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Abstract

We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami

equation. The gauge invariance, variational principle, conserved current, energy-momentum ten-

sor and choice of boundary conditions elucidate the subject. In particular, we prove that any

extremal of the Yang-Mills action functional 1
4

∫

Ω
trFµνF

µν
d
4
x subject to the local constraint

ε
µναβ trFµνFαβ = 0 satisfies the covariant non-abelian Beltrami equation.
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I. INTRODUCTION

The introduction of the concept of magnetic helicity [1] revolutionized our understanding

of plasma physics phenomena, from dynamos [2] to the solar wind, to the operation of

controlled fusion devices [3–5], and it plays a central role when applied to a variety of

concepts such as the Beltrami equation and force-free fields in the form of Taylor states [6].

Helicity was introduced in a three-dimensional context, but we find it useful to covariantize it

[7, 8]. We propose and explore a covariantization of the Beltrami equation, and in particular

study its relation to helicity conservation. For instance, new terms can arise that vanish in

the non-relativistic case, but which can contribute when we have a multi-component helicity

system where the components are moving with relativistic velocities with respect to each

other. This could be the case for helicity in relativistic plasmas [9] ejected from astrophysical

objects colliding with another plasma clouds [10], but it can also apply in particle physics

to the hadronization process where relativistic flux tubes interact [11, 12] or to the early

universe as it cools through various epochs. Some of these examples are Yang-Mills systems

and they will need non-abelian generalization.

II. NON-COVARIANT CASE

We first briefly review the three-dimensional Beltrami equation and helicity.

Consider a region Ω ⊂ R
3 and let (x,∇) be the Cartesian coordinates and the derivative

operator in Ω. A vector field B in Ω is called a Beltrami vector field if it satisfies

B × (∇×B) = 0, (1)

where × is the vector product in R
3. Eq. (1) implies that the vectors ∇ × B and B are

parallel, which leads to the Beltrami equation

∇×B = λB, (2)

where λ is a scalar function in Ω.

Eq. (2) shows that Beltrami fields are eigenfields of the curl operator. Eigenfields of the

curl operator can be related to more familiar functions by using the identity

∇×∇×B = ∇(∇ ·B)−∆B, (3)
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where · is the scalar product and ∆ is the Laplace operator in R
3. It follows that the square

of the curl operator, when restricted to the space of divergence-free vector fields, is the

negative of the Laplace operator −∆. Thus, in some sense, the curl operator is the square

root of the operator −∆ (which itself is a positive operator).

The restriction to the space of divergence-free vector fields is not accidental, but is re-

quired by physical considerations of B being a magnetic field. In such a case, the divergence-

free condition ∇ · B = 0 for B in (2) implies

B · ∇λ = 0, (4)

so that λ is constant along any field line of B. Eq. (4) is the consistency condition for (2).

According to the Beltrami equation (2), the Maxwell current J = ∇× B is parallel to the

magnetic field, J = λB. Note that the current conservation ∇ · J = 0 also implies (4).

To learn more about a Beltrami field B, it is instructive to consider a vector potential

A such that B = ∇ × A. Since a vector potential is defined only up to the gradient of

an arbitrary function, it will be important to ensure gauge invariance of various physical

quantities under a gauge transformation

A 7→ A+∇g, (5)

where g is an arbitrary real-valued function in Ω. The two simplest such gauge invariant

quantities are the energy W and helicity H of the field B in the region Ω,

W =

∫

Ω

1
2
‖B‖2 d3x, (6)

H =

∫

Ω

A · B d3x, (7)

where ‖ ‖ is the scalar norm in R
3.

Convergence of the integrals in (6) and (7) imposes certain restrictions on A and B.

We are concerned here with the case of a non-compact Ω and restrictions derived from the

required behavior of A and B for ‖x‖ → ∞. In such a case, convergence of the integral in

(7) implies

A = O(‖x‖p), ‖x‖ → ∞, p < −1. (8)

This leads to B = O(‖x‖p−1), ‖x‖ → ∞, which means that allowed field configurations do

not include magnetic monopoles. It follows that the integral in (6) also converges for such

fields.
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The gauge invariance of the energy is obvious, while the corresponding gauge transfor-

mation of the helicity is

H 7→ H +

∫

∂Ω

g(n · B)d2σ, (9)

where ∂Ω is the boundary of Ω, n is the unit normal vector to ∂Ω, and d2σ is the area

differential on ∂Ω. Since we require gauge invariance of H , we set the boundary condition

(n · B)|∂Ω = 0, (10)

which means that the field lines do not cross the boundary. For a non-compact Ω, the

asymptotic behavior B = O(‖x‖p−1), ‖x‖ → ∞ ensures the gauge invariance of H as well

since the boundary integral in (9) vanishes.

The helicity is often conserved in physical systems involving magnetic fields, and this

restricts their dynamics. For example, suppose that B is a field in Ω satisfying the boundary

condition (10) which minimizes its energy W and conserves its helicity H . The resulting

variational problem is equivalent to finding B minimizing the functional

W − 1
2
λH =

∫

Ω

Ld3x (11)

with the Lagrangian

L = 1
2
‖B‖2 − 1

2
λA · B. (12)

(We have chosen the form of the Lagrange multiplier λ which leads to the conventional form

of the Beltrami equation.) For an infinitesimal variation of the vector potential δA, we find

δL = (∇×B − λB) · δA+∇ ·
[

(−B + 1
2
λA)× δA

]

, (13)

which leads to

δ(W − 1
2
λH) =

∫

Ω

(∇× B − λB) · δA d3x+

∫

∂Ω

n ·
[

(−B + 1
2
λA)× δA

]

d2σ. (14)

We eliminate the boundary term in (14) by setting the boundary condition

δA|∂Ω = 0. (15)

The variation (14) vanishes for any δA satisfying (15) if and only if ∇× B = λB. Thus, a

Beltrami field with λ = const is a stationary point of the energy functional W subject to
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the condition H = const. It can be further proved that such a field is a local minimum of

W with constant H .

Another aspect of the helicity relates to the conserved Noether current. Gauge transfor-

mations are the symmetry operations of the theory defined by the Lagrangian L. The proof

of the invariance of the theory requires showing (without using the equation of motion) that

L is changed only by the divergence term. (For the following derivation we assume λ is

constant.) Indeed, for a gauge transformation (5) with δA = ∇g, (13) becomes

δL = ∇ · Γ, (16)

Γ = −1
2
λgB. (17)

On the other hand, using the equation of motion we find

δL = ∇ ·

(

∂L

∂∇Ak
δAk

)

. (18)

Equating (16) and (18), we arrive at the conserved Noether current (∇ · j = 0),

j =
∂L

∂∇Ak
δAk − Γ, (19)

j = (−B + 1
2
λA)×∇g + 1

2
λgB. (20)

Since the gauge function g is arbitrary, we can define another conserved Noether current k

by

gk = j +∇×
[

(−B + 1
2
λA)g

]

. (21)

and find

k = −∇×B + λB. (22)

Now the Beltrami equation (2) gives k = 0, so that the Noether current associated with

the helicity, λB, equals the Maxwell current J = ∇ × B. As expected, there is only one

independent conserved current in the problem.

Computing the Noether energy-momentum tensor

θij =
∂L

∂(∇iAk)
∇jAk − δijL

= (Bl −
1
2
λAl)ε

lik∇jAk − δij
(

1
2
‖B‖2 − 1

2
λA · B

)

, (23)
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we find that its divergence

∇iθ
i
j = (−∇× B + λB)k∇jAk (24)

vanishes for any solution of the Beltrami equation (2), which implies the conservation equa-

tion ∇iθ
i
j = 0.

We now derive the lower bound for the energy in terms of helicity and constant λ [13].

We first integrate the Beltrami equation (2) once to obtain

∇× A = λA+∇ϕ, (25)

where ϕ is an arbitrary scalar function in Ω. We can now use the gauge transformation (5)

with g = −λ−1ϕ to replace (25) with

∇×A = λA, (26)

which is of the same form as (2). Hence in this gauge B = λA, which gives

W = 1
2
λH. (27)

Although (26) is not gauge invariant, its consequence, (27), is gauge invariant. We conclude

that the minimal value of the variational functional W − 1
2
λH equals zero for any solution

of the Beltrami equation with constant λ.

The field satisfying B = λA saturates the lower bound for the energy in terms of helicity

[13]. To derive this, we consider a non-local operator curl−1 acting on the space of divergence-

free vector fields. We use the Schwarz inequality

∣

∣

∣

∣

∫

Ω

B · curl−1B d3x

∣

∣

∣

∣

≤

[
∫

Ω

‖B‖2 d3x

]1/2[∫

Ω

‖curl−1B‖2 d3x

]1/2

(28)

and the Poincaré inequality

∫

Ω

‖curl−1B‖2 d3x ≤ C−2

∫

Ω

‖B‖2 d3x, (29)

where C > 0 is a certain constant depending on Ω. Combination of the two inequalities

gives W ≥ 1
2
C |H|. Finally, using the Rayleigh min-max theorem

B · curl−1B ≤ |µ|max ‖B‖2, (30)
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where

|µ|max = max
a

|µa|, (31)

curl−1Ba = µaBa, (32)

we see that we can use C = 2 |µ|−1

max and find

W ≥ 1
2
|µ|−1

max |H| . (33)

It is clear that the field satisfying B = λA saturates the bound (33) since in this case we

have |µ|−1

max = |λ| and W = 1
2
|λ| |H|.

III. COVARIANT CASE

The proceeding non-covariant analysis is sufficient for the description of magnetic fields

in nonrelativistic plasmas. Generalizations to the electric case have been carried out [14]

and applied [15], but relativistic plasmas require a full covariant analysis. In particular, this

applies to Beltrami fields and helicity.

To deriving the covariant forms of equations obtained in the preceding section, we con-

sider Lorentzian (R1,3,Ω, x,∇), where R
1,3 has a constant pseudo-Riemannian metric with

signature (1, 3). The magnetic field B is now a part of the gauge field strength tensor F .

Using

Bi =
1
2
εijkF

jk, (34)

we first write (1), (2), (4) in the form

Fi
j∇kFjk = 0, (35)

∇jFij =
1
2
λεijkF

jk, (36)

εijkFjk∇iλ = 0, (37)

then setting

Ei = Fi0, (38)

ε0ijk = εijk, (39)

λ0 = λ, (40)
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we arrive at the covariant form of (35), (36), (37),

Fα
µ∇νFµν = 0, (41)

∇νFµν = 1
2
εµναβλ

νF αβ, (42)

εµναβFαβ∇µλν = 0. (43)

Covariantization requires that we identify non-covariant λ with the time component of a

4-vector λ. Note that the left-hand side of (43) vanishes identically if we set

∇µλν −∇νλµ = 0, (44)

The requirement (44) will appear later in the variational formulation of the problem.

Similarly to (2) implying (4) and (4) not implying (2) for ∇ · B = 0, we have (42)

implying (43) and (43) not implying (42). However, although (1) and (2) are equivalent,

their covariant counterparts (41) and (42) are not equivalent; in fact, none of the two implies

the other.

In terms of the E and B fields, the time and space components of (41) become

E · ∇0E − E · (∇× B) = 0, (45)

E(∇ · E) +B × (∇0E)− B × (∇× B) = 0, (46)

the time and space components of (42) become

−∇ · E = λ · B, (47)

−∇0E +∇×B = λ0B + λ× E, (48)

and (43) becomes

− B · ∇λ0 +B · ∇0λ+ E × (∇× λ) = 0. (49)

Note that the left-hand side of (49) vanishes identically if we set ∇λ0 − ∇0λ = 0 and

∇× λ = 0, which combine to give (44).

A consistency condition is required for compatibility of (41) and (42) for arbitrary λ.

Indeed, combining these equations, we find

F γµεµναβλ
νF αβ = 0. (50)
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Considering the values γ = 0 and γ = i in (50), yields λ0E · B = 0 and λiE · B = 0,

respectively. This requires the same consistency condition E · B = 0 for each values of γ,

which we write in the covariant form

εµναβFµνFαβ = 0. (51)

We could have arrived at the consistency condition E · B = 0 also by noting that it is an

appropriate covariant form of the three-dimensional constraint E = 0.

The covariant analogue of the energy W is the negative of the Maxwell action

W =

∫

Ω

1
4
FµνF

µνd4x,

=

∫

Ω

(

−1
2
‖E‖2 + 1

2
‖B‖2

)

d4x, (52)

(We have introduced the sign difference in the definition of W so that the non-covariant W

is a limiting case of the covariant W .) As a covariant form of the helicity H , we propose

H(f) = −

∫

Ω

1
2
εµναβ(∇µf)AνFαβ d

4x

=

∫

Ω

1
2

[

(∇0f)(A · B)−A0(B · ∇f)−∇f · (A× E)
]

d4x, (53)

where f is an arbitrary scalar function in Ω. (It will become clear in what follows why in

(53) we use λµ = ∇µf instead of a general λµ.)

For a non-compact Ω, convergence of the integral in (53) implies

A = O(‖x‖p), ‖x‖ → ∞, p < −1 − 1
2
q, (54)

where we assumed

f = O(‖x‖q), ‖x‖ → ∞ (55)

for a certain q. Since F = O(‖x‖p−1), ‖x‖ → ∞, convergence of the integral in (52) now

implies p < −1.

Our definition (53) is motivated by the following limiting case of covariant helivity H(f).

Suppose Ω = [t1, t2]× Ω′, where Ω′ ⊂ R
3, and f is a function of x0 = t only. It follows that

H(f) =

∫ t2

t1

H ′(t)(∂f/∂t)dt, (56)
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where H ′(t) is the non-covariant helicity of the vector potential Ai(t, x). In particular, for

the conserved non-covariant helicity H ′, we find

H(f) = [f(t2)− f(t1)]H
′, (57)

More generally, for an arbitrary f , (53) implies

H(f) = H̃(f)−

∫

∂Ω

1
2
εµναβfAνFαβ d

3σµ, (58)

H̃(f) =

∫

Ω

1
4
εµναβfFµνFαβ d

4x, (59)

which means that H(f) is a boundary term when consistency condition (51) is satisfied.

Under a gauge transformation

Aµ 7→ Aµ +∇µg, (60)

where g is an arbitrary real-valued function in Ω, the gauge invariance of W is obvious,

while the corresponding gauge transformation of the helicity is

H(f) 7→ H(f) +

∫

∂Ω

1
2
εµναβ(∇νf)gFαβ d

3σµ. (61)

Since we require gauge invariance of H(f), we set

[

εµναβnµ(∇νf)Fαβ

]

∂Ω
= 0, (62)

where n is the 4-vector normal to ∂Ω. Using now (42) with λµ = ∇µf , we find

(nµ∇νFµν)∂Ω = 0, (63)

which a covariant version of the boundary condition (10). For a non-compact Ω, the asymp-

totic behavior F = O(‖x‖p−1), ‖x‖ → ∞ ensures the gauge invariance of H(f) as well since

the boundary integral in (61) vanishes.

In terms of the E and B fields, the boundary condition (63) becomes

[−n0(∇f · B) + (∇0f)(n · B) + n · (∇f ×E)]∂Ω = 0. (64)

In particular, for time-like and space-like hypersurface ∂Ω we have

(∇f · B)∂Ω = 0 for time-like ∂Ω, (65)

[(∇0f)(n ·B) + n · (∇f ×E)]∂Ω = 0 for space-like ∂Ω. (66)

We further emphasize the choice of the definition (53) by the following theorem.
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Theorem 1. Any extremal of the action functional W =
∫

Ω
1
4
FµνF

µνd4x subject to the

constraint εµναβFµνFαβ = 0 and the boundary condition δA|∂Ω = 0 satisfies the covariant

Beltrami equation ∇νFµν = 1
2
εµναβλ

νF αβ for λµ = ∇µf , where f = f(x) is an arbitrary

function.

Proof. Any extremal of (52) subject to the local constraint (51) must be an extremal of the

functional W − 1
2
H̃(f), where f(x) is a space-time dependent Lagrange multiplier [16]. For

an arbitrary variation of the gauge potential δA, we find

δ(W − 1
2
H̃(f)) =

∫

Ω

[

−(∇µF
µν) + 1

2
εµναβ(∇µf)Fαβ

]

δAν d
4x

+

∫

∂Ω

(F µν − 1
2
εµναβfFαβ)δAν d

3σµ. (67)

Using the boundary condition

δA|∂Ω = 0, (68)

we arrive at (42) with λµ = ∇µf , which proves the theorem.

Note that λµ = ∇µf derived in the proof implies (44), which we have already seen as a

sufficient condition for (43) to be satisfied identically.

We now consider the covariant version of the conserved Noether current [17]. Equations

(11), (12), (16), (19), (20), (22) become

W − 1
2
H̃(f) =

∫

Ω

L(f) d4x, (69)

L(f) = 1
4
FµνF

µν − 1
8
εµναβfFµνFαβ, (70)

δL(f) = 0, (71)

jµ(f) =
∂L(f)

∂∇µAν
δAν , (72)

jµ(f) =
(

F µν − 1
2
εµναβfFαβ

)

∇νg, (73)

kµ(f) = −∇νF
µν + 1

2
εµναβ(∇νf)Fαβ. (74)

Now using the Beltrami equation (42), we find kµ(f) = 0, so that the Noether current

associated with the helicity, 1
2
εµναβ(∇νf)Fαβ , equals the negative of the Maxwell current

Jµ = −∇νF
µν . As expected, there is only one independent conserved current in the problem.
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The Noether energy-momentum tensor is

θµν(f) =
∂L(f)

∂(∇µAσ)
∇νAσ − δµνL(f),

= (F µσ − 1
2
fεµσαβFαβ)∇νAσ − δµν(

1
4
FαβF

αβ − 1
8
εαβγδfFαβFγδ) (75)

and the corresponding energy-momentum 4-vector is

Pν(f) =

∫

Ω′

θ0ν(f) d
3x, (76)

P0(f) = −

∫

Ω′

(

1
2
‖E‖2 + 1

2
‖B‖2

)

d3x+

∫

∂Ω′

n · (E + fB)A0 d
2σ, (77)

Pi(f) = −

∫

Ω′

(E × B)i d
3x+

∫

∂Ω′

n · (E + fB)Ai d
2σ, (78)

where we assumed Ω = [t1, t2]× Ω′, Ω′ ⊂ R
3. We set the boundary condition

n · (E + fB)|∂Ω′ = 0 (79)

and obtain the relation Pν(f) = Pν(0) which is consitent with L(f)−L(0) being a topological

term. Also note that although θµν(f) is not gauge invariant, the resulting Pν(f) is.

To prove conservation of θµν(f), we need to use the Beltrami equation. Indeed, in the

expression

∇µθ
µ
ν(f) =

(

(∇µF
µσ)− 1

2
εµσαβ(∇µf)Fαβ

)

∇νAσ +
1
8
εαβγδ(∇νf)FαβFγδ, (80)

the first term on the right-hand side vanishes for any solution of (42) and the second term

vanishes due to the constraint (51). Since (51) follows from (42), we conclude that the

conservation equation ∇µθ
µ
ν(f) = 0 holds for any solution of the Beltrami equation.

IV. NON-ABELIAN CASE

So far we have worked with Maxwell’s electromagnetism, which is an abelian gauge the-

ory. We anticipate applications of generalized helicity and Beltrami equation to non-abelian

theories as well. For example, in high temperature QCD with free quarks and gluons,

conservation of chromomagnetic and chromoelectric helicity could affect the dynamics by

restricting the evolution of configurations as the system cools. This could apply to a range

of situations from the early Universe to high energy nucleus-nucleus collisions at the LHC.
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Furthermore, at lower energy per particle the hadronization process will involve chromo-

electric fields confined to flux tubes and bags, so chromoelectric helicity conservation should

play a role in determining decays and final states.

To proceed, we choose a non-abelian gauge group G, its algebraic generators {Ta}, and

the corresponding structure constants {eabc} satisfying the commutation relation [Ta, Tb] =

eabcT
c. The anti-hermitian generators are normalized according to tr TaTb = −δab. The

gauge field Aµ = Aa
µTa and the field strength Fµν = F a

µνTa are elements of the algebra of G,

and are related according to

Fµν = ∇µAν −∇νAµ + [Aµ, Aν ]. (81)

We also need the gauge covariant derivative of the field strength,

DαFµν = ∇αFµν + [Aα, Fµν ]. (82)

Under a gauge transformation

Aµ 7→ U−1AµU + U−1∇µU, (83)

where U is an arbitrary G-valued function in Ω, we have

Fµν 7→ U−1FµνU, (84)

DαFµν 7→ U−1(DαFµν)U, (85)

To generalize the results of the previous section to a non-abelian group G, we need to

ensure that all equations transform properly under the above gauge transformations. Such

generalizations are straightforward in most cases; for example, equations (41), (42), (43) are

replaced with

Fα
µDνFµν = 0, (86)

DνFµν = 1
2
εµναβλ

νF αβ , (87)

εµναβFαβ∇µλν = 0. (88)

We need to be careful, however, when generalizing (51). To derive the corresponding

equation, we first note that (86) and (87) lead to

F γµεµναβλ
νF αβ = 0. (89)
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Proceeding as in the abelian case by considering the values γ = 0 and γ = i separately, we

arrive at

λ0EiB
i + εijkλ

iEjEk = 0, (90)

λj(EiBj −BjE
i)− λ0εijkBjBk + λiBjE

j = 0, (91)

where G-valued electric and magnetic fields are

Ei = Fi0, (92)

Bi =
1
2
εijkF

jk. (93)

Due to non-commutativity of the E and B fields, we cannot conclude from (90) and (91)

that EiB
i = 0. However, taking the trace of (90) and (91), we arrive at the non-abelian

consistency condition trEiB
i = 0, which we write in the covariant form generalizing (51),

εµναβ trFµνFαβ = 0. (94)

Equations (52), (53), (58), (59) become

W =

∫

Ω

1
4
trFµνF

µνd4x, (95)

H(f) = −

∫

Ω

1
2
εµναβ(∇µf) tr

(

AνFαβ −
2
3
AνAαAβ

)

d4x, (96)

H(f) = H̃(f)−

∫

∂Ω

1
2
εµναβf tr

(

AνFαβ −
2
3
AνAαAβ

)

d3σµ, (97)

H̃(f) =

∫

Ω

1
4
εµναβf trFµνFαβ d

4x, (98)

where the gauge invariance of H(f) requires the appearance of the well-known term cubic

in A.

For a non-compact Ω, convergence of the integral in (96) for ‖x‖ → ∞ implies

A = O(‖x‖p), ‖x‖ → ∞, p < −1 − 1
2
q, p < −1− 1

3
q, (99)

where we assumed

f = O(‖x‖q), ‖x‖ → ∞ (100)

for a certain q. Since F = O(‖x‖p−1), ‖x‖ → ∞, convergence of the integral in (95) now

implies p < −1.
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Under the gauge transformation (83), the invariance of (95) is obvious, while the corre-

sponding transformation of (96) is

H(f) 7→ H(f)−

∫

∂Ω

εαβµνf tr∇α

(

(∇µU)U−1Aν

)

d3σβ

−

∫

∂Ω

1
3
εαβµνf trU−1(∇µU)U−1(∇νU)U−1(∇αU) d3σβ. (101)

We note two significant differences between (101) and its abelian counterpart (61).

First, vanishing of the first integral in (101) leads to a more restrictive boundary condition

than the similar procedure for (61). To see this, we evaluate the first integral in (101) for

an infinitesimal transformation with the gauge function

U = exp (g), g → 0 (102)

and find
∫

∂Ω

εαβµνf tr∇α

(

(∇µU)U−1Aν

)

d3σβ =

∫

∂Ω

1
2
εαβµν(∇µf) tr g

(

Fνα − [Aν , Aα]
)

d3σβ +O(g2).

(103)

For the O(g) term in (103) to vanish for any g, we need to impose the condition

(

εαβµνnβ(∇µf)(Fνα − [Aν , Aα])
)

∂Ω
= 0. (104)

Since the quantity (Fνα− [Aν , Aα])∂Ω is not gauge invariant, we conclude that (104) requires

(∇µf)∂Ω = 0. (105)

Now the Beltrami equation (87) with λµ = ∇µf implies

(DνFµν)∂Ω = 0. (106)

Equations (105) and (106) are the boundary conditions needed for the invariance of H(f)

under transformations with the gauge function of the form (102). We see that the nonabelian

boundary conditions (105) and (106) are more restrictive than their abelian counterpart (63)

because (106) implies

(nµDνFµν)∂Ω = 0, (107)

which is the nonabelian generalization of (63), but (107) does not imply either (105) or

(106).
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Transformations with gauge functions that can be written in the exponential form (102)

(with g not necessarily small) are called small gauge transformations because they are homo-

topically equivalent to the identity transformation. Gauge functions for all other transfor-

mations, which are called large gauge transformations, cannot be written in the exponential

form (102) and are topologically nontrivial. This brings us to the second distinction of the

nonabelian case, namely, that the analog of the second integral in (101) does not appear in

(61). This term depends only on f and the gauge function U , and its independence from the

gauge field A is significant. Further note that the boundary condition (105) implies that f is

constant on the boundary ∂Ω, which leads to the second integral in (101) being a constant

times a topological invariant

n =

∫

∂Ω

εαβµν trU−1(∇µU)U−1(∇νU)U−1(∇αU) d3σβ. (108)

The invariant n is the winding number of the mapping from ∂Ω into the gauge group G. If

∂Ω ≃ S
3 and G is compact, then n is an integer since the corresponding homotopy group of

maps ∂Ω → G is π3(G) ≃ Z. However, if ∂Ω is not topologically equivalent to S
3, than the

homotopy group might be different.

Even though the asymptotic behavior for A and f are fixed by (99) and (100), the integrals

in (101) can still diverge for a non-compact Ω unless we specify appropriate asymptotic

conditions for U . Without loss of generality, we assume

U = ±I +O(‖x‖r), ‖x‖ → ∞, r < 0, (109)

where I is the unit matrix. The plus-minus sign here corresponds to the two possible signs

of detU , which account for the cases of proper rotations versus rotations combined with

the inversion with respect to the origin. Vanishing of the first and second integral in (101)

implies 2p+ q+ r+ 2 < 0 and q+ 3r < 0, respectively. With the above conditions satisfied,

the helicity H(f) is invariant with respect to both small and large gauge transformations.

We can now prove the following analog of Theorem 1.

Theorem 2. Any extremal of the action functional W =
∫

Ω
1
4
trFµνF

µνd4x subject to the

constraint εµναβ trFµνFαβ = 0 and the boundary condition δA|∂Ω = 0 satisfies the covariant

Beltrami equation DνFµν = 1
2
εµναβλ

νF αβ for λµ = ∇µf , where f = f(x) is an arbitrary

function.
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Proof. Any extremal of (95) subject to the local constraint (94) must be an extremal of the

functional W − 1
2
H̃(f), where f(x) is a space-time dependent Lagrange multiplier [16]. For

an arbitrary variation of the gauge potential δA, we find

δ(W − 1
2
H̃(f)) =

∫

Ω

tr δAµ

(

DνF
µν − 1

2
εµναβ(∇νf)Fαβ

)

d4x

+

∫

∂Ω

tr δAµ

(

−F µν + 1
2
εµναβfFαβ

)

d3σν . (110)

Using the boundary condition

δA|∂Ω = 0, (111)

we arrive at (87) with λµ = ∇µf , which proves the theorem.

We now consider the nonabelian version of the conserved Noether current [17]. Equations

(69), (70), (71), (72), (73), (74) become

W − 1
2
H̃(f) =

∫

Ω

L(f) d4x, (112)

L(f) = 1
4
trFµν

(

F µν − 1
2
εµναβfFαβ

)

, (113)

δL(f) = 0, (114)

jµ(f) =
∂L(f)

∂∇µAa
ν

δAa
ν , (115)

jµ(f) = tr
(

F µν − 1
2
εµναβfFαβ

)

Dνg, (116)

kµ(f) = −DνF
µν + 1

2
εµναβ(∇νf)Fαβ. (117)

Similarly to the abelian case, using now the Beltrami equation (87), we find kµ(f) = 0, so

that the Noether current associated with the helicity, 1
2
εµναβ(∇νf)Fαβ, equals the negative of

the Yang-Mills current Jµ = −DνF
µν . As expected, there is only one independent conserved

current in the problem.

The Noether energy-momentum tensor is

θµν(f) =
∂L(f)

∂(∇µAa
σ)
∇νA

a
σ − δµνL(f),

= tr
{

(F µσ − 1
2
fεµσαβFαβ)∇νAσ − δµν(

1
4
FαβF

αβ − 1
8
εαβγδfFαβFγδ)

}

(118)

and the corresponding energy-momentum 4-vector is

Pν(f) =

∫

Ω′

θ0ν(f) d
3x, (119)
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P0(f) = −

∫

Ω′

tr
(

1
2
‖E‖2 + 1

2
‖B‖2

)

d3x+

∫

∂Ω′

tr {n · (E + fB)A0} d
2σ, (120)

Pi(f) = −

∫

Ω′

tr (E ×B)i d
3x+

∫

∂Ω′

tr {n · (E + fB)Ai} d
2σ. (121)

where we assumed Ω = [t1, t2]× Ω′. We set the boundary condition

tr {n · (E + fB)}|∂Ω′ = 0 (122)

and, similarly to the abelian case, obtain the relation Pν(f) = Pν(0) which is consitent with

L(f)−L(0) being a topological term. Also note that although θµν(f) is not gauge invariant,

the resulting Pν(f) is.

To prove conservation of θµν(f), we need to use the Beltrami equation. Indeed, in the

expression

∇µθ
µ
ν(f) = tr

{(

(DµF
µσ)− 1

2
εµσαβ(∇µf)Fαβ

)

∇νAσ +
1
8
εαβγδ(∇νf)FαβFγδ

}

(123)

we see that the first term on the right-hand side vanishes for any solution of (87) and the

second term vanishes due to the constraint (94). Since (94) follows from (87), we conclude

that the conservation equation ∇µθ
µ
ν(f) = 0 holds for any solution of the non-abelian

Beltrami equation.

V. CONCLUSIONS

We have generalized the magnetic helicity and Beltrami equation to relativistic and non-

abelian forms. In the process, we discussed various interconnected features associated with

these generalizations. In particular, we found that the helicity is related to the Chern-

Simons action and can also be viewed as a constraint requiring the vanishing of a generalized

instanton term.

Besides its theoretical appeal, the covariant formulation of the magnetic helicity and

Beltrami equation has an experimental advantage as well. It turns out that, for an ideal

nonrelativistic plasma, charges flow until the electric field are completely shorted out. In the

relativistic case, even for an ideal plasma, however, the current flow may not be able to keep

up, and so the electric fields do not necessarily always vanish. Some possible applications

of our results for the relativistic generalization of the Beltrami equation may be found for

18



dynamos inside millisecond pulsars, pulsar and quasar atmospheres, collisions of plasma

shock waves with other shocks or gas clouds and nuclear fusion via laser confinement.

The generalization to the nonabelian case is straightforward but interesting since sev-

eral further features arise. We have already briefly mentioned a few systems where our

results could be useful. They may further apply to high energy QCD collisions ranging from

relativistic heavy ion collisions, where a liquid state has been suggested, to hadronization

processes in high energy elementary particle collisions. There may also be applications to

the prehadronic early universe. We hope to explore some of these topics in the future.

Explicit solutions of the covariant and non-abelian Beltrami equations are of particular

interest for applications, and we will address these elsewhere.

Appendix: Main results in terms of differential forms

It is well known that formulation of a gauge theory in terms of differential forms often adds

conceptual clarity and computational convenience. The generalized helicity and Beltrami

fields are no exception in this regard. Here we use differential forms to state our main

results for the non-abelian helicity and Beltrami fields. These should be sufficient for the

interested reader to easily fill out the remaining details and derive corresponding relations

for the abelian covariant and non-covariant cases.

Introducing the forms

A = Aµdx
µ, (A.1)

F = dA+ A ∧ A, (A.2)

F = 1
2
Fµνdx

µ ∧ dxν , (A.3)

λ = λµdx
µ (A.4)

we rewrite (86), (87), (88), (94) as

∗ F ∧D ∗ F = 0, (A.5)

D ∗ F = λ ∧ F, (A.6)

F ∧ dλ = 0, (A.7)

tr (F ∧ F ) = 0. (A.8)

19



Note that the left-hand side of (A.7) vanishes identically if we set dλ = 0, which follows

from λ = df found in the proof of Theorem 2.

The action (95) and helicity (96) become

W =

∫

Ω

1
2
tr (F ∧ ∗F ), (A.9)

H(f) = −

∫

Ω

df ∧ tr
(

A ∧ F − 1
3
A ∧A ∧A

)

, (A.10)

while (97) and (98) become

H(f) = H̃(f)−

∫

∂Ω

f tr
(

A ∧ F − 1
3
A ∧ A ∧ A

)

, (A.11)

H̃(f) =

∫

Ω

f tr (F ∧ F ). (A.12)

Under a gauge transformation

A 7→ U−1AU + U−1dU, (A.13)

F 7→ U−1FU, (A.14)

the invariance of (A.9) is obvious and (101) becomes

H(f) 7→ H(f)−

∫

∂Ω

f tr d
(

dUU−1 ∧ A
)

−

∫

∂Ω

1
3
f tr

(

dUU−1 ∧ dUU−1 ∧ dUU−1
)

. (A.15)

The boundary conditions (105), (106), (107) become

df |∂Ω = 0, (A.16)

(D ∗ F )∂Ω = 0, (A.17)

(∗n ∧D ∗ F )∂Ω = 0, (A.18)

where n = nµdx
µ. For the Noether current (117) we have

k(f) = kµ(f)dx
µ, (A.19)

k(f) = ∗(D ∗ F − df ∧ F ). (A.20)

The Beltrami equation (A.6) now gives k(f) = 0.
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