
IMMORTALITY OF PLATONIC SOLIDS

I. BUSJATSKAYA AND M. MONASTYRSKY

1. Introduction

The existence of symmetry in nature and human creation is one of the most
puzzling and exciting phenomena.The first manifestation of Platonic solids in nature
is in the shape of viruses [4]. It is possible to say that Platonic solids appeared at
the birth of life.

Figure 1. Icosahedron Papilloma Virus

The study of symmetry during the whole history of civilization led to the cre-
ation of the deepest theories in Science and became a source of inspiration in Art,
Architecture and so on. We choose from this inexaustible theme one small fragment
devoted to regular solids.
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2. Some History

The most simplest examples of regular solids like, the tetrahedron, cube, and
octahedron are found in crystals. More sophisticated forms like, the dodecahedron
and icosaehedron do not appear as perfect crystals.1. This result was proved only
in the nineteenth century. It is worth noting that a form close to the almost
dodecahedron exists in nature. This is the mineral pyrite which was known from
neolithic times. The Icosahedron does not exist as a natural crystal but in modern
time does become a fundamental ingredient in the construction of quasicrystals.
We discuss this very interesting result later.

The classification of platonic solids, i.e. the proof that there exist only 5 regular
convex polyhedrons, appeared as a mathematical theorem in the XIII book of Eu-
clid’s elements, but was known before This was the very first classification theorem
in the history of mathematics. Euclid’s proof was based on the analysis of the num-
bers of angles and sides. It took almost two thousand years before there appeared
the famous Euler formula V −E+F = 2 was appeared, in modern terms the Euler
characteristic of Sphere S2. Here V is the number of vertices of the polyhedron, E
is the number of edges, and F is the number of faces. From this formula, the nice
and elementary proof follows almost immediately.

This work of Euler, along with his other work about Königsberg’s bridges became
the base of modern topology. Let us jump hundred years ahead and open an
beautiful book of Felix Klein [2] In this book, he relates the problem of unsolvability
of algebric equations of the fifth order with the simplicity of the group of symmetry
of the Icosahedron- the so called group of even permutations of 5 elements- the
group A5. This is one of the first examples of simple groups. The classification
of simple groups is one of the greatest achievements of the XXI century. Now we

1The first dodecahedron may have long proceded tale.The North-Europeans 2500 B.C. seem

to have molded docahedron from clay, perhaps by packing together 13 soft clay balls, arranged

in a pleasing pattern,then pulling them appart to reveal the central, now-faceted form: a regular
dodecahedron. In nature there exists a species Radiolaria, including Circogonia icosahedra, whose

skeleton is shaped like a regular icosahedron.
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consider some examples of modern research which show how unpredictably, but
repeatedly Platonic solids appear in modern research.

We started from the result which we extract from the paper [1]

3. Caustics with symmetries of platonic solids

Let us consider the following simple model: the envelope of the rays emanating
from convex wave front invariant under the actions of the group of symmetry of
Platonic solids–the polyhedral groups. How does reflect this on the topology of
singularities in the model, the well known duality between platonic solids? We call
such singularities as polyhedral caustics. Let us recall this classical duality (by
exchange the number of verices with edge) : 1.The tetrahedron is self-dual. 2.The
cube is dual to the octahedron. 3.The icosahedron is dual to the dodecahedron.
The remarkable result of the paper [1] is that this duality leads to the duality in
umbilics for all types of Platonic solids. To be precise, if the wave front is invariant
under the symmetry group G, then the set of singularities, so called caustic surfaces,
are invariant under the same group G but acting on a dual space.field H play the
role of physical coordinates x, y, z. The equilibrium conditions define the energy E
as a function of H and the level surface E(H) = const is a compact surface W .
Its caustics represent the fields for which the magnetization orientation undergoes
a jump(swtching fields). For example, in the case of cubic symmetry, the caustics
of switching fields present the topology of caustics for the octahedron.

4. Platonic solids and McKay correspondence

At the end of the 1970s, J. McKay found an unpredictable relation between repre-
sentations of finite groups and Coxeter graphs of simple Lie algebras [3]. This result
tied together the classical works of Klein (1872)for invariants of platonic solids,the
classification of algebraic surfaces with isolated singularities, and the classification
of Lie algebras and simple groups. Let G be a finite subgroup of SU2(C) - the
binary group of invariance of Platonic solids. If C2 is a two-dimensional complex
space, then C2/G is a complex surfaces with an isolated singularity. It is possi-
ble to show that the resolution of this singularity for all Platonic solids relates to
exceptional Lie algebras. On the other hand these singularities are determined by
an algebra A invariant under a group G,generated by three variables X,Y, Z with
one relation. For example, in the case of the symmetry group of Icosahedron, this
relation is the follows:X5 + Y 3 + Z2 = 0 [9]. We leave this very active field of
research by quotating McKay: ”Would not the Greeks appreciate the result that
the simple Lie algebras may be derived from the Platonic solids?”.

5. Quasicrystals

Our next example is from the theory of quasicrystals. We quote from Klein’s
book : ”The theory of Icosahedron has during the last years obtained a place of such
importance for nearly all departments of modern analysis, that it seemed expedient
to publish a systematic exposition of the same“ [2]. Exactly one hundred years later,
a group of physicists published the paper where the Icosahedron appeared in a very
unpredictable situation in the theory of crystals[8]. As is well known from the work
of Bravais and others, crystals with symmetry of 5th, 8th, 10th, and 12th orders
do not exist, since such symmetries are inconsistent with translation-invariance of
the crystal lattice. So this structure having local symmetry, but lacking spatial
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periodicity. Structures of this type were called quasicrystals. Such quasicrystals
relate to the representation of the group of the Icosahedron I acting in R6 and then
projecting by an ”irrational” angle to R3 embedded in R6.

Representation of the group I can be decomposed in two invariant subspaces R3

and R3⊥. We embed the space R3 in R6 by an ”irrational” angle. It means that
the intersection of a lattice Z6 in R6 consists of the origin alone. The projection of
Z6 to R3 defines a tiling in R6 which is our quasicrystal.

6. Duality in Spin systems with the symmetry of finite subgroups of
SO(3)

In this section we describe the final example from our collection. It illustrates
complex relations between mathematics and physics. We begin with some mathe-
matics.

In the beginning of the 1930s, L. Pontryagin and E. R. van Kampen built the
duality theory for abelian groups. The main result was the following theorem.

Let G be a locally compact Abelian group. Consider the group of characters of
G, i.e. the set of mappings χ : G→ U(1) satisfying

χ(g1 × g2) = χ(g1)× χ(g2)

This set of mappings make up a group Ĝ, called the character group (or the dual

group) of G. Then
̂̂
G, the dual group of Ĝ, coincides with G.

It is natural for mathematicians to try to generalize this theorem to a non-
Abelian case. One of the main examples of non-Abelian groups provide the finite
subgroups of SO(3), the group of rotation of our friends the groups of symmetries
of Platonic solids and the Dihedral group D2n. We consider this topic in broader
context.

This is a nontrivial task, since in the non-commutative case, the product of irre-

ducible representations is not irreducible and so the set Ĝ is not a group. Neverthe-
less, this problem was solved in some sence by Japanese mathematician T.Tannaka
in 1938. Idependently, it was solved by the Soviet mathematician M. Krein in 1941,
who didn’t know about the work of Tannaka. The paper of Tannaka attracted the
attention of J. von Neumann who noted the above-mentioned difficulty and indi-

cated several important general properties of Ĝ. A dual to a non-commutative
group is not a group but a commutative space, endowed with a multiplicative op-
eration. The papers of Tannaka and Krein were practically forgotten for almost
thirty years, until the first papers appeared on non-commutative integration and
ring groups. But the real value of these works has been appreciated only later, in
the 1980s, when the theory of quantum groups was created. Quantum groups are
closely related to integrable quantum systems. These systems appeared earlier in
physics.

Now we turn to physics.
In statistical physics, within the theory of phase transitions, for a long time a

number of models have been proposed and analysed, describing lattice aproximation
for various kinds of physical matter. One of the first such models was the one-
dimensional Ising model (1925). E. Ising (1900-1998), a student of W. Lenz, wrote
a paper were he found an analytical formula for the free energy of the model.
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A generalization to the two-dimensional case led to serious difficulties. The two-
dimensional Ising model was solved only in 1944 by L. Onsager and till now is a
rare example of an exactly solvable model in Statistical physics.

Consequently, physicists tried to find approximate methods to identify points
of phase transitions. In 1941, two Dutch physicists H. Kramers and G. Wan-
nier have found a very nice method of calculating the point of phase transition
in the two-dimentional Ising model. They constructed a transformation between
the low-temperature and the high-temperature phases. It was latter called the
Kramers–Wannier duality. From the mathematical point of view, it is a very in-
teresting object: an infinite-dimensional bundle with the structure group G = Z2.
The Kramers–Wannier duality consists in passing to the dual lattice (homological

duality à la Poincaré) and to the dual group Ĝ, in this case coinciding with the same
Z2. Later, physicists generalized the KW-duality to systems with a Zn-symmetry
(so-called Potts models).

At the end of the 1970s, in connection with problems in quantum field theory
(quark confinement),physicists became interested in a generalization of the KW-
duality to non-Abelian groups. Just at this time several papers appeared related
to the KW-duality for some non-Abelian groups; (see [5]). One of the interesting
results of this paper was the construction of the dual object to the symmetric groups
Sn. For instance, the dual object to S3 is the octahedron. At that time, the authors
of this paper had no idea about the results of Tannaka–Krein.

Then, 25 years later, V. Buchstaber and one of the authors of this paper(M.M)
constructed the KW-duality for non-commutative finite groups based on the ideas
of quantum groups [6, 7] Only later we learned about the works of Tannaka and
Krein.

Although our results were not covered by Tannaka–Krein duality it is evident
that the earlier knowledge of their ideas would have allowed us to complete our
work much earlier. It is an additional example to the famous collection of F. Dyson
[10]. In the course of our work we have found interesting relations with an old (and
almost forgotten) paper by Frobenius [11]. Ferdinand Gotfried Frobenius (1849-
1917) was one of the founders of the theory of group representations (mainly for
finite groups). His famous theorems about irreducible representations of groups are
presented in all textbooks on the theory of groups representations. However, one of
his papers, full of interesting ideas, was shelved for decades. For instance, Frobenius
introduced for non-commutative groups the concept of generalized characters. He
posed the question of whether generalized characters determine a group in the same
way as in the commutative case. It is well known that there exist non-isomorphic
groups with the same table of characters, viz., the group of unit quaternions Q and
the dihedral group D2, both of order 8.

7. Conclusion

For lack of space we omitted some other interesting examples of the appearence of
Platonic (regular) solids in science, e.g. minimal surfaces with Platonic symmetries.
But we hope that the examples we mentioned, show the surprising and unique role
of Platonic solids in nature, science, and culture. There is no doubt that Platonic
solids will continue surprise and encourage us in the future.
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