the original structure maps of l with α:

`αn(x1, . . . , xn) :=
∑
p≥0

1

p!
`n+p(α, . . . , α︸ ︷︷ ︸

p

, x1, . . . , xn) ,

so that lα :=
(
l, {`αn}n≥1

)
forms again an L∞-algebra, called a twisted L∞-algebra. Recall that a degree

−1 element τ ∈ l is an infinitesimal deformation of α, i.e.

α+ ετ ∈ MC
(
l⊗K[ε]/(ε2)

)
,

if and only if `α1 (τ) = 0. So the tangent space of the Maurer-Cartan variety at the point α is equal to

Tα MC(l) = Ker `α1 .

In particular, if λ is an element of degree 0 in l, the element τλ = `α1 (λ) satisfies the equation `α1 (τλ) = 0;
so such an element defines an infinitesimal deformation of α. The element τλ depends on α, and so defines
a vector field; we just checked that this vector field is a tangent vector field of the Maurer–Cartan variety.
Its integral curves give deformations of Maurer–Cartan elements, and define gauge symmetries of Maurer–
Cartan elements of a L∞-algebra, see [Get09].
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3. GAUGE INTERPRETATION OF GIVENTAL ACTION

In this section, we use the L∞-algebra lBV to identify the Givental action with the homotopy BV gauge
symmetries.

3.1. The main theorem. Any Maurer–Cartan element α in gHyperCom, representing a homotopy hyper-
commutative algebra, is also a Maurer-Cartan element in lBV. We shall deform α in the direction of g∆ in
the L∞-algebra lBV. Let r(z) =

∑
l≥1 rlz

l be a degree 0 element of g∆. The general definition of gauge
symmetries implies that `α1 (r(z)) is an infinitesimal deformation of α. Note that although in general gauge
symmetries for L∞-algebras form an∞-groupoid [Get09], in our particular case g∆ is a dg Lie subalgebra,
so the respective symmetries form a group. A hypercommutative algebra can also be viewed as a genus 0
CohFT, and as such can be deformed by the infinitesimal Givental action. In this section, we show that
these two deformations are exactly the same, proving the following result.

Theorem 5. For any hypercommutative algebra structure on A encoded by a Maurer–Cartan element
α ∈ gHyperCom and for any degree 0 element r(z) ∈ g∆, the Givental action of r(z) on α is equal to the
gauge symmetry action:

r̂(z).α = `α1 (r(z)) .

The rest of this section is devoted to the proof of this formula.

3.2. Gauge symmetries restrict to hypercommutative algebras. Let us first check that the formula of
Theorem 5 makes sense by proving the following lemma.

Lemma 1. The infinitesimal gauge symmetry action of r(z) on α deforms it in the class of hypercommuta-
tive algebra structures, i.e.

`α1 (r(z)) ∈ Tα MC(gHyperCom) .

Proof. Since neither A nor the homotopy cooperadH has a differential, the first term in the formula

`α1 (r(z)) =
∑
n≥1

1

(n− 1)!
`n(α, . . . , α, r(z))

for the infinitesimal gauge symmetry vanishes. Therefore, only the terms with n > 1 contribute to the
above sum. Since the L∞-algebra lBV is a convolution algebra, it is graded by arity of the maps minus one.
So the map `α1 (r(z)) vanishes on the arity one elements T

c
(δ).

Since α is a Maurer–Cartan element, any tree in the homotopy transfer formulae which has two leaves
with the same parent both labelled by i(α) contributes zero to the terms `n(α, . . . , α, r(z)). Therefore the
only non-trivial contributions to the homotopy transfer formulae for

`n(α, . . . , α, r(z)) = (−1)n−1`n(r(z), α, . . . , α)

are given by “left combs”

i(r(z)) i(α)

[ , ]
h

i(α)

[ , ]

h
i(α)

[ , ]

p ,

where i = (pr)∗ and h = (δH)∗. To compute such a term as an element of lBV, we should be able to
evaluate it on any element b of H. For that, there is the following recursive procedure. Such an element,
viewed as an element in ImHdψ ⊂ G¡, should be decomposed into two in all possible ways in the cooperad
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G¡. In the result b1 ◦i b2 of such a decomposition one should apply i(α) to one of the arguments, the
remaining part of our left comb to the other argument, and anti-symmetrise with respect to that choice.

Recall from [DV13] that ImHdψ is weight graded by the number of vertices labelled by µ; we denote
it by (ImHdψ)[k], for k ≥ 1. This weight grading corresponds to the usual weight grading of the Koszul
dual cooperad under the isomorphism ImHdψ ∼= HyperCom¡. So a hypercommutative algebra struc-
ture is equivalent to a Maurer-Cartan element α ∈ MC(gHyperCom) which vanishes outside (ImHdψ)[1].
Tracing the above recipe for computing the left comb as an element of lBV, one sees that if α vanishes
outside (ImHdψ)[1], then `n(r(z), α, . . . , α) satisfies the same property. Indeed, suppose that we compute
`n(r(z), α, . . . , α) on an element b from (ImHdψ)[k]. Under the first decomposition we get one element
to which we apply i(α) right away, and another element, to which we apply the rest of our left comb, which
has h at the root, amounting to applying δH . The former element must belong to (ImHdψ)[1] in order to
be able to apply i(α) to it, hence the latter element will belong to (ImHdψ)[k−1], and after applying δH
will be back in (ImHdψ)[k]. At the leaf level of the comb we shall end up with a zero contribution, since
we shall be forced to apply i(α) to an element from (ImHdψ)[k] (and since i(r) vanishes on ImHdψ).
This completes the proof. �

3.3. Proof of Theorem 5.

Proof of Theorem 5. Let us examine the formulae in question carefully. Shuffle trees that we always use
suggest that to make the notation most economic, we should replace each term `n(α, . . . , α, r(z)) in the
formula for the infinitesimal gauge symmetry by the equal term (−1)n−1`n(r(z), α, . . . , α), and examine
those terms without signs. At the stage when we deal with the Givental formulae, we shall also modify
them accordingly. Let us note that the only non-trivial contributions to `α1 (r(z)) come from the terms
`n(rn−2z

n−2, α, . . . , α). Indeed, if we evaluate the homotopy transfer formula for `n(α, . . . , α, r(z)) on a
particular element b of ImHdψ , we see that in the inductive computation of the result, as described in the
proof of Lemma 1, the total power δn−2 accumulates (each for one occurrence of h). In the end, we apply
r(z) to that power of δ, so only rn−2 matters. Moreover, the contribution of `n(rn−2z

n−2, α, . . . , α) to
`α1 (r(z)) is precisely the left comb

i(rn−2z
n−2) i(α)

[ , ]
h

i(α)

[ , ]

h
i(α)

[ , ]

p .

The coefficient 1
(n−1)! disappears since there are (n− 1)! shuffle left combs of arity n.

Since both sides of the formula, we want to prove, are linear in r(z), it is sufficient to prove the equality
for each component rk individually. Furthermore, due to the factorisation property, a CohFT is completely
defined by its values on fundamental cycles, and equivalently, a hypercommutative algebra is defined once
we defined its generating operations. Since we know that both the Givental action and the gauge action
take a hypercommutative algebra to a hypercommutative algebra, it is sufficient to show that the Givental
formula, once integrated over fundamental cycles gives the same operations as the gauge symmetry formula
on (ImHdψ)[1]. We shall prove that by induction on k, showing that both satisfy the same kind of recursion
relation.

Let us denote by λ(k)
n ∈ EndA(n) the value of the element (−1)k−1(r̂zk.α)n on the fundamental cycle

ofM0,n+1 (recall that we should change signs in the exact same way as we did for the gauge action), and
by θ(k)

n ∈ EndA(n) the value of `k+2(rzk, α, . . . , α) on the n-ary generator from (ImHdψ)[1]. Finally,
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let us denote by νn the value of the element α on the fundamental cycle ofM0,n+1. We remark that the
elements λ(k)

n and θ(k)
n are well defined for k ≥ 1.

For k = 0, although the corresponding elements do not literally belong to the Givental formalism or
to the gauge symmetries respectively, the actual formulae make sense and are applicable as follows. The
Givental action extends to the action of the Lie algebra End(A)[[z]] under the same Formula (3). The
gauge symmetry action can be generalised by considering the transfered homotopy cooperad structure on
the augmented S-module H⊕ I, where I is concentrated in arity one I = (0, id, 0, . . .), obtained from the
extended cooperad structure on BV¡ given by

µ 7→ ∆
BV

¡(µ) +

n∑
m=1

µ ◦m id + id ◦1µ .

It is straightforward to check that the image ofH under the strictly higher structure maps of the homotopy
cooperad structure on H ⊕ I produced by the homotopy transfer theorem for cooperads [DV13, Theo-
rem 3.3] remains the same. Only the cooperad part onH of this homotopy cooperad structure onH⊕I gets
modified; it is given by the same extended formula as above for ∆BV¡ . WritingH⊕ I = T c(δ)⊕ ImHdψ ,
we are now working in the L∞-algebra

Hom(T c(δ),End(A))⊕HomS(ImHdψ,End(A)) ∼= End(A)[[z]]⊕ gHyperCom .

In the end, this generalisation modifies only θ(0) by the preceeding argument.
Both of these two generalisations give the commutator in the endomorphism operad, for k = 0:

λ(0)
n = θ(0)

n = −r ◦1 νn+

n∑
m=1

νn ◦m r .

We show in the remaining part of this section that for each k ≥ 0:

λ(k+1)
n =

∑
ItJ=n

(|I|
2

)(
n
2

) λ(k)
|J|+1 ◦1 ν|I| −

(
1−

(|I|
2

)(
n
2

) ) ν|J|+1 ◦1 λ
(k)
|I| ,

θ(k+1)
n =

∑
ItJ=n

(|I|
2

)(
n
2

) θ(k)
|J|+1 ◦1 ν|I| −

(
1−

(|I|
2

)(
n
2

) ) ν|J|+1 ◦1 θ
(k)
|I| .

These formulae, together with the fact that λ(0)
n = θ

(0)
n imply that λ(k)

n = θ
(k)
n for all k, which concludes

the proof. �

3.4. Recursion relation for the Givental action. In this section, we shall prove the recursion relation for
the Givental action stated above.

Lemma 2. The components of the Givental action on the fundamental classes satisfy the recurrence rela-
tion

(5) λ(k+1)
n =

∑
ItJ=n

(|I|
2

)(
n
2

) λ(k)
|J|+1 ◦1 ν|I| −

(
1−

(|I|
2

)(
n
2

) ) ν|J|+1 ◦1 λ
(k)
|I| , for k ≥ 0 .

Proof. Proving (5) essentially amounts to somewhat imaginative application of Relations (1) and (2). Let
us explain how that is done.

We evaluate (−1)k(r̂zk+1.α)n using Formula (3) as

r ◦1 αn · ψk+1
0 + (−1)k+2

n∑
m=1

αn · ψk+1
m ◦m r+

+
∑

ItJ=n,|I|≥2,
i+j=k

(−1)j+1ρ̃∗

((
α|J|+1 · ψj1

)
⊗
(
r ◦1 α|I| · ψi0

))
.
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We shall represent this and subsequent formulae pictorially, so that

r ◦1 αn · ψk+1
0 =

. . .

n

rψk+1
,

αn · ψk+1
m ◦m r =

. . . rψk+1 . . .

n ,

and

ρ̃∗

((
α|J|+1 · ψj1

)
⊗
(
r ◦1 α|I| · ψi0

))
=

· · ·
I

ψi

r

ψj . . .

J

,

so that the label of each vertex is the set of its “free” inputs.
First, let us rewrite the first term in the formula for the Givental action using Formula (1). That formula

depends on a choice of i1, i2 ∈ n, and to obtain something symmetric, we shall average over all such
choices. Using the factorisation property of genus 0 CohFT, we obtain

(6)

. . .

n

rψk+1
=

∑
ItJ=n

(|I|
2

)(
n
2

)
. . .

I . . .

J

rψk

,

where the tree on the right-hand side represents ρ̃∗
(
(r ◦1 ψk0 .α|J|+1)⊗ α|I|

)
.

To deal with the first sum in the formula, let us recall that, by Formula (2), we have

. . . rψk+1 . . .

n +

. . . rψk . . .

n

ψ

=
∑

ItJ=n

. . . rψk . . .

I . . .

J

.

Since Formula (1) gives,

. . . rψk . . .

n

ψ

=
∑

ItJ=n

(|I|
2

)(
n
2

)
. . . rψk . . .

I . . .

J

+
∑

ItJ=n

(|I|
2

)(
n
2

)
. . .

I rψk . . .

J
,
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then we have

(7) (−1)k+2

. . . rψk+1 . . .

n = (−1)k+1
∑

ItJ=n

((|I|
2

)(
n
2

) − 1

) . . . rψk . . .

I . . .

J

+

+ (−1)k+1
∑

ItJ=n

(|I|
2

)(
n
2

)
. . .

I rψk . . .

J
.

Let us rewrite the second sum in the formula. Let us first outline our strategy. For i, j > 0, we split the
term

(−1)j+1

· · ·
I

ψi

r

ψj . . .

J

into two pieces,

(−1)j+1

(|I|
2

)(
n
2

)
· · ·
I

ψi

r

ψj . . .

J

and (−1)j+1

(|J|
2

)
+ |I||J |(
n
2

)
· · ·
I

ψi

r

ψj . . .

J

.

We rewrite the first term using Formula (1), as in the first case above, and the second term using Formulae
(2) and (1), as in the second case above. Then, we shall again average over various choices, although in the
second case, the choices have to be somewhat more subtle than just all possibilities with equal coefficients.
Finally, we examine the contribution of extreme terms (where either i or j is equal to zero). We split them
in a similar fashion into a weighted sum of two, but then perform similar computations with the two.

So rewriting

(−1)j+1

(|I|
2

)(
n
2

)
· · ·
I

ψi

r

ψj . . .

J
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using Formula (1) yields

(8) (−1)j+1
∑

I1tI2tJ=n

(|I1|
2

)(
n
2

)

· · ·
I1 . . .

I2

ψi−1

r

ψj . . .

J

,

Let us keep the factor 1− (|I|2 )
(n
2)

=
(|J|2 )+|I||J|

(n
2)

aside for the moment, and rewrite

(−1)j+1

· · ·
I

ψi

r

ψj . . .

J

using Formula (2), which yields

(−1)j+1
∑

ItJ1tJ2=n

· · ·
I

ψi

r

ψj−1 . . .

J1 . . .

J2

− (−1)j+1

· · ·

I

ψi

r

ψj−1 . . .

J

ψ

.

Recalling the constant factors, we shall keep

(9) (−1)j+1

(
1−

(|I|
2

)(
n
2

) ) ∑
ItJ1tJ2=n

· · ·
I

ψi

r

ψj−1 . . .

J1 . . .

J2
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as is, and rewrite

(−1)j
(|J|

2

)
+ |I||J |(
n
2

)

· · ·

I

ψi

r

ψj−1 . . .

J

ψ

using Formula (1). We shall average it over the variety of
(|J|

2

)
+ |I||J | different choices of two leaves:(|J|

2

)
choices where both leaves belong to J , and “|I||J | choices where one leaf belongs to I and the other

leaf belongs to J”, or more precisely the choices where one leaf belongs to J , and the other leaf is the
“connector” between the two corollas, taken with multiplicity |I|. The result is made up of

(10) (−1)j
|I||J1|(

n
2

) ∑
ItJ1tJ2=n

· · ·

I

ψi

r

ψj−1 . . .

J1 . . .

J2

,

(11) (−1)j
(|J1|

2

)(
n
2

) ∑
ItJ1tJ2=n

· · ·
I

ψi

r

ψj−1 . . .

J1 . . .

J2

,

and

(12) (−1)j
(|J1|

2

)(
n
2

) ∑
ItJ1tJ2=n

· · ·

I

ψi

r . . .

ψj−1 . . . J1

J2

.
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Let us remark that the terms (9), (10), and (11) collect altogether into

(13) (−1)j

((|ItJ1|
2

)(
n
2

) − 1

) ∑
ItJ1tJ2=n

· · ·

I

ψi

r

ψj−1 . . .

J1 . . .

J2

,

There are just two terms where some of our manipulations would not work (they correspond to i = 0 and
to j = 0, where either the top ψ-class or the bottom ψ-class is missing, and therefore only one of the two
weighted parts into which we split the respective term would be rewritten). Those additional contributions
are

(14) (−1)k+1

(|I|
2

)(
n
2

)
· · ·
I

r

ψk . . .

J

and

(15) − (1−
(|I|

2

)(
n
2

) )

· · ·
I

ψk

r . . .

J

.

Finally, we integrate all the above terms overM0,|J|+2 ×M0,|I|+1. We notice that the term(|I|
2

)(
n
2

) λ(k)
|J|+1 ◦1 ν|I|

is assembled precisely out of the contributions of Formula (6), the second half of Formula (7), and Formu-
lae (8), (12), and (14), while the term

−

(
1−

(|I|
2

)(
n
2

) ) ν|J|+1 ◦1 λ
(k)
|I|

is assembled precisely out of the contributions of the first half of Formula (7), and Formulae (13) and (15).
�

3.5. Recursion relation for the gauge symmetries action. Let us now prove the same recursion relation
for the gauge symmetries action.

Lemma 3. The components of the gauge symmetries action on the generators of HyperCom satisfy the
recurrence relation

(16) θ(k+1)
n =

∑
ItJ=n

(|I|
2

)(
n
2

) θ(k)
|J|+1 ◦1 ν|I| −

(
1−

(|I|
2

)(
n
2

) ) ν|J|+1 ◦1 θ
(k)
|I| , for k ≥ 0 .
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Proof. Recall from 3.3 that the left-hand side of this formula is given by the term `k+3(rzk+1, α, . . . , α)
inside `α1 (r(z)), which reduces to the left comb

C :=

i(rzk+1) i(α)

[ , ]
h

i(α)

[ , ]

h
i(α)

[ , ]

p

with the k + 1 edges labelled by h. Let us start evaluating this map on the element b of (ImHdψ)[1](n)
representing the n-ary generator of HyperCom. It follows from [DV13] that b = H (

∑
t), where t ranges

over all shuffle binary trees with n leaves and with internal vertices labelled by β. Thus, the element b
is equal to the weighted sum of shuffle binary trees with one internal vertex labelled by µ and the others
labelled by β. The application of the left comb C to b amounts to computing the weighted sum of elements

C ′(δH(b′)) ◦i i(α)(b′′)− i(α)(b′) ◦i C ′(δH(b′′)) ,

over all ways to split b as a decomposition b′◦i b′′, where b′ has the Jt{i} as its set of leaves, b′′ has I as its
set of leaves, and where C ′ denotes the “top part” of the left comb. Since α vanishes outside (ImHdψ)[1],
we may only apply i(α) to the part of the decomposition that contains the only corolla labelled by µ. This
means that in the term C ′(δH(b′)) ◦i i(α)(b′′) all weights coming from the formula for H are within b′′.
It follows that b′ is the sum of all shuffle binary trees with the set of leaves J t {i}, and C ′(δH(b′)) is
nothing but θ(k)

|J|+1, since the additional occurrence of δ we now have will only affect the power z at the
last stage. To write b′′ as an element of the image of H we just need to modify the denominators of the
weights; all numerators are automatically correct:

i(α)(b′′) =

(|I|
2

)(
n
2

) α(Hdψ(b′′)) .

Similarly, in the term i(α)(b′) ◦i C ′(δH(b′′)), all weights coming from the formula for H are within b′, so
b′′ is the sum of all shuffle binary trees with the set of leaves I , and C ′(δH(b′′)) is nothing but θ(k)

|I| . In b′

the weights are not quite correct, however, when applying i(α) to b′, one uses the projection Hdψ , which
turns out to create the correct weights. Indeed, since each term in b′ is a tree monomial containing exactly
one vertex labelled µ, its image under dψ is is a tree monomial of the same shape where all vertices are
labelled β, and then the application of H to that monomial creates correct weights. Thus i(α)(b′) differs
from ν|J|+1 by a scalar multiple, which is the sum of the H-weights of the vertices of b′ computed for

those vertices viewed as vertices of b. For each tree monomial that sum is equal to 1− (|I|2 )
(n
2)

since the total

sum of weights of all vertices of a given tree is equal to 1 and since we already noticed that for b′′ the sum

of weights is equal to (|I|2 )
(n
2)

. This completes the proof. �

3.6. Givental action on homotopy hypercommutative algebras. If in Theorem 5 we assume A to be a
chain complex with a non-zero differential, the result remains true for the modified statement

`α1 (r(z)) = [dA, r(z)] + r̂(z).α .

In particular, the Givental formulae define an action if we restrict ourselves to the subalgebra of the Givental
Lie algebra consisting of elements that commute with dA. (This restriction makes sense, as only this way
the Givental formulae are homotopically meaningful). A direct consequence of this theorem is that the
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Givental group action on hypercommutative algebras extends naturally to homotopy hypercommutative
algebras. This suggests the following definition.

Definition 8. Let a homotopy hypercommutative algebra structure on a chain complex A be encoded by
a Maurer–Cartan element α ∈ gHyperCom, and let r(z) be a degree 0 element of g∆ commuting with dA.
The infinitesimal Givental action is the gauge symmetry action of r(z) on α:

r̂(z).α := `α1 (r(z)) .
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[Hof10] Eric Hoffbeck, A Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscripta Math. 131 (2010), no. 1-2, 87–110.
[KM94] Maxim Kontsevich and Yuri Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm.

Math. Phys. 164 (1994), no. 3, 525–562.
[KMS12] Anton Khoroshkin, Nikita Markarian, and Sergey Shadrin, Hypercommutative operad as a homotopy quotient of BV, to

appear in Comm. Math. Phys. (2012), arXiv:1206.3749.
[Lee09] Yuan-Pin Lee, Invariance of tautological equations. II. Gromov-Witten theory, J. Amer. Math. Soc. 22 (2009), no. 2,

331–352, With an appendix by Y. Iwao and the author.
[LV12] Jean-Louis Loday and Bruno Vallette, Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamen-

tal Principles of Mathematical Sciences], vol. 346, Springer-Verlag, Berlin, 2012.
[Man99] Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society Collo-

quium Publications, vol. 47, American Mathematical Society, Providence, RI, 1999.
[MV09] Sergei Merkulov and Bruno Vallette, Deformation theory of representations of prop(erad)s. I, J. Reine Angew. Math. 634

(2009), 51–106.
[Tel12] Constantin Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), no. 3, 525–588.
[VdL02] Pepijn Van der Laan, Operads up to homotopy and deformations of operad maps, arXiv:math.QA/0208041 (2002).

SCHOOL OF MATHEMATICS, TRINITY COLLEGE, DUBLIN 2, IRELAND

E-mail address: vdots@maths.tcd.ie

KORTEWEG-DE VRIES INSTITUTE FOR MATHEMATICS, UNIVERSITY OF AMSTERDAM, P. O. BOX 94248, 1090 GE AMS-
TERDAM, THE NETHERLANDS

E-mail address: s.shadrin@uva.nl
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